

SH7670 Group

REJ06B0782-0101 Rev.1.01

Example of BSC SDRAM Interface Connection (32-Bit Data Bus) May 07, 2010

Introduction

This application note introduces the synchronous DRAM (SDRAM) interface of the bus state controller (BSC) of SH7670/SH7671/SH7672/SH7673 products and includes a sample application.

Target Device

SH7670

Contents

1.	Preface	2
2.	Description of Sample Application	3
3.	Listing of Sample Program	.12
4.	Documents for Reference	.15

1. Preface

1.1 Specifications

- Two 256-Mbit (4 Mwords × 16 bits × 4 banks) SDRAM modules are connected to the SH7670 with a 32-bit data bus width.
- SDRAM is initialized by using the SDRAM interface function of the SH7670.

1.2 Module Used

• Bus state controller (BSC)

1.3 Applicable Conditions

• MCU	SH7670/SH7671/SH7672/SH7673
	(R5S76700/R5S76710/R5S76720/R5S76730)
• Operating frequency	Internal clock: 200 MHz
	Bus clock: 66.67 MHz
	Peripheral clock: 33.33 MHz
Integrated development	High-performance Embedded Workshop Ver.4.03.00
environement	from Renesas Electronics
• C compiler	SuperH RISC Engine Family C/C++ Compiler Package Ver.9.01 Release01
	from Renesas Electronics
Compiler options	Default settings of High-performance Embedded Workshop
	(-cpu = sh2afpu -fpu = single -object = "\$(CONFIGDIR)\\$(FILELEAF).obj"
	-debug -gbr = auto -chgincpath -errorpath -global_volatile = 0 -opt_range = all
	-infinite_loop = 0 -del_vacant_loop = 0 -struct_alloc = 1 -nologo)

1.4 Related Application Note

The operation of the reference program for this document was confirmed with the setting conditions described in the *SH7670 Group Application Note: Example of Initialization* (REJ06B0799). Please refer to that document in combination with this one.

2. Description of Sample Application

2.1 Operational Overview of Module Used

The bus state controller (BSC) of the SH7670 supports an SDRAM interface that is directly connectable to SDRAM units that have 11, 12, or 13 bits of row address, 8, 9, or 10 bits of column address, 4 or fewer banks, and in which the A10 pin is used to set pre-charge mode in read and write command cycles. Burst reading/single writing (burst length 1) and burst reading/burst writing (burst length 1) are supported as SDRAM operating modes.

Table 1 provides the specifications of SDRAM used in this sample application.

Item	Specification
Clock frequency	Up to 133 MHz
Capacity	256 Mbits (32 MB) × 2
Configuration	4 banks × 4 Mwords × 16 bits
CAS latency	2 or 3 (programmable)
Refresh cycle	8192 refresh cycles per 64 ms
Burst length	1, 2, 4 or 8 full pages (programmable)
Row address	A12 to A0
Column address	A8 to A0
Pre-charge	Auto pre-charge/all bank pre-charge controlled via A10

Table 1 Specifications of SDRAM Used in This Sample Application

Figure 1 shows a memory map.

SDRAM can be connected to the CS3 space of the SH7670. The value of bit A29 in internal addresses can control enabling and disabling of the cache.

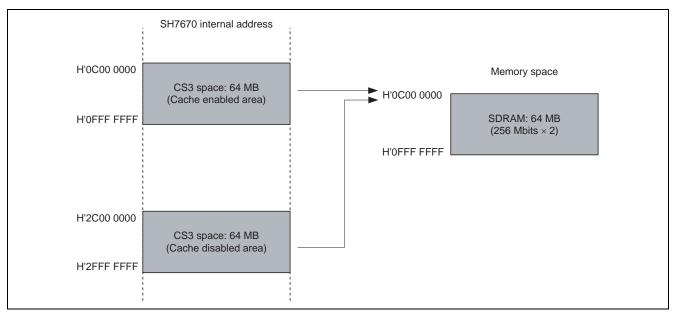


Figure 1 Memory Map in Relation to SDRAM

Figure 2 shows an example of circuitry for SDRAM connection.

Table 2 gives a list of the address-multiplexing output pins in the case of 256-Mbit SDRAM.

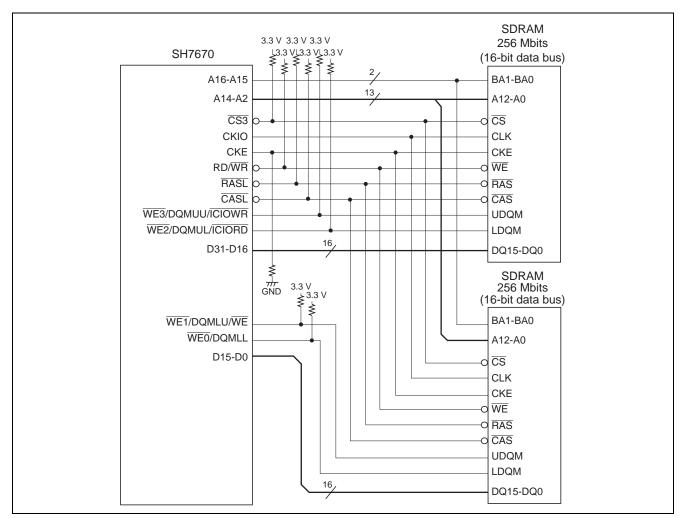


Figure 2 Example of Circuitry for SDRAM Connection (256-Mbit SDRAM × 2 and 32-Bit Bus)

Note: Handling of control signal pins with external pull-up or pull-down resistors

In general, the criterion for whether control pins should be pulled up or down is stability of operation. We thus recommend that the CS, RAS, CAS, WE, DQMU, and DQML pins be pulled up (set to the high level) by external resistors.

The CKE pin is pulled down (set to the low level) by an external resistor for a reason other than that stated above. In this case, the intention is to continue the self-refresh state so that data in the SDRAM are protected even after signals from the MCU have stopped.

SH7670 Pin (32 bits)	Row Address (13 bits)	Column Address (9 bits)	SDRAM Pin	Function
A17	A26	A17		Not in use
A16	A25* ²	A25* ²	A14 (BA1)	Specifies bank
A15	A24* ²	A24* ²	A13 (BA0)	_
A14	A23	A14	A12	Address
A13	A22	A13	A11	_
A12	A21	L/H* ¹	A10/AP	Specifies address/pre-charge
A11	A20	A11	A9	Address
A10	A19	A10	A8	_
A9	A18	A9	A7	_
A8	A17	A8	A6	_
A7	A16	A7	A5	_
A6	A15	A6	A4	_
A5	A14	A5	A3	_
A4	A13	A4	A2	_
A3	A12	A3	A1	_
A2	A11	A2	A0	_
A1	A10	A1		Not in use
A0	A9	A0	_	

Table 2 Connections between SH7670 Pin Functions and SDRAM

Notes: 1. The L/H bit is used in command specification; it is fixed at low or high according to the access mode.

2. Bank address specification

2.2 Procedure for Setting Module Used

2.2.1 Example of the Initialization Procedure for SDRAM

Figure 3 gives an example of the initialization procedure to place SDRAM in the CS3 space.

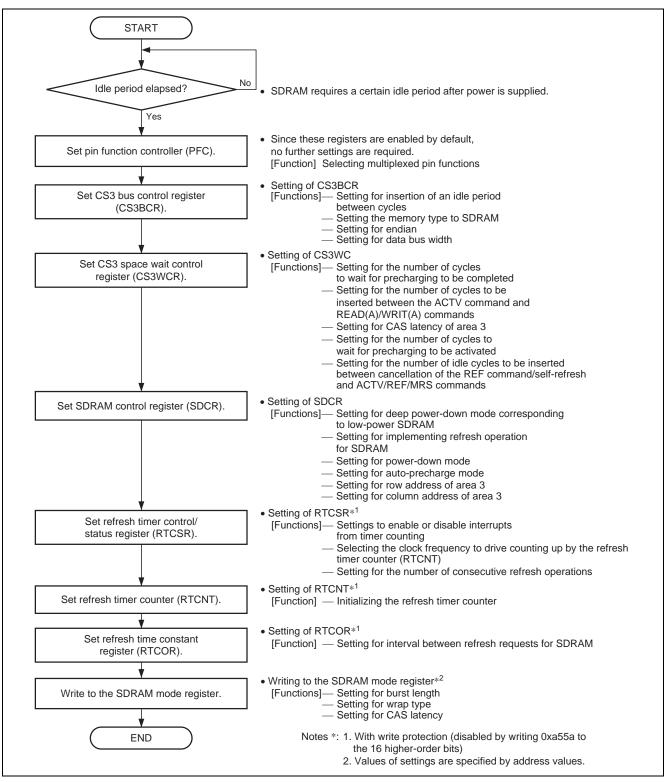


Figure 3 Example of the Procedure for Initial Settings to Place SDRAM in the CS3 Space

2.2.2 Power-On Sequence

To perform SDRAM initialization, registers of the bus state controller must first be set, followed by a write to the SDRAM mode register. Burst length, wrap type, CAS latency, etc. can be set in the mode register. SDRAM requires a certain idle period after power is supplied, and this period differs with the SDRAM specifications. Please confirm the specifications of the SDRAM to be used, and make settings after the idle period has elapsed.

Settings are written to the SDRAM mode register by writing a word (16 bits) with any value to the addresses shown in table 3. Select the address for access in accord with the settings.

Data Bus	CAS	Burst Read/Single Write (Burst Length 1)		Burst Read/Burst Write (Burst Length 1)	
Width	Latency	Access Address	External Address Pin	Access Address	External Address Pin
16 bits	2	H'FFFC 5440	H'0000 0440	H'FFFC 5040	H'0000 0040
	3	H'FFFC 5460	H'0000 0460	H'FFFC 5060	H'0000 0060
32 bits	2	H'FFFC 5880	H'0000 0880	H'FFFC 5080	H'0000 0080
	3	H'FFFC 58C0	H'0000 08C0	H'FFFC 50C0	H'0000 00C0

Table 3 Addresses for Access to Write Values to the SDRAM Mode Register

Writing a word to an access address writes the corresponding settings to the SDRAM mode register. Writing is executed by the following commands being issued in sequence. Figure 5 shows an example of timing for writing to the SDRAM mode register.

- All bank pre-charge command (PALL) Idle cycles (Tpw) as specified by the WTRP[1:0] bits in CS3WCR are inserted between the PALL and the first REF.
- Auto-refresh command (REF, eight times) The REF command is issued and is followed by the number of idle cycles (Trc) specified by the WTRC[1:0] bits in CS3WCR. This is repeated eight times.
- 3. Mode-register setting command (MRS)

The mode-register setting command is issued in combination with CS3, RAS, CAS, and RD/WR. The combination of levels on the external address pins determines the value of the setting written to the SDRAM.

Furthermore, the burst length is always set to 1 for the SH7670. Accordingly, burst operations to transfer more data than the width of the data bus, for example to transfer 16 bytes of data, are realized by issuing consecutive commands. This is efficient because unnecessary bus cycles are not generated even when the access size is small. Selection of burst read/single write (burst length 1) or burst read/burst write (burst length 1) as given in table 3 does not affect the operation of the SH7670.



Figure 5 Example of Timing for Writing to the SDRAM Mode Register

2.3 Operation of the Sample Program

SDRAM read and write operations for sample program are described as follows:

1. Read operation

Figure 6 shows an example of SDRAM single-read timing in operation with the bus clock running at 66.67 MHz. The operations below are performed on successive cycles of the SH7670.

— Tr : An ACTV command is issued, activating the relevant rows and banks. — Trw1, Trw2 : Wait cycles are inserted between the ACTV command and READ(A)/WRIT(A) commands. The number of wait cycles (two) for insertion is set by the WTRCD bits in CS3WCR. — Tcl : A READ(A) command is issued; a read command with auto-precharge is issued. — Tcw : Wait cycles are inserted between the Tcl and Tdl cycles. The wait cycles are equivalent to the number set for the CAS latency -1; the number of wait cycles (one) for insertion is set by the A3CL bits in CS3WCR. — Td1 : Read data are retrieved. In the case of burst reading, consecutive READ(A) commands are issued to read the data in sequence. — Tde : This is an idle cycle that is necessary for transfer of the read data within this LSI. One cycle must be allowed without fail for both burst-read and single-read operations. — Тар : This is a cycle of waiting for completion of auto-precharge. The number of wait cycles (one) for insertion is set by the WTRP bits in CS3WCR.

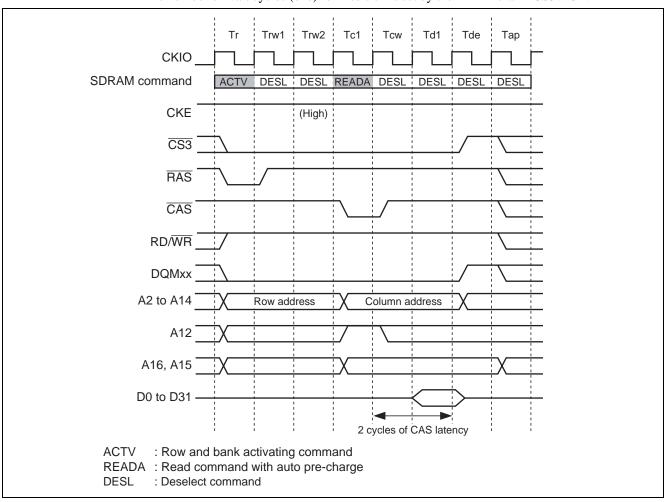


Figure 6 Example of SDRAM Single-Read Timing (Auto-Precharge)

2. Write operation

Figure 7 shows an example of SDRAM single-write timing in operation with the bus clock running at 66.67 MHz. The operations below are performed on successive cycles of the SH7670.

- Tr : An ACTV command is issued, activating the relevant rows and banks.
- Trw1, Trw2 : Wait cycles are inserted between the ACTV command and READ(A)/WRIT(A) commands. The number of wait cycles (two) for insertion is set by the WTRCD bits in CS3WCR.
- Tcl : A WRIT(A) command is issued; a write command with auto-precharge is issued.
 - In case of burst writing, a WRIT(A) command is consecutively issued.
- Trw1, Trw2 : These are cycles of waiting for activation of auto-precharge.
 - The number of wait cycles (two) for insertion is set by the TRWL bits in CS3WCR. : This is a cycle of waiting for completion of auto-precharge.
- Тар

The number of wait cycles (one) for insertion is set by the WTRP bits in CS3WCR.

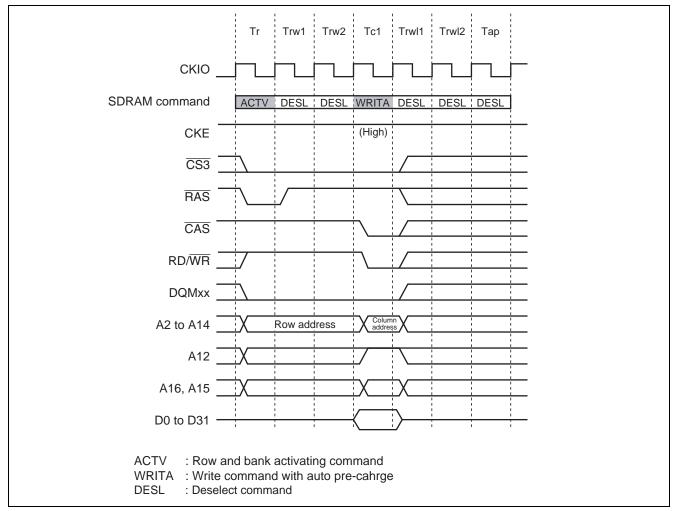


Figure 7 Example of Timing for Single-Writing to SDRAM (Auto Pre-charge)

2.4 Sample Settings of Bus State Controller

Table 4 provides sample settings of the BSC in operation with the SH7670 bus clock running at 66.67 MHz. For details on individual registers, please refer to the section on the bus state controller in the *SH7670 Group hardware manual* (REJ09B0437).

register (CS3BCR) WRRD[2:0], IWRRS[2:0] = B'000: No idle cycles are inserted. TYPE[2:0] = B'100: SDRAM ENDIAN = 0: Arranged in big endian BSZ[1:0] = B'11: 32-bit data bus width CS3 space wait control H'FFC 0034 H'0000 2892 WTRP[1:0] = B'01: Number of cycles to wait for completic precharging is 1. WTRCD[1:0] = B'10: Number of wait cycles inserted betwee ACTV command and READ(A)/WRITE commands is 2. A3CL[1:0] = B'10: Number of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5.		Table 4 Sample Settings of the BSC					
register (CS3BCR) WRRD[2:0], IWRRS[2:0] = B'000: No idle cycles are inserted. TYPE[2:0] = B'100: SDRAM ENDIAN = 0: Arranged in big endian BSZ[1:0] = B'11: 32-bit data bus width CS3 space wait control H'FFFC 0034 H'0000 2892 register (CS3WCR) H'FFFC 0034 H'0000 2892 WTRP[1:0] = B'01: Number of cycles to wait for completic precharging is 1. WTRCD[1:0] = B'10: Number of wait cycles inserted betwee ACTV command and READ(A)/WRITH commands is 2. A3CL[1:0] = B'10: Number of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5.		•	De	-		Name of Register	
 TYPE[2:0] = B'100: SDRAM ENDIAN = 0: Arranged in big endian BSZ[1:0] = B'11: 32-bit data bus width WTRP[1:0] = B'01: Number of cycles to wait for completic precharging is 1. WTRCD[1:0] = B'10: Number of wait cycles inserted betwee ACTV command and READ(A)/WRITE commands is 2. A3CL[1:0] = B'10: Number of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 	0],		•	H'0000 4600	H'FFFC 0010		
 ENDIAN = 0: Arranged in big endian BSZ[1:0] = B'11: 32-bit data bus width (CS3 space wait control H'FFFC 0034 H'0000 2892 register (CS3WCR) WTRP[1:0] = B'01: Number of cycles to wait for completion precharging is 1. WTRCD[1:0] = B'10: Number of wait cycles inserted betwee ACTV command and READ(A)/WRITE commands is 2. A3CL[1:0] = B'01: CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 							
 BSZ[1:0] = B'11: 32-bit data bus width CS3 space wait control H'FFFC 0034 H'0000 2892 register (CS3WCR) WTRP[1:0] = B'01: Number of cycles to wait for completion precharging is 1. WTRCD[1:0] = B'10: Number of wait cycles inserted betwee ACTV command and READ(A)/WRITE commands is 2. A3CL[1:0] = B'01: CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of cycles to wait for activation precharging is 2. 			•				
 CS3 space wait control H'FFFC 0034 H'0000 2892 WTRP[1:0] = B'01: Number of cycles to wait for completion precharging is 1. WTRCD[1:0] = B'10: Number of wait cycles inserted betweet ACTV command and READ(A)/WRITE commands is 2. A3CL[1:0] = B'01: CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betweet cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 			•				
 register (CS3WCR) Number of cycles to wait for completion precharging is 1. WTRCD[1:0] = B'10: Number of wait cycles inserted between ACTV command and READ(A)/WRITH commands is 2. A3CL[1:0] = B'01: CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of cycles inserted between cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 	ain		•				
 WTRCD[1:0] = B'10: Number of wait cycles inserted betwee ACTV command and READ(A)/WRITE commands is 2. A3CL[1:0] = B'01: CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 	etion of	Number of cycles to wait for completio	•	H 0000 2892	HTFFC 0034		
 Number of wait cycles inserted betwee ACTV command and READ(A)/WRITE commands is 2. A3CL[1:0] = B'01: CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 			•				
 ACTV command and READ(A)/WRITE commands is 2. A3CL[1:0] = B'01: CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 	woon		•				
 CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 		ACTV command and READ(A)/WRIT(
 CAS latency of area 3 is 2 cycles. TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 		A3CL[1:0] = B'01:	•				
 TRWL[1:0] = B'10: Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 							
 Number of cycles to wait for activation precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 			•				
 precharging is 2. WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 	tion of						
 WTRC[1:0] = B'10: Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5. 							
Number of idle cycles inserted betwee cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5.			•				
cancellation of REF command/self-ref and ACTV/REF/MRS commands is 5.	ween						
		cancellation of REF command/self-refr					
	s 5.	and ACTV/REF/MRS commands is 5.					
SDRAM control register H'FFFC 004C H'0000 0811 • DEEP = 0:		DEEP = 0:	٠	H'0000 0811	H'FFFC 004C	SDRAM control register	
	se.	Deep power-down mode is not in use.					
• RFSH = 1: Refresh			•				
RMODE = 0: Auto-refresh			•				
• PDOWN = 0:			•				
Power-down mode is not in use.							
BACTV = 0: Auto pre-charge mode	د		•				
 A3ROW[1:0] = B'10: 			•				
Row address of area 3 is 13 bits.			•				
 A3COL[1:0] = B'01: 			•				
Column address of area 3 is 9 bits.			•				
						Pofrach timer control	
			•	11 A33A UU IU*	116600 0000		
		•	_				
			•				
Refresh count is once.							
Refresh time constant register (RTCOR) H'FFFC 0058 H'A55A 0020* Interval between refresh requests for SDRAM = H'20 Descrete time constant H'FFFC 0058 H'A55A 0020* Interval between refresh requests for SDRAM = H'20		SDRAM = H'20	•	H'A55A 0020*	НТЕЕС 0058		
7.8125 μs/time,		•					
	40 ns,	1 cycle: $1/(B\phi (66.67 \text{ MHz})/16) = 240 \text{ r}$					
7.8125 μs/240 ns > 32 = H'20		•					
Refresh timer counter H'FFFC 0054 H'A55A 0000* Initialization of counter (RTCNT)		Initialization of counter	•	H'A55A 0000*	H'FFFC 0054	Refresh timer counter	

Table 4 Sample Settings of the BSC

Note: When writing, set the upper 16 bits to H'A55A to disable write protection.

3. Listing of Sample Program

3.1 Sample Program Listing: "bscsdram.c" (1)

1	/**************************************
2	* DISCLAIMER
3	*
4	* This software is supplied by Renesas Electronics Corp. and is only
5	* intended for use with Renesas products. No other uses are authorized.
6	*
7	* This software is owned by Renesas Electronics Corp. and is protected under
8	* all applicable laws, including copyright laws.
9	*
10	* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
11	* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
12	* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
13	* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
14	* DISCLAIMED.
15	*
16	* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17	* ELECTRONICS CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18	* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19	* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS
20	* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21	*
22	* Renesas reserves the right, without notice, to make changes to this
23	* software and to discontinue the availability of this software.
24	* By using this software, you agree to the additional terms and
25	* conditions found by accessing the following link:
26	* http://www.renesas.com/disclaimer
27	***************************************
28	* (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.
29	*""FILE COMMENT""********** Technical reference data ****************************
30	* System Name : SH7671 Sample Program
31	* File Name : bscsdram.c
32	* Abstract : SH7671 Initial Settings
33	* Version : 1.02.02
34	* Device : SH7671
35	* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).
36	* : C/C++ compiler package for the SuperH RISC engine family
37	* : (Ver.9.01 Release01).
38	* OS : None
39	* H/W Platform: M3A-HS71(CPU board)
40	* Description :
41	***************************************
42	* History : Jul.04,2007 ver.1.00.00
43	* : Oct.29,2007 ver.1.00.01 Modification due to change of iodefine.h(v1.00.00)
44	* : Jan.17,2008 ver.1.00.02 Wait change
45	* : Feb.07,2008 ver.1.01.00 Changed to be after refresh start mode setting
46	* : Mar.03,2008 ver.1.02.00 Setting procedure is unified
47	* : Dec.18,2009 ver.1.02.01 Updated header comments
48	* : Apr.07,2010 ver.1.02.02 Changed the company name and device name
49	*""FILE COMMENT END""***********************************


```
3.2 Sample Program Listing: "bscsdram.c" (2)
```

```
50
      #include "iodefine.h"
      #include "defs.h"
51
52
53
      /* ==== Macro name definition ==== */
54
55
      /* The address when writing in a SDRAM mode register */
      #define SDRAM_MODE (*(volatile unsigned short *)(0xfffc5080))
56
57
      /* ==== Prototype Declaration ==== */
58
59
      void io_init_sdram(void);
60
61
      #pragma section ResetPRG
      62
63
       * ID
                 :
       * Outline
                : SDRAM 16 bit bus width connection settings
64
       *_____
65
66
       * Include
                 : "iodefine.h", "defs.h"
67
       *_____
       * Declaration : void io_init_sdram(void);
68
69
       *_____
70
       * Description : A connection setup to SDRAM of CS3 space.
71
       *_____
       * Argument
                : void
72
73
       *_____
74
       * Return Value : void
75
                    -----
76
       * Note
                  :
       77
78
      void io_init_sdram(void)
79
      {
80
81
         volatile int j = LOOP_100us*2;
                                  /* 200usec wait */
82
         /* ==== 200us interval elapsed ? ==== */
83
84
         while(j-- > 0){
           /* wait */
85
         }
86
87
88
         /* ==== CS3BCR settings ==== */
89
         BSC.CS3BCR.LONG = 0x00004600ul; /* Idle Cycles between Write-read Cycles
                                and Write-write Cycles :2idle cycles */
90
91
                              /* Memory type :SDRAM */
92
                              /* Data Bus Size :32-bit size */
93
```


3.3 Sample Program: Listing of "bscsdram.c" (3)

```
94
95
               /* ==== CS3WCR settings ==== */
96
               BSC.CS3WCR_SDRAM.LONG = 0x00002892ul;
97
                                                /* Precharge completion wait cycles
98
                                                   :lcycles */
99
                                                /* Wait cycles between ACTV command
                                                   and READ(A)/WRITE(A) command :2cycles */
100
101
                                                /* CAS latency for Area 3 :2cycles */
102
                                                /* Auto-precharge startup wait cycles
103
                                                   :2cycles */
104
                                                /* Idle cycles from REF command/self-refresh
                                                   Release to ACTV/REF/MRS command
105
106
                                                   :5cycles */
107
               /* ==== SDCR settings ==== */
108
              BSC.SDCR.LONG = 0x00000811ul;
                                               /*
109
110
                                                    Refresh Control :Refresh start
111
                                                    RMODE : Auto-refresh is performed
                                                    BACTV : Auto-precharge mode
112
                                                    Row address for Area3 :13-bits
113
114
                                                    Column Address for Area3 :9-bits
115
                                                * /
116
117
               /* ==== RTCOR settings ==== */
               BSC.RTCOR.LONG = 0xa55a0020ul;
118
                                               /*
119
                                                    7.8usec /240nsec
120
                                                    >= 32(0x20)cycles per refresh
121
                                                * /
122
              /* ==== RTCSR settings ==== */
123
              BSC.RTCSR.LONG = 0xa55a0010ul;
124
125
                                                /*
126
                                                    Initialization sequence start
127
                                                    Clock select B-phy/16 = 240nsec
128
                                                    Refresh count :Once
                                                */
129
               /* ==== Written in SDRAM Mode Register ==== */
130
              SDRAM_MODE = 0;
                                                /*
131
132
                                                  SDRAM mode register setting(CS3 area)
133
                                                 dummy write
134
                                                 burst read / burst write (burst length 1)
135
                                              * /
136
           }
137
           /* End of File */
138
```


4. Documents for Reference

- Software manual SH-2A/SH2A-FPU Software Manual (REJ09B0051) The most up-to-data version of this document is available on the Renesas Electronics Website.
- Hardware manual

SH7670 Group Hardware Manual (REJ09B0437)

The most up-to-data version of this document is available on the Renesas Electronics Website.

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Descript	ion	
Rev.	Date	Page	Summary	
1.00	Nov.19.08		First edition issued	
1.01	May 07.10	_	AC Switching Characteristics are removed	
			Format is changed	

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

 Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" or for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics graduat" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronics appliances; machine tools;
 - personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarkeit, Ontario L3Y 9C3, Canada Tel: +1-905-989-5441, Fax: +1-905-989-3220 Renesas Electronics Europe Limited Dukes Meadow, Millozard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1528-585-100, Fax: +44-1528-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Dusseldorf, Germany Tel: +49-211-6503-0, Fax: +44-1528-585-900 Renesas Electronics Curope Chinal Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-21-55, Fax: +86-10-8235-7679 Renesas Electronics (Shanghal) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazul Ring Fd., Pudong District, Shanghai 200120, China Tel: +86-27-587-1818, Fax: +86-22-6887-7858 Renesas Electronics Hong Kong Limited Unit 1201-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-24-175-9800, Fax: +885-2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. Tr, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C. Tel: +882-28175-9900, Fax: +885-2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0200, Fax: +885-28175-9670 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0200, Fax: +885-28175-9670 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0200, Fax: +885-298-001 Tel: +60-3795-9390, Fax: +855-2980, Fax: +852-2980, Fax: +852-