
 Application Note

R01AN6472EJ0120 Rev.1.20 Page 1 of 44
Apr.28.23

RZ/T2, RZ/N2
Quick Start Guide: Firmware Update
Introduction
This document describes the procedure for updating user application programs via Ethernet by using the
RZ/T2, RZ/N2 firmware update sample programs.

Target Device
RZ/T2M Group

RZ/T2L Group

RZ/N2L Group

Contents

1. Overview ... 3
1.1 Introduction .. 3
1.2 Features .. 3
1.3 Limitations ... 3
1.4 Package Contents ... 3
1.5 Related Documents ... 5
1.6 Explanation of Terms... 5

2. Firmware Update Mechanism .. 6
2.1 Operating Modes ... 6
2.2 Sample Program Configuration ... 7
2.3 Using External Flash Memory ... 7

3. Configuring the Firmware Update System ... 9
3.1 Update Program and SSBL Configuration .. 10
3.1.1 Update Program .. 11
3.1.2 SSBL ... 11
3.2 User Application Program Configuration ... 12
3.3 Writing Data to QSPI Flash Memory ... 18

4. Applying Firmware Updates ... 24
4.1 Host PC Setup ... 24
4.1.1 Tool Setup ... 24
4.1.2 Network Adapter Settings .. 24
4.2 Update Procedure ... 26
4.2.1 Creating Update File ... 27
4.2.2 Applying Update .. 28

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 2 of 44
Apr.28.23

5. Sample Program .. 32
5.1 Update File Format .. 32
5.2 Communication Protocols of Update Program .. 34
5.2.1 START_UPDATE .. 34
5.2.2 FIRMWARE_DATA ... 35
5.2.3 ACK ... 35
5.2.4 NACK ... 35
5.3 Implementation Specifications of Update Program ... 36
5.3.1 Development Environment .. 36
5.3.2 File Structure ... 36
5.3.3 Functions ... 37
5.3.4 Flowchart of Update Program Processing .. 38
5.3.5 Memory Maps .. 39
5.3.6 How to Use NOR Flash in the RZ/N2L Project ... 41
5.4 Specifications of Tools Used with Sample Program ... 42
5.4.1 fwupdate_utility.py ... 42
5.4.2 fwupdate.py ... 43

Revision History .. 44

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 3 of 44
Apr.28.23

1. Overview
1.1 Introduction
This document describes the functions provided by the RZ/T2, RZ/N2 firmware update sample programs and
explains how to use the various tools.

This sample program package uses the Flexible Software Package for RZ/T2M, RZ/T2L and RZ/N2L. For
more information about FSP, please refer to RZ/T2, RZ/N2 Getting Started with Flexible Software Package.

1.2 Features
The sample program has the following features:

• It is possible to update via Ethernet user application programs written to the QSPI flash, OSPI flash and
NOR flash memory on Renesas Starter Kit+ for RZ/T2M, RZ/T2L and RZ/N2L.

• If the update of a user application program fails, the user can redo the update as many times as
necessary until the update is successful.

1.3 Limitations
The sample program has the following limitations:

• It is not possible to update a user application program while a user application program is running.
• This version does not support updating applications that use dual cores in RZ/T2M.

1.4 Package Contents
RZ/T2, RZ/N2 firmware update sample program package contains several files with software and tools. The
following table lists their contents.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 4 of 44
Apr.28.23

Table 1.1 Firmware Update Sample Program Package Contents

No. File Path Classification Remarks
1 RZT2M_RSK_FWUpdate_Rev120.zip Software Sample program code for RZ/T2M
2 RZT2M_RSK_FWUpdate.bin Software Programs and data for RZ/T2M

stored in the “Pre-built parameters
and programs” folder.
These files are used in Chapters 3
and 4 of this document as a
reference for building the
environment.

3 RZT2M_RSK_SSBL.bin Software
4 RZT2M_RSK_SSBL_xspi0.bin Software & data
5 parameter_RZT2M_bsp_LED_0.bin Data
6 parameter_RZT2M_bsp_LED_1.bin Data
7 RZT2M_bsp_LED_0.bin Software
8 RZT2M_bsp_LED_1.bin Software
9 RZT2L_RSK_FWUpdate_Rev120.zip Software Sample program code for RZ/T2L
10 RZT2L_RSK_FWUpdate.bin Software Programs and data for RZ/T2L

stored in the “Pre-built parameters
and programs” folder.
These files are used in Chapters 3
and 4 of this document as a
reference for building the
environment.

11 RZT2L_RSK_SSBL.bin Software
12 RZT2L_RSK_SSBL_xspi0.bin Software & data
13 parameter_RZT2L_bsp_LED_1.bin Data
14 parameter_RZT2L_bsp_LED_3.bin Data
15 RZT2L_bsp_LED_1.bin Software
16 RZT2L_bsp_LED_3.bin Software
17 RZN2L_RSK_FWUpdate_Rev120.zip Software Sample program code for RZ/N2L
18 RZN2L_RSK_FWUpdate.bin Software Programs and data for RZ/N2L

stored in the “Pre-built parameters
and programs” folder.
These files are used in Chapters 3
and 4 of this document as a
reference for building the
environment.

19 RZN2L_RSK_SSBL.bin Software
20 RZN2L_RSK_SSBL_xspi0.bin Software & data
21 parameter_RZN2L_bsp_LED_0.bin Data
22 parameter_RZN2L_bsp_LED_3.bin Data
23 RZN2L_bsp_LED_0.bin Software
24 RZN2L_bsp_LED_3.bin Software
25 fwupdate_utility.py Tool Update file generator tool
26 fwupdate.py Tool Update files send tool
27 r01an6472ej0120-rzt2-n2-fwupdate.pdf Document This document

RZ/T2, RZ/N2 Quick Start Guide:
Firmware Update

28 r01an6641ej0120-rzt2-n2-releasenote.pdf Document Release Note

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 5 of 44
Apr.28.23

1.5 Related Documents
Table 1.2 lists documents related to this document.

Table 1.2 Related Documents

Title Document Number
RZ/T2M Group Renesas Starter Kit+ for RZ/T2M User's Manual R20UT4939EG****
RZ/T2M Group Renesas Starter Kit+ for RZ/T2M Quick Start Guide R20UT4941EG****
RZ/T2, RZ/N2 Getting Started with Flexible Software Package R01AN6714EJ****
RZ/T2M Group User’s Manual: Hardware R01UH0916EJ****
RZ/T2, RZ/N2 Device Setup Guide for Flash boot R01AN6471EJ****
RZ/T2L Group Renesas Starter Kit+ for RZ/T2L User's Manual R20UT5164EJ****
RZ/T2L Group Renesas Starter Kit+ for RZ/T2L Quick Start Guide R20UT5235EJ****
RZ/T2L Group User’s Manual: Hardware R01UH0985EJ****
RZ/N2L Group Renesas Starter Kit+ for RZ/N2L User's Manual R20UT4984EG****
RZ/N2L Group Renesas Starter Kit+ for RZ/N2L Quick Start Guide R20UT4986EG****
RZ/N2L Group User’s Manual: Hardware R01UH0955EJ****

1.6 Explanation of Terms
The meanings of terms used in this document are indicated below.

Term Used in This Document Meaning of Term
Update program The program, contained in the sample program package, used to

update user application programs.
User application program Program that can be updated with this sample program package.
Update file The program to be updated.
Firmware update system The file containing the program to be updated.
SSBL Second stage boot loader, referred to as a loader program in the

RZ/T2M Group Renesas Starter Kit+ for RZ/T2M User's Manual,
RZ/T2L Group Renesas Starter Kit+ for RZ/T2L User's Manual and
the RZ/N2L Group Renesas Starter Kit+ for RZ/N2L User's Manual.

Loader program SSBL, Second stage boot loader

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 6 of 44
Apr.28.23

2. Firmware Update Mechanism
The sample program can update user application programs written to the external flash memory on the
Renesas Starter Kit+ for RZ/T2M, RZ/T2L or RZ/N2L (Hereafter referred to as RSK+). Figure 2.1 illustrates
the system structure of the sample program.

Update file

fwupdate_utility.py

Update file

fwupdate.py

RSK+

E
ther interface

QSPI flash

User
program

RZ/T2M, RZ/T2L or
RZ/N2L

Update
program

User program

Parameters for the user
application program

Update file

Update result

Figure 2.1 System Structure of Firmware Update Sample Program

The sample program updates user application programs through the following sequence of steps:

1. Using fwupdate_utility.py, the user creates an update file containing the user application program to be
applied as an update and information on its location in the external flash memory. Refer to 5.4.1 for
details of fwupdate_utility.py and to 5.1 for details of the update file.

2. The user starts the RZ/T2M, RZ/T2L or RZ/N2L in update mode.

3. Using fwupdate.py, the user sends the update file from the host PC to the RZ/T2M, RZ/T2L or RZ/N2L via

an Ethernet connection. Refer to 5.2 for the communication protocols used between the host PC and
RSK+ and the packet format of the communication protocols.

4. When the update file is received by the RZ/T2M, RZ/T2L or RZ/N2L, the update program on the RZ/T2M,

RZ/T2L or RZ/N2L extracts the user application program and writes it to the external flash memory. Refer
to 5.3 for details of the update program.

2.1 Operating Modes
You can select the operating mode of the sample program by means of switch settings on the evaluation
board. Refer to Table 2.1 for the operating mode selection method.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 7 of 44
Apr.28.23

Table 2.1 Switches Used for Operating Mode Selection

Board Switch MCU Port MCU Pin Operating Mode
RZ/T2M RSK+ SW3-1 P11_0 Y18 OFF: Application mode

ON: Update mode
RZ/T2L RSK+ SW3-2 P04_1 F1 OFF: Application mode

ON: Update mode
RZ/N2L RSK+ SW3-1 P13_6 M13 OFF: Application mode

ON: Update mode

The update program is launched at startup when update mode is selected as the operating mode, and the
user application program is launched at startup when application mode is selected. Therefore, the sample
program cannot perform an update while a user application program is running.

2.2 Sample Program Configuration
Operating mode checking and launching of the program corresponding to the operating mode is performed
by a loader program. In this document, the loader program is referred to as SSBL.

2.3 Using External Flash Memory
The sample program stores the programs that comprise the system in the external flash memory on the
evaluation board, then loads them into the RAM and runs them. Figure 2.2, Figure 2.3 and Figure 2.4 show
how the sample program utilizes the external flash memory.

The sample program updates the target user application program, but it does not update the loader program
and update program. Therefore, when updating fails, any number of update attempts may be performed until
the update succeeds.

In this sample program, you can configure whether the user application program area of the external flash
memory that can be updated by the update program is treated as one plane or divided into two planes. If the
user application program area of the external flash memory is treated as one plane, updating the user
application program will overwrite a user application program in the external flash memory. If the user
application program area is divided into two planes, updating the user application program area will update
the user application program area on one side of the two planes in the external flash memory and leave the
program before the update in the other user application program area.

Parameter for the loader

SSBL

0x60000000

0x60007050

0x63FFFFFF

Parameter for the user application
program (for CPU0/ for CPU1)

Plane Management Area

User Application Program

Updatable
area0x60007070

0x6004D000

0x60000050

Update program
0x60007080

Updatable
area

Figure 2.2 xSPI0 Area Flash Memory Usage on RSK+

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 8 of 44
Apr.28.23

Parameter for the loader

SSBL

0x68000000

0x68007050

0x68FFFFFF

Parameter for the user application
program (for CPU0/ for CPU1)

Plane Management Area

User Application Program

Updatable
area0x68007070

0x6804D000

0x68000050

Update program
0x68007080

Updatable
area

Figure 2.3 xSPI1 Area Flash Memory Usage on RSK+

Parameter for the loader

SSBL

0x70000000

0x70007050

0x71FFFFFF

Parameter for the user application
program (for CPU0/ for CPU1)

Plane Management Area

User Application Program

Updatable
area0x70007070

0x7004D000

0x70000050

Update program
0x70007080

Updatable
area

Figure 2.4 External Bus Area Flash Memory Usage on RSK+

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 9 of 44
Apr.28.23

3. Configuring the Firmware Update System
The procedure for configuring a system for updating user application programs using elements supplied as
part of the sample program package is described below.

Table 3.1 shows the environment required for configuring the RZ/T2M RSK+. Table 3.2 shows the
environment required for configuring the RZ/T2L RSK+. Table 3.3 shows the environment required for
configuring the RZ/N2L RSK+.

Table 3.1 Setup Environment for RZ/T2M RSK+

Name Remarks
RZ/T2M evaluation board RZ/T2M RSK+
USB cables 1 (Mini-B, type-A)

1 (Type-C, type-A)
Windows host PC IAR Embedded Workbench installed
parameter_generator.py Note Generation tool for the parameter for the loader and the

parameter for the user application program
device_setup.py Note Command sending tool for device setup
RZT2M_RSK_DeviceSetup.out.srec Note S-Record format device setup sample program

Note Included in the RZ/T2, RZ/N2 Device Setup sample program package.

Table 3.2 Setup Environment for RZ/T2L RSK+

Name Remarks
RZ/T2L evaluation board RZ/T2L RSK+
USB cables 1 (Mini-B, type-A)

1 (Type-C, type-A)
Windows host PC IAR Embedded Workbench installed
parameter_generator.py Note Generation tool for the parameter for the loader and the

parameter for the user application program
device_setup.py Note Command sending tool for device setup
RZT2L_RSK_DeviceSetup_usb.out.srec Note S-Record format device setup sample program

Note Included in the RZ/T2, RZ/N2 Device Setup sample program package.

Table 3.3 Setup Environment for RZ/N2L RSK+

Name Remarks
RZ/N2L evaluation board RZ/N2L RSK+
USB cables 1 (Mini-B, type-A)

1 (Type-C, type-A)
Windows host PC IAR Embedded Workbench installed
parameter_generator.py Note Generation tool for the parameter for the loader and the

parameter for the user application program
device_setup.py Note Command sending tool for device setup
RZN2L_RSK_DeviceSetup_qspi.out.srec Note S-Record format device setup sample program

Note Included in the RZ/T2, RZ/N2 Device Setup sample program package.

Table 3.4 lists the user application program written during device setup for RZ/T2M. Table 3.5 lists the user
application program written during device setup for RZ/T2L. Table 3.6 lists the user application program
written during device setup for RZ/N2L.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 10 of 44
Apr.28.23

Table 3.4 User Application Program Set Up for RZ/T2M

File Name Description
RZT2M_bsp_LED_0.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2M pack.
See section 3.2 for detailed creation instructions.
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED0: BSP_IO_PORT_19_PIN_6

parameter_RZT2M_bsp_LED_0.bin Parameter for the user application program
(RZT2M_bsp_LED_0.bin). This file is created after building
RZT2M_bsp_LED_0.bin.
See section 3.2 for detailed creation instructions.
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x6004D000
RAM address where the program is loaded: 0x00000000

Table 3.5 User Application Program Set Up for RZ/T2L

File Name Description
RZT2L_bsp_LED_1.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2L pack.
See section 3.2 for detailed creation instructions.
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED0: BSP_IO_PORT_17_PIN_6

parameter_RZT2L_bsp_LED_1.bin Parameter for the user application program
(RZN2L_bsp_LED_1.bin). This file is created after building
RZN2L_bsp_LED_1.bin.
See section 3.2 for detailed creation instructions.
The following OSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x6004D000
RAM address where the program is loaded: 0x00000000

Table 3.6 User Application Program Set Up for RZ/N2L

File Name Description
RZN2L_bsp_LED_0.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/N2L pack.
See section 3.2 for detailed creation instructions.
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED0: BSP_IO_PORT_18_PIN_2

parameter_RZN2L_bsp_LED_0.bin Parameter for the user application program
(RZN2L_bsp_LED_0.bin). This file is created after building
RZN2L_bsp_LED_0.bin.
See section 3.2 for detailed creation instructions.
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x6004D000
RAM address where the program is loaded: 0x00000000

3.1 Update Program and SSBL Configuration
IAR Embedded Workbench for ARM (9.32.1) is used as the development environment of the update program
and SSBL.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 11 of 44
Apr.28.23

3.1.1 Update Program
Open the following workspace, select the update program project (RZ*_RSK_FWUpdate), and build the
project.

RZ*_RSK_FWUpdate_Rev120\RZ*_RSK_FWUpdate.eww

In the default configuration, the update program is for xSPI0 boot mode and flash one plane. The
configurations of the update program can be changed with the following files.

RZ*_RSK_FWUpdate_Rev120\src\fwupdate_cfg.h

For RZ/N2L only, if you use 16-bit bus boot mode, you also need to change the sample program project
settings by referring to Section 5.3.6.

The configuration of the update program is shown in Table 3.7.

Table 3.7 Configurations for update program

Configuration items Configurable values Description
FWUPDATE_CFG_BOOT_
MODE_SELECT

BOOT_MODE_XSPI0 Default settings.
Specified when using in xSPI0
boot mode (x1 boot serial flash).

BOOT_MODE_XSPI1 Specified when using in xSPI1
boot mode (x1 boot serial flash).

BOOT_MODE_NOR Specified when using in 16-bit bus
boot mode (NOR flash).

FWUPDATE_CFG_FLASH
_MNG_AREA

FLASH_MNG_AREA_SINGLE_BANK Default settings.
Specify when using the user
application program area on the
external flash for one plane
management.

FLASH_MNG_AREA_DUAL_BANK Specify this when using the user
application program area of the
external flash for two plane
management.

3.1.2 SSBL
Open the following workspace, select the SSBL project (RZ*_RSK_SSBL), and build the project.

 RZ*_RSK_SSBL_Rev120\RZ*_RSK_SSBL.eww

In the default configuration, the update program is for xSPI0 boot mode, single core, and flash one plane.
The configurations of the SSBL can be changed with the following files.

RZ*_RSK_SSBL_Rev120\src\ssbl_cfg.h

For RZ/N2L only, if you use 16-bit bus boot mode, you also need to change the sample program project
settings by referring to Section 5.3.6.

The configuration of the update program is shown in Table 3.8.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 12 of 44
Apr.28.23

Table 3.8 Configurations for SSBL

Configuration items Configurable values Description
SSBL_CFG_BOOT_MODE
_SELECT

BOOT_MODE_XSPI0 Default settings.
Specified when using in xSPI0
boot mode (x1 boot serial flash).

BOOT_MODE_XSPI1 Specified when using in xSPI1
boot mode (x1 boot serial flash).

BOOT_MODE_NOR Specified when using in 16-bit bus
boot mode (NOR flash).

SSBL_CFG_OPERATING_
CORE_MODE

SINGLE_CORE Default settings.
Specify when using as a single
core.

DUAL_CORE Not supported in this version.
SSBL_CFG_FLASH_MNG_
AREA

FLASH_MNG_AREA_SINGLE_BANK Default settings.
Specify when using the user
application program area on the
external flash for one plane
management.

FLASH_MNG_AREA_DUAL_BANK Specify this when using the user
application program area of the
external flash for two plane
management.

After building SSBL (RZ*_RSK_SSBL.bin), generate parameter for the loader. The SSBL program size must
be a multiple of 512 bytes and no larger than 56KB for RZ/T2M and RZ/T2L and no larger than 120KB for
RZ/N2L. Parameter for the loader is generated using the tool included in the device setup
(parameter_generator.py).

The following shows an example of tool execution when xSPI0 address space flash is specified:

• External flash address where the program is stored (--src_addr): 0x60000050
• RAM address where the program is loaded (--dest_addr): 0x00102000

The following command generates RZT2M_RSK_SSBL_xspi0.bin in which the parameter for the loader and
the SSBL program are concatenated (for RZ/T2M):

python parameter_generator.py loader --mpu rzt2m --mode xspi0 --src_addr
60000050 --dest_addr 00102000 -i RZT2M_RSK_SSBL.bin -o
RZT2M_RSK_SSBL_xspi0.bin --concat_loader

The following command generates RZT2L_RSK_SSBL_xspi0.bin in which the parameter for the loader and
the SSBL program are concatenated (for RZ/T2L):

python parameter_generator.py loader --mpu rzt2l --mode xspi0 --src_addr
60000050 --dest_addr 00102000 -i RZT2L_RSK_SSBL.bin -o
RZT2L_RSK_SSBL_xspi0.bin --concat_loader

The following command generates RZN2L_RSK_SSBL_xspi0.bin in which the parameter for the loader and
the SSBL program are concatenated (for RZ/N2L):

python parameter_generator.py loader --mpu rzn2l --mode xspi0 --src_addr
60000050 --dest_addr 00102000 -i RZN2L_RSK_SSBL.bin -o
RZN2L_RSK_SSBL_xspi0.bin --concat_loader

3.2 User Application Program Configuration
Create a user application program based on the Blinky sample application included in the Flexible Software
Package RZ/T2M, RZ/T2L or RZ/N2L pack. For more information about FSP, please refer to RZ/T2, RZ/N2
Getting Started with Flexible Software Package.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 13 of 44
Apr.28.23

1. Create Blinky sample application.

See section 5.2 “Tutorial Blinky” in RZ/T2, RZ/N2 Getting Started with Flexible Software Package for the
creation instructions.
Project name example: RZT2M_bsp_LED_0
The project name is an example for RZ/T2M. For RZ/T2L and RZ/N2L, read its MPU name instead.
Replace the LED number with the one you actually use. In the sample, LED0 is used for RZ/T2M and
RZ/N2L, and LED1 is used for RZ/T2L.

2. Open the memory allocation configuration file and change the memory assignment.

A modified example for EWARM and e2 studio of placing the start address of the user application
program at 0x00000000 in the ATCM is shown below.

Change the following files in the user application project.
EWARM: RZT2M_bsp_LED_0\script\fsp_ram_execution.icf
e2 studio: RZT2M_bsp_LED_0\script\fsp_ram_execution.ld
This is the file path when the project name is for RZT2M. For RZ/T2L and RZ/N2L, read its MPU name
instead.

2-1. Change the program entry address to 0x00000000.

fsp_ram_execution.icf lines 19-20 before modifying:
define symbol __region_D_LDR_PRG_start__ = 0x00102000;

define symbol __region_D_LDR_PRG_end__ = 0x0010FFFF;

fsp_ram_execution.icf lines 19-20 After modifying:

define symbol __region_D_LDR_PRG_start__ = 0x00000000;

define symbol __region_D_LDR_PRG_end__ = 0x00007FFF;

fsp_ram_execution.ld lines 31-41 before modifying:
 .loader_text 0x00102000 : AT (0x00102000)

 {

 *(.loader_text)

 /fsp/src/bsp/cmsis/Device/RENESAS/Source/.o(.text*)

 /fsp/src/bsp/mcu/all/bsp_clocks.o(.text)

 /fsp/src/bsp/mcu/all/bsp_irq.o(.text)

 /fsp/src/bsp/mcu/all/bsp_semaphore.o(.text)

 /fsp/src/bsp/mcu/all/bsp_register_protection.o(.text)

 /fsp/src/r_ioport/r_ioport.o(.text)

 KEEP(*(.warm_start))

 } > BTCM

fsp_ram_execution.ld lines 31-41 After modifying:

 .loader_text 0x00000000 : AT (0x00000000)

 {

 *(.loader_text)

 /fsp/src/bsp/cmsis/Device/RENESAS/Source/.o(.text*)

 /fsp/src/bsp/mcu/all/bsp_clocks.o(.text)

 /fsp/src/bsp/mcu/all/bsp_irq.o(.text)

 /fsp/src/bsp/mcu/all/bsp_semaphore.o(.text)

 /fsp/src/bsp/mcu/all/bsp_register_protection.o(.text)

 /fsp/src/r_ioport/r_ioport.o(.text)

 KEEP(*(.warm_start))

 } > ATCM

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 14 of 44
Apr.28.23

2-2. Place program code and static variables with initial values in ATCM. Place uninitialized variables and
heap areas in ATCM or other space.
Please refer to the following files for setting examples.
Modifications may be required depending on the processing and size of the user application.

EWARM: RZ*_RSK_FWUpdate_Rev120\script\fsp_ram_execution.icf
e2 studio: RZ*_RSK_FWUpdate_Rev120\script\fsp_ram_execution.ld

3. Open the following file and modify the initialization process.

RZT2M_bsp_LED_0\rzt\fsp\src\bsp\cmsis\Device\RENESAS\Source\startup.c
This is the file path for RZ/T2M. For RZ/T2L and RZ/N2L read its MPU name instead.

Delete the following code.
Please note that there is a difference in the number of lines to be deleted between RZ/T2M, RZ/T2L and
RZ/N2L. The only difference is the number of lines, the processing that needs to be deleted is the same.

startup.c before modifying:
Lines 500-515 for RZ/T2M and RZ/T2L
Lines 400-415 for RZ/N2L

#if __FPU_USED

 __asm volatile (

 "FPU_AdvancedSIMD_init: \n"

 /* Initialize FPU and Advanced SIMD setting */

 " mrc p15, #0, r0, c1, c0, #2 \n" /* Enables cp10 and cp11 accessing */

 " orr r0, r0, #0xF00000 \n"

 " mcr p15, #0, r0, c1, c0, #2 \n"

 " isb \n" /* Ensuring Context-changing */

 " vmrs r0, fpexc \n" /* Enables the FPU */

 " orr r0, r0, #0x40000000 \n"

 " vmsr fpexc, r0 \n"

 " isb \n" /* Ensuring Context-changing */

 ::: "memory");

#endif

startup.c after modifying:
Lines 500-515 for RZ/T2M and RZ/T2L
Lines 400-415 for RZ/N2L

Change the code shown before modifying in startup.c to the code shown after modifying.
Please note that there is a difference in the number of lines to be modified between RZ/T2M, RZ/T2L and
RZ/N2L. The only difference is the number of lines, the processing that needs to be changed is the same.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 15 of 44
Apr.28.23

startup.c before modifying:
Lines 380-439 for RZ/T2M and RZ/T2L
Lines 292-346 for RZ/N2L

BSP_TARGET_ARM void system_init (void)

{

 __asm volatile (

 "set_hactlr: \n"

 " MOVW r0, %[bsp_hactlr_bit_l] \n" /* Set HACTLR bits(L) */

 " MOVT r0, #0 \n"

 " MCR p15, #4, r0, c1, c0, #1 \n" /* Write r0 to HACTLR */

 ::[bsp_hactlr_bit_l] "i" (BSP_HACTLR_BIT_L) : "memory");

 __asm volatile (

 "set_hcr: \n"

 " MRC p15, #4, r1, c1, c1, #0 \n" /* Read Hyp Configuration Register */

 " ORR r1, r1, %[bsp_hcr_hcd_disable] \n" /* HVC instruction disable */

 " MCR p15, #4, r1, c1, c1, #0 \n" /* Write Hyp Configuration Register */

 ::[bsp_hcr_hcd_disable] "i" (BSP_HCR_HCD_DISABLE) : "memory");

 __asm volatile (

 "set_vbar: \n"

 " LDR r0, =__Vectors \n"

 " MCR p15, #0, r0, c12, c0, #0 \n" /* Write r0 to VBAR */

 ::: "memory");

#if (0 == BSP_CFG_CPU)

 __asm volatile (

 "LLPP_access_enable: \n"

 /* Enable PERIPHPREGIONR (LLPP) */

 " mrc p15,#0, r1, c15, c0,#0 \n" /* PERIPHPREGIONR */

 " orr r1, r1, #(0x1 << 1) \n" /* Enable PERIPHPREGIONR EL2 */

 " orr r1, r1, #(0x1) \n" /* Enable PERIPHPREGIONR EL1 and EL0 */

 " dsb \n" /* Ensuring memory access complete */

 " mcr p15,#0, r1, c15, c0,#0 \n" /* PERIPHREGIONR */

 " isb \n" /* Ensuring Context-changing */

 ::: "memory");

#endif

 __asm volatile (

 "cpsr_save: \n"

 " MRS r0, cpsr \n" /* Original PSR value */

 " BIC r0, r0, %[bsp_mode_mask] \n" /* Clear the mode bits */

 " ORR r0, r0, %[bsp_svc_mode] \n" /* Set SVC mode bits */

 " MSR SPSR_hyp, r0 \n"

 ::[bsp_mode_mask] "i" (BSP_MODE_MASK), [bsp_svc_mode] "i" (BSP_SVC_MODE) : "memory");

 __asm volatile (

 "exception_return: \n"

 " LDR r1, =stack_init \n"

 " MSR ELR_hyp, r1 \n"

 " ERET \n" /* Branch to stack_init and enter EL1 */

 ::: "memory");

}

/** @} (end addtogroup BSP_MCU) */

/***

**********//**

 * After system_init, EL1 settings start here.

**

************/

BSP_TARGET_ARM BSP_ATTRIBUTE_STACKLESS void stack_init (void)

{

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 16 of 44
Apr.28.23

startup.c after modifying:
Lines 380-439 for RZ/T2M and RZ/T2L
Lines 292-346 for RZ/N2L

BSP_TARGET_ARM BSP_ATTRIBUTE_STACKLESS void system_init (void)

{

 __asm volatile (

 "set_vbar: \n"

 " LDR r0, =__Vectors \n"

 " MCR p15, #0, r0, c12, c0, #0 \n" /* Write r0 to VBAR */

 ::: "memory");

4. Select the project option and select the output converter in the category list.

Check [Generate additional output] on the Output tab, select [Raw binary] and enter the output file name.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 17 of 44
Apr.28.23

5. Open the following file and change the sample processing.
RZT2M_bsp_LED_0\src\hal_entry.c
This is the file path for RZ/T2M. For RZ/T2L and RZ/N2L read its MPU name instead.

Add processing as a user application program to the opened file.
The generated code contains the processing to blink the LED.
The code for RZT2M is below, but RZ/T2L and RZ/N2L also include the process of blinking the LED.
hal_entry.c lines 56-73:

 /* This code uses BSP IO functions to show how it is used.*/

 /* Turn off LEDs */

 for (uint32_t i = 0; i < leds.led_count; i++)

 {

 R_BSP_PinClear(BSP_IO_REGION_SAFE, (bsp_io_port_pin_t) leds.p_leds[i]);

 }

 while (1)

 {

 /* Toggle board LEDs */

 for (uint32_t i = 0; i < leds.led_count; i++)

 {

 R_BSP_PinToggle(BSP_IO_REGION_SAFE, (bsp_io_port_pin_t) leds.p_leds[i]);

 }

 /* Delay */

 R_BSP_SoftwareDelay(delay, bsp_delay_units);

 }

The LED is defined in the following file. Blinks the LED defined here.
RZT2M_bsp_LED_0\rzt\board\rzt2m_rsk\board_leds.c
This is the file path for RZ/T2M. For RZ/T2L and RZ/N2L read its MPU name instead.
board_leds.c lines 51-60:

static const uint16_t g_bsp_prv_leds[] =

{

 #if (0 == BSP_CFG_CPU)

 (uint16_t) BSP_IO_PORT_19_PIN_6, ///< RLED0

 (uint16_t) BSP_IO_PORT_19_PIN_4, ///< RLED1

 #elif (1 == BSP_CFG_CPU)

 (uint16_t) BSP_IO_PORT_20_PIN_0, ///< RLED2

 (uint16_t) BSP_IO_PORT_23_PIN_4, ///< RLED3

 #endif

};

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 18 of 44
Apr.28.23

6. Select [Project]-[Rebuild All] from the EWARM menu.

7. After the build is completed, the extension bin file is generated.

8. Generates parameter for the user application program (RZT2M_bsp_LED_0.bin, RZT2L_bsp_LED_1.bin

or RZN2L_bsp_LED_0.bin).
The parameter is generated using the tool included in the device setup (parameter_generator.py).

The following shows an example of tool execution when xSPI0 address space flash is specified:
 External flash address where the program is stored (--src_addr): 0x6004D000
 RAM address where the program is loaded (--dest_addr): 0x00000000

The following command generates parameter_RZT2M_bsp_LED_0.bin (for RZ/T2M):

python parameter_generator.py userapp --src_addr 6004D000 --dest_addr
00000000 -i RZT2M_bsp_LED_0.bin -o parameter_RZT2M_bsp_LED_0.bin

The following command generates parameter_RZT2L_bsp_LED_1.bin (for RZ/T2L):

python parameter_generator.py userapp --src_addr 6004D000 --dest_addr
00000000 -i RZT2L_bsp_LED_1.bin -o parameter_RZT2L_bsp_LED_1.bin

The following command generates parameter_RZN2L_bsp_LED_0.bin (for RZ/N2L):
python parameter_generator.py userapp --src_addr 6004D000 --dest_addr
00000000 -i RZN2L_bsp_LED_0.bin -o parameter_RZN2L_bsp_LED_0.bin

3.3 Writing Data to QSPI Flash Memory
Writing the update program and user application program are accomplished using device setup tool and
sample program. Refer to chapter 2 in RZ/T2, RZ/N2 Device Setup Guide for Flash boot for the procedure.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 19 of 44
Apr.28.23

1. Write program files to external flash on RSK+ using device_setup.py. Open a command prompt on the
host PC and run the following command.

RZ/T2M:
> python device_setup.py writeflash --port COM4 --addr 60000000 -i
RZT2M_RSK_SSBL_xspi0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 60007050 -i
parameter_RZT2M_bsp_LED_0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 60007080 -i
RZT2M_RSK_FWUpdate.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 6004D000 -i
RZT2M_bsp_LED_0.bin
writeflash : Setup success.

RZ/T2L:

> python device_setup.py writeflash --port COM4 --addr 60000000 -i
RZT2L_RSK_SSBL_xspi0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 60007050 -i
parameter_RZT2L_bsp_LED_1.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 60007080 -i
RZT2L_RSK_FWUpdate.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 6004D000 -i
RZT2L_bsp_LED_1.bin
writeflash : Setup success.

RZ/N2L:

> python device_setup.py writeflash --port COM4 --addr 60000000 -i
RZN2L_RSK_SSBL_xspi0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 60007050 -i
parameter_RZN2L_bsp_LED_0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 60007080 -i
RZN2L_RSK_FWUpdate.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 6004D000 -i
RZN2L_bsp_LED_0.bin
writeflash : Setup success.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 20 of 44
Apr.28.23

2. Set SW4 on the RSK+ board to the following, User DIP Switch SW3-1 to OFF and press the reset button
S3 to confirm that the user application program starts and User LED0 on the board blinks.

RZ/T2M:
SW Setting Description
SW4.1 ON xSPI0 boot mode (x1 boot Serial flash)
SW4.2 ON
SW4.3 ON
SW4.4 ON JTAG Authentication by Hash is disabled.
SW4.5 OFF ATCM 1 wait

RZ/T2L:
SW Setting Description
SW4.1 ON xSPI0 boot mode (x1 boot Serial flash)
SW4.2 ON
SW4.3 ON
SW4.4 OFF ATCM wait cycle = 1 wait.
SW4.5 ON JTAG Authentication by Hash is disabled.

RZ/N2L:
SW Setting Description
SW4.1 ON xSPI0 boot mode (x1 boot Serial flash)
SW4.2 ON
SW4.3 ON
SW4.4 ON JTAG Authentication by Hash is disabled.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 21 of 44
Apr.28.23

Figure 3.1 Location of User LEDs (LED0) for RZ/T2M

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 22 of 44
Apr.28.23

Figure 3.2 Location of User LEDs (LED1) for RZ/T2L

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 23 of 44
Apr.28.23

Figure 3.3 Location of User LEDs (LED0) for RZ/N2L

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 24 of 44
Apr.28.23

4. Applying Firmware Updates
The procedure for updating user application programs using the firmware update system configured as
described in section 3 is as follows.

First, set up the host PC as described in 4.1, and then update the program or programs as described in4.2.

4.1 Host PC Setup
4.1.1 Tool Setup
Copy fwupdate_utility.py and fwupdate.py to a location of your choice on the host PC.

Next, install Python 3.8 on the host PC.

To install Python 3.8, download the Python 3.8 installer from the URL below and run it.

https://www.python.org/downloads/windows/

The tools fwupdate_utility.py and fwupdate.py are intended to be run on a Windows system with Python 3.8
installed. Their operation has been confirmed on systems running Windows 10.

Run the following command to view help on using fwupdate_utility.py:

fwupdate_utility.py -h

Run the following command to view help on using fwupdate.py:

fwupdate.py -h

4.1.2 Network Adapter Settings
In order to use fwupdate.py to send update files to a RZ/T2M, RZ/T2L or RZ/N2L device, the host PC and
the RZ/T2M, RZ/T2L or RZ/N2L device must be connected to the same network. Table 4.1 lists the address
settings for the RZ/T2M, RZ/T2L or RZ/N2L device and the host PC.

Table 4.1 Update Environment Address Settings

Device IP Address Net Mask
RZ/T2M, RZ/T2L or RZ/N2L device 192.168.10.100 255.255.255.0
Host PC 192.168.10.10 255.255.255.0

https://www.python.org/downloads/windows/

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 25 of 44
Apr.28.23

Example host PC network adapter settings are shown below (example of settings on Windows 10).

1. Open the network adapter properties window on the host PC.

2. Select Internet Protocol Version (TCP/IPv4) and open the properties window.

3. In the Use following IP address section, enter settings for the IP address and subnet mask, then click the

OK button.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 26 of 44
Apr.28.23

4.2 Update Procedure
The procedure for updating the user application program using the firmware update system configured on
the RSK+ is described below. If your system has not yet been configured as described in section 3, first
complete the system configuration before proceeding.

Table 4.2 shows the environment required to update programs on the RZ/T2M, RZ/T2L or RZ/N2L.

Table 4.2 Update Environment

Name Remarks
Evaluation board RZ/T2M RSK+, RZ/T2L RSK+ or RZ/N2L RSK+
USB cable 1 (Type-C, type-A)
Ether cable
Host PC Operation confirmed on Windows 10.
fwupdate_utility.py Update file generator tool
fwupdate.py Update files send tool

Table 4.3 lists the user application programs to be updated for RZ/T2M. Table 4.4 lists the user application
programs to be updated for RZ/T2L. Table 4.5 lists the user application programs to be updated for RZ/N2L.

Table 4.3 User Application Programs to be Updated for RZ/T2M

File Name Description
RZT2M_bsp_LED_1.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2M pack.
See section 3.2 for detailed creation instructions. Note
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED1: BSP_IO_PORT_19_PIN_4

parameter_RZT2M_bsp_LED_1.bin Parameter for the user application program
(RZT2M_bsp_LED_1.bin). This file is created after building
RZT2M_bsp_LED_1.bin.
See section 3.2 for detailed creation instructions. Note
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x60050000
RAM address where the program is loaded: 0x00000000

Note The explanation of 3.2 is about RZT2M_bsp_LED_0, but please replace the file name and address
with the user application program to be updated.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 27 of 44
Apr.28.23

Table 4.4 User Application Programs to be Updated for RZ/T2L

File Name Description
RZT2L_bsp_LED_3.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2L pack.
See section 3.2 for detailed creation instructions. Note
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED3: BSP_IO_PORT_18_PIN_1

parameter_RZT2L_bsp_LED_3.bin Parameter for the user application program
(RZT2L_bsp_LED_3.bin). This file is created after building
RZT2L_bsp_LED_3.bin.
See section 3.2 for detailed creation instructions. Note
The following OSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x60050000
RAM address where the program is loaded: 0x00000000

Note The explanation of 3.2 is about RZT2M_bsp_LED_0, but please replace the file name and address
with the user application program to be updated.

Table 4.5 User Application Programs to be Updated for RZ/N2L

File Name Description
RZN2L_bsp_LED_3.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/N2L pack.
See section 3.2 for detailed creation instructions. Note
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED3: BSP_IO_PORT_17_PIN_3

parameter_RZN2L_bsp_LED_3.bin Parameter for the user application program
(RZN2L_bsp_LED_3.bin). This file is created after building
RZN2L_bsp_LED_3.bin.
See section 3.2 for detailed creation instructions. Note
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x60050000
RAM address where the program is loaded: 0x00000000

Note The explanation of 3.2 is about RZT2M_bsp_LED_0, but please replace the file name and address
with the user application program to be updated.

4.2.1 Creating Update File
Use fwupdate_utility.py to create the update file (RZT2M_bsp_LED_1.bin.fwup, RZT2L_bsp_LED_3.bin.fwup
or RZN2L_bsp_LED_3.bin.fwup). Open a command prompt on the host PC and run the following command.

The following command will generate RZT2M_bsp_LED_1.bin.fwup (for RZ/T2M):

python fwupdate_utility.py --cpu 0 --param parameter_RZT2M_bsp_LED_1.bin --
write_addr 60050000 -i RZT2M_bsp_LED_1.bin -o RZT2M_bsp_LED_1.bin.fwup

The following command will generate RZT2L_bsp_LED_3.bin.fwup (for RZ/T2L):

python fwupdate_utility.py --cpu 0 --param parameter_RZT2L_bsp_LED_3.bin --
write_addr 60050000 -i RZT2L_bsp_LED_3.bin -o RZT2L_bsp_LED_3.bin.fwup

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 28 of 44
Apr.28.23

The following command will generate RZN2L_bsp_LED_3.bin.fwup (for RZ/N2L):

python fwupdate_utility.py --cpu 0 --param parameter_RZN2L_bsp_LED_3.bin --
write_addr 60050000 -i RZN2L_bsp_LED_3.bin -o RZN2L_bsp_LED_3.bin.fwup

4.2.2 Applying Update
Connect the host PC to the RSK+ with an Ethernet cable. Ethernet uses ETH0 for RZ/T2M and RZ/N2L, and
ETH2 for RZ/T2L. The host PC must be set up as described in 4.1 beforehand.

Set the User DIP Switch to ON. Use SW3-1 for RZ/T2M and RZ/N2L, and SW3-2 for RZ/T2L. Reset the
device to boot with the update.

Figure 4.1 Location of User DIP Switch (SW3-1), ETH0 and User LEDs (LED1) for RZ/T2M

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 29 of 44
Apr.28.23

Figure 4.2 Location of User DIP Switch (SW3-2), ETH2 and User LEDs (LED3) for RZ/T2L

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 30 of 44
Apr.28.23

Figure 4.3 Location of User DIP Switch (SW3-1), ETH0 and User LEDs (LED3) for RZ/N2L

1. Set the User DIP Switch to ON. Use SW3-1 for RZ/T2M and RZ/N2L, and SW3-2 for RZ/T2L. After

setting, press the reset button S3.

2. Use fwupdate.py to transfer the update file to the RZ/T2M, RZ/T2L or RZ/N2L. Open a command prompt

on the host PC and run the following command.

The following command will transfer RZT2M_bsp_LED_1.bin.fwup (for RZ/T2M):

python fwupdate.py --ip_address 192.168.10.100 --udp_port 10001 --tcp_port
10000 -i RZT2M_bsp_LED_1.bin.fwup

The following command will transfer RZT2L_bsp_LED_3.bin.fwup (for RZ/T2L):

python fwupdate.py --ip_address 192.168.10.100 --udp_port 10001 --tcp_port
10000 -i RZT2L_bsp_LED_3.bin.fwup

The following command will transfer RZN2L_bsp_LED_3.bin.fwup (for RZ/N2L):

python fwupdate.py --ip_address 192.168.10.100 --udp_port 10001 --tcp_port
10000 -i RZN2L_bsp_LED_3.bin.fwup

3. When the RZ/T2M, RZ/T2L or RZ/N2L receives the update file and successfully updates the user

application program, the following result is displayed at the command prompt:
192.168.10.100 Update success.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 31 of 44
Apr.28.23

4. Set the User DIP Switch to OFF. Use SW3-1 for RZ/T2M and RZ/N2L, and SW3-2 for RZ/T2L. After
setting, press reset button S3 to launch the updated user application program. For RZT2M, User LED1 on
the board blinks, and for RZ/T2L and RZ/N2L, User LED3 on the board blinks.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 32 of 44
Apr.28.23

5. Sample Program
This package is provided as a set of sample program projects including source codes and tool body files in
the execution format. This sample program projects and tools can be modified for each user environment.

In this section, the external specifications of the update program included in the sample program package
are described in 5.1 and 5.2, and the implementation specifications of the update program are described in
5.3. In addition, the specifications of the tools used with the sample program are described in 5.4.

5.1 Update File Format
Figure 5.1 shows the update file format that can be handled by the update program.

User program

Update infomation

CRC

n byte

72 byte

4 byte

CRC calculation range

Parameter for the user application program 16 byte

Figure 5.1 Update File Format

At the start of the update file is information such as the size of the user application program and the write
destination address in the external flash memory, stored in the form of a 72-byte update information block.
Table 5.1 shows the format of the file information. The unit of the Offset and Size values listed in Table 5.1 is
bytes.

The byte order of each field in the Update information shall be little-endian.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 33 of 44
Apr.28.23

Table 5.1 Update Information Format

Offset Field Size Description
0 Magic Number 4 Magic number

Set ASCII code (0x75706469) for "updi"
4 Reserved 8 Fixed 0
12 Write Address 4 When fwupdate_utility.py is executed, set the external flash address

to which the firmware specified by the "--write_addr" option is written.
16 Reserved 4 Fixed 0
20 Image Size 4 Total size of parameters for the user application program and the

User application program.
24 Reserved 4 Fixed 0
28 Update Target 4 Information required at Update is set in a bit field.

Each bit has the following meaning.
bit Description
0 CPU to run the program to be updated.

 0：CPU0
 1：CPU1

1 With or without parameter file input.
 0：Without parameter file
 1：With parameter file

32 TLV Length 4 Total byte size of TLV field.
Fixed 0x00000024

36 TLV field 36 Field consisting of Type&Length and Value
Offset Field Size Description
0 Type&Length 4 Fixed 0x60000008
4 Value 32 Product name

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 34 of 44
Apr.28.23

5.2 Communication Protocols of Update Program
Figure 5.2 illustrates the communication protocols of the update program running on the RZ/T2M or RZ/N2L
when receiving an update file. The control packets included in the communication protocols are sent and
received via UDP and TCP communication.

fwupdate.py Update program

START_UPDATE (UDP communication)

ACK (UDP communication)

FIRMWARE_DATA (TCP communication)

ACK or NACK (TCP communication)

Figure 5.2 Communication Protocols of Update Program

Table 5.2 shows the format of the control packets sent and received by the update program. Note that the
unit of the Offset and Size values shown below is bytes.

Table 5.2 Control Packet Format

Offset Field Size Value
0 Command Code 1 Command code
1 Payload size 4 Size of payload: n (little-endian)
5 Payload n Data of various types is stored here.

Table 5.3 lists the command codes of the control packets sent and received by the update program. The
contents of the packets corresponding to each command code are described in 5.2.1 to 5.2.4.

Table 5.3 Command Codes

Command Code Value Description
START_UPDATE 0x11 Reports start of firmware update.
FIRMWARE_DATA 0x12 Sends update file.
ACK 0x81 Firmware update acknowledgement response
NACK 0x82 Firmware update negative acknowledgement response

5.2.1 START_UPDATE
This firmware update start notification is received by the update program. The update program can receive
this packet as a UDP broadcast or unicast.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 35 of 44
Apr.28.23

Table 5.4 Contents of START_UPDATE Packet

Offset Field Size Value
0 Command Code 1 0x11
1 Payload size 4 0x00000000

5.2.2 FIRMWARE_DATA
This is the form in which the update program receives the update file. The update program receives this
packet via TCP communication.

Table 5.5 Contents of FIRMWARE_DATA

Offset Field Size Value
0 Command Code 1 0x12
1 Payload size 4 n
5 Payload n Update file data

5.2.3 ACK
This acknowledge response is sent by the update program when a command is received successfully. It is
sent via UDP in response to a START_UPDATE packet and via TCP in response to a FIRMWARE_DATA
packet.

Table 5.6 Contents of ACK

Offset Field Size Value
0 Command Code 1 0x81
1 Payload size 4 0x00000000

5.2.4 NACK
This negative acknowledge response is sent by the update program when an error occurs when receiving a
command. The update program sends this packet via TCP communication.

Table 5.7 Contents of NACK

Offset Field Size Value
0 Command Code 1 0x82
1 Payload size 4 0x00000001
5 Error code 1 Error code

• File error: 0x01
• Write failure: 0x02

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 36 of 44
Apr.28.23

5.3 Implementation Specifications of Update Program
5.3.1 Development Environment
Refer to RZ/T2, RZ/N2 Getting Started with Flexible Software Package.

5.3.2 File Structure
Table 5.8 and Table 5.9 list the main files contained in the firmware update sample program project.

Table 5.8 File Structure of Update Program

Folder Name File Name Description
RZ*_RSK_FWUpdate_Rev120\

├ *.jlink, *.launch, *project,
*.eww, *.ewd, *.ewp Project files

├ *.pincfg, *.xml, *.ipcf Flexible Software Package Files
├ rz*_cfg.txt
├ rz*\
├ rz*_cfg\
├ rz*_get\
├ script\ *.ld, *.icf Memory allocation
└ src\ *.c, *.h Update program source code folder

Table 5.9 File Structure of SSBL

Folder Name File Name Description
RZ*_RSK_SSBL_Rev120\

├ *.jlink, *.launch, *project,
*.eww, *.ewd, *.ewp Project files

├ *.pincfg, *.xml, *.ipcf Flexible Software Package Files
├ rz*_cfg.txt
├ rz*\
├ rz*_cfg\
├ rz*_get\
├ script\ *.ld, *.icf Memory allocation
└ src\ *.c, *.h SSBL Source code folder

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 37 of 44
Apr.28.23

5.3.3 Functions
Table 5.10 lists the main functions defined in the update program, and Table 5.11 lists the main functions
defined in the SSBL.

Table 5.10 Functions of Update Program

File Name Function Name Description
fwupdate.c fwupdate Main routine of firmware update

processing
check_updatefile Update file confirmation processing
write_user_application Write user applications to flash
write_param_info Write parameter for the user application

program to flash
change_flash_mng_area Update plane management area
packet_handler Packet analysis and firmware update

control processing
crc32.c calc_crc32 CRC32 calculation
fwupdate_thread_entry.c fwupdate_thread_entry Firmware update thread processing
net_thread_entry.c net_thread_entry FreeRTOS TCP
tcp_svr_thread_entry.c tcp_svr_thread_entry
udp_svr_thread_entry.c udp_svr_thread_entry
flash.c write_to_qspi_area QSPI flash memory driver

read_to_qspi_area
write_to_ospi_area OSPI flash memory driver
read_to_ospi_area
write_to_nor_area NOR flash memory driver
read_to_nor_area

Table 5.11 Functions of SSBL

File Name Function Name Description
ssbl.c second_application_boot_loader Main routine of loader program

user_application_load Load the user application programs
update_program_load Load the update program

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 38 of 44
Apr.28.23

5.3.4 Flowchart of Update Program Processing
Figure 5.3 is a flowchart showing the processing of the update program.

START

(1) Receive update file

(3) Write user application program and
parameter

(8) Send result (Success) (9) Send result (Failure)

(2) Check update file

(4) Check write result

End

Pass

Fail

(5) Is the flash a one plane use?
No, two plane

Yes, one plane (6) set plane management area

Pass

Fail

(7) Check write result

Pass

Fail

Figure 5.3 Flowchart of Update Program Processing

Details of the update program processing flowchart are described below.

(1) Receive Update File
Related function: packet_handler (fwupdate.c)
UDP and TCP communication are used to receive the update file. Refer to 5.2 for the communication
protocols used during update file reception.

(2) Check Update File

Related function: check_updatefile (fwupdate.c)
The CRC of the update file is used to confirm that the file information and user application program data
in the update file are not corrupt. The CRC of the file information area and user application program area
is calculated using CRC32, and the result is compared to the CRC of the update file to confirm that there
are no defects in the update file. If the comparison result is a match, processing jumps to (3) Write User
Application Program and Parameter, and if the result is a mismatch, processing jumps to (9) Send Result
(Failure).

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 39 of 44
Apr.28.23

(3) Write User Application Program and Parameter
Related function: write_user_application, write_param_info (fwupdate.c)
The user application program is written to the external flash memory. The Write Address contained in the
update information of the update file is used as the write address. The Image Size contained in the file
information of the update file minus the fixed length parameter size is used as the size of the user
application program to be written.

(4) Check Write Result

Related function: write_to_qspi_area, write_to_ospi_area, write_to_nor_area (flash.c)
The data written to the external flash memory is read from the flash memory and checked against the
original write data in the RAM to confirm that they match. The write result is success if they match and
failure if they do not match. If the write result is success, processing jumps to (5) Is the Flash a One Plain
Use?, and if the write result is failure, processing jumps to (9) Send Result (Failure).

(5) Is the Flash a One Plain Use?

Related function: firmware_update (fwupdate.c)
Whether the flash is one-plane use or not is set in the firmware update configuration. If the flash is one-
plane use, processing jumps to (8) Send Result (Success), and if the flash is two-plane use, processing
jumps to (6) Set Plane Management Area.

(6) Set Plane Management Area

Related function: change_flash_mng_area (fwupdate.c)
Update the settings in the Plane Management Area on the flash to switch the startup plane at the next
startup.

(7) Check Write Result

Related function: write_to_qspi_area, write_to_ospi_area, write_to_nor_area (flash.c)
The data written to the external flash memory is read from the flash memory and checked against the
original write data in the RAM to confirm that they match. The write result is success if they match and
failure if they do not match. If the write result is success, processing jumps to (8) Send Result (Success),
and if the write result is failure, processing jumps to (9) Send Result (Failure).

(8) Send Result (Success)

Related function: packet_handler (fwupdate.c)
An ACK packet is transmitted.

(9) Send Result (Failure)

Related function: packet_handler (fwupdate.c)
A NACK packet is transmitted. In addition, an error code is appended indicating a file error, if an error
occurred in (2) Check Update File, or indicating a write error, if an error occurred in (4) and (7) Check
Write Result.

5.3.5 Memory Maps
Table 5.12, Table 5.13, Table 5.14 and Table 5.15 show memory maps for the sample program.

In table the Update Target column indicates memory areas that can be updated using the update program.
Areas with a check mark () in the Update Target column can be updated using the update program.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 40 of 44
Apr.28.23

Table 5.12 Memory Map

Memory Type Address Size Description
ATCM 0x00000000 - 0x0003FFFF 190 KB Update program area
System RAM 0x10000000 - 0x1017FFFF 1.5 MB Update program RAM area
External Memory
(xSPI0 Flash)

0x60000000 - 0x63FFFFFF 64 MB User application program area

External Memory
(xSPI1 Flash)

0x68000000 - 0x68FFFFFF 16 MB User application program area

External Memory
(NOR Flash CS0)

0x70000000 - 0x71FFFFFF 32 MB User application program area

Table 5.13 Memory Map for the xSPI0 Flash in xSPI0 Boot Mode

Memory Type Address Size Description
Update
Target

xSPI0 Flash
(64MB)

0x60000000 - 0x6000004F 80 Byte Area for the parameter for the
loader



0x60000050 - 0x6000704F 28 KB SSBL area 
0x60007050 - 0x6000705F 16 Byte Area for the parameter for the

user application program
(CPU0)



0x60007060 - 0x6000706F 16 Byte Area for the parameter for the
user application program
(CPU1)



0x60007070 - 0x6000707F 16 Byte Plane management area 
0x60007080 - 0x6004CC7F 279 KB Update program area 
0x6004CC80 - 0x6004CFFF 0.875 KB Reserved 
0x6004D000 - 0x63FFFFFF 63 MB Area for User application

program


Table 5.14 Memory Map for the xSPI1 Flash in xSPI1 Boot Mode

Memory Type Address Size Description
Update
Target

xSPI1 Flash
(16MB)

0x68000000 - 0x6800004F 80 Byte Area for the parameter for the
loader



0x68000050 - 0x6800704F 28 KB SSBL area 
0x68007050 - 0x6800705F 16 Byte Area for the parameter for the

user application program
(CPU0)



0x68007060 - 0x6800706F 16 Byte Area for the parameter for the
user application program
(CPU1)



0x68007070 - 0x6800707F 16 Byte Plane management area 
0x68007080 - 0x6804CC7F 279 KB Update program area 
0x6804CC80 - 0x6804CFFF 0.875 KB Reserved 
0x6804D000 - 0x68FFFFFF 15 MB Area for User application

program


RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 41 of 44
Apr.28.23

Table 5.15 Memory Map for the NOR CS0 Flash in 16-bit Bus Boot Mode

Memory Type Address Size Description
Update
Target

NOR Flash
CS0
(32MB)

0x70000000 - 0x7000004F 80 Byte Area for the parameter for the
loader



0x70000050 - 0x7000704F 28 KB SSBL area 
0x70007050 - 0x7000705F 16 Byte Area for the parameter for the

user application program
(CPU0)



0x70007060 - 0x7000706F 16 Byte Area for the parameter for the
user application program
(CPU1)



0x70007070 - 0x7000707F 16 Byte Plane management area 
0x70007080 - 0x7004CC7F 279 KB Update program area 
0x7004CC80 - 0x7004CFFF 0.875 KB Reserved 
0x7004D000 - 0x71FFFFFF 31 MB Area for User application

program


5.3.6 How to Use NOR Flash in the RZ/N2L Project
The firmware update sample program project for RZ/N2L must be configured to use the external flash.

By default, the setting to use QSPI flash is enabled; to use NOR flash, the following settings are required.

1. Start FSP Configuration.
For GCC version, use e2studio.
For IAR version, use FSP Smart Configurator.
For details, Refer to RZ/T2, RZ/N2 Getting Started with Flexible Software Package.

2. Select "RSK + RZN2L_NOR" in pin settings and enable Generate data check.

3. Click Generate Project Content (green play icon).
Sample program code is generated that can use the NOR flash.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 42 of 44
Apr.28.23

5.4 Specifications of Tools Used with Sample Program
5.4.1 fwupdate_utility.py
The tool fwupdate_utility.py is used to create update files.

Using fwupdate_utility.py, you can create an update file by specifying the user application program to be
updated and the write destination address on the RZ/T2M, RZ/T2L or RZ/N2L device. The specified address
is stored in the file information of the update file.

The command format of fwupdate_utility.py is as follows:

python fwupdate_utility.py < options >

Some of the options of fwupdate_utility.py are required and some may be omitted. Table 5.16 lists the
required options and Table 5.17 lists the optional options.

Table 5.16 Required Options of fwupdate_utility.py

Option Description
-i < file name > Specify the file name of the user application program to be updated as

the < file name > string.
-o < file name > Specify the file name of the update file to be output as the < file name >

string.
--write_addr < address > Specify the address in the RZ/T2M, RZ/T2L or RZ/N2L external flash

memory to write the user application program to be updated to as the <
address > string. Specify the address as eight digits of hexadecimal
notation.
Example: 00100000

--param <file name> Specify the parameter file name of the user application program to be
updated as the < file name > string.

Table 5.17 Optional Options of fwupdate_utility.py

Option Description
--cpu <0 or 1> Specifies the CPU on which the user application program to be updated

runs.
If this option is omitted, it is assumed that "CPU0" is specified.

-h Specify this option to display help on using this tool.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 43 of 44
Apr.28.23

5.4.2 fwupdate.py
The tool fwupdate.py is used to send an update file to the RZ/T2M, RZ/T2L or RZ/N2L device.

Using fwupdate.py, you can send an update file to the RZ/T2M, RZ/T2L or RZ/N2L device via Ethernet by
specifying the update file, the port number to be used for communication, and the IP address of the transfer
destination RZ/T2M, RZ/T2L or RZ/N2L device. Afterward, the tool receives the update result from the
RZ/T2M, RZ/T2L or RZ/N2L device and outputs it to the console.

The command format of fwupdate.py is as follows:

python fwupdate.py < options >

Some of the options of fwupdate.py are required and some may be omitted. Table 5.18 lists the required
options and Table 5.19 lists the optional options.

Table 5.18 Required Options of fwupdate.py

Option Description
--udp_port < port number > Specify the port number to be used by fwupdate.py for UDP transmission

and reception as the < port number > string.
--tcp_port < port number > Specify the port number to be used by fwupdate.py for TCP transmission

and reception as the < port number > string.
-i < file name > Specify the update file to be sent to the RZ/T2M, RZ/T2L or RZ/N2L device

as the < file name > string.

Table 5.19 Optional Options of fwupdate.py

Option Description
--ip_address < IP address > Specify the IP address of the RZ/T2M, RZ/T2L or RZ/N2L device with the

user application program to be updated as the < IP address > string. When
attempting to update the user application program, START_UPDATE is
unicast to < IP address > if this option is specified, and it is broadcast if the
option is not specified.

-h Specify this option to display help on using this tool.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0120 Rev.1.20 Page 44 of 44
Apr.28.23

Revision History

Rev. Date
Description
Page Summary

1.00 Jul 8, 2022 - First edition issued
1.10 Oct 21, 2022 - RZ/N2L is supported
1.20 Apr 28, 2023 - RZ/T2L is supported

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Introduction
	1.2 Features
	1.3 Limitations
	1.4 Package Contents
	1.5 Related Documents
	1.6 Explanation of Terms

	2. Firmware Update Mechanism
	2.1 Operating Modes
	2.2 Sample Program Configuration
	2.3 Using External Flash Memory

	3. Configuring the Firmware Update System
	3.1 Update Program and SSBL Configuration
	3.1.1 Update Program
	3.1.2 SSBL

	3.2 User Application Program Configuration
	3.3 Writing Data to QSPI Flash Memory

	4. Applying Firmware Updates
	4.1 Host PC Setup
	4.1.1 Tool Setup
	4.1.2 Network Adapter Settings

	4.2 Update Procedure
	4.2.1 Creating Update File
	4.2.2 Applying Update

	5. Sample Program
	5.1 Update File Format
	5.2 Communication Protocols of Update Program
	5.2.1 START_UPDATE
	5.2.2 FIRMWARE_DATA
	5.2.3 ACK
	5.2.4 NACK

	5.3 Implementation Specifications of Update Program
	5.3.1 Development Environment
	5.3.2 File Structure
	5.3.3 Functions
	5.3.4 Flowchart of Update Program Processing
	5.3.5 Memory Maps
	5.3.6 How to Use NOR Flash in the RZ/N2L Project

	5.4 Specifications of Tools Used with Sample Program
	5.4.1 fwupdate_utility.py
	5.4.2 fwupdate.py

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

