Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

- Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but
 there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire
 or property damage.
 - Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation
 product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any
 other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors.
 - Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

32

SH7046 Series, SH7047 Series

Application Note

— Motor Controller —

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- Products and product specifications may be subject to change without notice. Confirm that you
 have received the latest product standards or specifications before final design, purchase or
 use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Contents

Section 1	SH7046 Series, SH7047 Series Application Note—Application	
	Section Usage Guide	1
1.1 Organiz	zation of Application Section	2
Section 2	Application Section	4
2.1 DC Bm	ushless Motor Control	4

Section 1 SH7046 Series, SH7047 Series Application Note—Application Section Usage Guide

This Application Note consists of two parts, as shown in figure 1.1.

Figure 1.1 Organization of Application Note

(1) SH7046 Series, SH7047 Series Application Note—Application Section Usage Guide

This section explains how to use the SH7046 Series, SH7047 Series Application Note—Application Section

(2) Application Section

The use of a combination of SH7046 Series or SH7047 Series on-chip peripheral functions (timers, serial communication interface, A/D converter, PWM, I/O ports, interrupts, power-down mode, etc.) is explained based on simple sample tasks.

1.1 Organization of Application Section

The layout shown in figure 1.2 is used to describe the combined use of on-chip peripheral functions.

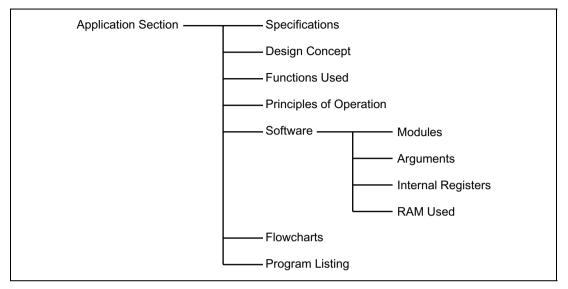


Figure 1.2 Organization of Application Section

(1) Specifications

Describes the system specifications of the sample task.

(2) Design Concept

Describes the method used to implement the sample task system.

(3) Functions Used

Describes the features of the peripheral function(s) used in the sample task, and peripheral function assignments.

(4) Principles of Operation

Describes the operation of the sample task, using timing charts.

(5) Software

(a) Modules

Describes the software modules used in the operation of the sample task.

(b) Arguments

Describes the input arguments needed to execute the modules, and the output arguments after execution.

- (c) Internal Registers
 - Describes the peripheral function internal registers (timer control registers, serial mode registers, etc.) set by the modules.
- (d) RAM Used

Describes the labels and functions of the RAM used by the modules.

(6) Flowcharts

Describes the software that executes the sample task, using flowcharts.

(7) Program Listing

Shows a program listing of the software that executes the sample task.

Section 2 Application Section

2.1 DC Brushless Motor Control

Specifications

- (1) An SH7046 is used to control DC brushless motors A and B by means of a 120° current flow method and 180° current flow method, as shown in figure 2.1.
- (2) In DC brushless motor control, rotor pole position signals are detected, and a drive waveform for each position signal is output from a timer output pin.
- (3) On the 120° current flow method side (motor A), the MTU's reset-synchronized PWM mode is used, and control is performed by means of positive-phase-side level output and negative-phase-side chopping waveform output.
- (4) On the 180° current flow method side (motor B), the MMT is used, and control is performed by means of chopping waveform output for both the positive phase and negative phase.

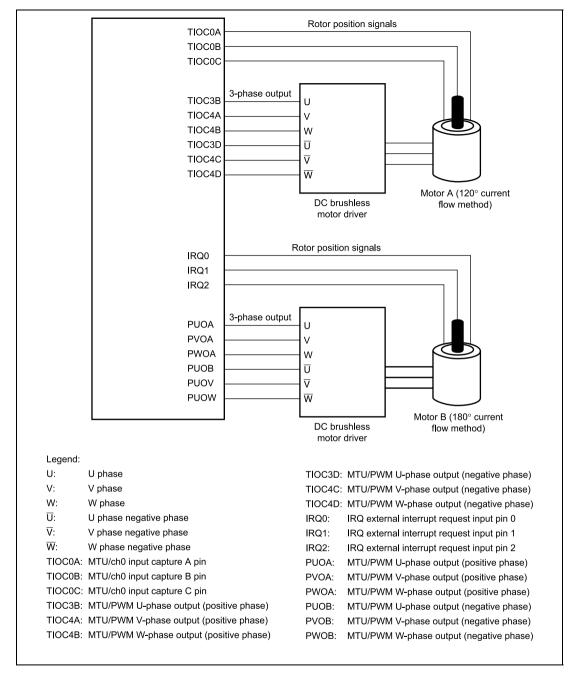


Figure 2.1 DC Brushless Motor Control

Design Concept

Motor A (120° current flow method)

- (1) The MTU's reset-synchronized PWM mode is used, and positive-phase-side level output and negative-phase-side chopping output 3-phase PWM waveforms are generated, and output from MTU output pins.
- (2) In initial control, MTU/ch0 compare match interrupts are used, and the excitation phase is switched by software at fixed intervals.
- (3) After the end of initial control, a transition is made to timer output switching control by means of external input, and excitation phase switching is performed automatically by capturing rotor pole position signals output from the motor from MTU/ch0 input capture pins, and generating input capture interrupts at input signal edges.

Motor B (180° current flow method)

- (1) The MMT is used, and chopping output 3-phase PWM waveforms are generated for both the positive-phase-side and negative-phase-side, and output from MMT output pins.
- (2) The dead time in positive-phase/negative-phase output on/off operations is set to 50 μs using a software counter.
- (3) In initial control, MTU/ch1 compare match interrupts are used, and the excitation phase is switched by software at fixed intervals.
- (4) After the end of initial control, a transition is made to timer output switching control by means of external input, and excitation phase switching is performed automatically by capturing rotor pole position signals output from the motor from IRQ pins, and generating IRQ interrupts at input signal edges.

Functions Used

(1) Control of two DC brushless motors is performed by assigning the MTU, MMT, and IRQ functions of the SH7046, as shown in figure 2.2.

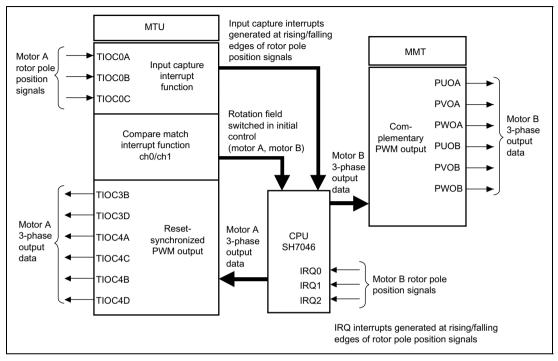


Figure 2.2 Block Diagram of DC Brushless Motor Control

SH7046 function assignments are described below.

- MTU compare match interrupt function: In motor A and motor B initial control, this function is used to request a CPU interrupt every fixed rotation field switching period (time corresponding to a 60° portion of the motor frequency) until the motor rotates once or more and a rotor pole position signal is detected.
- MTU input capture interrupt function: After the end of motor A initial control, this function is used to detect rising/falling edges of rotor pole position signals from motor A, and issue interrupt requests to the CPU.
- MTU reset-synchronized PWM waveform output function: This function is used to generate motor A positive-phase-side level output and negative-phase-side chopping output waveforms.
- MMT complementary PWM waveform output function: This function is used to generate chopping output waveforms for motor B positive-phase-side and negative-phase-side control.
- IRQ external interrupt function: After the end of motor B initial control, this function is used to detect rising/falling edges of rotor pole position signals, and issue interrupt requests to the CPU.

(2) Each function is described below.

- (a) The MTU is used in reset-synchronized PWM mode to perform a compare match interrupt function for measuring the rotation field switching period in motor A and motor B initial control, and an input capture interrupt function that, after the end of motor A initial control, generates an interrupt on detection of a rotor pole position signal from the motor and performs excitation phase switching, and to execute motor A control by performing positive-phase-side level output and negative-phase-side chopping output.
 Functions used in common by the MTU's compare match interrupt function and input capture interrupt function are described below.
 - The system clock (P ϕ) is the reference clock for operating the CPU and peripheral functions. The system clock is scaled to a frequency of $\phi/2$ to $\phi/8192$ by a prescaler, and supplied to the respective peripheral modules.
 - A timer counter (TCNT) is a 16-bit readable/writable counter. Its input clock is set by means of TCR.
 - A timer control register (TCR) is an 8-bit readable/writable register that selects the TCNT input clock and clearing source.
 - A timer status register (TSR) is an 8-bit readable/writable register that performs control of interrupt request signals.

- A timer interrupt enable register (TIER) is an 8-bit readable/writable register that controls enabling/disabling of interrupt requests. In this sample task, the ch0 TGFD interrupt request (TGID) is enabled in motor A initial control, and the ch1 TGFA interrupt request (TGIA) is enabled in motor B initial control.
- A timer I/O control register (TIOR) is an 8-bit readable/writable register that is used for TGRA, TGRB, TGRC, and TGRD function selection, and input capture input edge selection.
 - Functions used in reset-synchronized PWM mode are described below.
- By combining MTU/ch3 and ch4, a 3-phase PWM waveform output is performed in which one waveform transition point is common.
- The ch3 counter clock is set with timer control register_3 (TCR_3), and a TGRA compare match is set as the counter clearing source.
- The timer gate control register is an 8-bit readable/writable register that is used for positive-phase and negative-phase output waveform selection and to set the feedback signal input source.
- Timer general register_3 (TGRA_3) is a 16-bit readable/writable register that sets the PWM output period. Duty cycles are set in TGRB_3, TGRA_4, and TGRB_4.
- Timer mode register_3 (TMDR_3) is an 8-bit readable/writable register that sets the
 operating mode of each channel. In this sample task, reset-synchronized PWM mode is
 set.
- The timer output master enable register (TOER) is an 8-bit readable/writable register that enables PWM waveform output.

(b) The MTU input capture function is used to detect rising/falling edges of motor A rotor pole position signals, and generate interrupt requests. Figure 2.3 shows a block diagram of rotor pole position signal input edge triggered interrupt requests generated by means of the input capture function.

The block diagram is described below.

- Input capture input pins (TIOC0A, TIOC0B, TIOC0C) function as motor A rotor pole position signal detection signal input pins.
- The input capture registers (TGRA_0/B_0/C_0) are 16-bit readable/writable registers. When an input edge of an input capture input signal is detected, the TCNT value at that time is transferred, and an interrupt request is issued to the CPU.

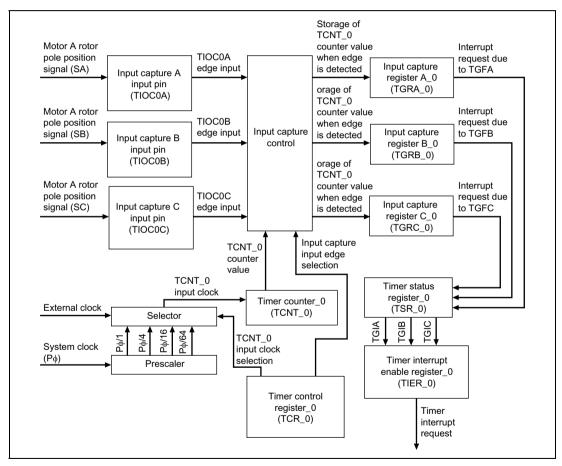


Figure 2.3 Block Diagram of Interrupt Generation on Detection of Motor A Rotor Pole Position Signal Input Edge Detection using Input Capture Function

- (c) The MTU compare match interrupt function is used to issue an interrupt request to the CPU every fixed rotation field switching period (time corresponding to a 60° portion of the motor rotation frequency) until a motor rotates once or more and a rotor pole position signal is detected. Figure 2.4 shows a block diagram of interrupt request generation every rotation field switching period using the MTU compare match interrupt function. The block diagram is described below.
 - The output compare registers (TGRD_0/TGRA_1) are 16-bit readable/writable registers. The contents of TGRD_0/TGRA_1 are constantly compared with TCNT_0/TCNT_1, and when both values match the TGFD bit of TSR_0 or TGFA bit of TSR_1 is set to 1. If TGIED of TIER_0 or TGIEA of TIER_1 is 1 at this time, an interrupt request is issued to the CPU.

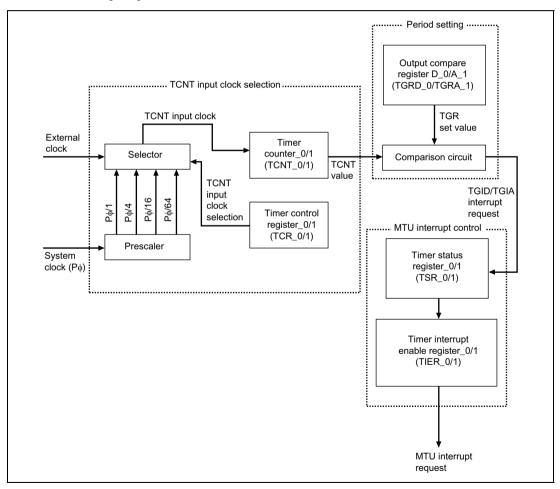


Figure 2.4 Block Diagram of Interrupt Request Generation Every Rotation Field Switching Period Using MTU ch0/1 Compare Match Interrupt Function

- (d) By combining MTU/ch3 and ch4 (reset-synchronized PWM function), 3-phase PWM (positive-phase, negative-phase) waveform output is performed in which one waveform transition point is common. Timer counter_3 (TCNT_3) functions as an up-counter. After the end of initial control, the on/off status of the output of each phase can be switched automatically by inputting motor A rotor pole position signals to ch0 timer input pins TIOC0A, TIOC0B, and TIOC0C.
 - The TIOC3B pin functions as the base driver U-phase output pin.
 - The TIOC3D pin functions as the base driver \overline{U} -phase output pin.
 - The TIOC4A pin functions as the base driver V-phase output pin.
 - The TIOC4C pin functions as the base driver \overline{V} -phase output pin.
 - The TIOC4B pin functions as the base driver W-phase output pin.
 - The TIOC4D pin functions as the base driver \overline{W} -phase output pin.
 - The TIOC0A pin functions as the motor A rotor pole position signal (SA) input pin.
 - The TIOC0B pin functions as the motor A rotor pole position signal (SB) input pin.
 - The TIOCOC pin functions as the motor A rotor pole position signal (SC) input pin.
- (e) By means of the MMT, a 3-phase chopping waveform is generated, and is output as the ontime motor B positive-phase/negative-phase control waveform.(When off, port output is set, and 0 is output.)
 - The PU0A pin functions as the base driver U-phase output pin.
 - The PU0B pin functions as the base driver \overline{U} -phase output pin.
 - The PV0A pin functions as the base driver V-phase output pin.
 - The PV0B pin functions as the base driver \overline{V} -phase output pin.
 - The PW0A pin functions as the base driver W-phase output pin.
 - The PW0B pin functions as the base driver \overline{W} -phase output pin.
- (f) Using the IRQ external interrupt function, control is performed by means of rotor pole position signal input from the motor after the end of motor B initial control.
 - Figure 2.5 is a block diagram of interrupt request generation due to rotor pole position signal input edge detection, using the IRQ external interrupt function.

The block diagram is described below.

- The IRQ0/1/2 pins are used as motor B rotor pole position signal (HU, HV, HW) input pins.
- An IRQ interrupt is generated by detection of an IRQ0/1/2 pin input edge. Rising or falling input edge sensing can be selected for the IRQ pins.
- Interrupt control register 1 (ICR1) is a 16-bit register that performs IRQ pin input signal detection mode setting. In this sample task, external signal input edge interrupt request detection is set.

- Interrupt control register 2 (ICR2) is a 16-bit register that sets the IRQ pin edge detection mode.
- The IRQ status register (ISR) is a 16-bit register in which a corresponding bit is set to 1 when an IRQ interrupt request is generated.
- The IRQ0 pin functions as the motor B rotor pole position signal (HU) input pin.
- The IRQ1 pin functions as the motor B rotor pole position signal (HV) input pin.
- The IRQ2 pin functions as the motor B rotor pole position signal (HW) input pin.

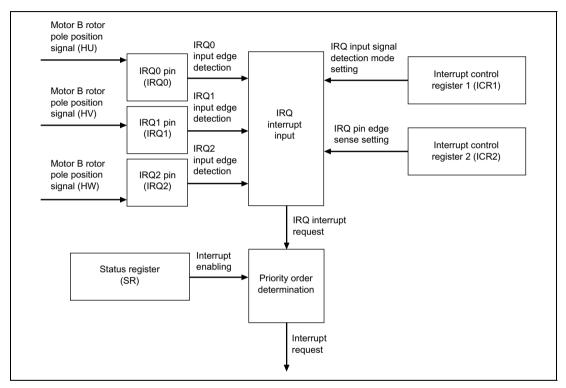


Figure 2.5 Block Diagram of Interrupt Generation Due to Motor B Rotor Pole Position Signal Input Edge Detection Using IRQ External Interrupt Function

(3) Table 2.1 shows the function assignments used in this sample task. 120° current flow control and 180° current flow control is performed for two DC brushless motors by assigning SH7046 functions as shown in table 2.1.

Table 2.1 Function Assignments in this Sample Task (1)

SH7046 Function

Motor A	Function Assignment
TIOC0A/B/C	Motor A rotor pole position signal input pins (SA, SB, SC)
TCNT_0	16-bit up-counter. Input clock is set with TCR_0
TCR_0	TCNT_0 input clock setting. TCNT_0 clearing source selection
TIER_0	Sets MTU/ch0 interrupt request enabling or disabling
TGRD_0	Motor rotation field switching period setting in initial control
TIORH_0,TIORL_0	Rotor pole position signal detection edge selection
TIOC3B	U-phase output pin
TIOC4A	V-phase output pin
TIOC4B	W-phase output pin
TIOC3D	U-phase output pin
TIOC4B	∇-phase output pin
TIOC4D	W-phase output pin
TCNT_3	16-bit up-counter. Input clock is set with TCR_3
TCR_3	TCNT_3 input clock setting. TCNT_3 clearing source selection
TGRA_3	Sets PWM output period
TGRB_3/4,TGRA_4	Setting of U-phase, V-phase, W-phase PWM waveform duty cycles
TOCR	Compare match positive-phase/negative-phase output level setting
TMDR_3	Timer operating mode setting

Table 2.1 Function Assignments in this Sample Task (2)

SH7046 Function

Motor B	Function Assignment
TCNT_1	16-bit up-counter. Input clock is set with TCR_1
TCR_1	TCNT_1 input clock setting. TCNT_1 clearing source selection
TIER_1	Sets MTU/ch1 interrupt request enabling or disabling
TGRA_1	Motor rotation field switching period setting in initial control
PUOA	U-phase output pin
PVOA	V-phase output pin
PWOA	W-phase output pin
PUOB	U-phase output pin
PVOB	\overline{V} -phase output pin
PWOB	W-phase output pin
MMT_TCNT	16-bit up-counter. Input clock set with MMT_TMDR
MMT_TMDR	MMT_TCNT input clock setting. Sets operating mode output level
TPBR	Sets 1/2 PWM output period
TBRU/V/W	Setting of U-phase, V-phase, W-phase PWM waveform duty cycles
IRQ0/1/2	Motor B rotor pole position signal input pins (HU, HV, HW)
ICR1	Sets IRQ pin input signal detection mode
ICR2	Sets IRQ pin edge detection mode
ISR	Reflects presence/absence of IRQ external interrupt request
TOCR	Positive-phase/negative-phase PWM output compare match output level setting

Principles of Operation

(1) Figure 2.6 illustrates the principles of operation in motor A initial control (in which the rotation field is switched every fixed period until the motor rotates once and a rotor pole position signal is detected). Motor A initial control is performed by SH7046 hardware and software processing as shown in figure 2.6.

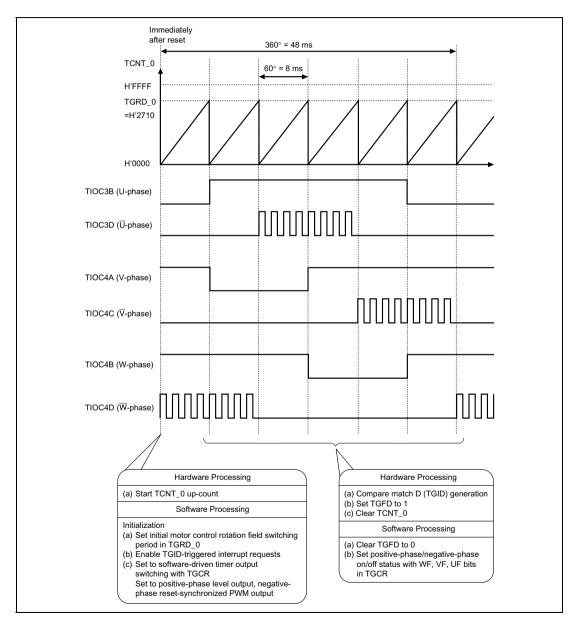


Figure 2.6 Principles of Operation in Motor A Initial Control

(2) Figure 2.7 illustrates the principles of operation in automatic rotation field switching control by means of motor A rotor pole position signal detection. Motor control by means of rotor pole position signal detection is performed by SH7046 hardware and software processing as shown in figure 2.7.

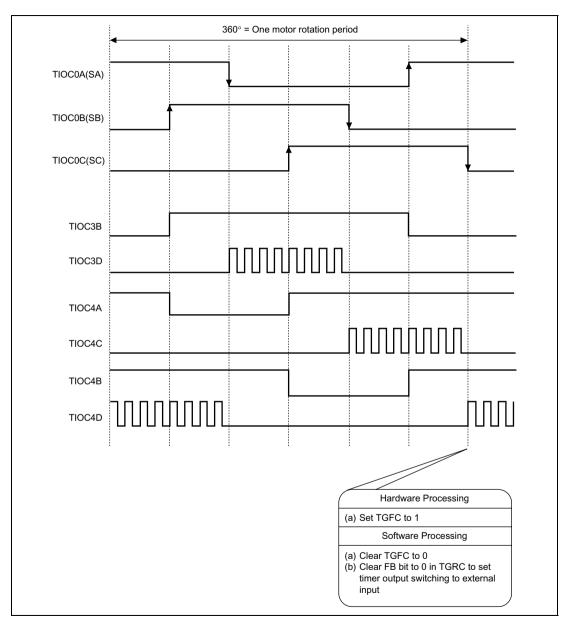


Figure 2.7 Principles of Operation in Excitation Phase Switching Control by Motor A

Rotor Pole Position Detection

(3) Figure 2.8 illustrates the principles of operation in motor B initial control (in which the rotation field is switched every fixed period until the motor rotates once and a rotor pole position signal is detected). Motor initial control is performed by SH7046 hardware and software processing as shown in figure 2.8.

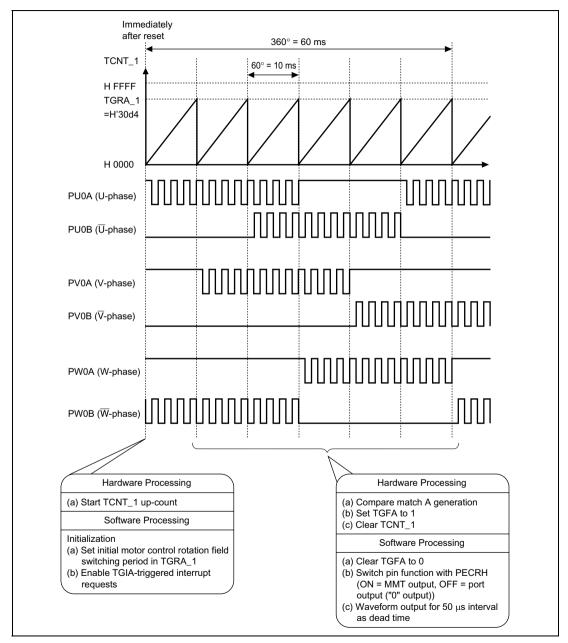


Figure 2.8 Principles of Operation in Motor B Initial Control

(4) Figure 2.9 illustrates the principles of operation in rotation field switching control by means of motor B rotor pole position signal detection. Control by means of rotor pole position signal detection is performed by SH7046 hardware and software processing as shown in figure 2.9.

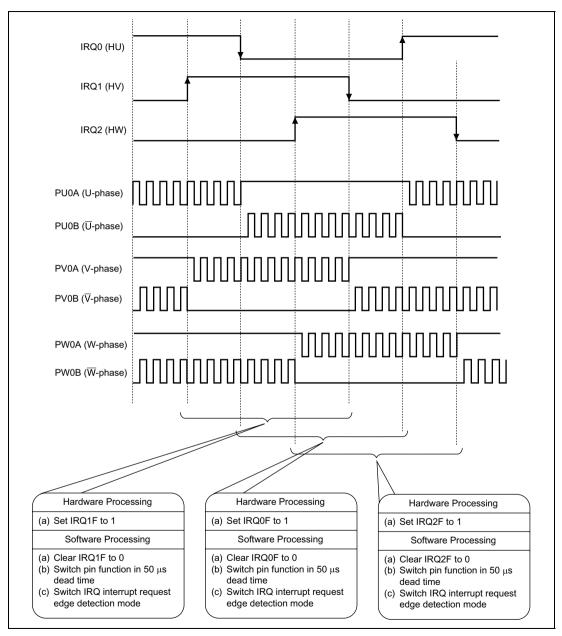


Figure 2.9 Principles of Operation in Excitation Phase Switching Control by Motor B Rotor Pole Position Detection

Software

(1) Modules

Table 2.2 shows the modules used in this sample task.

Table 2.2 Modules

Module Name	Label	Functions
Main routine	main	Performs module standby mode clearing, SR setting, and timer counter starting
Initialization	IO_INIT	Performs register initialization and setting of RAM used
Motor A initial control routine	rotateA	Using MTU/ch0 compare match interrupts, switches rotation field every fixed period until motor A rotates once and rotor pole position signal is detected
Motor B initial control routine	rotateB	Using MTU/ch0 compare match interrupts, switches rotation field every fixed period until motor B rotates once and rotor pole position signal is detected
Motor B rotor pole position signal (HU) driven rotation field switching routine	HU	Performs excitation phase switching by means of rotor pole position signal (HU) output from motor B to IRQ0 pin
Motor B rotor pole position signal (HV) driven rotation field switching routine	HV	Performs excitation phase switching by means of rotor pole position signal (HV) output from motor B to IRQ1 pin
Motor B rotor pole position signal (HW) driven rotation field switching routine	HW	Performs excitation phase switching by means of rotor pole position signal (HW) output from motor B to IRQ2 pin

(2) Arguments

This sample task does not use any arguments.

(3) Internal Registers Used

Table 2.3 shows the internal registers used by this sample task.

Table 2.3 Internal Registers Used (1)

MTU/ch0

Register Name		Function	Address	Set Value
TCR_0		Timer control register_0	H'FFFF8260	H'C2
		 Sets TGRD_0 compare match as counter clearing source 		
		 Sets Pφ/16 as TCNT_0 counter clock 		
TMDR_0		Timer mode register_0	H'FFFF8261	H'C0
		 Sets normal operation as timer operating mode 		
TIER_0	TGIEA	Timer interrupt enable register_0 (TGR interrupt enable A)	H'FFFF8264 Bit 0	0
		 When TGIEA = 0, interrupts by TGFA bit are disabled 		
		 When TGIEA = 1, interrupts by TGFA bit are enabled 		
	TGIEB	Timer interrupt enable register_0 (TGR interrupt enable B)	H'FFFF8264 Bit 1	0
		 When TGIEB = 0, interrupts by TGFB bit are disabled 		
		 When TGIEB = 1, interrupts by TGFB bit are enabled 		
	TGIEC	Timer interrupt enable register_0 (TGR interrupt enable C)	H'FFFF8264 Bit 2	0
		 When TGIEC = 0, interrupts by TGFC bit are disabled 		
		 When TGIEC = 1, interrupts by TGFC bit are enabled 		
	TGIED	Timer interrupt enable register_0 (TGR interrupt enable D)	H'FFFF8264 Bit 3	1
		 When TGIED = 0, interrupts by TGFD bit are disabled 		
		 When TGIED = 1, interrupts by TGFD bit are enabled 		

Register Name		Function	Address	Set Value
TGRD_0		Timer general register D_0	H'FFFF826E	H'2710
		 Used as output compare register. Constantly compared with TCNT_0; when compare match occurs, TGFD bit is set to 1 in TSR_0 		
TIORH_0	IOA0	Timer I/O control register H_0	H'FFFF8262	H'88
	IOA1 IOA2 IOA3	 When 1000, input capture at rising edge of TIOC0A 	Bit 0 Bit 1 Bit 2	
	IOAJ	 When 1001, input capture at falling edge of TIOC0A 	Bit 3	
	IOB0 IOB1	Timer I/O control register H_0	H'FFFF8262	<u> </u>
		 When 1000, input capture at rising 	Bit 4 Bit 5	
	IOB2 IOB3	edge of TIOC0B	Bit 6	
	1020	 When 1001, input capture at falling edge of TIOC0B 	Bit 7	
TIORL_0	IOC0	Timer I/O control register L_0	H'FFFF8263	H'09
	IOC1	When 1000, input capture at rising	Bit 0	
	IOC2 IOC3	edge of TIOC0C	Bit 1 Bit 2	
	•	 When 1001, input capture at falling edge of TIOC0C 	Bit 3	
	IOD0	Timer I/O control register L_0	H'FFFF8263	<u> </u>
	IOD1 IOD2 IOD3	 When 0000, TGRD_0 functions as output compare register 	Bit 4 Bit 5 Bit 6 Bit 7	

Table 2.3 Internal Registers Used (2)

MTU/ch1

Register N	ame	Function	Address	Set Value
TCR_1		Timer control register_1 • Sets TGRA_1 compare match as counter clearing source	H'FFFF8280	H'22
		 Sets Pφ/16 as TCNT_1 counter clock 		
TMDR_1		Timer mode register_1	H'FFFF8281	H'C0
		 Sets normal operation as timer operating mode 		
TIER_0	TGIEA	Timer interrupt enable register_1 (TGR interrupt enable A)	H'FFFF8284 Bit 0	1
		 When TGIEA = 0, interrupts by TGFA bit are disabled 		
		 When TGIEA = 1, interrupts by TGFA bit are enabled 		
	TGIEB	Timer interrupt enable register_1 (TGR interrupt enable B)	H'FFFF8284 Bit 1	0
		 When TGIEB = 0, interrupts by TGFB bit are disabled 		
		 When TGIEB = 1, interrupts by TGFB bit are enabled 		
	TGIEC	Timer interrupt enable register_1 (TGR interrupt enable C)	H'FFFF8284 Bit 2	0
		 When TGIEC = 0, interrupts by TGFC bit are disabled 		
		 When TGIEC = 1, interrupts by TGFC bit are enabled 		
	TGIED	Timer interrupt enable register_1 (TGR interrupt enable D)	H'FFFF8284 Bit 3	0
		 When TGIED = 0, interrupts by TGFD bit are disabled 		
		 When TGIED = 1, interrupts by TGFD bit are enabled 		
TGRA_1		Timer general register A_1	H'FFFF8288	H'30D4
		 Used as output compare register. Constantly compared with TCNT_1; when compare match occurs, TGFA bit is set to 1 in TSR_1 		

Table 2.3 Internal Registers Used (3)

MMT

Register Name		Function	Address	Set Value
MMT_TMDR	OLSP	Timer mode register (Output level select P)	H'FFFF8A00 Bit 2	H'C0
		Selects positive-phase output level in operating mode		
		When 0, low level		
		When 1, high level		
	OLSN	Timer mode register (Output level select N)	H'FFFF8A00 Bit 3	
		Selects negative-phase output level in operating mode		
		When 0, low level		
		When 1, high level		
TPBR		Timer period buffer register	H'FFFF8A0A	H'01F4
		 Sets 1/2 PWM carrier period 		
TBRU		Timer buffer register U	H'FFFF8A1C	H'007D
		 Sets U-phase output waveform PWM duty cycle 		
TBRV		Timer buffer register V	H'FFFF8A2C	H'007D
		 Sets V-phase output waveform PWM duty cycle 		
TBRW		Timer buffer register W	H'FFFF8A3C	H'007D
		 Sets W-phase output waveform PWM duty cycle 		

Table 2.3 Internal Registers Used (4)

INTC

Register Name		Function	Address	Set Value
ICR1	1 IRQ2S	Interrupt control register 1 (IRQ2 sense select)	H'FFFF8358 Bit 5	1
		When 0, interrupt request detected at IRQ2 input low level		
		When 1, interrupt request detected at IRQ2 input edge (Edge direction selected with ICR2)		
	IRQ1S	Interrupt control register 1 (IRQ1 sense select)	H'FFFF8358 Bit 6	1
		 When 0, interrupt request detected at IRQ1 input low level 		
		When 1, interrupt request detected at IRQ1 input edge (Edge direction selected with ICR2)		
	IRQ0S	Interrupt control register 1 (IRQ0 sense select)	H'FFFF8358 Bit 7	1
		When 0, interrupt request detected at IRQ0 input low level		
		When 1, interrupt request detected at IRQ0 input edge (Edge direction selected with ICR2)		
ICR2	IRQ2ES0	Interrupt control register 2	H'FFFF8366	00
	IRQ2ES1	When 00, interrupt request detected at IRQ2 input falling edge	Bit 10 Bit 11	
		When 01, interrupt request detected at IRQ2 input rising edge		
	IRQ1ES0	Interrupt control register 2	H'FFFF8366	00
	IRQ1ES1	When 00, interrupt request detected at IRQ2 input falling edge	Bit 12 Bit 13	
		When 01, interrupt request detected at IRQ2 input rising edge		

Register Name		Function	Address	Set Value
ISR	IRQ2F	F IRQ status register	H'FFFF835A	0
		 Set to 1 when IRQ2 input pin edge is detected 	Bit 5	
	IRQ1F	IRQ status register	H'FFFF835A	0
		 Set to 1 when IRQ1 input pin edge is detected 	Bit 6	
	IRQ0F IRQ status register H'FFF835	H'FFFF835A	0	
		 Set to 1 when IRQ0 input pin edge is detected 	Bit 7	

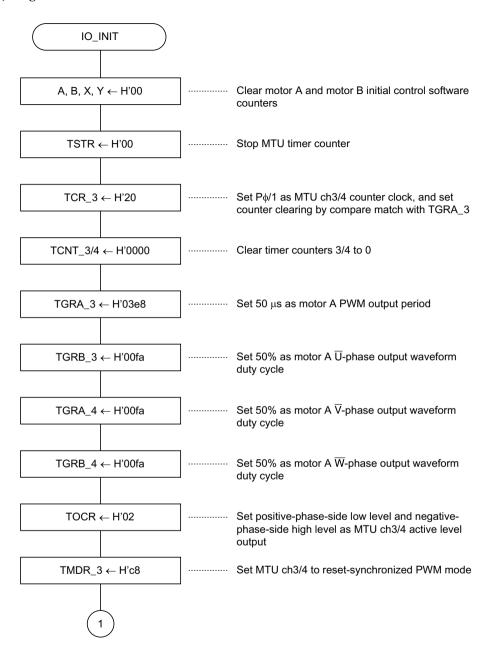
Table 2.3 Internal Registers Used (5)

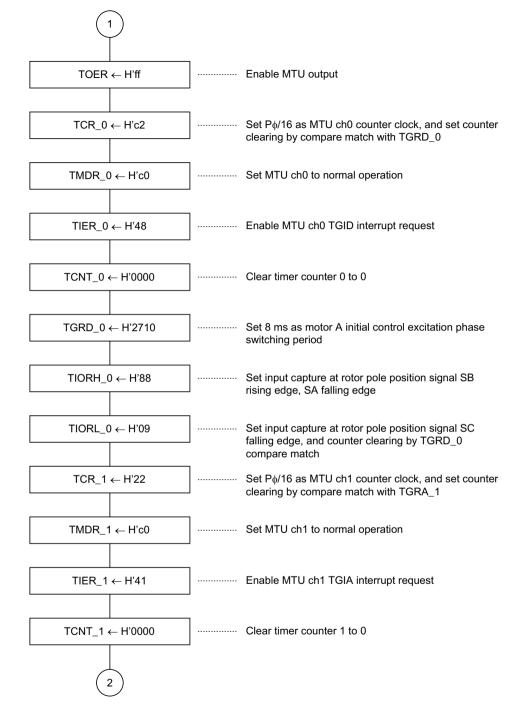
PFC

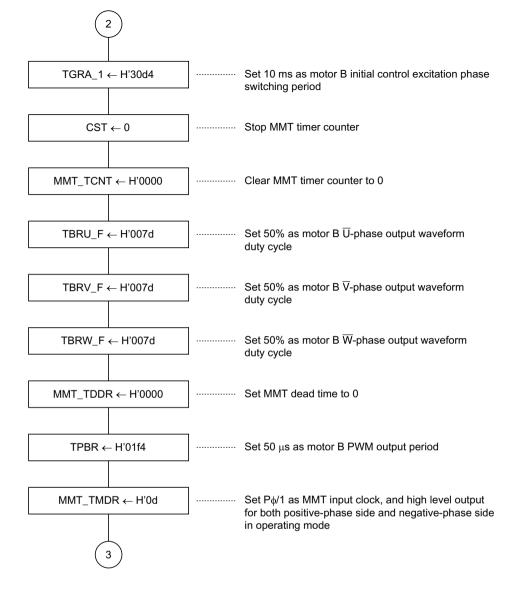
Register Name		Function	Address	Set Value
PECRH		Port E control register H When 01, MMT output When 00, port output	H'FFFF83BC	H'0000
PECRL1		Port E control register L1 • Set to MTU output	H'FFFF83B8	H'5544
PECRL2	PE0MD0 PE0MD1	Port E control register L2 (PE0 mode bit) • Motor A rotor pole position signal (SA) input pin, set as input capture input pin	H'FFFF83BA Bit 0 Bit 1	01
	PE1MD0 PE1MD1	Port E control register L2 (PE1 mode bit) • Motor A rotor pole position signal (SB) input pin, set as input capture input pin	H'FFFF83BA Bit 2 Bit 3	01
	PE2MD0 PE2MD1	Port E control register L2 (PE2 mode bit) • Motor A rotor pole position signal (SC) input pin, set as input capture input pin	H'FFFF83BA Bit 4 Bit 5	01
PBCR1 PBCR2 PBCR2	PB2MD2 PB2MD0 PB2MD1	Port B control register 1 Port B control register 2 (PB2 mode) Motor B rotor pole position signal (HU) input pin, set as IRQ0 input pin	H'FFFF8398 Bit 10 H'FFFF839A Bit 4 Bit 5	001
PBCR1 PBCR2 PBCR2	PB3MD2 PB3MD1 PB3MD0	Port B control register 1 Port B control register 2 (PB3 mode) Motor B SB rotor pole position signal input pin, set as IRQ1 input pin	H'FFFF8398 Bit 11 H'FFFF839A Bit 6 Bit 7	001
PBCR1 PBCR2 PBCR2	PB4MD2 PB4MD1 PB4MD0	Port B control register 1 Port B control register 2 (PB4 mode) Motor B SC rotor pole position signal input pin, set as IRQ2 input pin	H'FFFF8398 Bit 12 H'FFFF839A Bit 8 Bit 9	001

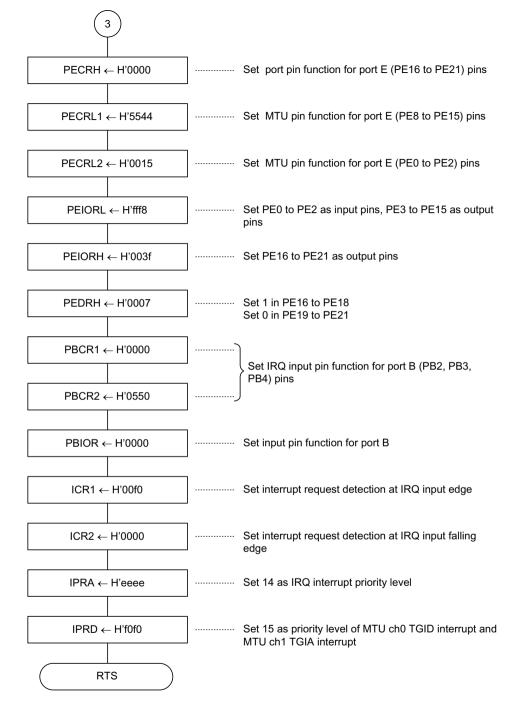
(4) RAM Used

Table 2.4 RAM Used

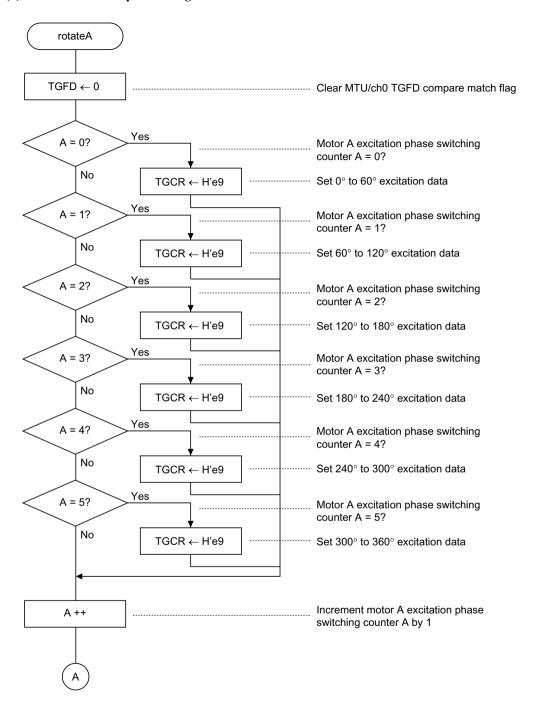

Label	Function	Address	Module
A	Motor A initial control excitation phase switching counter	H'FFFFD000	rotateA
В	Motor A rotation speed control counter	H'FFFFD001	rotateA
X	Motor B initial control excitation phase switching counter	H'FFFFD002	rotateB
Υ	Motor B rotation speed control counter	H'FFFFD003	rotateB
i	Dead time generation counter	H'FFFFD004	HU, HV, HW

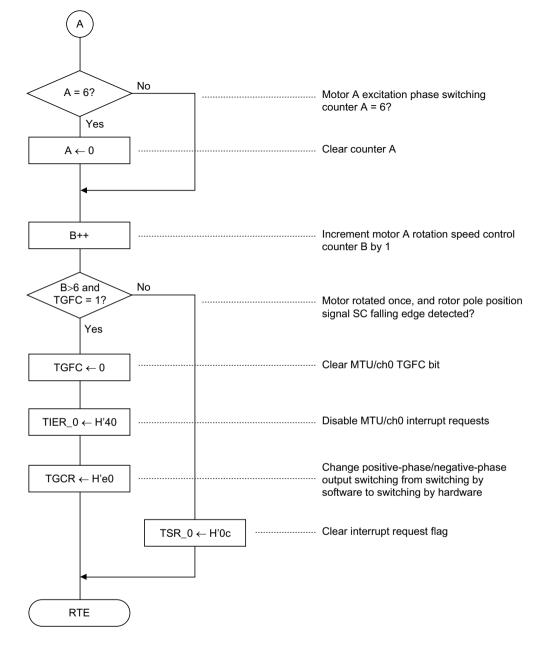

Flowcharts

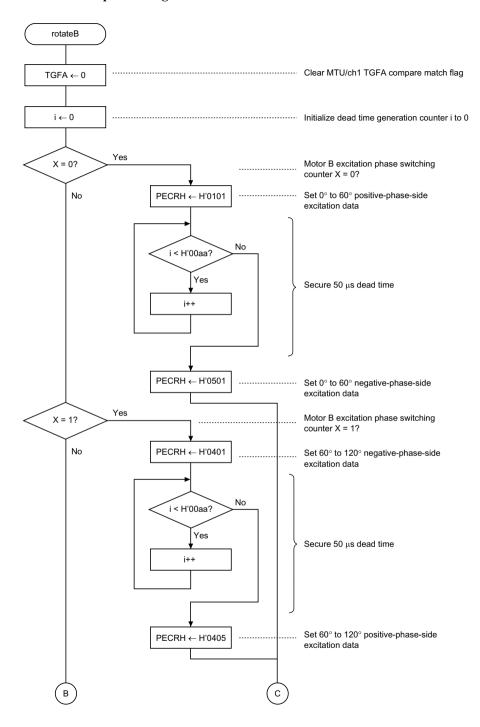

(1) Main routine

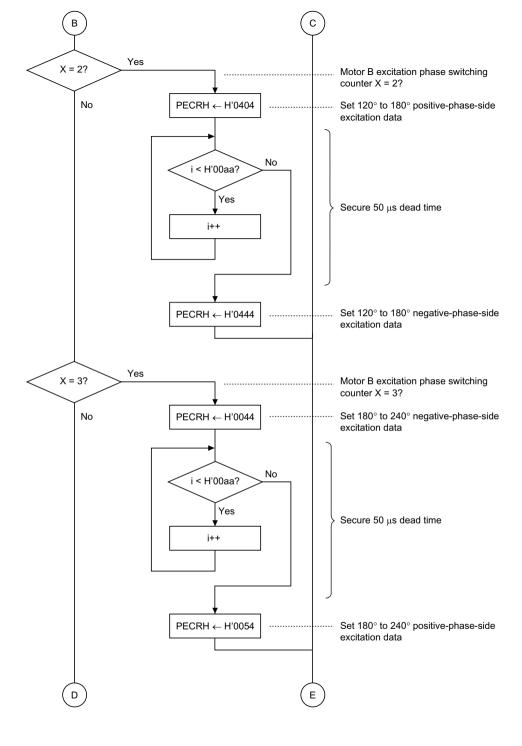


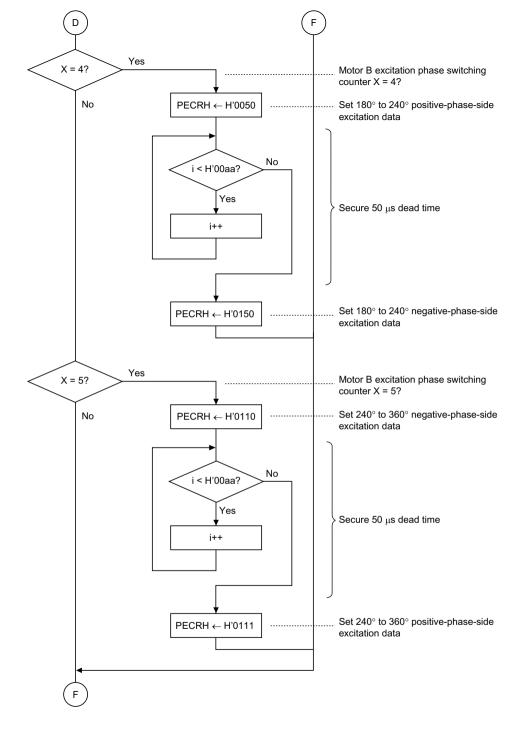
(2) Register initialization routine

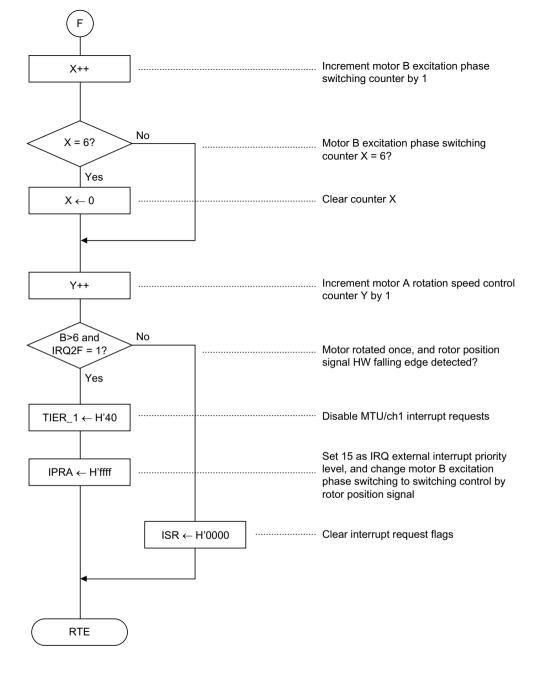




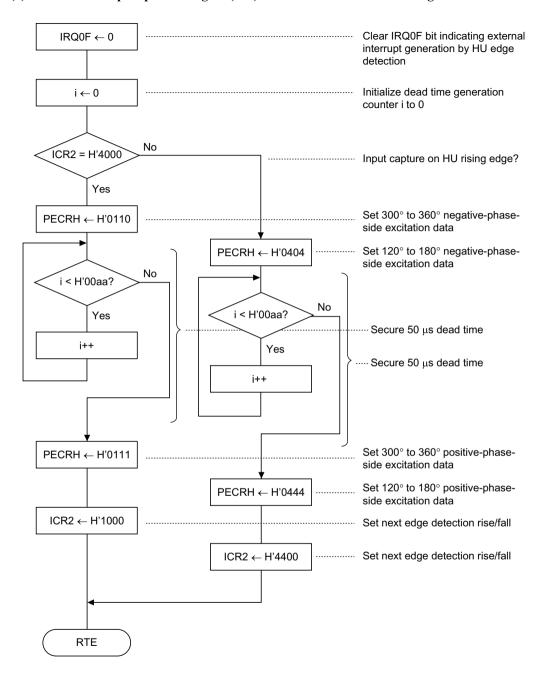


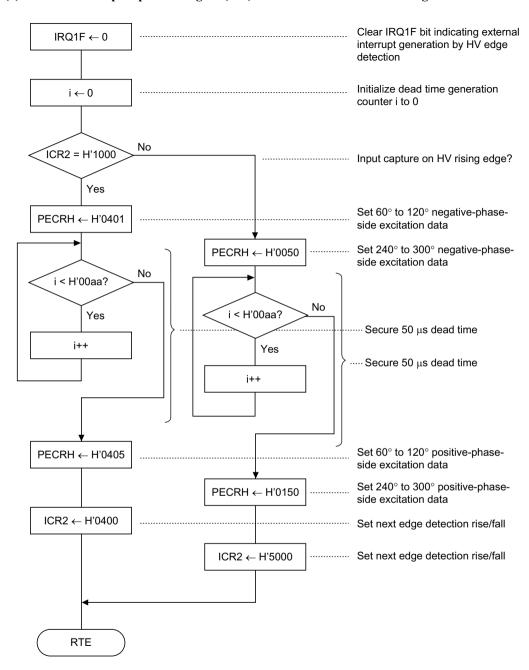

(3) MTU ch0 interrupt handling

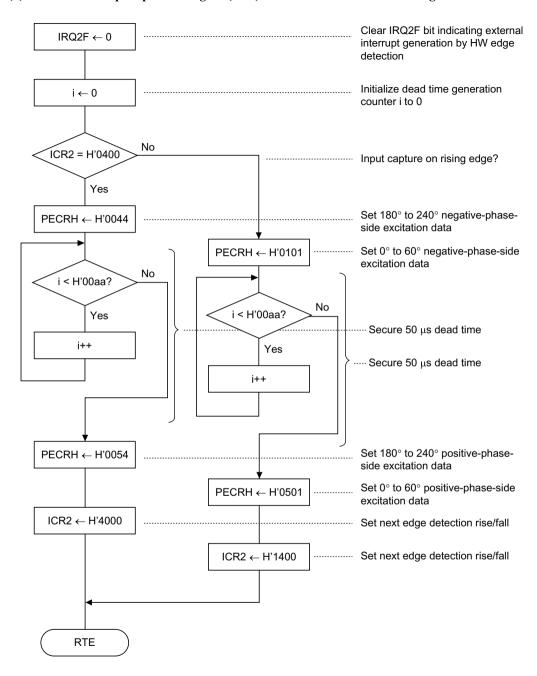




(4) MTU ch1 interrupt handling






(5) Motor B rotor pole position signal (HU) driven rotation field switching routine

(6) Motor B rotor pole position signal (HV) driven rotation field switching routine

(7) Motor B rotor pole position signal (HW) driven rotation field switching routine

Program Listing

```
INCLUDE FILE
#include<machine.h>
#include"iodefine 7046.h"
PROTOTYPE
                                      * /
#pragma interrupt(rotateA, rotateB, HU, HV, HW)
void main(void);
void IO INIT(void);
RAM DEFINE
unsigned char A:
unsigned char B;
unsigned char X;
unsigned char Y;
unsigned short i;
MAIN PROGRAM
void main(void)
set imask(0xf);
P STBY.MSTCR2.WORD = 0x92fd;
                      /* MTU,MMT standby mode clear */
IO INIT();
P INTC.ISR.WORD &= 0x0000;
P MMT.TCNR.BIT.CST = 1;
                      /* MMT counter start */
P MTU34.TSTR.BYTE = 0x43;
                      /* MTU ch0/1/3 counter start */
set imask(0xe);
while(1){
    ;
I/O initialize routine
                                      * /
void IO INIT(void)
A = 0x00;
                      /* Clear counter */
B = 0x00;
X = 0x00;
Y = 0x00;
                      /* MTU ch3/4 initialize */
```

```
P MTU34.TSTR.BYTE = 0 \times 00;
                                                 /* MTU ch0/1/3 counter stop */
                                                 /* MTU counter clock 0=1 */
P MTU34.TCR 3.BYTE = 0x20;
                                                 /* Change phase by software */
P MTU34.TGCR.BYTE = 0xe8;
P MTU34.TCNT 3 = 0 \times 00000;
P MTU34.TCNT 4 = 0 \times 0000;
                                                  /* PWM period = 50us */
P MTU34.TGRA 3 = 0x03e8;
                                                 /* U duty = 25% */
P MTU34.TGRB 3 = 0 \times 00 fa;
                                                 /* V duty = 25% */
P MTU34.TGRA 4 = 0 \times 00 fa;
P MTU34.TGRB 4 = 0 \times 00 fa;
                                                  /* W duty = 25% */
P MTU34.TOCR.BYTE = 0x02;
P MTU34.TMDR 3.BYTE = 0xc8;
                                                 /* Set reset PWM mode */
P MTU34.TOER.BYTE = 0xff;
                                                  /* Enable MTU output */
                                                  /* MTU ch0 initialize */
P MTUO.TCR O.BYTE = 0xc2;
                                                  /* Clear counter by compare match
                                                     with TGRD 0 */
P MTU0.TMDR 0.BYTE = 0xc0;
P MTUO.TIER O.BYTE = 0x48;
                                                 /* Enable TGFD interrupt */
P MTUO.TCNT 0 = 0 \times 0000;
                                                  /* Output compare period = 8ms */
P MTU0.TGRD 0 = 0x2710;
P MTUO.TIORH O.BYTE = 0x88;
                                                  /* Input capture HV rising edge
                                                     and HU falling edge */
                                                  /* Output compare TGRD 0 input
P MTU0.TIORL 0.BYTE = 0x09;
                                                     capture HW falling edge */
                                                  /* MTU ch1 initialize */
P MTU1.TCR 1.BYTE = 0x22;
                                                  /* Clear counter by compare match
                                                     with TGRA 1 */
P MTU1.TMDR 1.BYTE = 0xc0;
P MTU1.TIER 1.BYTE = 0x41;
                                                 /* Enable TGIA interrupt */
P MTU1.TCNT 1 = 0 \times 0000;
P MTU1.TGRA 1 = 0x30d4;
                                                  /* Output compare period = 10ms */
                                                  /* MMT initialize */
P MMT.TCNR.BIT.CST = 0;
                                                  /* MMT timer counter stop */
P MMT.MMT TCNT = 0x0000;
                                                 /* U PWM duty = 25% */
P MMT.TBRU F = 0 \times 007d;
                                                 /* \overline{V} PWM duty = 25% */
P MMT.TBRV F = 0x007d;
P MMT.TBRW F = 0 \times 007d;
                                                  /* W PWM duty = 25% */
P MMT.MMT TDDR = 0 \times 00000;
P MMT.TPBR = 0x01f4;
                                                 /* 1/2 PWM period = 25\mus */
P MMT.MMT TMDR.BYTE = 0x0d;
                                                 /* MMT counter clock = \phi/1 */
                                                 /* PFC initialize */
P PORTE.PECRH.WORD = 0 \times 0000;
P PORTE.PECRL1.WORD = 0x5544;
P PORTE.PECRL2.WORD = 0 \times 0015;
P PORTE.PEIORL.WORD = 0xfff8;
P PORTE.PEIORH.WORD = 0x003f;
```

```
P PORTE.PEDRH.WORD = 0 \times 0007;
                                      /* PB function = IRO0/1/2/3 */
P PORTB.PBCR1.WORD = 0 \times 00000;
P PORTB.PBCR2.WORD = 0 \times 0550;
                                      /* PB2/3/4 = input pin */
P PORTB.PBIOR.WORD = 0 \times 00000;
                                      /* INTC initialize */
                                      /* IRQ edge select */
P INTC.ICR1.WORD = 0 \times 0.010;
P INTC.ICR2.WORD = 0 \times 0000;
P INTC.IPRA.WORD = 0xeeee;
P INTC.IPRD.WORD = 0xf0f0;
P INTC.IPRE.WORD = 0 \times 00000;
P INTC.IPRF.WORD = 0 \times 00000;
P INTC.IPRG.WORD = 0 \times 00000;
P INTC.IPRH.WORD = 0 \times 00000;
P INTC.IPRI.WORD = 0 \times 00000;
P INTC.IPRJ.WORD = 0 \times 00000;
P INTC.IPRK.WORD = 0 \times 00000;
}
* /
                MTU ch0 interrupt routine (motorA(120°))
/**********************************
void rotateA(void)
P MTUO.TSR O.BIT.TGFD = 0;
switch(A)
                                     case 0x00: P_MTU34.TGCR.BYTE = 0xe9;
                            break;
                                     case 0x01: P MTU34.TGCR.BYTE = 0xeb;
                            break:
                                     case 0x02: P MTU34.TGCR.BYTE = 0xea;
                            break;
                                     case 0x03: P MTU34.TGCR.BYTE = 0xee;
                            break:
                                     case 0x04: P MTU34.TGCR.BYTE = 0xec;
                            break:
                                     case 0x05: P MTU34.TGCR.BYTE = 0xed;
                            break:
}
A++;
if(A == 0x06)
```

```
A = 0x00;
}
B++;
if((B>0x0c)&&(P MTU0.TSR 0.BIT.TGFC == 1))
                                        /* Clear TGFC flag */
 P MTU0.TSR 0.BIT.TGFC = 0;
 P MTUO.TIER O.BYTE = 0x40; Å@
                                       /*Disable TGIC, TGFB, TGFA, TGFD */
                                        /* change phase by hardware */
 P MTU34.TGCR.BYTE = 0xe0;
else
 P MTU0.TSR 0.BYTE = 0x0c;
MTU ch1 interrupt routine (motorA(180°))
void rotateB(void)
 P MTU1.TSR 1.BIT.TGFA = 0;
 i = 0x0000;
 switch(X)
   case 0x00: P PORTE.PECRH.WORD = 0x0101;
   while(i < 0x00aa)
                                        /* dead time = 50\mus */
       i++;
             P PORTE.PECRH.WORD = 0x0501; /* U=L,V=H,W=H U=L, V=H, W=H */
                                break:
   case 0x01: P PORTE.PECRH.WORD = 0x0401;
                                        /* dead time = 50\mus */
   while(i < 0x00aa)
       i++;
             P PORTE.PECRH.WORD = 0x0405; /* U=L,V=L,W=H U=L, V=L, W=H */
                                break:
   case 0x02: P PORTE.PECRH.WORD = 0x0404;
   while(i < 0x00aa)
                                        /* dead time = 50\mus */
       i++;
             P PORTE.PECRH.WORD = 0x0444; /* U=H,V=L,W=H U=H, V=L, W=H */
                                break;
   case 0x03: P PORTE.PECRH.WORD = 0x0044;
   while(i < 0x00aa)</pre>
                                        /* dead time = 50\mus */
```

```
i++;
              P PORTE.PECRH.WORD = 0x0054; /* U=H, V=L, W=L U=H, V=L, W=L */
                                 break;
   case 0x04: P PORTE.PECRH.WORD = 0x0050;
                                        /* dead time = 50\mus */
   while(i < 0x00aa)
       i++;
              P PORTE.PECRH.WORD = 0x0150; /* U=H,V=H,W=L U=H, V=H, W=L */
                                 break:
   case 0x05: P PORTE.PECRH.WORD = 0x0110;
                                        /* dead time = 50us */
   while(i < 0x00aa)
       i++;
              P PORTE.PECRH.WORD = 0x0111; /* U=L,V=H,W=L U=L, V=H, W=L */
                                 break:
X++;
if(X == 0x06)
  X = 0x00;
Y++;
if((Y>0x0c)&&(P INTC.ISR.BIT.IRQ2F==1))
                                      /* Disable TGIA interrupt */
 P MTU1.TIER 1.BYTE = 0x40;
 P INTC.IPRA.WORD = 0xffff;
}
else
 P INTC.ISR.WORD &= 0x0000;
 }
IRQ0 (HU) interrupt routine
/**********************************
void HU(void)
                                       /* Clear IRQOF interrupt flag */
P INTC.ISR.BIT.IRQOF = 0;
                                       /* Clear counter */
i = 0x0000;
if(P INTC.ICR2.WORD & 0x4000)
                                       /* If HU = rising edge */
```

```
P PORTE.PECRH.WORD = 0 \times 0110;
 while(i<0x00aa)
                                /* dead time = 50\mus */
    i++;
                               P PORTE.PECRH.WORD = 0 \times 0111;
 P INTC.ICR2.WORD = 0 \times 1000;
}
else
 P PORTE.PECRH.WORD = 0 \times 0404;
 while(i<0x00aa)
                                /* dead time = 50\mus */
    i++;
                               P PORTE.PECRH.WORD = 0 \times 0.444;
 P INTC.ICR2.WORD = 0x4400;
IRQ0 (HV) interrupt routine
void HV(void)
 P INTC.ISR.BIT.IRQ1F = 0;
                                /* Clear IRQ1F interrupt flag */
 i = 0x0000;
                                /* Clear counter */
 if (P INTC.ICR2.WORD & 0x1000)
                                /* If HV = rising edge */
  P PORTE.PECRH.WORD = 0 \times 0401;
                                /* dead time = 50\mus */
  while(i<0x00aa)
   {
    i++;
                               P PORTE.PECRH.WORD = 0 \times 0405;
  P INTC.ICR2.WORD = 0x0400;
 else
  P PORTE.PECRH.WORD = 0 \times 0050;
                                /* dead time = 50\mus */
  while(i<0x00aa)
    i++;
                               P PORTE.PECRH.WORD = 0 \times 0150;
  P INTC.ICR2.WORD = 0x5000;
   }
IRQ0(HW) interrupt routine
```

```
void HW(void)
 P INTC.ISR.BIT.IRQ2F = 0;
                                     /* Clear IRQ2F interrupt flag */
 i = 0x0000;
                                     /* Clear counter */
 if(P INTC.ICR2.WORD & 0x0400)
                                     /* If HW = rising edge */
    P PORTE.PECRH.WORD = 0 \times 0.044;
    while(i<0x00aa)
                                      /* dead time = 50\mus */
       i++;
                                     P PORTE.PECRH.WORD = 0 \times 0.054;
    P INTC.ICR2.WORD = 0x4000;
else
    P PORTE.PECRH.WORD = 0 \times 0101;
                                     /* dead time = 50µs */
    while(i<0x00aa)
      i++;
     P INTC.ICR2.WORD = 0x1400;
 }
```

SH7046 Series, SH7047 Series Application Note

Publication Date: 1st Edition, March 2003 Published by: Business Operation Division

Semiconductor & Integrated Circuits

Hitachi, Ltd.

Edited by: Technical Documentation Group

Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 2003. All rights reserved. Printed in Japan.