

APPLICATION NOTE

SH7268/SH7269 Group

Transmission/Reception of Renesas SPDIF Interface

R01AN1188EJ0100 Rev.1.00 Jul. 27, 2012

Abstract

This document describes how to transmit/receive digital audio data using Renesas SPDIF interface of the SH7268/SH7269 group.

The features of the Renesas SPDIF interface are described below.

- Supports the IEC60958 standard (stereo and consumer use modes only)
- Supports sampling frequencies (44.1kHz, 48kHz and 32kHz)
- Simultaneous transmit and receive
- Receiver autodetects the IEC61937 compressed mode data

Products

SH7268/SH7269 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1. Specifi	cations	3
2. Operat	ion Confirmation Conditions	4
3. Refere	nce Application Note	4
4. Periph	eral Functions	5
4.1 Ch	annel Configuration	5
4.2 Tra	ansfer Data	5
4.3 Ov	ersampling Clock and Sampling Frequency	6
5. Hardw	are	7
5.1 Pir	ns Used	7
5.2 Ha	rdware Configuration	7
6. Softwa	re	8
6.1 Op	eration Overview	8
6.2 Fil	e Composition	9
6.3 Co	nstants	9
	ucture/Union List 1	
	riables 1	
	nctions1	
	nction Specifications 1	
	wcharts1	
6.8.1	Main Processing 1	
6.8.2	Initialization of RSPDIF1	
6.8.3	Starting of RSPDIF Transmission 1	
6.8.4	Starting of RSPDIF Reception 1	
6.8.5	Updating Channel Status of RSPDIF Transmission 1	
6.8.6	Initialization of DMAC Channel 4 1	
6.8.7	Initialization of DMAC Channel 5 2	
6.8.8	Interrupt Function of RSPDIF 2	
6.8.9	DMA Transfer Completion Interrupt 2	2
7. Sample	e Code 2	23
8. Refere	nce Documents	23

Transmitter buffer and receiver buffer area

1. Specifications

Large-capacity on-chip RAM

Input the transmitter buffer data stored in the large-capacity on-chip RAM to the Renesas SPDIF interface (hereinafter called RSPDIF) channel 0, and transmits the frame which complies with the IEC60958 standard (hereinafter called IEC60958 frame). Interrupts are used for transferring the user information and channel status information, and Direct Memory Access Controller (hereinafter called DMAC) is used for transferring the audio data.

The IEC60958 frame transmitted from the RSPDIF channel 0 is transferred to the RSPDIF channel 1 by the pass back function. The data received in the RSPDIF channel 1 will be stored in the large-capacity on-chip RAM by the interrupt or the DMAC as well as transmitting the data.

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows the Operation Overview.

Table 1.1 Peripheral Functions and Their Applications			
Peripheral Function	Application		
Renesas SPDIF interface (RSPDIF)	Transmits and receives the SPDIF		
Direct Memory Access Controller (DMAC)	Transfers audio data		
Interrupt controller (INTC)	Transfers user information and channel status information		

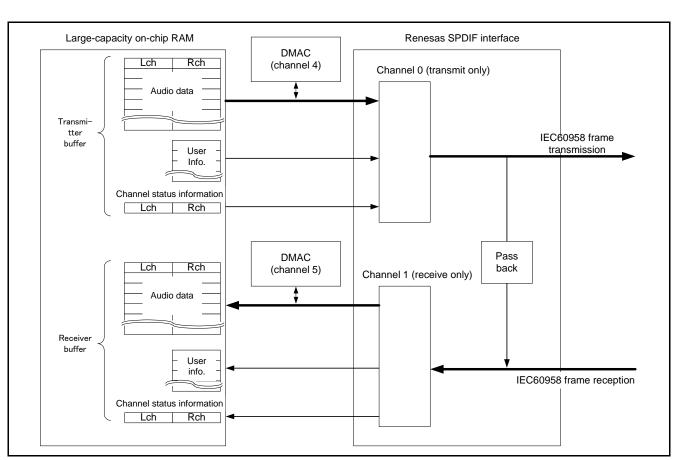


Figure 1.1 Operation Overview

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1	Operation	Confirmation	Conditions
-----------	-----------	--------------	------------

Item	Contents		
MCU used	SH7269		
Operating frequency	CPU internal clock (I		
	Internal clock (B		
	Peripheral clock 1 (P1): 66.67MHz		
	Peripheral clock 0 (P0): 33.33MHz		
Operating voltage	Source Power (I/O): 3.3V		
	Source Power (internal): 1.25V		
Integrated development	Renesas Electronics Corporation		
environment	High-performance Embedded Workshop Ver. 4.07.00		
C compiler	Renesas Electronics Corporation		
	SuperH RISC engine Family C/C++ compiler package		
	Ver.9.03 Release 02		
	Compile option		
	-cpu=sh2afpu -fpu=singleinclude="\$(WORKSPDIR)\inc"		
	-object="\$(CONFIGDIR)\\$(FILELEAF).obj" -debug -gbr=auto		
	-chgincpath -errorpath -global_volatile=0 -opt_range=all -infinite_loop=0		
	-del_vacant_loop=0 -struct_alloc=1 -nologo		
Board used	R0K572690C000BR		

3. Reference Application Note

For additional information associated with this document, refer to the following application note.

• SH7262/SH7264 Group Example of Initialization (RJ06B0998)

4. Peripheral Functions

This chapter provides supplementary information on RSPDIF, which basic information is described in the hardware manual.

4.1 Channel Configuration

The RSPDIF consists of two channels. The directions of transmission/reception for each channel are fixed. The channel 0 is used for transmission, and the channel 1 is used for reception.

4.2 Transfer Data

In addition to the audio data which includes sound data, user information and channel status information will also be transmitted and received in the SPDIF. Therefore, it is necessary to write/read these data to/from the RSPDIF register. Figure 4.1 shows the Register Group for Reading/Writing Transfer Data. The length of 32-bit is required.

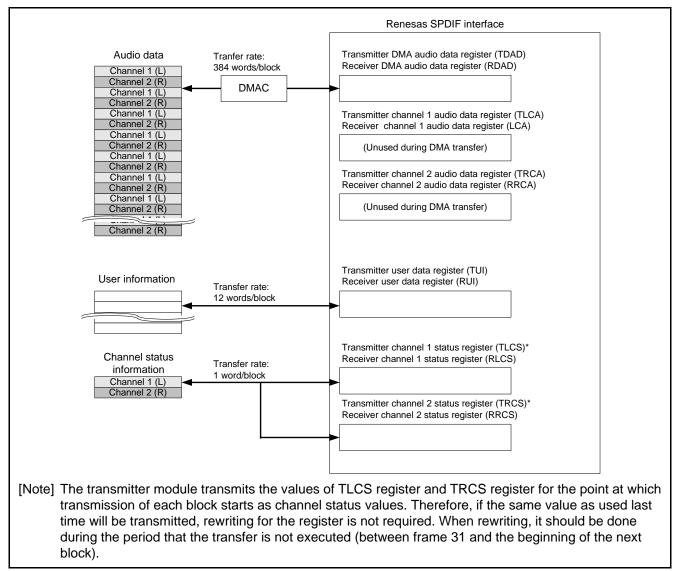


Figure 4.1 Register Group for Reading/Writing Transfer Data

4.3 Oversampling Clock and Sampling Frequency

It is necessary to input oversampling clock from the outside to use the RSPDIF. Refer to Chapter 5 "Hardware" in this application note regarding the oversampling clock input terminals.

One sample (= one frame) consists of two channels, each of which contains 32 bits, and the oversample with a frequency of eight times as large as the sampling frequency is required in the RSPDIF. For these reasons, the frequency for oversampling clock supplied from the outside needs to be set to 512 times larger than the sampling frequency. Table 4.1 lists the Frequency of Oversampling Clock over Sampling Frequency.

Table 4.1 Frequency of Oversampling Clock over Sampling Frequency

Sampling frequency of audio data	Oversampling clock frequency
48 kHz	24.5760 MHz
44.1 kHz	22.5792 MHz
32 kHz	16.3840 MHz

[Note] The oscillator on the used board (R0K572690C000BR) listed in Table 2.1 "Operation Confirmation Conditions" cannot be applied to the oversampling clock shown in Table 4.1. Please take this into account when referring to a configuration.

5. Hardware

5.1 Pins Used

Table 5.1 shows the Pins Used and Their Functions.

	Table 5.1	Pins Used and Their Functions
--	-----------	-------------------------------

Pin Name	I/O	Function
AUDIO_CLK	Input	Not connected
AUDIO_X1	Input	Input oversampling clock
AUDIO_X2	Output	Not connected (used when connected to oscillation)
SPDIF_IN	Input	Input SPDIF bitstream
SPDIF_OUT	Output	Output SPDIF bitstream

5.2 Hardware Configuration

Figure 5.1 shows the Connection Example.

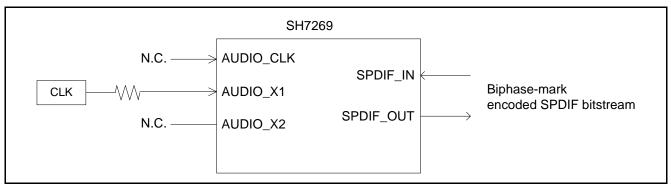


Figure 5.1 Connection Example

6. Software

6.1 **Operation Overview**

Figure 6.1 shows the Sequence Diagram of Sample Code. The CPU initializes the RSPDIF and allows DMA transfer of the audio data, and then the transmission will be started. The reception will also be started at the same time by the pass back function. The audio data is transferred continuously without software by the DMAC continual function. The user information and the channel status information are transferred by the software using interrupts. However, the same value shall be used for the channel status information of the transfer without rewriting by the interrupt.

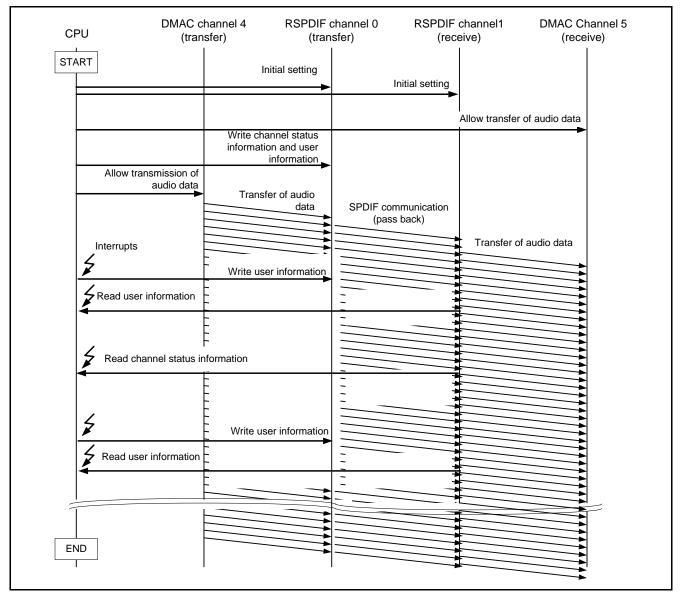


Figure 6.1 Sequence Diagram of Sample Code

6.2 File Composition

Table 6.1 lists the Files Used in the Sample Code. Files not generated by the integrated development environment should not be listed in this table.

Table 6.1	Files Used in the Sample Code
-----------	-------------------------------

File Name	Outline	Remarks
main.c	Main program	
io_rspdif.c	Initialization of the RSPDIF	
io_rspdif.h	Interface definition of the io_rspdif.c	
io_dmac.c	Initialization of the DMAC	
io_dmac.h	Interface definition of the io_dmac.c	

6.3 Constants

Table 6.2 lists the Constants Used in the Sample Code.

Table 6.2	Constants	Used in t	the Sample	Code
-----------	-----------	-----------	------------	------

Constant Name	Setting Value	Contents
USER_NUMOF_BLOCK	1024	User buffer size (by the block)
SPDIF_OK	0	Return value when the processing was successful
SPDIF_ERR	-1	Return value when the processing was failed
SPDIF_PASS_BACK	1	Setting value of the RSPDIF pass back function (1: allowed)
SPDIF_NUMOF_FRM	192	Number of frames in one block
SPDIF_NUMOF_CH	2	Number of channels (left channel, right channel)
SPDIF_AUDIO_BUFSZ	192 * 2	Buffer size for the audio data (by the longword)
SPDIF_USER_BUFSZ	(192 * 2) / 32	Buffer size for the user information (by the longword)
SPDIF_CH1	0	Channel 1 (left channel) index
SPDIF_CH2	1	Channel 2 (right channel) index
SPDIF_STATUS_CH1	H'10100000	Setting value of channel 1 status to be transmitted
SPDIF_STATUS_CH2	H'10200000	Setting value of channel 2 status to be transmitted
SPDIF_UBO_BIT	H'00002000	UBO bit of the status register
SPDIF_UBU_BIT	H'00001000	UBU bit of the status register
SPDIF_CE_BIT	H'00000800	CE bit of the status register
SPDIF_PARE_BIT	H'00000400	PARE bit of the status register
SPDIF_PREE_BIT	H'00000200	PREE bit of the status register
SPDIF_CSE_BIT	H'00000100	CSE bit of the status register
SPDIF_ABO_BIT	H'00000080	ABO bit of the status register
SPDIF_ABU_BIT	H'0000040	ABU bit of the status register
SPDIF_RUIR_BIT	H'0000020	RUIR bit of the status register
SPDIF_TUIR_BIT	H'0000010	TUIR bit of the status register
SPDIF_CSRX_BIT	H'0000008	CSRX bit of the status register
SPDIF_CBRX_BIT	H'0000004	CBRX bit of the status register
SPDIF_CSTX_BIT	H'0000002	CSTX bit of the status register
SPDIF_CBTX_BIT	H'0000001	CBTX bit of the status register

6.4 Structure/Union List

Figure 6.2 shows the Structure/Union Used in the Sample Code.

6.5 Variables

Table 6.3 lists the Static Variables.

Table 6.3 Static Variables

Туре	Variable Name	Contents	Function Used
volatile spdif_t	g_spdout	SPDIF transmitter buffer	main, io_spdout_start, io_spdif_isr
volatile spdif_t	g_spdin	SPDIF receiver buffer	main, io_spdin_start, io_spdif_isr

6.6 Functions

Table 6.4 lists the Functions.

Table 6.4 Functions

Function Name	Outline
main	Main processing
io_init_rspdif	Initialization of the RSPDIF
io_spdout_start	Starting of the RSPDIF transmission
io_spdin_start	Starting of the RSPDIF reception
io_spdout_change_status	Updating channel status of the RSPDIF transmission
io_rspdif_isr	Interrupt function of the RSPDIF
io_init_dmac4	Initialization of the DMAC channel 4
io_init_dmac5	Initialization of the DMAC channel 5
io_reload_dmac4	Reload register setting for the DMAC channel 4
io_reload_dmac5	Reload register setting for the DMAC channel 5
io_dmac4_dei4_isr	Transfer completion interrupt function for the DMAC channel 4
io_dmac5_dei5_isr	Transfer completion interrupt function for the DMAC channel 5

6.7 Function Specifications

The following tables list the sample code function specifications.

main	
Outline	Main processing
Header	io_rspdif.h
Declaration	void main(void)
Description	Initializes RSPDIF transmitter module and receiver module to start operation.
	Continues RSPDIF transmission and reception.
Arguments	None
Return Value	None

io_init_rspdif

Outline	Initialization of the RSPDIF
Header	io_rspdif.h
Declaration	void io_init_rspdif (void)
Description	Initializes transmitter module and receiver module.
Arguments	None
Return Value	None

_spdout_start	
Outline	Starting of the RSPDIF transmission
Header	io_rspdif.h
Declaration	void io_spdout_start(void)
Description	Writes data to transmitter module and allows the DMA transfer to start the SPDIF transmission.
Arguments	None
Return Value	None

io_spdin_start	
Outline	Starting of the RSPDIF reception
Header	io_rspdif.h
Declaration	void io_spdin_start(void)
Description	Allows receiver module DMA transfer to start the SPDIF reception.
Arguments	None
Return Value	None

Outline	Updating channel status of the RSPDIF transmission
Header	io_rspdif.h
Declaration	int32_t io_spdout_change_status (void)
Description	Executes this function when changing the transmitter channel status information. This function shall be executed after setting the value to the g_spdout.s_buf. It is necessary to update the channel status information register between frame 31 and frame 192. Therefore, this function provides only interrupt allowance, and register updating shall be executed by the interrupt function.
Arguments	None
Return Value	SPDIF_OK (0): succeeded
	SPDIF_ERR (-1): failed (due to being in the process of updating)

io_rspdif_isr	
Outline	Interrupt function of the RSPDIF
Header	None
Declaration	void io_rspdif_isr (void)
Description	This function will be executed when the RSPDIF interrupt is received. Verifies interrupt source by this function, and executes error processing, transfer of user information and channel status information.
Arguments	None
Return Value	None

io_init_dmac4			
Outline	Initialization of DMAC channel 4		
Header	io_dmac.h		
Declaration	void io_init_dmac4(void * src, void * dest, int32_t count)		
Description	destination address sp to transfer after the tra	el 4, and allows the DMA transfer from source address to ecified by the argument. Allows register reload, and continues nsfer has been completed. Transfer completion interrupt is transmitter DMA audio data register shall be specified for dress.	
Arguments	void *src void *dest int32 t count	: Transfer source address : Transfer destination address : Number of transfers	
Return Value	None		

io_init_dmac5

Outline	Initialization of DMAC channel 5		
Header	io_dmac.h		
Declaration	void io_init_dmac5(void * src, void * dest, int32_t count)		
Description	Set the DMAC channel 5, and allows the DMA transfer from source address to destination address specified by the argument. Allows register reload, and continues to transfer after the transfer has been completed. Transfer completion interrupt is allowed. The RSPDIF receiver DMA audio data register shall be specified for transfer source address.		
Arguments	void *src: Transfer source addressvoid *dest: Transfer destination addressint32_t count: Number of transfers		
Return Value	None		

io_reload_dmac4		
Outline	Reload register setting for the DMAC channel 4	
Header	io_dmac.h	
Declaration	void io_reload_dmac4	(void * rsrc, void * rdest, int32_t rcount)
Description	Sets the reload register for the DMAC channel 4.	
Arguments	void *rsrc	: Transfer source address to be reloaded
	void *rdest	: Transfer destination address to be reloaded
	int32_t rcount	: Number of transfers to be reloaded
Return Value	None	

io_reload_dmac5		
Outline	Reload register setting for the DMAC channel 5	
Header	io_dmac.h	
Declaration	void io_reload_dmac	5(void * rsrc, void * rdest, int32_t rcount)
Description	Sets the reload register for the DMAC channel 5.	
Arguments	void *rsrc	: Transfer source address to be reloaded
-	void *rdest	: Transfer destination address to be reloaded
	int32_t rcount	: Number of transfers to be reloaded
Return Value	None	

io_dmac4_dei4_isr	
Outline	Transfer completion interrupt function for the DMAC channel 4
Header	io_dmac.h
Declaration	void io_dmac4_dei4_isr(void)
Description	Executes this function and clears the transfer completion flag after the DMAC channel 4 transfer has been completed.
Arguments	None
Return Value	None

io_dmac5_dei5_isr			
Outline	Transfer completion interrupt function for the DMAC channel 5		
Header	io_dmac.h		
Declaration	n void io_dmac5_dei5_isr(void)		
Description	n Executes this function and clears the transfer completion flag after the DMAC channel 5 transfer has been completed.		
Arguments	None		
Return Value	None		

6.8 Flowcharts

6.8.1 Main Processing

Figure 6.3 shows the Main Processing.

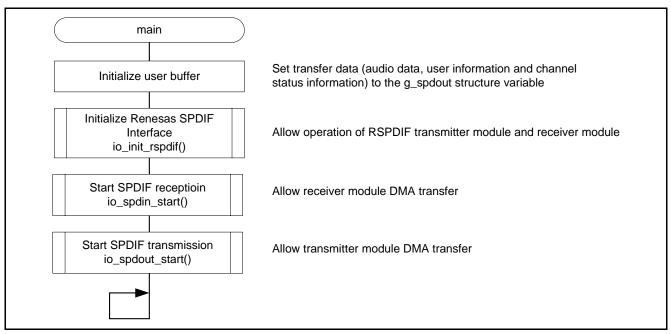


Figure 6.3 Main Processing

6.8.2 Initialization of RSPDIF

Figure 6.4 shows the Initialization of RSPDIF.

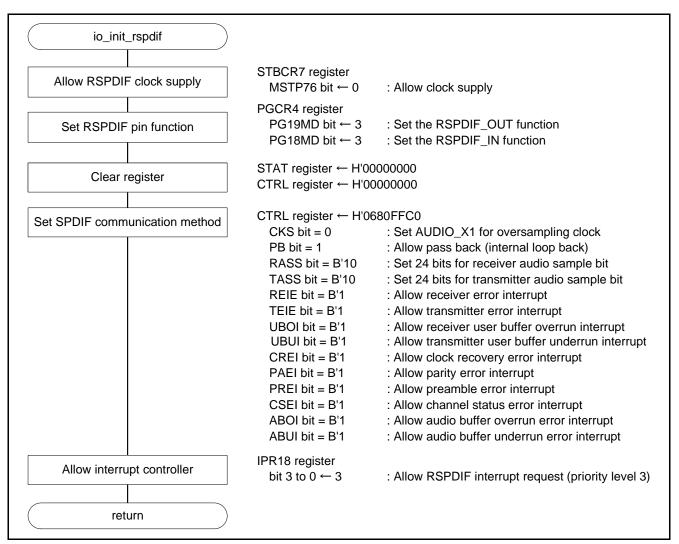
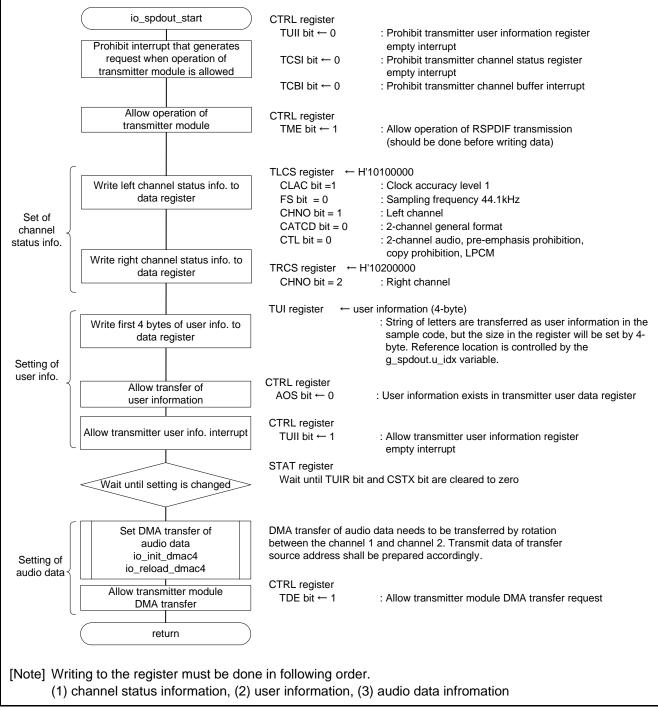



Figure 6.4 Initialization of RSPDIF

6.8.3 Starting of RSPDIF Transmission

Figure 6.5 shows the Starting of RSPDIF Transmission.

6.8.4 Starting of RSPDIF Reception

Figure 6.6 shows the Starting of RSPDIF Reception.

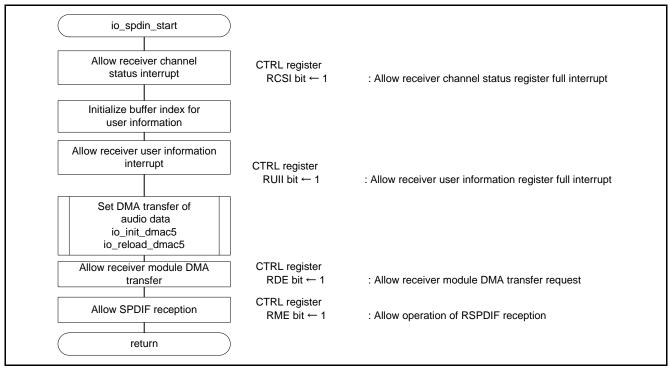


Figure 6.6 Starting of RSPDIF Reception

6.8.5 Updating Channel Status of RSPDIF Transmission

Figure 6.7 shows the Updating Channel Status of RSPDIF Transmission.

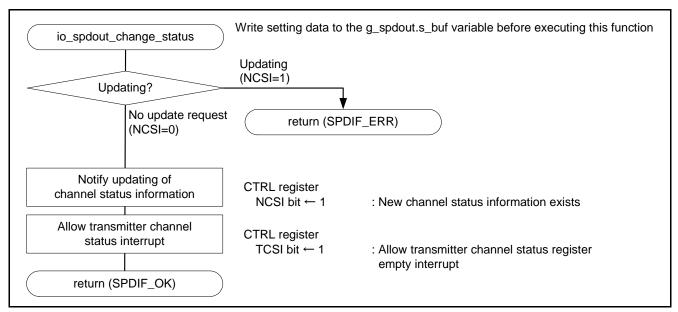


Figure 6.7 Updating Channel Status of RSPDIF Transmission

6.8.6 Initialization of DMAC Channel 4

Figure 6.8 shows the Initialization of DMAC Channel 4.

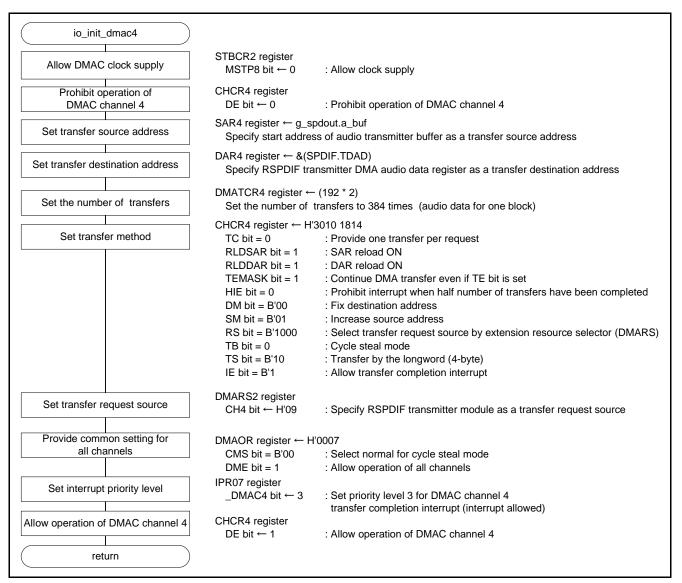


Figure 6.8 Initialization of DMAC Channel 4

6.8.7 Initialization of DMAC Channel 5

Figure 6.9 shows the Initialization of DMAC Channel 5.

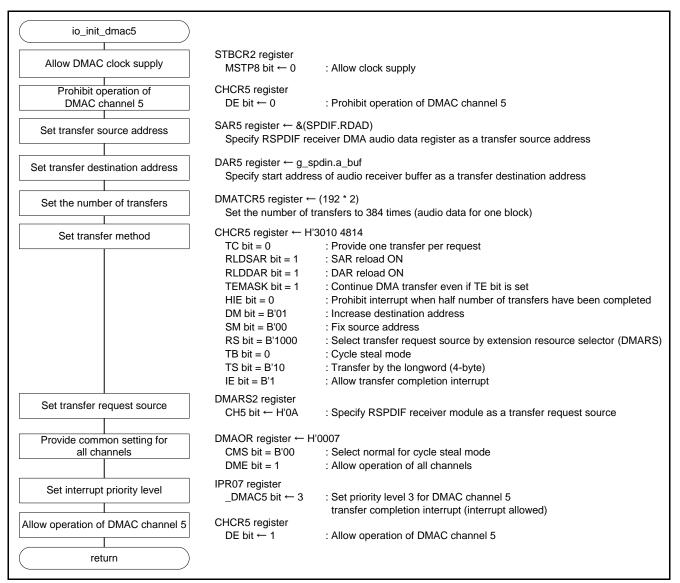


Figure 6.9 Initialization of DMAC Channel 5

6.8.8 Interrupt Function of RSPDIF

Figure 6.10 shows the Interrupt Function of RSPDIF.

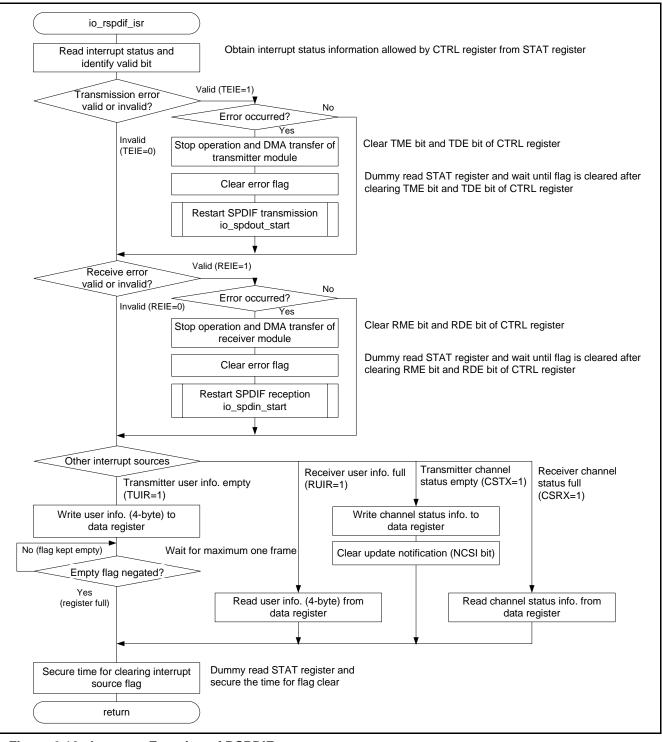


Figure 6.10 Interrupt Function of RSPDIF

6.8.9 DMA Transfer Completion Interrupt

Figure 6.11 shows the DMA Transmission Completion Interrupt.

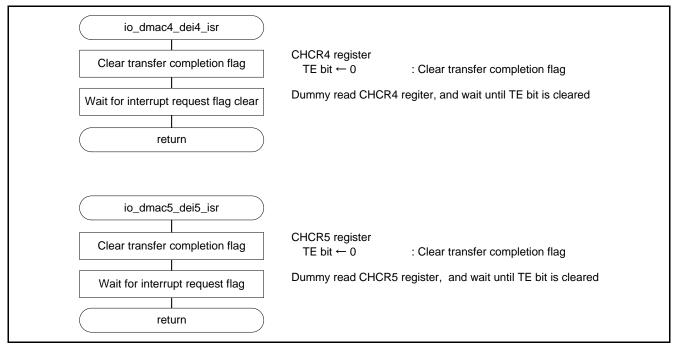


Figure 6.11 DMA Transmission Completion Interrupt

7. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

8. Reference Documents

User's Manual: Hardware SH7268/SH7269 Group User's Manual: Hardware Rev.1.00 The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual

SuperH RISC engine C/C++ Compiler Package V.9.04 C Complier User's Manual Rev.1.01. ([R number-not including the revision classification]) The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

REVISION HISTORY

SH7268/SH7269 Group Application Note Transmission/Reception of SPDIF Interface

Rev.	Date		Description
		Page	Summary
1.00	Jul. 27, 2012	_	First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses
 - Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

- Notice

 . Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
 . Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for Infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- *Standard*: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
- "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited Telesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 **Renesas Electronics Europe GmbH** Arcadiastrasse 10, 40472 Düsseldorf, Germa Tel: +49-211-65030, Fax: +49-211-6503-1327 Germany Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China 7el: +88-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tei: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Cart Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001 Renesas Electronics Malaysia Sdn.Bhd. Uni 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +822-2-558-5141