
 APPLICATION NOTE

R01AN0569EJ0100
Rev. 1.00

Mar. 16, 2012

SH7455 Group, SH7456 Group
Timer Unit (TMU) Interrupt Sample Code

Abstract

This application note describes sample code that can be used by users who will be creating software for the SH7455 and
SH7456 Group (referred to as the SH7455 Group in this document) microcontrollers for the first time. This sample code
uses the SH7455 Group timer unit (TMU), TMU interrupts, and ports to turn on and turn off LEDs on the SH7455
evaluation bard (R0K474552C000BR or R0K474552C010BR).

Products

SH7455 Group, SH7456 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN0569EJ0100 Rev. 1.00 Page 1 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 2 of 27

Mar. 16, 2012

4

4

4
5

9

9
10
10
10
10
10
11
12
12
13

14

14

15

20

22

Contents

1. Specifications ... 3

2. Operation Confirmation Conditions .. 3

3. Reference Application Note..

4. Hardware ..

4.1 Pins Used..
4.2 Register Settings...

5. Software ...

5.1 Operation Overview ..
5.2 File Composition ...
5.3 Constant ..
5.4 Structure/Union List...
5.5 Variable ...
5.6 Function...
5.7 Function Specifications ...
5.8 Flowcharts ...

5.8.1 Function main ..
5.8.2 Function INT_TMU0_TUNI0 ..

6. Sample Code..

7. Reference Documents..

Appendix A. Notes on Adding an Interrupt Handler ..

Appendix B. Interrupt Request Mask Operation ...

Appendix C. Multiple Interrupt Operation..

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 3 of 27

Mar. 16, 2012

1. Specifications

This sample code uses SH7455’s built-in TMU channel 0 (TM0) to continuously measure 1-second intervals and to
update the pattern displayed on the SH7455 evaluation board LEDs every second. The LED pattern is updated in the
TM0 interrupt handling by incrementing the port data for port D, which is connected to the LEDs, every second starting
from 0.

Note: See the SH7455 evaluation board specifications for details on the evaluation board.

Table 1.1 lists the peripheral functions and their applications.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
TMU Counts the 1-second intervals for updating the LEDs.
I/O port D Outputs the LED display data (8 bits).
Interrupt controller (INTC) Interrupt requests are controlled by the TM0 underflow.

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU SH7455 Group/SH7456 Group
Operating frequencies Input frequency: 20 MHz

CPU clock (lck): 160 MHz
SHwy clock (SHck): 80 MHz
Peripheral clock (Pck): 40 MHz

Operating voltage Vcc = PLLVcc = Avcc = 5 V, Vdd = 1.5 V
Operating mode Single-chip mode
Integrated development
environment

Renesas Electronics
High-performance Embedded Workshop (referred to as HEW below)
Version 4.09.00.007
Renesas Electronics
C/C++ Compiler Package for SuperH RISC engine family V.9.04 Release
00

C/C++ compiler

Compile options: The following options are the HEW default settings.
-cpu=sh4a -object="$(CONFIGDIR)\$(FILELEAF).obj" -debug
-gbr=auto -chgincpath -errorpath -global_volatile=0 -opt_range=all
-infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1 -nologo

Sample code version Version 1.00
Board used SH7455 evaluation board

(catalog number: R0K474552C000BR/R0K474552C010BR)

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 4 of 27

Mar. 16, 2012

3. Reference Application Note

For additional information associated with this document, refer to the following application note.

SH7455 Group/SH7456 Group Register Definition Header File (R01AN0355EJ0101)

4. Hardware

4.1 Pin Used
Table 4.1 lists the pin used and its function.

Table 4.1 Pin Used and Its Function

Pin Name I/O Function
Port D (bit 7 to bit 0) Output Control the LEDs on the SH7455 evaluation board

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 5 of 27

Mar. 16, 2012

4.2 Register Settings
This section presents the main register settings used in the sample code. Note that these values are the values used in the
sample code and that some of these values differ from the corresponding initial value.

(1) Status Register (SR)

Address Setting Value Bit Description
31 0: Reserved bit
30 MD 0: User mode

1: Privileged mode
29 RB 0: R0_BANK0 to R7_BANK0 are accessed as

general-purpose registers R0 to R7.
 R0_BANK1 to R7_BANK1 are accessed by the

LDC/STC instructions.
1: R0_BANK1 to R7_BANK1 are accessed as

general-purpose registers R0 to R7.
 R0_BANK0 to R7_BANK0 are accessed by the

LDC/STC instructions.
28 BL 0: Interrupt request are not masked

1: Interrupt request are masked
27 to 16 0: Reserved bits
15 FD 0: FPU instructions enabled
14 to 10 0: Reserved bits
9 M 0: Used with the DIV0S, DIV0U, and DIV1

instructions.
8 Q 0: Used with the DIV0S, DIV0U, and DIV1

instructions.
7 to 4 IMASK 0: Levels of IMASK and lower are masked.
3, 2 0: Reserved bits

 H'4000 0000
or
H'5000 0000
or
H'7000 0000

1 S 0: Specifies the MAC instruction saturation
operation.

 0 T 0: Indicates the true/false condition, carry, borrow,
overflow, underflow, and other items.

(2) Port D Data Register (PDDR): Holds the port D I/O data

Address Setting Value Bit Description
H'FFFF 5402 H'0000

to
H'00FF

15 to 0 PD15DR
to PD0DR

When set for output: the write values are output to
the corresponding pins.
When set for input: the pin states can be read out.

(3) Port D I/O Register (PDIOR): Sets the I/O direction of the port D pin

Address Setting Value Bit Description
15 to 8 PD15 IOR

to
PD8IOR

0: The corresponding pin is set to input.

H'FFFF 5406 H'00FF

7 to 0 PD7IOR
to
PD0IOR

1: The corresponding pin is set to output.

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 6 of 27

Mar. 16, 2012

(4) Port D Control Register 1 (PDCR1): Selects the functions of multiplexed pins of port D

Address Setting Value Bit Description
15 0: Reserved bit H'FFFF 5416 H'0000
14 to 12 PD3MD PD3: Mode bits

000: PD3 I/O (port)
 11 0: Reserved bit
 10 to 8 PD2MD PD2: Mode bits

000: PD2 I/O (port)
 7 0: Reserved bit
 6 to 4 PD1MD PD1: Mode bits

000: PD1 I/O (port)
 3 0: Reserved bit
 2 to 0 PD0MD PD0: Mode bits

000: PD0 I/O (port)

(5) Port D Control Register 2 (PDCR2): Selects the functions of multiplexed pins of Port D

Address Setting Value Bit Description
15 0: Reserved bit H'FFFF 5414 H'0000
14 to 12 PD7MD PD7: Mode bits

000: PD7 I/O (port)
 11 0: Reserved bit
 10 to 8 PD6MD PD6: Mode bits

000: PD6 I/O (port)
 7 0: Reserved bit
 6 to 4 PD5MD PD5: Mode bits

000: PD5 I/O (port)
 3 0: Reserved bit
 2 to 0 PD4MD PD4: Mode bits

000: PD4 I/O (port)

(6) TM Start Register (TMSTR): Selects TMnCNT (n = 0 to 2) counter operating/stopped state

Address Setting Value Bit Description
7 to 3 0: Reserved bits H'FFFF D004 H'00 or H'01
2 STR2 TM2 counter start bit

0: Stops the TM2CNT counter count operation.
 1 STR1 TM1 counter start bit

0: Stops the TM1CNT counter count operation.
 0 STR0 TM0 counter start bit

0: Stops the TM0CNT counter count operation.
1: Starts the TM0CNT counter count operation.

(7) TM0 Constant Register (TM0COR): Holds the TM0CNT counter reload value

Address Setting Value Bit Description
H'FFFF D008 H'0000 9896 31 to 0 TM0COR The 32-bit value loaded into the TM0CNT counter

when the TM0CNT counter underflows.

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 7 of 27

Mar. 16, 2012

(8) TM0 Counter (TM0CNT): The TM0 counter value

Address Setting Value Bit Description
H'FFFF D00C H'0000 9896 31 to 0 TM0CNT This registers counts down according to the input

clock selected by the TM0CR register TPSC bit.

(9) TM0 Control Register (TM0CR): Selects the counter clock and controls interrupts when an underflow

occurs

Address Setting Value Bit Description
15 to 9 0: Reserved bits H'FFFF D010 H'0024
8 UNF Underflow flag

Cleared: When 0 is written to the UNF bit.
Set: When the TM0CNT counter underflows.

 7, 6 0: Reserved bits
 5 UNIE Underflow interrupt control bit

1: The underflow interrupt (TUNI) is enabled.
 4, 3 0: Reserved bits
 2 to 0 TPSC Selects the TM0CNT counter count clock.

100: TM0CNT is incremented at Pck/1024.

(10) User Interrupt Mask Level Register (USERIMASK): Masks interrupts with a level less than the UIMASK

set value.

Address Setting Value Bit Description
31 to 24 USERIMASKKEY USERIMASK register write key code bits

H'A5: Allows the UIMASK bits to be set.
H'FFFF F300 H'A500 0000

23 to 8 0: Reserved bits
 7 to 4 UIMASK User interrupt mask level bits

Interrupts with a level less than UIMASK
set value are masked.

 3 to 0 0: Reserved bits

(11) Interrupt Priority Setting Register 0 (INT2PRI0)

Sets the priority (a level from 31 to 0) for the built-in peripheral module interrupts. The larger the setting value, the
higher the priority. Each interrupt factor is assigned 5 bits to which 32 values for 30 levels (the setting values H'00 and
H'01 result in the same state as the interrupt being masked) are allocated.

Address Setting Value Bit Description
31 to 29 0: Reserved bits H'FFFF F400 H'0200 0000
28 to 24 TUNI0 Sets the priority (a level from 31 to 0) for the

TUNI0 (TMU) interrupt.
 23 to 21 0: Reserved bits
 20 to 16 TUNI1 Sets the priority (a level from 31 to 0) for the

TUNI1 (TMU) interrupt.
 15 to 13 0: Reserved bits
 12 to 8 TUNI2 Sets the priority (a level from 31 to 0) for the

TUNI2 (TMU) interrupt.
 7 to 5 0: Reserved bits
 4 to 0 Reserved

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 8 of 27

Mar. 16, 2012

(12) Interrupt Mask Clear Register 0 (INT2MSKCR)

The INT2MSKCR register can clear the mask set with interrupt mask register 0 (INT2MSKR). Setting a bit in this
register to 1 clears the mask for the interrupt factor corresponding to that bit. This register always returns 0 when read.

Address Setting Value Bit Description
31, 30 0: Reserved bits H'FFFF F43C H'0000 0001
29 CMIG5 Timer G5 interrupt mask clear setting bit

 28 CMIG4 Timer G4 interrupt mask clear setting bit
 27 CMIG3 Timer G3 interrupt mask clear setting bit
 26 CMIG2 Timer G2 interrupt mask clear setting bit
 25 CMIG1 Timer G1 interrupt mask clear setting bit
 24 CMIG0 Timer G0 interrupt mask clear setting bit
 23 TF Timer F interrupt mask clear setting bit
 22 TA Timer A interrupt mask clear setting bit
 21 ADC ADC interrupt mask clear setting bit
 20 IICI IIC3 interrupt mask clear setting bit
 19 DRO DRO interrupt mask clear setting bit
 18 DRI2 DRI2 interrupt mask clear setting bit
 17 DRI1 DRI1 interrupt mask clear setting bit
 16 DRI0 DRI0 interrupt mask clear setting bit
 15 HUDI H-UDI interrupt mask clear setting bit
 14 RSPI2 RSPI2 interrupt mask clear setting bit
 13 RSPI1 RSPI1 interrupt mask clear setting bit
 12 RSPI0 RSPI0 interrupt mask clear setting bit
 11 SCIF3 SCIF3 interrupt mask clear setting bit
 10 SCIF2 SCIF2 interrupt mask clear setting bit
 9 SCIF1 SCIF1 interrupt mask clear setting bit
 8 SCIF0 SCIF0 interrupt mask clear setting bit
 7 DMAC6T11 DMA6 to DMA11 interrupt mask clear setting bit
 6 DMAC4T5 DMA4 and DMA5 interrupt mask clear setting bit
 5 DMAC0T3 DMA0 to DMA3 interrupt mask clear setting bit
 4 WDT WDT interrupt mask clear setting bit
 3 0: Reserved bit
 2 TUNI2 TMU2 interrupt mask clear setting bit
 1 TUNI1 TMU1 interrupt mask clear setting bit
 0 TUNI0 TMU0 interrupt mask clear setting bit

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

5. Software

5.1 Operation Overview
This sample code uses the SH7455’s built-in TM0 unit to continuously measure 1-second intervals and increments the
port D output data in the TM0 interrupt handler. This operation turns the LEDs on the SH7455 evaluation board on and
off. Figure 5.1 outlines the overall process.

main

Start TM0 count

Initialize port D

Initialize INTC

Initialize TM0

TM0 interrupt handler

Clear TM0 underflow flag

Increment port D output data

return

Interrupt requested (at 1-second interval)
when TM0 underflows.

Figure 5.1 Outline of the Overall Process

Table 5.1 lists the section information for the sample code.

Table 5.1 Section Information

Address Description
H'0000 0800 INTHandler Exception handler

VECTTBL Reset vector table
INTTBL Interrupt vector table

IntPRG Interrupt functions program
H'0000 1800 PResetPRG Reset program

P Program area
C Constant area
C$BSEC Section B initialization table
C$DSEC Section D initialization table

H'0000 2000

D Initialization data area (ROM)
H'A000 0000 RSTHandler Reset handler
H'E500 E000 B Uninitialized data area
 R Initialized data area (RAM)
H'E501 1C00 S Stack address area

R01AN0569EJ0100 Rev. 1.00 Page 9 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 10 of 27

Mar. 16, 2012

5.2 File Composition
Table 5.2 lists the files containing the sample code.

Table 5.2 Files Used in the Sample Code

File Name Outline Remarks
dbsct.c Section B and D initialization address tables
env.inc Register address definitions related to exception handling
intprg.src Interrupt functions program
iodefine.h Register definition for the SH7455 and SH7456 Group microcontrollers
main.c Function main program
resetprg.c Reset program
stacksct.h Stack size definition file
typedefine.h Data type definitions
vect.inc Vector definition file
vecttbl.src Vector table
vhandler.src Reset and interrupt handler programs

5.3 Constants
No constants are used in the sample code.

5.4 Structure/Union List
No structures or unions are used other than those defined in the SH7455 and SH7456 Group microcontroller register
definition file (iodefine.h). See the application note referenced in chapter 3 for information about the structures and
unions in iodefine.h.

5.5 Variables
No global variables are used in the sample code.

5.6 Functions
Table 5.3 lists the functions.

Table 5.3 Functions

Function Outline
main The main C language function. It initializes port D and TM0, and starts TM0.
INT_TMU0_TUNI0 TM0 underflow interrupt function

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 11 of 27

Mar. 16, 2012

5.7 Function Specifications
This section presents the specifications of the functions in the sample code.

main
Outline The main C language function. It initializes port D and TM0, and starts TM0.
Header None
Declaration void main(void)
Description Initializes port D and TM0, and starts the TM0 counter count operation.

 After starting the TM0 count operation, this function waits (in an infinite loop) for the
TM0 underflow interrupt (TUNI0).

Argument None
Returned value None
Remarks None

INT_TMU0_TUNI0
Outline TM0 underflow interrupt function (TUNI0)
Header None
Declaration void INT_TMU0_TUNI0 (void)
Description Clears the TM0 underflow flag.

 Increments the port D output data to update the LED pattern.
Argument None
Returned value None
Remarks None

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

5.8 Flowcharts

5.8.1 Function main
Figure 5.2 shows the flowchart of the function main.

main

Initialize port D
PDCR2 register ← H'0000
 Bits PD7MD to PD4MD = 000b : Sets PD7 to PD4 to be I/O ports.

PDCR1 register ← H'0000
 Bits PD3MD to PD0MD = 000b : Sets PD3 to PD0 to be I/O ports.

PDDR register ← H'0000
 Bits PD7DR to PD0DR = 0 : Sets the PD7 to PD0 output data to 0.

PDDSR register ← H'0000
 Bits PD7DSR to PD0DSR = 0 : Sets the PD7 to PD0 drive capacity to normal output.

PDIOR register ← H'00FF
 Bits PD7IOR to PD0IOR = 1 : Sets PD7 to PD0 to output.

SR register
 BL bit ← 1

SR register
 IMASK bits ← 0000b : Masks interrupt priority level 0 for general interrupts.

USERIMASK register ← H'A5000000
 USERIMASKKEY bits = H'A5
 UIMASK bits = 0000b : Masks interrupt priority levels 0 and 1 for built-in peripheral

 modules.

INT2PRI0 register ← H'02000000
 TUNI0 bit = 2 : Sets the TUNI0 interrupt priority to level 2.

INT2MSKCR register ← H'00000001
 TUNI0 bit = 1 : Clears the TUNI0 interrupt mask.

TMSTR register
 STR0 bit ← 0 : Stops the TM0CNT counter count operation.

TM0CR register ← H'0024
 UNIE bit = 1 : Enables the TM0 underflow interrupt (TUNI0).
 TPSC bits = 100b : Counts with Pck/1024

TM0COR register ← H'00009896 : Value loaded into the TM0CNT counter when TM0
 underflows.

TM0CNT register ← H'00009896 : Set so the TM0 underflow occurs when 1 second has
 elapsed.

SR register
 BL bit ← 0

TMSTR register
 STR0 bit ← 1 : Operates the TM0CNT counter.

Set interrupts to disabled

Set CPU interrupt mask
level

Initialize INTC

Initialize TM0

Set interrupts to enabled

Start TM0 counter

Ensure that at
least 5 Pcyc
periods have
elapsed.*1

Note: *1. Applications must ensure a delay of at least the peripheral module priority determination time, which is 5 Pcyc (where Pcyc is the
period of 1 cycle of the peripheral clock (Pck)) as the time until the changes to the INTC setting have been reflected in the priority
judgment circuit before interrupts are enabled. Applications should ensure this 5 Pcyc period by performing dummy reads to the
dummy access area (H'FFFF 5020 to H'FFFF 5023). In this sample code, the 5 Pcyc period is ensured by performing TM0
initialization after INTC initialization.

Figure 5.2 Function main

R01AN0569EJ0100 Rev. 1.00 Page 12 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

5.8.2 Function INT_TMU0_TUNI0
Figure 5.3 shows the flowchart of the function INT_TMU0_TUNI0.

Figure 5.3 Function INT_TMU0_TUNI0

R01AN0569EJ0100 Rev. 1.00 Page 13 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 14 of 27

Mar. 16, 2012

6. Sample Code

The sample code is available for download from the Renesas Electronics website.

7. Reference Documents

 SH7455 Group, SH7456 Group User’s Manual: Hardware, Rev.1.10
The latest version can be downloaded from the Renesas Electronics website.

 Technical Updates/Technical News

The latest information can be downloaded from the Renesas Electronics website.

 C Compiler Manual

SuperH Family C/C++ Compiler Package V.9.04 Release 00
SuperH C/C++ Compiler Package V.9.04 User’s Manual
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

http://www.renesas.com/
http://www.renesas.com/inquiry

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 15 of 27

Mar. 16, 2012

Appendix A. Notes on Adding an Interrupt Handler

Table A.1 lists notes when adding an interrupt handler for a built-in peripheral module in the HEW program
development environment.

Table A.1 Notes on Adding an Interrupt Handler for a Built-in Peripheral Module in the HEW
Program Development Environment

Item Details
Sets IMASK and UIMASK IMASK is set with the status register (SR) and UIMASK is set with the

user interrupt mask level register (USERIMASK).
 Interrupts with a level lower than that of the IMASK and UIMASK values

are masked.
Sets the interrupt priority The interrupt priority levels are set with interrupt priority setting registers

0 to 12 (INT2PRI0 to INT2PRI12).
 When interrupts are enabled, the priority level is set to 2 or higher

(priority levels 0 and 1 correspond to the interrupt masked state).
 Since the CPU interrupt is determined by 4 bits (levels 0 to 15), the LSB

of the 5 bits of priority (levels 0 to 31) set with INT2PRIO0 to
INT2PRI12 is discarded, converting the data to the 4 bits reported.

Clears the INTC interrupt
mask setting

 The INTC interrupt mask used for built-in peripheral modules is cleared
ith interrupt mask clear register 0 (INT2MSKCR) and interrupt mask
clear register 1 (INT2MSKCR1).

Enables an interrupt for a
built-in peripheral module

 The interrupts for each of the built-in peripheral modules are enabled
individually.
Example: For the TMU module, the TMU TM0 interrupt is enabled by

setting the underflow interrupt control bit (UNIE) in the TM0
control register (TM0CR) to 1 (underflow interrupt (TUNI)
enabled).

Registers an interrupt handler
in the interrupt vector table of
HEW

 Interrupt handlers for each factor are already registered in the interrupt
vector table in the vecttbl.src file generated by HEW.

 If an interrupt handler name is to be used without change, change the
content of the interrupt handler registered in the vector table.

 If a new interrupt handler name is to be used, after declaring the new
interrupt handler as an external reference (import), register the new
function in the vector table.

Clears an interrupt request The interrupt request is cleared in the interrupt handler.
Example: For TM0, the TM0 interrupt request is cleared by setting the

underflow flag (UNF) in the TM0 control register (TM0CR) to
0 (TM0CNT counter has not underflowed) in the interrupt
handler.

Registers interrupt mask
values in the interrupt mask
table of HEW

 Interrupt priority levels are set as mask values in the interrupt mask
table in the vecttbl.src file generated by HEW.

 If the mask value in the interrupt mask table is not set to a value equal
to or higher than the interrupt priority level, at the point multiple
interrupts are enabled (BL bit in the SR register is set to 0), the CPU will
accept the same interrupt request again and interrupt handler
processing will be performed. If the interrupt request is cleared in the
interrupt handler, it will not be possible to branch to the interrupt
handler, since interrupt handler processing continues. Therefore, the
interrupt handler processing will loop infinitely without clearing the
interrupt flag.

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

Sample code to add an interrupt handler of a built-in peripheral module, TM0, for the HEW program development
environment is shown below. In the sample code, comments are in green, and parts where modification is necessary are
in red.

 Setting IMASK and UIMASK, setting interrupt priorities, clearing the INTC interrupt mask setting, and clearing the

interrupt mask settings for each built-in peripheral module

main.c

#include <machine.h>
#include "iodefine.h"

void main(void)
{
 <Omitted>
 set_cr((int)((unsigned int)get_cr()|0x10000000U)); BL = 1 (Interrupt requests

are masked)
 set_cr((int)((unsigned int)get_cr()&0xFFFFFF0FU)); IMASK setting
 INTC.USERIMASK.LONG = 0xA5000000UL; UIMASK setting
 INTC.INT2PRI0.LONG = 0x02000000UL; Interrupt priority setting
 INTC.INT2MSKCR.LONG = 0x00000001UL; Clears the INTC interrupt mask setting
 <Omitted>
 TMU.TM0CR.WORD = 0x0024U; Clears the interrupt mask settings for the built-in

peripheral modules
 <Omitted>
 set_cr((int)((unsigned int)get_cr()&0xEFFFFFFFU)); BL = 0 (Interrupt requests

are not masked)
 ...
}

 Registering interrupt mask value in the HEW interrupt mask table

vecttbl.src

_RESET_Vectors:
;<<VECTOR DATA START (POWER ON RESET)>>
 ;H'000 Power On Reset (H-UDI RESET)
 .data.l _PowerON_Reset
;<<VECTOR DATA END (POWER ON RESET)>>
; Reserved
 .datab.l 8,H'00000000

 .section INTTBL,data
 .export _INT_Vectors

 <Omitted>
 .export _INT_MASK
_INT_MASK:
 <Omitted>
 ;H'580 TMU0
 .data. b H'10 Sets the interrupt priority level to the mask value

in the mask table. (The upper 4 bits of the mask
value (The upper 4 bits of the mask value are set to
a value converted to 4 bits by discarding the LSB of
the TM0 interrupt priority (5 bits) set in the
INT2PRI0 register. During TM0 interrupt handler
processing, IMASK is set to upper 4 bits of the mask
value set here. In the example of changes to main.c
above, the TM0 mask value is set to H'10 since the
TM0 interrupt priority is set to H'02 with the
INT2PRI0 register.)

...

R01AN0569EJ0100 Rev. 1.00 Page 16 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 17 of 27

Mar. 16, 2012

 Registering interrupt functions in the HEW interrupt vector table (when the interrupt function name is used as is)

vecttbl.src

_RESET_Vectors:
;<<VECTOR DATA START (POWER ON RESET)>>
 ;H'000 Power On Reset (H-UDI RESET)
 .data.l _PowerON_Reset
;<<VECTOR DATA END (POWER ON RESET)>>
; Reserved
 .datab.l 8,H'00000000

 .section INTTBL,data
 .export _INT_Vectors

_INT_Vectors:
 <Omitted>
 ;H'580 TMU0
 .data.l_INT_TMU0_TUNI0 TM0 interrupt function
...

 Coding the interrupt function in assembly language (when the interrupt function name is used as is)

intprg.src

 .include "vect.inc"
 .section IntPRG, code

 ;H'040 Data TLB miss exception(read)
_INT_TLB_MISS_READ_EXP
 <Omitted>
 ;H'580 TMU0
_INT_TMU0_TUNI0
 <Omitted> In assembly language, code the clearing of the interrupt

request and any other processing to be performed.
 RTS
 <Omitted>
 ;H'5A0 TMU1
...

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 18 of 27

Mar. 16, 2012

 Coding the interrupt function in C or C++ (when the interrupt function name is used as is)

intprg.src

 .include "vect.inc"
 .section IntPRG, code

 ;H'040 Data TLB miss exception(read)
_INT_TLB_MISS_READ_EXP:
...
 <Omitted>
 ;H'580 TMU0
;_INT_TMU0_TUNI0 Either comment out with semicolons or delete the TM0 interrupt

function.
...

main.c

void INT_TMU0_TUNI0(void) Create a TM0 interrupt function.
{
 <Omitted> In C or C++, code the clearing of the interrupt request and any

other processing to be performed.
}

 Registering interrupt functions in the HEW interrupt vector table (when a new interrupt function name is used)

vecttbl.src

_RESET_Vectors:
;<<VECTOR DATA START (POWER ON RESET)>>
 ;H'000 Power On Reset (H-UDI RESET)
 .data.l _PowerON_Reset
;<<VECTOR DATA END (POWER ON RESET)>>
; Reserved
 .datab.l 8,H'00000000

 .section INTTBL,data
 .export _INT_Vectors
 .import _NEW_INT_TMU0_TUNI0 External reference declaration for the new

TM0 interrupt function

_INT_Vectors:
 <Omitted>
 ;H'580 TMU0
; .data.l _INT_TMU0_TUNI0 Either comment out with semicolons or delete

the existing TM0 interrupt function.
 .data.l _NEW_INT_TMU0_TUNI0 Register the new TM0 interrupt function.
...

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 19 of 27

Mar. 16, 2012

 Coding the interrupt function in assembly language (when a new interrupt function name is used)

intprg.src

 .include "vect.inc"
 .section IntPRG, code

 ;H'040 Data TLB miss exception(read)
_INT_TLB_MISS_READ_EXP:

 <Omitted>
 ;H'580 TMU0
;_INT_TMU0_TUNI0 Either comment out with semicolons or delete the existing TM0

interrupt function.
_NEW_INT_TMU0_TUNI0 Create the new TM0 interrupt function.
 <Omitted> In assembly language, code the clearing of the interrupt

request and any other processing to be performed.
 RTS
 <Omitted>
 ;H'5A0 TMU1
...

 Coding the interrupt function in C or C++ (when a new interrupt function name is used)

main.c

void NEW_INT_TMU0_TUNI0 (void) Create the new TM0 interrupt function.
{
 <Omitted> In C or C++ language, code the clearing of the interrupt request and any other

processing be performed.
}

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

Appendix B. Interrupt Request Mask Operation

Table B.1 and figure B.1 present an example of mask operation for the TM0 underflow interrupt when UIMASK is 1
and IMASK is 2. The numbers (1) to (5) correspond in table B.1 and figure B.1. Note that bits in registers are noted as
<register name>.<bit name> in table B.1 and figure B.1.

Table B.1 Example of Interrupt Mask Register Settings

 TMU INTC CPU

 TM0CR.UNIE INT2MSKR.TUNI0 INT2PRI0.TUNI0 USERIMASK.UIMASK SR.IMASK

(1) 0 0 00000b to 11111b 0001b 0010b

 1 00000b to 11111b

(2) 1 0 00000b to 00011b

(3) 00100b to 00101b

(4) 00110b to 11111b

(5) 1 00000b to 11111b

Interrupt request due to a TM0 underflow

TM0CR.UNIE

INT2MSKR.TUNI0

USERIMASK.UIMASK

SR.IMASK

TMU

INTC

CPU

Interrupt acceptance by the CPU

(1) (2) (3) (4) (5)

0: The underflow interrupt (TUNI)
is not enabled.

1: The underflow interrupt (TUNI)
is enabled.

0: No mask is set
1: A mask is set

Interrupts with a level less than
the set UIMASK value are masked

Interrupts with a level less than
IMASK are masked

Figure B.1 Interrupt Mask Operation Example

R01AN0569EJ0100 Rev. 1.00 Page 20 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 21 of 27

Mar. 16, 2012

(1) Since the TM0CR register UNIE bit is 0 (underflow interrupts (TUNI) not enabled), TMU internal interrupt
requests are masked and interrupt requests are not output to the INTC. Therefore the INTC and the CPU will not
detect TMU interrupt requests.

(2) Interrupt requests are output from TMU to the INTC. However, since the TM0 interrupt priority*1 is less than the

USERIMASK register UIMASK value, the INTC will mask the TMU interrupt requests and interrupt requests will
not be output to the CPU. Therefore the CPU will not detect TMU interrupt requests.

(3) Since the TM0 interrupt priority is greater than UIMASK, interrupt requests will be output from TMU through the

INTC to the CPU. However, since the TM0 interrupt priority*1 is less than the SR register IMASK value, the CPU
will mask TMU interrupt requests and TMU interrupt requests will not be detected.

(4) Since the TM0 interrupt priority is greater than the UIMASK value and greater than the IMASK value, interrupt

requests will be output from TMU through the INTC to the CPU. The CPU will detect and accept the interrupt
request.

(5) Interrupt requests are output from TMU to the INTC. However, since the INT2MSKR register TUNI0 bit is 1 (TM0

interrupt mask set), the INTC will mask the TMU interrupt requests and interrupt requests will not be output to the
CPU. Therefore the CPU will not detect TMU interrupt requests.

Note: *1. Since the IMASK and UIMASK values are 4 bits, the LSB of the built-in peripheral module interrupt

priorities (which are 5 bits) is discarded to create 4-bit values.

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

Appendix C. Multiple Interrupt Operation

This appendix describes the operation of multiple interrupts in the HEW program development environment using TMU
channel 0 (TM0) and TMU channel 1 (TM1) as an example. This is described as an example where IMASK, UIMASK,
and BL are set to 0 in normal processing.

Multiple Interrupts Example 1

This example shows how the higher priority interrupt TM1 occurs during TM0 interrupt function handling.

Normal processing IMASK = 0
BL = 0

TM0 interrupt request occurs

TM0 interrupt function
handling

IMASK = 1
BL = 0

TM1 interrupt request occurs
TM1 interrupt function

handling
IMASK = 2
BL = 0

TM0 interrupt function
handling

IMASK = 1
BL = 0

Normal processing IMASK = 0
BL = 0

[1]

[3]

[5]

[6]

[7]

[2]

[4]

IMASK = 0
BL = 1

IMASK = 1
BL = 1

IMASK = 0
BL = 1

IMASK = 0
BL = 1

Interrupt priority = level 1

Interrupt priority = level 2

Figure C.1 Processing Flowchart of Multiple Interrupts (Example 1)

[1] During normal processing, it is possible to accept interrupts with an interrupt priority level other than 0 since
IMASK is 0 (level 0 masked) and BL is 0 (interrupt requests not masked).

[2] Since a TM0 interrupt request (level 1) occurred, normal processing is interrupted and the CPU transitions to
interrupt handling. First, in hardware processing, BL is set to 1 (interrupt requests masked). Then in software
processing, the registers used in normal processing are saved on the stack. IMASK is set to 1, which is the TM0
interrupt priority, and BL is set to 0, and the software branches to TM0 interrupt function handling.

[3] During TM0 interrupt function handling, since IMASK is set to 1 (levels 1 or lower masked) and BL is set to 0,
interrupts with an interrupt priority with a level of 2 or higher can be accepted.

[4] Since a TM1 interrupt request (level 2) has occurred, TM0 interrupt function handling is interrupted and the CPU
transitions to TM1 interrupt handling. First, in hardware processing, BL is set to 1. Then in software processing, the
registers used in TM0 interrupt function handling are saved on the stack. IMASK is set to 2, which is the TM1
interrupt priority, BL is set to 0, and the software branches to TM1 interrupt function handling.

[5] During TM1 interrupt function handling, since IMASK is set to 2 (levels 2 or lower masked) and BL is set to 0,
interrupts with an interrupt priority with a level of 3 or higher can be accepted.

 When TM1 interrupt function handling is complete, after IMASK is set to 0 and BL to 1 in software processing, the
state prior to the interrupt (the registers used by the TM0 interrupt function hander) is restored and the interrupted
processing is restarted.

R01AN0569EJ0100 Rev. 1.00 Page 22 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

[6] TM0 interrupt function handling restarts. IMASK and BL are in their states prior to TM1 interrupt handling, that is,
the same states as they were in at step [3]. When TM0 interrupt function handling is complete, after IMASK is set
to 0 and BL to 1 in software processing, the state prior to the interrupt (the registers used in normal processing) is
restored and the interrupted processing restarts.

[7] Normal processing restarts. IMASK and BL are in their states prior to the occurrence of the TM0 interrupt, that is,
the same states as they were in at step [1].

Multiple Interrupts Example 2

This example shows how the lower priority interrupt TM0 occurs during TM1 interrupt function handling.

Normal processing IMASK = 0
BL = 0

TM1 interrupt function
handling

IMASK = 2
BL = 0

TM0 interrupt function
handling

IMASK = 1
BL = 0

Normal processing IMASK = 0
BL = 0

[1]

[3]

[6]

[7]

[2]

[4]

IMASK = 0
BL = 1

IMASK = 0
BL = 1

IMASK = 0
BL = 1

Normal processing IMASK = 0
BL = 0

IMASK = 0
BL = 1

[5]

Mask

Interrupt priority = level 2

Interrupt priority = level 1

TM1 interrupt request occurs

TM0 interrupt request occurs

Figure C.2 Processing Flowchart for Multiple Interrupts (Example 2)

[1] During normal processing, it is possible to accept interrupts with an interrupt priority level other than 0 since
IMASK is 0 (level 0 masked) and BL is 0 (interrupt requests not masked).

[2] Since a TM1 interrupt request (level 2) occurred, normal processing is interrupted and the CPU transitions to
interrupt handling. First, in hardware processing, BL is set to 1 (interrupt requests masked). Then in software
processing, the registers used in normal processing are saved on the stack. IMASK is set to 2, which is the TM1
interrupt priority, and BL is set to 0, and the software branches to TM1 interrupt function handling.

[3] During TM1 interrupt function handling, since IMASK is set to 2 (levels 2 or lower masked) and BL is set to 0,
interrupts with an interrupt priority with a level of 3 or higher can be accepted.

[4] If a TM0 interrupt request (priority level 1) occurs, it will be masked because its interrupt priority level is lower
than the IMASK value.

 When TM1 interrupt function handling is complete, after IMASK is set to 0 and BL to 1 in software processing, the
state prior to the interrupt (the registers used by the TM0 interrupt handler) is restored and the interrupted
processing is restarted.

R01AN0569EJ0100 Rev. 1.00 Page 23 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

[5] Normal processing restarts. IMASK and BL are in their states prior to the occurrence of the TM1 interrupt, that is,
the same states as they were in at step [1]. Since the interrupt priority level of the TM0 interrupt that was masked
has become higher than the value of IMASK, the TM0 interrupt request will be accepted. Normal processing is
interrupted and, in hardware, BL is set to 1. After that, in software, the registers used in normal processing are
saved on the stack. IMASK is set to 1, which is the TM0 interrupt priority, and BL is set to 0, and the software
branches to TM0 interrupt function handling.

[6] During TM0 interrupt function handling, since IMASK is set to 1 (levels 1 or lower masked) and BL is set to 0,
interrupts with an interrupt priority with a level of 2 or higher can be accepted.

 When TM0 interrupt function handling completes, after IMASK is set to 0 and BL to 1 in software processing, the
state prior to the interrupt (the registers used in normal processing) is restored and the interrupted processing is
restarted.

[7] Normal processing restarts. IMASK and BL are in their states prior to the occurrence of the TM0 interrupt, that is,
the same states as they were in at step [1].

Multiple Interrupts Example 3

This example shows how a lower interrupt priority TM0 interrupt and a higher interrupt priority TM1 interrupt occur in
contention (at the same time).

Normal processing IMASK = 0
BL = 0

TM1 interrupt request occurs

TM1 interrupt function
handling

IMASK = 2
BL = 0

TM0 interrupt request occurs

TM0 interrupt function
handling

IMASK = 1
BL = 0

Normal processing IMASK = 0
BL = 0

[1]

[3]

[5]

[6]

[2]

IMASK = 0
BL = 1

IMASK = 0
BL = 1

IMASK = 0
BL = 1

Normal processing IMASK = 0
BL = 0

IMASK = 0
BL = 1

[4]

Interrupt priority = level 1

Deferral

Interrupt priority = level 2Mask

Figure C.3 Processing Flowchart for Multiple Interrupts (Example 3)

[1] During normal processing, it is possible to accept interrupts with an interrupt priority level other than 0 since
IMASK is 0 (level 0 masked) and BL is 0 (interrupt requests not masked).

[2] Here, a TM0 interrupt request (level 1) and a TM1 interrupt request (level 2) occur at the same time and thus are in
contention. The interrupt priorities are compared by the INTC and the TM1 interrupt request, which is the higher
priority interrupt, is output. The TM0 interrupt request is deferred.

 Normal processing is interrupted by the occurrence of the TM1 interrupt request. BL is set to 1 (interrupt requests
masked) in hardware processing. Then in software processing, the registers used in normal processing are saved on
the stack. IMASK is set to 2, which is the TM1 interrupt priority, and BL is set to 0, and the software branches to
TM1 interrupt function handling.

[3] During TM1 interrupt function handling, since IMASK is set to 2 (levels 2 or lower masked) and BL is set to 0,
interrupts with an interrupt priority with a level of 3 or higher can be accepted.

 Since the interrupt priority level of the TM0 interrupt request is lower than the IMASK value, it is masked.

R01AN0569EJ0100 Rev. 1.00 Page 24 of 27

Mar. 16, 2012

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 25 of 27

Mar. 16, 2012

 When TM1 interrupt function handling is complete, after IMASK is set to 0 and BL to 1 in software processing, the
state prior to the interrupt (the registers used in normal processing) is restored and the interrupted processing
restarts.

[4] Normal processing restarts. IMASK and BL are in their states prior to the occurrence of the TM1 interrupt, that is,
the same states as they were in at step [1]. Since the interrupt priority level of the TM0 interrupt that was masked
has become higher than the value of IMASK, the TM0 interrupt request will be accepted. Normal processing is
interrupted and, in hardware processing, BL is set to 1. Then in software processing, the registers used in normal
processing are saved on the stack. IMASK is set to 1, which is the TM0 interrupt priority, and BL is set to 0, and
the software branches to TM0 interrupt function handling.

[5] During TM0 interrupt function handling, since IMASK is set to 1 (levels 1 or lower masked) and BL is set to 0,
interrupts with an interrupt priority with a level of 2 or higher can be accepted.

 When TM0 interrupt function handling is complete, after IMASK is set to 0 and BL to 1 in software processing, the
state prior to the interrupt (the registers used in normal processing) is restored and the interrupted processing
restarts.

[6] Normal processing restarts. IMASK and BL are in their states prior to the occurrence of the TM0 interrupt, that is,
the same states as they were in at step [1].

Sample code for the multiple interrupt cases shown above for the HEW program development environment is shown
below. In the sample code, comments are in green, and parts where a user needs to modify are in red.

 Setting IMASK and UIMASK, setting interrupt priorities, clearing the INTC interrupt mask setting, and clearing the
interrupt mask settings for each built-in peripheral module

main.c

#include <machine.h>
#include "iodefine.h"

void main(void)
{
 <Omitted>
 set_cr((int)((unsigned int)get_cr()|0x10000000U)); BL = 1 (Interrupt requests

are masked)
 set_cr((int)((unsigned int)get_cr()&0xFFFFFF0FU)); IMASK setting
 INTC.USERIMASK.LONG = 0xA5000000UL; UIMASK setting

 INTC.INT2PRI0.LONG = 0x02040000UL; Sets the TM0 interrupt priority.

Sets the TM1 interrupt priority.

 INTC.INT2MSKCR.LONG = 0x00000003UL; Clears the TM0 interrupt mask setting

Clears the TM1 interrupt mask setting
 <Omitted>
 TMU.TM0CR.BIT.UNIE = 1U; TM0 underflow interrupt is enabled.
 TMU.TM1CR.BIT.UNIE = 1U; TM1 underflow interrupt is enabled.
 <Omitted>
 set_cr((int)((unsigned int)get_cr()&0xEFFFFFFFU)); BL = 0 (Interrupt requests are

not masked)
...
}

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 26 of 27

Mar. 16, 2012

 Registering interrupt mask value in the HEW interrupt mask table

vecttbl.src

_RESET_Vectors:
;<<VECTOR DATA START (POWER ON RESET)>>
 ;H'000 Power On Reset (H-UDI RESET)
 .data.l _PowerON_Reset
;<<VECTOR DATA END (POWER ON RESET)>>
; Reserved
 .datab.l 8,H'00000000

 .section INTTBL,data
 .export _INT_Vectors

 <Omitted>
 .export _INT_MASK
_INT_MASK:
 <Omitted>
 ;H'580 TMU0
 .data.b H'10 During TM0 interrupt function execution, interrupts with

an interrupt priority level of 1 or lower are masked.
 ;H'5A0 TMU1
 .data.b H'20 During TM1 interrupt function execution, interrupts with

an interrupt priority level of 2 or lower are masked.
...

 Registering interrupt handlers in the HEW interrupt vector table

vecttbl.src

_RESET_Vectors:
;<<VECTOR DATA START (POWER ON RESET)>>
 ;H'000 Power On Reset (H-UDI RESET)
 .data.l _PowerON_Reset
;<<VECTOR DATA END (POWER ON RESET)>>
; Reserved
 .datab.l 8,H'00000000

 .section INTTBL,data
 .export _INT_Vectors

_INT_Vectors:
 <Omitted>
 ;H'580 TMU0
 .data.l _INT_TMU0_TUNI0 TM0 interrupt function
 ;H'5A0 TMU1
 .data.l _INT_TMU1_TUNI1 TM1 interrupt function
...

SH7455 Group, SH7456 Group Timer Unit (TMU) Interrupt Sample Code

R01AN0569EJ0100 Rev. 1.00 Page 27 of 27

Mar. 16, 2012

 Coding the interrupt handler in C or C++

intprg.src

 .include "vect.inc"
 .section IntPRG, code

 ;H'040 Data TLB miss exception(read)
_INT_TLB_MISS_READ_EXP:
:
 <Omitted>
 ;H'580 TMU0
;_INT_TMU0_TUNI0 Either comment out with semicolons or delete the TM0 interrupt function.
 ;H'5A0 TMU1
;_INT_TMU1_TUNI1 Either comment out with semicolons or delete the TM1 interrupt function.
...

main.c

void INT_TMU0_TUNI0(void) Creates the TM0 interrupt function.
{
 <Omitted> In C or C++ language, code the clearing of the interrupt request and any other

processing to be performed.
}

void INT_TMU1_TUNI1(void) Create a TM1 interrupt function.
{
 <Omitted> In C or C++ language, code the clearing of the interrupt request and any other

processing to be performed.
}

A-1

Revision History
SH7455 Group, SH7456 Group

Timer Unit (TMU) Interrupt Sample Code

Description
Rev. Date

Page Summary
1.00 Mar. 16, 2012 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Note
	4. Hardware
	4.1 Pin Used
	4.2 Register Settings
	(1) Status Register (SR)
	(2) Port D Data Register (PDDR): Holds the port D I/O data
	(3) Port D I/O Register (PDIOR): Sets the I/O direction of the port D pin
	(4) Port D Control Register 1 (PDCR1): Selects the functions of multiplexed pins of port D
	(5) Port D Control Register 2 (PDCR2): Selects the functions of multiplexed pins of Port D
	(6) TM Start Register (TMSTR): Selects TMnCNT (n = 0 to 2) counter operating/stopped state
	(7) TM0 Constant Register (TM0COR): Holds the TM0CNT counter reload value
	(8) TM0 Counter (TM0CNT): The TM0 counter value
	(9) TM0 Control Register (TM0CR): Selects the counter clock and controls interrupts when an underflow occurs
	(10) User Interrupt Mask Level Register (USERIMASK): Masks interrupts with a level less than the UIMASK set value.
	(11) Interrupt Priority Setting Register 0 (INT2PRI0)
	(12) Interrupt Mask Clear Register 0 (INT2MSKCR)

	5. Software
	5.1 Operation Overview
	5.2 File Composition
	5.3 Constants
	5.4 Structure/Union List
	5.5 Variables
	5.6 Functions
	5.7 Function Specifications
	5.8 Flowcharts
	5.8.1 Function main
	5.8.2 Function INT_TMU0_TUNI0

	6. Sample Code
	7. Reference Documents
	Appendix A. Notes on Adding an Interrupt Handler
	Appendix B. Interrupt Request Mask Operation
	Appendix C. Multiple Interrupt Operation

