
 APPLICATION NOTE

R01AN0355EJ0101 Rev.1.01 Page 1 of 12
Nov 10, 2010

SH7455 Group/SH7456 Group
Register Definition Header File

Introduction
This application note describes the contents of the register definition header file for the SH7455 Group and SH7456
Group and shows examples of its use.

Target Devices
SH74552 (R5F74552KBG): Under development

SH74562 (R5F74562KBG): Under development

Contents

1. Explanation.. 2

2. Using the SFR Header File ... 3

3. Reference Documents .. 12

R01AN0355EJ0101
Rev.1.01

Nov 10, 2010

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 2 of 12
Nov 10, 2010

1. Explanation
This document applies to the following microcomputers (MCUs) and coding tools:

• MCUs: SH74552(R5F74552KBG) and SH74562(R5F74562KBG)
• Compiler: SH SERIES C/C++ Compiler V.9.03.02 (SHC compiler)
• MISRA C Rule Checker: SQMlint V.1.03

1.1 Structure
The structure of the special function register definition header file (SFR header file) is as follows:

(1) All registers in the MCU hardware manual are defined.
(2) Registers and bit symbols follow those found in the MCU hardware manual (Rev. 0.50).
(3) The access size of each register (including bit-field access) is defined based on the maximum bit width of the

register.
(4) Register addresses are defined with the P4 area address (accessible in privileged mode only).
(5) 8-/16-/32-bit access sizes are written as BYTE/WORD/LONG, respectively.

Note that to improve the use of the SFR header file, some register and bit-field names are only defined in the SFR
header file. Refer to section "2.2 Special Register Definitions" in this document for details.

1.2 MISRA C Compliance
The SFR header file is created in compliance with MISRA C: 1998 rules. Information on features and compliance is as
follows:

(1) Features

To comply with MISRA C:1998 Rule 13, unsigned 8-/16-/32-bit data types are defined using typedef as
_U1/_U2/_U4, respectively.

• MISRA C:1998 Rule 13 (Advisory)
The basic types of char, int, short, long, float and double should not be used, but specific-length equivalents
should be typedef'd for the specific compiler, and these type names used in the code.

(2) MISRA C Compliance

The SFR header file does not conform to rules 110, 111, and 45. An outline of each rule and the reason for
noncompliance is as follows:

• MISRA C:1998 Rule 110 (Advisory)
Unions shall not be used to access the sub-parts of larger data types.

Reason for noncompliance
The registers are defined in structures by peripheral functions, and the SFR header file is created to access
registers in byte, word, or longword sizes (including bit-field access).

• MISRA C:1998 Rule 111 (Advisory)
Bit fields shall only be defined to be of type unsigned int or signed int.

Reason for noncompliance
The Renesas Electronics SHC compiler generates code that accesses registers based on the data type of the bit-
field definition.

• MISRA C:1998 Rule 45 (Advisory)
Type casting from any type to or from pointers shall not be used.

Reason for noncompliance
Registers are defined by structures for each peripheral function, and the start address of the structures are
defined with numerical values by a macro definition (#define).

Even though the SFR header file does not comply with these MISRA C rules, the Renesas Electronics SHC compiler
generates code as expected, so there should be no problems if this compiler is used.

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 3 of 12
Nov 10, 2010

2. Using the SFR Header File
This chapter describes the basic usage and the special register definitions of the SFR header file.

2.1 Basic Usage
The basic usage of the SFR header file is described below.

2.1.1 Basic Formats
The basic formats for a blanket access and a bit-field access using the SFR header file are as follows:

(1) Basic format for a blanket access
Module name*1.register symbol.access size*2

(2) Basic format for a bit-field access
Module name*1.register symbol.BIT.bit symbol

*1 Module name: The module name is defined by a define macro. For details, refer to the define declarations
at the end of the SFR header file.

*2 Access size: Access size is defined based on the register size and written in BYTE, WORD, and LONG.
For details, refer to the MCU hardware manual or the header file contents.

2.1.2 Basic Usage Examples
As a basic usage example of the SFR header file, definitions for the TRAPA exception register (TRA) are described
below. The TRA register is a 32-bit register assigned to address H'FF00 0020.

TRAPA Exception Register (TRA) <P4 address: location H'FF00 0020>

Bit: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

After Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

After Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TRACODE

<After Reset: Undefined>

Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit

31 to 10

9 to 2

1, 0

Abbreviation
__

TRACODE

__

After Reset

All 0

Undefined

All 0

R

0

R

0

W

0

W

0

Description

Reserved Bits
These bits are always read as “0”. The write value should always be “0”.

TRAPA Code
8-bit immediate data of TRAPA instruction is set

Reserved Bits
These bits are always read as “0”. The write value should always be “0”.

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 4 of 12
Nov 10, 2010

(1) Definition of Structure Contents

The TRA register is defined by the struct st_exp structure in the EXP register.

/***
 * Exception Handling (EXP) *
**/
struct st_exp /* struct exp */

{ /* */
 union /* */
 { /* TRA */
 _U4 LONG; /* Long Access */
 struct /* */
 { /* Bit Access */
 _U4 reserved1:22; /* Reserved Bits */
 _U4 TRACODE:8; /* TRACODE[9:2] */
 _U4 reserved2:2; /* Reserved Bits */
 }BIT; /* */
 }TRA; /* */

 union /* */
 { /* EXPEVT */
 _U4 LONG; /* Long Access */
 struct /* */
 { /* Bit Access */
 _U4 reserved1:20; /* Reserved Bits */
 _U4 EXPCODE:12; /* EXPCODE[11:0] */
 }BIT; /* */
 }EXPEVT; /* */

 union /* */
 { /* INTEVT */
 _U4 LONG; /* Long Access */
 struct /* */
 { /* Bit Access */
 _U4 reserved1:18; /* Reserved Bits */
 _U4 INTCODE:14; /* INTCODE[13:0] */
 }BIT; /* */
 }INTEVT; /* */

 _U1 reserved1[0x2EFFD8];

 union /* */
 { /* EXPMASK */
 _U4 LONG; /* Long Access */
 struct /* */
 { /* Bit Access */
 _U4 reserved1:27; /* Reserved Bits */
 _U4 MMCAW:1; /* MMCAW[4:4] */
 _U4 reserved2:3; /* Reserved Bits */
 _U4 RTEDS:1; /* RTEDS[0:0] */
 }BIT; /* */
 }EXPMASK; /* */

};
 :
 :
 :

/***
 * Defines *
**/

#define EXP (*(volatile struct st_exp *)0xFF000020ul) /* Exception Handling (EXP)*/

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 5 of 12
Nov 10, 2010

(2) Blanket Access

EXP.TRA.LONG is used as a blanket access (32-bit) of the TRA register.

Example: An example of a blanket access of the TRA register.

EXP.TRA.LONG = 0x000003FCul;

unsigned long temp;
temp = EXP.TRA.LONG;

(3) Bit-Field Access

EXP.TRA.BIT.TRACODE is used for bit-field accessing the TRACODE bit in the TRA register.

The Renesas Electronics SHC compiler generates code that accesses a register based on the data type of the bit-field
definition. Note that compilers other than the SHC complier may generate code that performs an 8-bit register access
regardless of the data type of the bit-field definition.

Example: An example of accessing the TRACODE bit in the TRA register with a bit-field access.

EXP.TRA.BIT.TRACODE = 0xFFul;

unsigned long temp;
temp = EXP.TRA.BIT.TRACODE;

2.1.3 Notes on Bit-Field Access
When a bit-field access is used to write to a register, the values of the fields other than the target field are read, and then
the same values are written back. If the register value changes between when the values of these fields are read and
when the values are written back, unintended changes could happen. A bit-field access should therefore not be used in
some cases.

For example, when a bit-field access is used to clear a particular flag in the INTREQ register, the read values of flags
except for the flag to be cleared are written back without being modified. Therefore, if an interrupt request occurs, and
the value of flags except the flag to be cleared change between reading and writing them back to the INTREQ register
(if a flag value is 0 when read but 1 when written back, for example), the interrupt request is cleared to 0. To prevent
this, perform a blanket access as shown in the example below.

Example: An example of clearing the IRQ7 bit in the INTREQ register to 0 when using edge detection.

temp = INTC.INTREQ.LONG;
if (temp & 0x01000000) {
 INTC.INTREQ.LONG = 0xFE000000ul;
}

Carefully read the MCU hardware manual to confirm compliance with the hardware limitations.

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 6 of 12
Nov 10, 2010

2.2 Special Register Definitions
This section describes bit and register names unique to the SFR header file. Make sure there is no symbol overlap in the
user program.

(1) Registers with "_" Preceding the Bit Symbol

The following registers are defined using a format in which the bit symbols are preceded by an underscore "_" in order
to avoid overlap between the module name (define macro name) definition and the bit symbol.

• Interrupt priority setting registers 0 to 12 (INT2PRI0 to INT2PRI12)
• Interrupt source register 00 (INT2A00)
• Interrupt source register 01 (INT2A01)
• Interrupt source register 10 (INT2A10)
• Interrupt source register 11 (INT2A11)
• Interrupt mask register 0 (INT2MSKR)
• Interrupt mask register 1 (INT2MSKR1)
• Interrupt mask clear register 0 (INT2MSKCR)
• Interrupt mask clear register 1 (INT2MSKCR1)
• A/Di conversion value addition count select register (AD0ADC and AD1ADC) (i = 0, 1)
• Some symbols (DRO, DRI0, DRI1, DRI2, and PDAC) in the module stop register 0 (MSTPCR0)

Example: Declaration of the interrupt priority setting register 10 (INT2PRI10).

 union /* */
 { /* INT2PRI10 */
 _U4 LONG; /* Long Access */
 struct /* */
 { /* Bit Access */
 _U4 reserved1:3; /* Reserved Bits */
 _U4 _CAN0:5; /* _CAN0[28:24] */
 _U4 reserved2:3; /* Reserved Bits */
 _U4 _CAN1:5; /* _CAN1[20:16] */
 _U4 reserved3:3; /* Reserved Bits */
 _U4 _CAN2:5; /* _CAN2[12:8] */
 _U4 reserved4:3; /* Reserved Bits */
 _U4 _CAN3:5; /* _CAN3[4:0] */
 }BIT; /* */
 }INT2PRI10; /* */

(2) Registers with No Bit Symbol Defined

The following registers are defined using a format in which no bit-field structure members are used because the number
of bits changes according to the operating mode of timer TOU.

• TOUnm counter (TOnmCNT) (n = 0 to 4; m = 0 to 7)
• TOUnm reload register (TOnmRLD)

Example: Declaration of the TOU00 counter (TO00CNT) and TOU00 reload register (TO00RLD).

 union /* */
 { /* TO00CNT */
 _U4 LONG; /* Long Access */
 }TO00CNT; /* */

 union /* */
 { /* TO00RLD */
 _U4 LONG; /* Long Access */
 }TO00RLD; /* */

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 7 of 12
Nov 10, 2010

The following registers are defined with no bit-field structure members because the bit format changes depending on the
right-shift and left-shift formats, and the number of bits changes according to the presence or absence of the addition
mode.

• A/D0 data registers 0, 2, 4, 6, 8 to 15 (AD0DR0, AD0DR2, AD0DR4, AD0DR6, AD0DR8 to AD0DR15)
• A/D1 data registers 0, 1, 4, 5 (AD1DR0, AD1DR1, AD1DR4, AD1DR5)
• A/D0 data register DIAG0 (AD0DRD)
• A/D1 data register DIAG1 (AD1DRD)

(3) SPiDR Register

Since the read and write access size for the SPiDR register differs depending on the setting of the RSPI longword
access/word access setting bit (SPLW) in the RSPIi data control register (SPiDCR), a structure definition for word
access is added to accommodate both word and longword register access (i = 0 to 2).

• RSPIi data register (SPiDR)

Example: Declaration of the RSPI0 data register (SP0DR).

 union /* */
 { /* SP0DR */
 _U4 LONG; /* Long Access */
 struct /* */
 { /* Bit Access */
 _U4 SPD31:1; /* SPD31[31:31] */
 _U4 SPD30:1; /* SPD30[30:30] */
 _U4 SPD29:1; /* SPD29[29:29] */
 _U4 SPD28:1; /* SPD28[28:28] */
 _U4 SPD27:1; /* SPD27[27:27] */
 _U4 SPD26:1; /* SPD26[26:26] */
 _U4 SPD25:1; /* SPD25[25:25] */
 _U4 SPD24:1; /* SPD24[24:24] */
 _U4 SPD23:1; /* SPD23[23:23] */
 _U4 SPD22:1; /* SPD22[22:22] */
 _U4 SPD21:1; /* SPD21[21:21] */
 _U4 SPD20:1; /* SPD20[20:20] */
 _U4 SPD19:1; /* SPD19[19:19] */
 _U4 SPD18:1; /* SPD18[18:18] */
 _U4 SPD17:1; /* SPD17[17:17] */
 _U4 SPD16:1; /* SPD16[16:16] */
 _U4 SPD15:1; /* SPD15[15:15] */
 _U4 SPD14:1; /* SPD14[14:14] */
 _U4 SPD13:1; /* SPD13[13:13] */
 _U4 SPD12:1; /* SPD12[12:12] */
 _U4 SPD11:1; /* SPD11[11:11] */
 _U4 SPD10:1; /* SPD10[10:10] */
 _U4 SPD9:1; /* SPD9[9:9] */
 _U4 SPD8:1; /* SPD8[8:8] */
 _U4 SPD7:1; /* SPD7[7:7] */
 _U4 SPD6:1; /* SPD6[6:6] */
 _U4 SPD5:1; /* SPD5[5:5] */
 _U4 SPD4:1; /* SPD4[4:4] */
 _U4 SPD3:1; /* SPD3[3:3] */
 _U4 SPD2:1; /* SPD2[2:2] */
 _U4 SPD1:1; /* SPD1[1:1] */
 _U4 SPD0:1; /* SPD0[0:0] */
 }BIT; /* */
 { /* Bit Access */
 _U2 SPD; /* SPD[31:16] */
 _U2 reserved1; /* Reserved Bits */
 }WORD; /* */
 }SP0DR; /* */

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 8 of 12
Nov 10, 2010

(4) CiMCTLj Register

Since the roles and names of the bits in this register differ in transmit and receive mode, the bit-fields are defined
according to user-defined structure names to accommodate both transmit and receive operations.

• CANi message control register j (CiMCTLj) (i = 0 to 3; j = 0 to 63)

Example: Declaration of the CAN0 message control register 0 (C0MCTL0).

 union /* */
 { /* C0MCTL0 */
 _U1 BYTE; /* Byte Access */
 struct /* */
 { /* Bit Access */
 _U1 reserved1:1; /* Reserved Bits */
 _U1 RECREQ:1; /* RECREQ[6:6] */
 _U1 reserved2:3; /* Reserved Bits */
 _U1 MSGLOST:1; /* MSGLOST[2:2] */
 _U1 INVALDATA:1; /* INVALDATA[1:1] */
 _U1 NEWDATA:1; /* NEWDATA[0:0] */
 }BIT; /* */
 struct /* */
 { /* Bit Access */
 _U1 reserved1:1; /* Reserved Bits */
 _U1 RECREQ:1; /* RECREQ[6:6] */
 _U1 reserved2:3; /* Reserved Bits */
 _U1 MSGLOST:1; /* MSGLOST[2:2] */
 _U1 INVALDATA:1; /* INVALDATA[1:1] */
 _U1 NEWDATA:1; /* NEWDATA[0:0] */
 }BIT_RECEIVE; /* */
 }C0MCTL0; /* */

Example: Declaration of the CAN0 message control register 32 (C0MCTL32).

 union /* */
 { /* C0MCTL32 */
 _U1 BYTE; /* Byte Access */
 struct /* */
 { /* Bit Access */
 _U1 TRMREQ:1; /* TRMREQ[7:7] */
 _U1 RECREQ:1; /* RECREQ[6:6] */
 _U1 reserved1:1; /* Reserved Bits */
 _U1 ONESHOT:1; /* ONESHOT[4:4] */
 _U1 reserved2:1; /* Reserved Bits */
 _U1 TRMABT:1; /* TRMABT[2:2] */
 _U1 TRMACTIVE:1; /* TRMACTIVE[1:1] */
 _U1 SENTDATA:1; /* SENTDATA[0:0] */
 }BIT_TRANSMIT; /* */
 struct /* */
 { /* Bit Access */
 _U1 TRMREQ:1; /* TRMREQ[7:7] */
 _U1 RECREQ:1; /* RECREQ[6:6] */
 _U1 reserved1:1; /* Reserved Bits */
 _U1 ONESHOT:1; /* ONESHOT[4:4] */
 _U1 reserved2:1; /* Reserved Bits */
 _U1 MSGLOST:1; /* MSGLOST[2:2] */
 _U1 INVALDATA:1; /* INVALDATA[1:1] */
 _U1 NEWDATA:1; /* NEWDATA[0:0] */
 }BIT_RECEIVE; /* */
 }C0MCTL32; /* */

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 9 of 12
Nov 10, 2010

(5) CiCLKR and CiBCR Registers

To accommodate both byte access to the CiCLKR register and longword access to the concatenated CiBCR and
CiCLKR registers, the CiCLKR register is defined as 1 byte within the CiBCR register (i = 0 to 3).

• CANi clock select register (CiCLKR)
• CANi bit configuration register (CiBCR)

Example: Declaration of the CAN0 bit configuration register (C0BCR).

 union /* */
 { /* C0BCR */
 _U4 LONG; /* Long Access */
 struct /* */
 { /* Bit Access */
 _U4 TSEG1:4; /* TSEG1[31:28] */
 _U4 reserved1:2; /* Reserved Bits */
 _U4 BRP:10; /* BRP[25:16] */
 _U4 reserved2:2; /* Reserved Bits */
 _U4 SJW:2; /* SJW[13:12] */
 _U4 reserved3:1; /* Reserved Bits */
 _U4 TSEG2:3; /* TSEG2[10:8] */
 _U4 reserved4:7; /* Reserved Bits */
 _U4 CCLKS:1; /* CCLKS[0:0] */
 }BIT; /* */
 struct /* */
 { /* Bit Access */
 _U1 reserved1; /* Reserved Bits */
 _U1 reserved2; /* Reserved Bits */
 _U1 reserved3; /* Reserved Bits */
 _U1 C0CLKR; /* C0LKR[7:0] */
 }BYTE; /* */
 }C0BCR; /* */

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 10 of 12
Nov 10, 2010

(6) CiMBj Register

As the CiMBj register is defined as a structure consisting of multiple concatenated registers, each register symbol
within each mailbox register is defined with an individual name (i = 0 to 3; j = 0 to 63). In addition, 64 mailboxes are
defined as an array for each CAN channel. Use the element number corresponding to j in the CiMBj register when
referencing the array. To access the DLC bit in C0MB0 register for instance, use CAN0.C0MB[0].BIT.DLC.

• CANi mailbox register j (CiMBj)

Example: Declaration of the CAN0 mailbox registers 0 to 63 (C0MB0 to C0MB63).

 union /* */
 { /* C0MB */
 _U1 cmbx[16]; /* */
 struct /* */
 { /* */
 _U4 CMBID; /* CMBID */
 _U4 CMB_1; /* CMB_1 */
 _U4 CMB_2; /* CMB_2 */
 _U4 CMB_3; /* CMB_3 */
 }LONG; /* */
 struct /* */
 { /* */
 _U2 CMBID_0; /* CMBID_0 */
 _U2 CMBID_1; /* CMBID_1 */
 _U2 CMBDLC; /* CMBDLC */
 _U2 DATA0; /* DATA0 */
 _U2 DATA2; /* DATA2 */
 _U2 DATA4; /* DATA4 */
 _U2 DATA6; /* DATA6 */
 _U2 TSP; /* TSP */
 }WORD; /* */
 struct /* */
 { /* */
 _U1 MID0; /* MID0 */
 _U1 MID1; /* MID1 */
 _U1 MID2; /* MID2 */
 _U1 MID3; /* MID3 */
 _U1 RESERVED1; /* RESERVED1 */
 _U1 DLC; /* DLC */
 _U1 DATA0; /* DATA0 */
 _U1 DATA1; /* DATA1 */
 _U1 DATA2; /* DATA2 */
 _U1 DATA3; /* DATA3 */
 _U1 DATA4; /* DATA4 */
 _U1 DATA5; /* DATA5 */
 _U1 DATA6; /* DATA6 */
 _U1 DATA7; /* DATA7 */
 _U1 TSH; /* TSH */
 _U1 TSL; /* TSL */
 }BYTE; /* */
 struct /* */
 { /* */
 _U4 IDE:1; /* IDE[31:31] */
 _U4 RTR:1; /* RTR[30:30] */
 _U4 reserved1:1; /* Reserved Bits */
 _U4 SID:11; /* SID[28:18] */
 _U4 EID:18; /* EID[17:0] */
 _U4 reserved2:12; /* Reserved Bits */
 _U4 DLC:4; /* DLC[19:16] */
 _U4 DATA0:8; /* DATA0[15:8] */
 _U4 DATA1:8; /* DATA1[7:0] */
 _U4 DATA2:8; /* DATA2[31:24] */
 _U4 DATA3:8; /* DATA3[23:16] */
 _U4 DATA4:8; /* DATA4[15:8] */
 _U4 DATA5:8; /* DATA5[7:0] */
 _U4 DATA6:8; /* DATA6[31:24] */
 _U4 DATA7:8; /* DATA7[23:16] */
 _U4 TSH:8; /* TSH[15:8] */
 _U4 TSL:8; /* TSL[7:0] */
 }BIT; /* */
 }C0MB[64]; /* */

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 11 of 12
Nov 10, 2010

(7) Registers Defined as Arrays

The following registers are defined as unions consisting of arrays of consecutive registers. Note that the array element
numbers do not match the target register numbers. When referencing the array, use the register number – 1 as the
element number. To access the PDIRTA1 register for instance, use PDA.PDIRTA[0].BYTE.

• PDAC modulation A rise output time registers 1 to 120 (PDIRTA1 to PDIRTA120)
• PDAC modulation A fall output time registers 1 to 120 (PDIFTA1 to PDIFTA120)
• PDAC modulation B rise output time registers 1 to 200 (PDIRTB1 to PDIRTB200)
• PDAC modulation B fall output time registers 1 to 200 (PDIFTB1 to PDIFTB200)
• PDAC modulation C rise output time registers 1 to 600 (PDIRTC1 to PDIRTC600)
• PDAC modulation C fall output time registers 1 to 600 (PDIFTC1 to PDIFTC600)

Example: Declaration of the PDAC modulation A rise output time registers 1 to 120 (PDIRTA1 to DIRTA120).

 union /* */
 { /* PDIRTA */
 _U1 BYTE; /* Byte Access */
 struct /* */
 { /* Bit Access */
 _U1 RTA:8; /* RTA[7:0] */
 }BIT; /* */
 }PDIRTA[120]; /* */

• FlexRay write data section 1 to 64 registers (FRWRDS1 to FRWRDS64)
• FlexRay read data section registers 1 to 64 (FRRDDS1 to FRRDDS64)

Note that the array element numbers do not match the target register numbers. When referencing the array, use the
register number – 1 as the element number. To access the FRWRDS1 register for instance, use FR.FRWRDS[0].LONG.

(8) Dummy Access Areas

To accommodate byte, word, and longword accesses to the dummy access areas, variables are defined with the names
BYTE, WORD, and LONG.

• Dummy access area (DUMMYHPB1): H'FFA0 0000 to H'FFA0 0003
• Dummy access area (DUMMYHPB0): H'FFFF 5020 to H'FFFF 5023

Example: Declaration of the dummy access areas (DUMMYHPB0 and DUMMYHPB1).

union /* */
 { /* DUMMYHPB1 */
 _U4 LONG; /* Long Access */
 _U2 WORD; /* Word Access */
 _U1 BYTE; /* Byte Access */
 }DUMMYHPB1; /* */

AND

 union /* */
 { /* DUMMYHPB0 */
 _U4 LONG; /* Long Access */
 _U2 WORD; /* Word Access */
 _U1 BYTE; /* Byte Access */
 }DUMMYHPB0; /* */

For details of the special definitions for each register, refer to the SFR header file.

SH7455 Group/SH7456 Group Register Definition Header File

R01AN0355EJ0101 Rev.1.01 Page 12 of 12
Nov 10, 2010

3. Reference Documents
• Hardware manual

SH7455 Group, SH7456 Group User’s Manual: Hardware Rev.0.50 (R01UH0030EJ0050)
Contact Renesas Electronics Corporation to inquire about the latest version.

• Software manual
SH-4A Extended Function Software Manual (RJJ09B0235-0100)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

A - 1

REVISION HISTORY SH7455 Group/SH7456 Group
Register Definition Header File

Description Rev. Date

Page Summary
1.00 Aug 27, 2010 - First edition issued
1.01 Nov 10, 2010 - Modified only register definition header file

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
• Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
• The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

• In a finished product where the reset signal is applied to the external reset pin, the states of pins are
not guaranteed from the moment when power is supplied until the reset process is completed.

• In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are
not guaranteed from the moment when power is supplied until the power reaches the level at which
resetting has been specified.

3. Prohibition of Access to Reserved Addresses
• Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
• After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
• Before changing from one product to another, i.e. to one with a different type number, confirm that

the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

