# Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: <a href="http://www.renesas.com">http://www.renesas.com</a>

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (<a href="http://www.renesas.com">http://www.renesas.com</a>)

Send any inquiries to http://www.renesas.com/inquiry.



#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
  of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
  of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



# SH7145 Group

## DMA in Single Address Mode

#### Introduction

This application note describes data transfer by the DMAC (Direct Memory Access Controller) module in single address mode. The DMAC performs high-speed data transfer in one bus cycle from external SRAM to an external device with DACK (transfer request acknowledge signal).

## **Target Device**

SH7145F

#### **Contents**

| 1. | Specifications           | 2    |
|----|--------------------------|------|
| 2. | Description of Functions | 3    |
| 3. | Description of Operation | 5    |
| 4. | Description of Software  | 6    |
| 5. | Flowchart                | 9    |
| 6. | Program Listing          | . 10 |



## 1. Specifications

The DMAC (Direct Memory Access Controller) of the SH7145 is used to perform DMA data transfer in single address mode. Data is transferred from external SRAM to a device with DACK (transfer request acknowledge signal). The transfer request mode of the DMAC is set to external request, and five 32-bit data items (or a total of 20 bytes) are transferred.

Figure 1 illustrates data transfer by the DMAC; table 1 shows the DMAC settings.

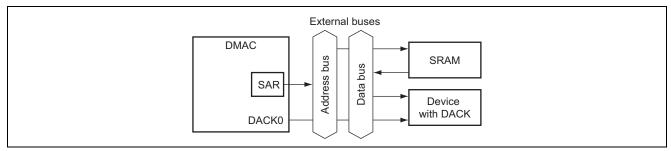



Figure 1 Data Transfer Using DMAC

#### Table 1 DMAC Settings

| Setting Item                  | Description                                                                                            |
|-------------------------------|--------------------------------------------------------------------------------------------------------|
| Address mode                  | Single address mode                                                                                    |
| Transfer request              | External request (input to the DREQ pin)                                                               |
| Detection of transfer request | Detection on the falling edge of the DREQ pin                                                          |
| Number of transfers           | Five times (A total of 20 bytes of data is transferred.)                                               |
| Bus mode                      | Burst mode                                                                                             |
| Transfer source address       | SRAM [H'00400000] allocated to CS1 space (Auto-incremented according to the data size after transfer.) |
| Transfer data size            | Longword (32 bits)                                                                                     |
| DACK signal                   | Output as an active-low signal.                                                                        |
| Interrupt                     | Transfer end interrupt is enabled.                                                                     |



## 2. Description of Functions

In this sample task, the DMAC is used for DMA transfer of data from external SRAM connected to the SH7145 to a device with DACK.

#### 2.1 DMAC (Direct Memory Access Controller)

Data transfer is performed in single address mode. Figure 2 is a block diagram of DMAC module channel 0 (ch0); below, functions are explained referring to figure 2.

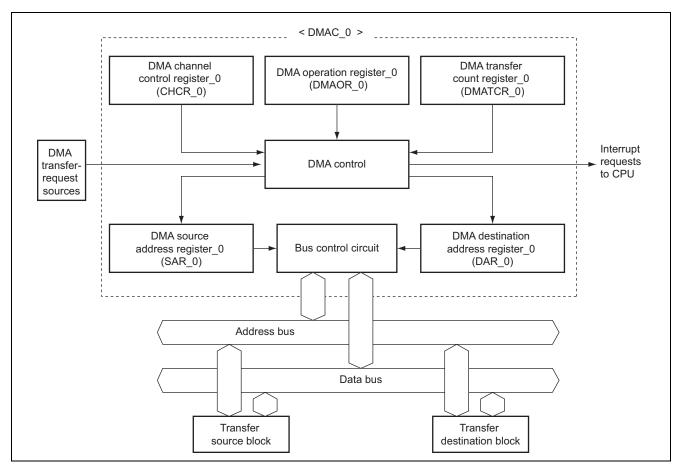



Figure 2 DMAC Block Diagram (ch0)



- The DMAC can perform high-speed data transfer, in place of the CPU, between external devices with DACK (transfer request acknowledge signal), external memory devices, memory-mapped external devices, and on-chip peripheral modules.
- The DMAC can be activated by either an external request or a request from an on-chip module. The on-chip modules that can generate DMAC activating requests are MTU, A/D1, SCI0, and SCI1. When auto-request is set by the CHCR\_0 register, DMA transfer can be performed by the DMAC alone by setting the DE bit in CHCR\_0 to 1.
- The DMA source address register\_0 (SAR\_0) is a 32-bit register which specifies the transfer source address. SAR\_0 has a counting function that can be selected by the DMA channel control register\_0 (CHCR\_0) from among three modes: fixed, auto-increment, and auto-decrement modes. During DMA operation, SAR\_0 always indicates the next transfer source address.
- The DMA destination address register\_0 (DAR\_0) is a 32-bit register which specifies the transfer destination address. DAR\_0 has a counting function that can be selected by the DMA channel control register\_0 (CHCR\_0) from among three modes: fixed, auto-increment, and auto-decrement modes. During DMA operation, DAR\_0 always indicates the next transfer destination address.
- The DMA transfer count register\_0 (DMATCR\_0) is a 32-bit register which specifies the number of transfers. The lower 24 bits are used to specify the number of transfers while the upper eight bits of this register are always 0. When writing, the upper eight bits should always be set to 0. If the DMATCR\_0 is set to H'000000, this is recognized as the maximum value, and 16,777,216 transfers are performed. During DMAC operation, this register is auto-decremented and indicates the number of remaining transfers.
- The DMA channel control register\_0 (CHCR\_0) is a 32-bit register which specifies the operation mode, transfer method, and other parameters for channel 0.
- The DMA operation register (DMAOR) is a 16-bit register which specifies the transfer mode for the entire DMAC.



## 3. Description of Operation

Figure 3 shows the operation timing.

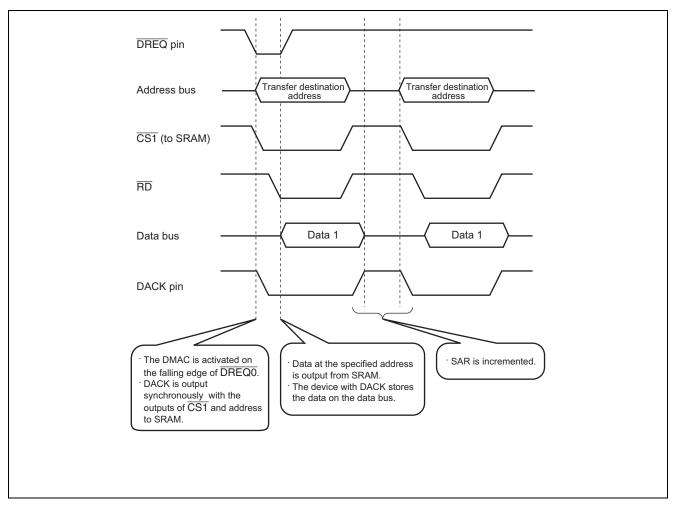



Figure 3 Operation in Single Address Mode



## 4. Description of Software

#### 4.1 Modules

Table 2 describes the modules used in this sample task.

Table 2 Description of Modules

|                                | Label   |                                                                      |
|--------------------------------|---------|----------------------------------------------------------------------|
| Module Name                    | Name    | Functions                                                            |
| Main routine                   | main    | Sets up the DMAC and pin functions, and starts transfer by the DMAC. |
| Transfer end interrupt routine | cmt_int | Stops DMAC operation                                                 |

## 4.2 Internal Registers

Tables 3 to 5 describe the internal registers used in this sample task. The settings are the values used in this sample task and are different from their initial values.

Table 3 Description of Internal Registers (1)

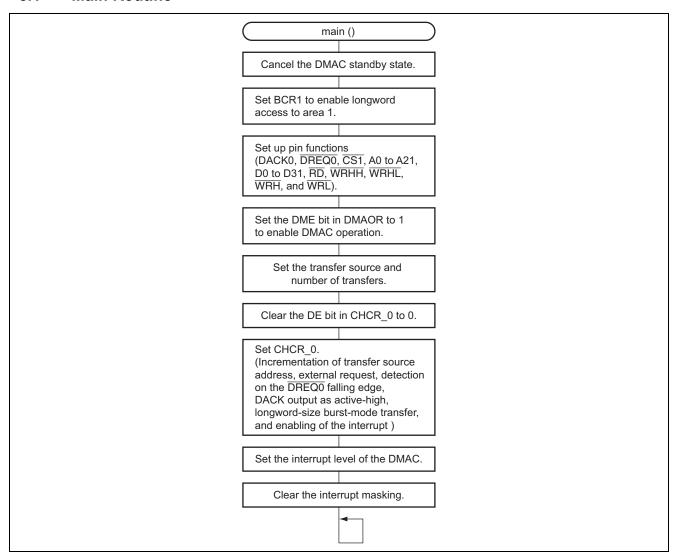
| Register |          |          |         |                                                              |
|----------|----------|----------|---------|--------------------------------------------------------------|
| Name     | Bit      | Bit Name | Setting | Function                                                     |
| MSTCR1   |          |          |         | Module standby control register 1                            |
|          | 9        | MSTP25   | 0       | DMAC Standby Control                                         |
|          | 8        | MSTP24   | 0       | When MSTP25 = 0 and MSTP24 = 0, the standby state            |
|          |          |          |         | of the DMAC is cancelled.                                    |
| DMAOR    |          |          | H'0001  | DMAC operation register                                      |
|          | 15 to 10 |          | 0       | Reserved                                                     |
|          | 9        | PR1      | 0       | Priority Mode 1, 0                                           |
|          | 8        | PR0      | 0       | These bits specify the priority order of channels for        |
|          |          |          |         | execution.                                                   |
|          | 7 to 3   |          | 0       | Reserved                                                     |
|          | 2        | AE       | 0       | Address Error Flag                                           |
|          | 1        | NMIF     | 0       | NMI Flag                                                     |
|          | 0        | DME      | 1       | DMAC Master Enable                                           |
|          |          |          |         | When DME = 1, enables operation on all channels of the DMAC. |



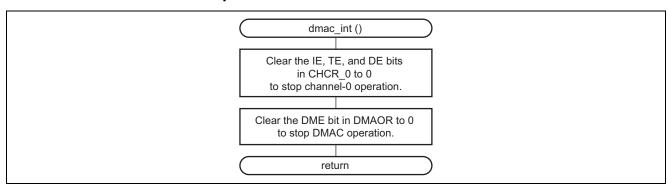
Table 4 Description of Internal Registers (2)

| Register<br>Name | Bit      | Bit Name    | Setting    | Function                                                                                        |
|------------------|----------|-------------|------------|-------------------------------------------------------------------------------------------------|
| CHCR_0           |          |             | H'00001275 | DMA channel control register_0                                                                  |
| _                | 31 to 21 | _           | 0          | Reserved                                                                                        |
|                  | 20       | DI          | 0          | Direct/Indirect Select                                                                          |
|                  |          |             |            | Only valid for channel 3. Invalid in this sample task because only channel 0 is used.           |
|                  | 19       | RO          | 0          | Source Address Reload                                                                           |
|                  |          |             |            | Only valid for channel 2. Invalid in this sample task because only channel 0 is used.           |
|                  | 18       | RL          | 0          | Request Check Level                                                                             |
|                  |          |             |            | When RL = 0, DRAK output is active-high.                                                        |
|                  | 17       | AM          | 0          | Acknowledge Mode                                                                                |
|                  |          |             |            | Invalid in single address mode.                                                                 |
|                  | 16       | AL          | 0          | Acknowledge Level                                                                               |
|                  |          |             |            | When AL = 0, DACK output is active-high.                                                        |
|                  | 15       | DM1         | 0          | Destination Address Mode 1, 0                                                                   |
|                  | 14       | DM0         | 0          | Invalid when the transfer destination is a device with DACK in single address mode.             |
|                  | 13       | SM1         | 0          | Source Address Mode 1, 0                                                                        |
|                  | 12       | SM0         | 1          | When SM1 = 1 and SM0 = 1, the transfer source address is incremented.                           |
|                  | 11       | RS3         | 0          | Resource Select 3, 2, 1, 0                                                                      |
|                  | 10       | RS2         | 0          | These bits specify the transfer request source.                                                 |
|                  | 9        | RS1         | 1          | When RS [3, 2, 1, 0] = 0010, "external request while                                            |
|                  | 8        | RS0         | 0          | the transfer destination is a device with DACK" is selected.                                    |
|                  | 7        | <del></del> | 1          | Reserved                                                                                        |
|                  | 6        | DS          | 1          | DREQ Select                                                                                     |
|                  |          |             |            | When DS = 1, external requests are detected on the falling edge of the $\overline{DREQ}$ pin.   |
|                  | 5        | TM          | 1          | Transmit Mode                                                                                   |
|                  |          |             |            | When TM = 1, transfers are performed in burst mode.                                             |
|                  | 4        | TS1         | 1          | Transmit Size 1, 0                                                                              |
|                  | 3        | TS0         | 0          | When TS [1,0] = 10, transfers are performed in longword size.                                   |
|                  | 2        | ΙE          | 1          | Interrupt Enable                                                                                |
|                  |          |             |            | When IE = 1, an interrupt request is issued after the specified number of transfers have ended. |
|                  | 1        | TE          | 0          | Transfer End                                                                                    |
|                  |          |             |            | This bit is set to 1 when the specified number of transfers have ended.                         |
|                  | 0        | DE          | 1          | DMAC Enable                                                                                     |
|                  |          |             |            | When DE = 1, the operation on the corresponding channel is enabled.                             |
| BCR1             |          |             | H'602F     | Bus control register                                                                            |
|                  | 5        | A1LG        | 1          | Longword Access Setting for CS1 Space                                                           |
|                  |          |             |            | When A1LG = 1, CS1 space is accessed in longword.                                               |




#### Table 5 Description of Internal Registers (3)

| Register<br>Name | Bit | Bit Name | Setting | Function                                                                                                       |
|------------------|-----|----------|---------|----------------------------------------------------------------------------------------------------------------|
| PACRL2           | ,   |          |         | Port-A control register L2                                                                                     |
|                  | 5   | PA2MD1   | 1       | These bits set the port A pin to function as DREQ0.                                                            |
|                  | 4   | PA2MD0   | 0       | ·                                                                                                              |
| PECRL1           |     |          |         | Port-E control register L1                                                                                     |
|                  | 13  | PA14MD1  | 1       | These bits set the port E pin to function as DACK0.                                                            |
|                  | 12  | PA14MD0  | 0       |                                                                                                                |
| PACRH            |     |          | H'5000  | Port-A control register H                                                                                      |
|                  |     |          |         | Sets port A pins to function as $\overline{\text{WRHH}}$ and $\overline{\text{WRHL}}$ .                        |
| PACRL1           |     |          | H'1540  | Port-A control register L1                                                                                     |
|                  |     |          |         | Sets port A pins to function as $\overline{RD}$ , $\overline{WRH}$ , $\overline{WRL}$ , and $\overline{CS1}$ . |
| PBCR1            |     |          | H'000A  | Port-B control register 1                                                                                      |
|                  |     |          |         | Sets port B pins to function as A21 and A20.                                                                   |
| PBCR2            |     |          | H'A005  | Port-B control register 2                                                                                      |
|                  |     |          |         | Sets port B pins to function as A19 to A16.                                                                    |
| PCCR             |     |          | H'FFFF  | Port-C control register                                                                                        |
|                  |     |          |         | Sets port C pins to function as A15 to A0.                                                                     |
| PDCRH1           |     |          | H'5555  | Port-D control register H1                                                                                     |
|                  |     |          |         | Sets port D pins to function as D31 to D24.                                                                    |
| PDCRH2           |     |          | H'5555  | Port-D control register H2                                                                                     |
|                  |     |          |         | Sets port D pins to function as D23 to D16.                                                                    |
| PDCRL1           |     |          | H'FFFF  | Port-D control register L1                                                                                     |
|                  |     |          |         | Sets port D pins to function as D15 to D0, in                                                                  |
|                  |     |          |         | combination with PDCRL2.                                                                                       |
| PDCRL2           |     |          | H'0000  | Port-D control register L2                                                                                     |
|                  |     |          |         | Sets port D pins to function as D15 to D0, in                                                                  |
|                  |     |          |         | combination with PDCRL1.                                                                                       |




#### 5. Flowchart

#### 5.1 Main Routine



## 5.2 Transfer End Interrupt Routine





#### 6. Program Listing

```
/* SH7145F Application Note
                                                            */
/* Function
                                                            * /
/* :DMACO(Single Address Mode)
/* External input clock :12.5MHz
/* Internal CPU clock :50MHz
/* Internal peripheral clock :25MHz
                                                            * /
/* Written 2003/12 Rev.1.0
#include "iodefine.h"
#include <machine.h>
/* Symbol Definition
#define SRAM ADDR 0x00400000
/* Function Define
void main(void);
void dmac int(void);
void dummy f(void);
/* Main Program
void main( void )
  P STBY.MSTCR1.BIT.MSTP25 = 0;
  P STBY.MSTCR1.BIT.MSTP24 = 0;
                             /* Disable DMAC standby mode
  // Set BSC
  P BSC.BCR1.BIT.A1LG = 0x1;
                                /* Area 1 is long-word access
  // Sset pin function
  P PORTA.PACRL2.BIT.PA2MD = 0x2;
                               /* Set PA2 -> DREKO
  P PORTE.PECRL1.BIT.PE14MD = 0x2;
                               /* Set PE14 -> DACKO
  P PORTD.PDCRH1.WORD = 0x5555;
  P_PORTD.PDCRH2.WORD = 0x5555;
  P PORTD.PDCRL1.WORD = 0xFFFF;
  P PORTD.PDCRL2.WORD = 0 \times 0000;
                               /* Set PD31-0 -> D31-0
                                                            */
```



```
*/
P PORTB.PBCR1.WORD \mid = 0 \times 0000A;
                                            /* Set A21,A20
                                            /* Set A19-A16
P PORTB.PBCR2.WORD |= 0xA005;
                                                                                      * /
                                            /* Set A15-A0
                                                                                      */
P_PORTC.PCCR.WORD = 0xffff;
P_PORTA.PACRH.WORD |= 0x5000;
                                            /* Set WRHH, WRHL
                                                                                      * /
P PORTA.PACRL1.WORD |= 0x1540;
                                            /* Set RD, WRH, WRL, CS1
// Set DMAC
                                           /* DMAC enable
P DMAC.DMAOR.BIT.DME = 1;
P DMACO.SARO = SRAM ADDR;
                                           /* Set of source address
                                            /* Set of times of transmission
P DMACO.DMATCRO = NUM;
P DMACO.CHCRO.BIT.DE = 0;
                                           /* Clear DE bit
P DMACO.CHCRO.LONG = 0 \times 00001274;
       // [1-21] = 0 : Reserve
       // [20] = 0 : Direct address mode
       // [19]
                 = 0 : Source address is not reload
       // [18] = 0 : DRAK is high-active
       // [17] = 0 : DACK outputs is read cycle
       // [16] = 0 : DACK is high-active
       // [15-14] = 0 : Transmission address is fix
       // [13-12] = 2 : Source address is increment
       // [11-8] = 2 : Auto-request
                 = 0
       // [7]
                      : Reserve
       // [6]
                 = 1 : DREQ is detected with falling edge
       // [5]
               = 1 : Burst mode
       // [4-3] = 2 : Long word size
       // [2]
                 = 1
                       : DEIO interrupt enable
       // [1] = 0 : Transfer end
       // [0] = 0 : DMACO disable
                                           /* Set DEIO interrupt level
P INTC.IPRC.BIT.DMAC0 = 10;
set imask(0);
                                            /* Clear interrupt mask level
P DMACO.CHCRO.BIT.DE = 1;
                                            /* DMAC0 transmission start
while (1);
                                            /* LOOP
                                                                                      * /
```



```
/* Interruption Program
/* DEIO Interruption Program
#pragma interrupt(dmac int)
void dmac_int(void)
 // Transmission end process
 P DMACO.CHCRO.LONG &= 0xFFFFFFF8; /* Clear IE, TE, DE bit
                                      */
 P DMAC.DMAOR.WORD &= 0xFFFE;
                    /* DMAC disable
                                      * /
/* Other Interruption Program
                                      * /
#pragma interrupt(dummy_f)
void dummy_f(void)
 /* Other Interrupt */
```



## **Revision Record**

|      |           | Description |                      |  |  |
|------|-----------|-------------|----------------------|--|--|
| Rev. | Date      | Page        | Summary              |  |  |
| 1.00 | Sep.16.04 | _           | First edition issued |  |  |
|      |           |             |                      |  |  |
|      |           |             |                      |  |  |
|      |           |             |                      |  |  |
|      |           |             |                      |  |  |



#### Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

#### Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
  - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
  - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
  - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.