
R01AN3860EJ0110 Rev.1.10 Page 1 of 50
Apr. 11, 2018

RZ/T1 Group
Guide for Applying the Code Generation Tool to the Sample Program

APPLICATION NOTE

Introduction
This application note describes the process of incorporating a control program for peripheral modules of the
microcontroller (device driver program) in the sample program of the RZ/T1 Group Initial Settings. The code for the
control program is generated by the automatic generation tool for I/O drivers (hereinafter called the Code Generation
Tool).

The resulting sample program enables periodic counter operation of the compare match timer (CMT) that produces
compare-match interrupts which are used to switch an LED on and off.

Target Devices
RZ/T1 Group

When applying the program covered in this application note to another microcontroller, modify the program to suit the
specifications of the target microcontroller and extensively evaluate the program after modification.

R01AN3860EJ0110
Rev.1.10

Apr. 11, 2018

Introduction

1. Specifications.. 3

2. Operating Environment ... 4

3. Related Application Notes... 5

4. Peripheral Functions ... 6

5. Hardware .. 7
5.1 Hardware Configuration Examples ... 7
5.2 Pins... 8

6. Software.. 9
6.1 Operation Overview.. 9

6.1.1 Project Settings .. 11

6.1.2 Preparation ... 13
6.1.3 Exception Processing Vector Table.. 13

6.2 Interrupts... 14

6.3 Procedure for Incorporating Code from the Code Generation Tool...................................... 15
6.3.1 Generating Code with the Code Generation Tool .. 15
6.3.2 Incorporation in the Sample Program of RZ/T1 Group Initial Settings 31

6.4 Fixed-Width Integer Types.. 43
6.5 Function.. 43
6.6 Flowchart .. 44

6.6.1 Loader Program Processing... 44
6.6.2 Processing by the Application Program Created by the Code Generation Tool........... 45
6.6.3 Common main Processing ... 46

6.6.4 Interrupt Processing by the Timer Selected by the User (CMT0)................................. 46

7. Sample Program... 47

8. Related Documents .. 48

9. Usage Note ... 49

Table of Contents

R01AN3860EJ0110 Rev.1.10 Page 3 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

1. Specifications
Table 1.1 lists the peripheral functions used and their applications and Figure 1.1 shows the operating environment.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Module Application

Clock generation circuit (CPG) Provides the CPU clock and low-speed on-chip oscillator

Interrupt Controller (ICUA) Processing the compare-match interrupt (CMI0)

Compare match timer (CMT) Periodic counter operation and tests for matches by the compare match timer

Bus state controller (BSC) Connection of NOR flash memory to the CS0 and CS1 spaces and SDRAM to the CS2
and CS3 spaces.

SPI multi I/O bus controller (SPIBSC) Used to connect the serial flash memory to SPI multi I/O space

Error control module (ECM) Initial setting of the ERROROUT# pin

General I/O port Control of pin output to turn the LED on and off

Note 1. Indicates the device that the user needs to prepare.

Figure 1.1 Operating Environment

Host computer*1

CAN

USB
(Host/Func)

LAN EtherCAT

R7S910018

PMOD1

DSMIF

PMOD2

JTAG

Microphone
headphone

Serial
RZ/T1 evaluation board
RTK7910018C00000BE

DC5V output
AC adaptor

(Included accessory)

ICE*1

R01AN3860EJ0110 Rev.1.10 Page 4 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

2. Operating Environment
The sample program covered in this application note runs in the environment below.

Table 2.1 Operating Environment

Item Description

Microcomputer RZ/T1 Group

Operating frequency CPUCLK = 450 MHz

Operating voltage 3.3 V

Integrated development environment
(any of those listed)

From IAR Systems:
Embedded Workbench for ARM Version 7.80.2
From ARM:
DS-5TM 5.25
From Renesas:
e2studio 5.2.0

Tool for generating code From Renesas:
AP4 1.07

Note: The e2studio includes a plug-in that has equivalent functionality for generating code
to that of AP4 1.04.

Operating mode SPI boot mode
16-bit bus boot mode

Board used RZ/T1 evaluation board
(RTK7910018C00000BE)

Device used
(Functions used on the board)

• NOR flash memory (for connection to the CS0 and CS1 spaces)
Manufacturer: Macronix International Co., Ltd.
Model: MX29GL512FLT2I-10Q

• SDRAM (for connection to the CS2 and CS3 spaces)
Manufacturer: Integrated Silicon Solution Inc.
Model: IS42S16320D-7TL

• Serial flash memory
Manufacturer: Macronix International Co., Ltd.
Model: MX25L51245G

R01AN3860EJ0110 Rev.1.10 Page 5 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

3. Related Application Notes
Other application notes that are related to this one are listed below. Please refer to them, too.

• RZ/T1 Group Initial Settings (R01AN2554EJ)
• RZ/T1 Group Compare Match Timer (CMT) (R01AN2555EJ)

R01AN3860EJ0110 Rev.1.10 Page 6 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

4. Peripheral Functions
See the RZ/T1 Group User's Manual: Hardware for basic descriptions of operating modes and the clock generation
circuit (CPG), compare match timer (CMT), interrupt controller (ICUA), bus state controller (BSC), SPI multi I/O bus
controller (SPIBSC), error control module (ECM), reset system, and general I/O ports.

R01AN3860EJ0110 Rev.1.10 Page 7 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

5. Hardware

5.1 Hardware Configuration Examples
Figure 5.1 shows an example of the hardware configuration for this application.

Figure 5.1 Example of the Hardware Configuration

ICUA
(Interrupt control unit A) Cortex-R4F Low power

consumption

RZ/T1

CMT Ch0 I/O port

LED10

Write protection
for registers

PM7

R01AN3860EJ0110 Rev.1.10 Page 8 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

5.2 Pins
Table 5.1 lists pins to be used and their functions.

Note: The mark "#" indicates negative logic (i.e. active low).
Note 1. The function for this pin is to be set by the Code Generation Tool for that purpose.

Table 5.1 Pins and Functions

Pin Name Input/Output Function

A1 to A25*1 Output Address signal output for NOR flash memory and SDRAM

D0 to D15*1 Input/Output Data signal input and output for NOR flash memory and SDRAM

CS0#*1 Output Device selection signal output to NOR flash memory in the CS0 space

CS1#*1 Output Device selection signal output to NOR flash memory in the CS1 space

CS2#*1 Output Device selection signal output to SDRAM in the CS2 space

CS3#*1 Output Device selection signal output to SDRAM in the CS3 space

RAS#*1 Output RAS# control signal output to SDRAM

CAS# *1 Output CAS# control signal output to SDRAM

RD/WR#*1 Output Read control signal or write control signal output to SDRAM

CKE*1 Output CK enabling control signal output to SDRAM

RD#*1 Output Strobe signal output indicating reading

BS# Output Not used in this sample program.

WE0#/DQMLL*1 Output Write strobe signal output for D15 to D8

WE1#/DQMLU*1 Output Write strobe signal output for D7 to D0

SPBSSL*1 Output Slave selection

SPBCLK*1 Output Clock output

SPBMO/SPBIO0*1 Input/Output Master output data: data 0

SPBMI/SPBIO1*1 Input/Output Master input data: data 1

SPBIO2*1 Input/Output Data 2

SPBIO3*1 Input/Output Data 3

MD0 Input Boot mode selection:
MD0 = "L", MD1 = "L", MD2 = "L" (SPI boot mode)
MD0 = "L", MD1 = "H", MD2 = "L" (16-bit bus boot mode)MD1 Input

MD2 Input

PM7*1 Output Lighting and darkening LED10

R01AN3860EJ0110 Rev.1.10 Page 9 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6. Software

6.1 Operation Overview
This sample program is based on the sample program of the RZ/T1 Group Initial Settings. The loader program of the
sample program of of the Initial Settings is used as it is for the loader program (loader) section. The user application
program (user application) incorporates the code generated by the Code Generation Tool with the common main code.
The actual process of incorporation will be described later.

See Application Note: RZ/T1 Group Initial Settings for more details on the operation of the sample program of the RZ/T1
Group Initial Settings.

Figure 6.1 shows the configuration outline of the sample program produced in this application note.

• The user application section in the sample program of the Initial Settings should be replaced with the user application section
generated with the Code Generation Tool.

• Incorporating code from the Code Generation Tool as in this process can, for example, allow more efficient program development
in the case of changes to the set-up of peripheral functions.

• A common main function was generated for this sample program to replace that in the sample program of the Initial Settings.

Figure 6.1 Configuration of This Sample Program in Outline

Sample program of Initial Settings

Code created by the tool

Code Generation Tool

Common main

Loader section

User application
section

This part of the
sample program of
the Initial Settings is
used as it is.

Added for this sample program

R01AN3860EJ0110 Rev.1.10 Page 10 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Figure 6.2 shows the operation of the loader and user application initial sections in outline.

After the device is booted up, the loader sets up the stack among other things, copies the user application program, and
causes execution to branch to the address where the user application program starts.

As you see in the figure below, both the loader from the sample program of the Initial Settings and the user application
code generated through automatic code generation make settings for the clock and bus controllers. Therefore, in this
program, conflicts between the settings have been avoided by disabling (commenting out) the settings for the clock and
bus controllers in the loader.

The code generated by code generation for the user application sets up the interrupt controller, the clock, the buses and
other peripheral modules. Settings in this part of the code are made to suit the operating mode in use (in this case, SPI
boot, 16-bit bus boot).

Settings to start cyclic counter operation of the compare match timer (CMT) and for switching the LED on and off in
response to compare match A interrupts are made in the common main function, which is independent of the operating
mode.

This process of incorporation demonstrates how users are able to use code produced by setting in the Code Generation
Tool as desired with the loader section of the sample program of the Initial Settings.

Note 1. Settings for the clock oscillator and bus controllers in the loader program are commented out to avoid conflict with the
settings from the Code Generation Tool.
However, if you would like to speed up copying to the ATCM, etc.in the loader program, you can move the code for settings
produced by the code generator to the loader program.

Note 2. The compare match timer (CMT) is used to produce periods of waiting in setting up the error control module (ECM), and the
CMT is reinitialized after that process.
To avoid conflict with code from the Code Generation Tool, setting the ECM up was transferred from the main process of the
sample program of the Initial Settings to the loader program for this application. See Application Note: RZ/T1 Group Initial
Settings for more details on setting the ECM up.

Figure 6.2 Outline of Operations after Booting Up the Device

Loader section
in the BTCM area

Initialization of stack, VFP, variables, etc.

Copying of the user application program and
variables

Code Generation Tool
Branching to the application program

Bus-controller settings (BSC, SPIBSC)
Set by the Code Generation Tool following deletion

from the program of the Initial Settings.*1

Clock oscillator settings (450 MHz)
Set by the Code Generation Tool following deletion

from the program of the Initial Settings.*1

ECM settings*2

Taken from main for the Initial Settings

User application section
in the ATCM area

16-bit bus boot (NOR) version
Created by the Code Generation Tool

SPI-boot (serial) version
Created by the Code Generation Tool

Code Generation Tool
Starting the application program

Interrupt and pin settings

Settings by code from the Code Generation Tool
Settings of clock oscillator,

bus state controller,
SPI multi I/O bus controller,

compare match timer and other user settings

Common main

Branch to common main

Start of loader program

R01AN3860EJ0110 Rev.1.10 Page 11 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.1.1 Project Settings
This sample program includes three projects as listed below.

Table 6.1 and Table 6.2 show the hierarchies of folders following incorporation of the code generated by the Code
Generation Tool with that from the sample program of the Initial Settings for two of the IDEs.

The folders and the files incorporated with the sample program are in bold type. Other than those parts, the structure is
the same as that of the sample program of the Initial Settings.

See Application Note: RZ/T1 Group Initial Settings for the development environment and project settings.

Table 6.1 Folder Structure of the Sample Program of the Initial Settings Following Incorporation of the Code
from the Code Generation Tool (1/2)

Main Hierarchy of Folders (EWARM)

Project folder Subfolder Remark

RZ_T1_init_boot inc Folder for storing the include files for the sample program of
the Initial Settings

lib Library folder for EWARM

src cg_src_nor cg_src

*.cgp

*.ipcf

[Folder generated with the Code Generation Tool]
(16-bit bus boot version (NOR))

• Output folder for the source code (cg_src)
• Working file for the Code Generation Tool (.cgp)
• Project connection file (.ipcf)

cg_src_serial cg_src

*.cgp

*.ipcf

[Folder generated with the Code Generation Tool]
(SPI boot version (serial))

• Output folder for the source code (cg_src)
• Working file of the Code Generation Tool (.cgp)
• Project connection file (.ipcf)

common Sample program folder of the original initial settings program

drv Driver folder

sample user_main.c Folder for the main program of the original initial settings
program
Common main
(user_app_main)

RZ_T1_init_ram inc Include files for the RAM version of the original initial settings
program

lib Library folder for EWARM

src cg_src_ram cg_src

*.cgp

*.icpf

[Additional folder for files from the Code Generation Tool]
(RAM version)

• Output folder for the source code (cg_src)
• Working file of the Code Generation Tool (.cgp)
• Project connection file (.ipcf)

common Sample program folder for the original initial settings program

drv Driver folder

sample user_main.c Folder for folder main in the RAM-execution version of the
original initial settings program
Common main
(user_app_main)

(1) RZ_T1_init_boot

(2) RZ_T1_init_ram

RZ_T1_init_nor_boot.eww: 16-bit bus boot version

RZ_T1_init_serial_boot.eww: SPI boot version

RZ_T1_init.eww：Version for execution from RAM

R01AN3860EJ0110 Rev.1.10 Page 12 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Note 1. When incorporating code generated with the Code Generation Tool in the e2studio environment, place iodefine.h from the inc
folders of each of the projects immediately below the project folder.

Table 6.2 Folder Structure of the Sample Program of the Initial Settings Following Incorporation of the Code
from the Code Generation Tool (2/2)

Main Hierarchy of Folders (e2studio)

Project folder Subfolder Remark

RZ_T_nor_sample .setting CodeGenerator [Folder generated with the Code Generation Tool]
(16-bit bus boot version (NOR))

• Working file for the Code Generation Tool
(.cgp)

inc Folder for storing the include files for the sample
program of the Initial Settings

src cg_src [Folder generated with the Code Generation Tool]
(16-bit bus boot version (NOR))

• Output folder for the source code (cg_src)

common Sample program folder of the original initial settings
program

drv Driver folder

sample user_main.c Folder for the main program of the original initial
settings program
Common main
(user_app_main)

iodefine.h*1 iodefine for the e2studio, transferred from the inc
folder

RZ_T_sflash_sample .setting CodeGenerator [Folder generated with the Code Generation Tool]
(SPI boot version (serial))

• Working file of the Code Generation Tool (.cgp)

inc Folder for storing the include files for the sample
program of the Initial Settings

src cg_src [Folder generated with the Code Generation Tool]
(SPI boot version (serial))

• Output folder for the source code (cg_src)

common Sample program folder of the original initial settings
program

drv Driver folder

sample user_main.c Folder for the main program of the original initial
settings program
Common main
(user_app_main)

iodefine.h*1 iodefine for the e2studio, transferred from the inc
folder

RZ_T_ram_sample .setting CodeGenerator [Folder generated with the Code Generation Tool]
(RAM version)

• Working file of the Code Generation Tool (.cgp)

inc Include files for the RAM version of the original initial
settings program

src cg_src [Folder generated with the Code Generation Tool]
(RAM version)

• Output folder for the source code (cg_src)

common Sample program folder of the original initial settings
program

drv Driver folder

sample user_main.c Folder for the main program of the RAM version of the
original initial settings program
Common main
(user_app_main)

iodefine.h*1 iodefine for the e2studio, transferred from the inc
folder

R01AN3860EJ0110 Rev.1.10 Page 13 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.1.2 Preparation
Settings for SW4 on the RZ/T1 evaluation board (RTK7910018C00000BE) depend on the project to be used. Table 6.3
lists the settings. Each setting of SW4 is shown in the RZ/T1 Evaluation Board RTK7910018C00000BE User's Manual.
For details, see Section 8, Related Documents.

6.1.3 Exception Processing Vector Table
The RZ/T1 has 7 types of exception processing (for resets, undefined instructions, software interrupts, abortion of
prefetching, abortion of data, and IRQ and FIQ exceptions). The vectors are allocated to the 34-byte area starting from
address 0000 0000H (address range 0000 0000h to 0000 0024h) when the Code Generation Tool is used.

Write the branch instruction for processing of each exception in the exception processing vector table.

Table 6.4 shows the exception processing vector table in this program. Please adjust it as necessary.

Note: In the application program, locations from 0000 001Ch to 0000 0024h including those for FIQ exceptions above should be
overwritten by code generated by the Code Generation Tool.

Table 6.3 Settings of SW4

Sample Program SW4-1 SW4-2 SW4-3 SW4-4 SW4-5 SW4-6

16-bit bus boot mode version ON OFF ON ON ON OFF

SPI boot mode version ON ON ON ON ON OFF

RAM execution version Any setting of SW4 above

Table 6.4 Exception Processing Vector Table

Exception Handler Address Remark

RESET exception 0000 0000h Branches to itself (to avoid branching to an unknown address)

Undefined instruction exception 0000 0004h Branches to itself (user definable)

Software interrupt exception 0000 0008h Branches to itself (user definable)

Prefetch abort exception 0000 000Ch Branches to itself (user definable)

Data abort exception 0000 0010h Branches to itself (user definable)

Reserved 0000 0014h Branches to itself (user definable)

IRQ exceptions 0000 0018h Branches to itself (to avoid branching to an unknown address)

FIQ exceptions 0000 001Ch Branches to itself (overwritten by the Code Generation Tool)

R01AN3860EJ0110 Rev.1.10 Page 14 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.2 Interrupts
Table 6.5 shows the interrupt to be used in the sample program.

Table 6.5 Interrupt to be Used in the Sample Program

Interrupt (Source ID) Priority Level Outline of Processing

CMT0 interrupt (CMI0) 15 Whenever matches in comparison are detected (at the 100-ms
interval specified by the Code Generation Tool), this interrupt is
generated and LED10 is turned off if on and on if off as a
result.

R01AN3860EJ0110 Rev.1.10 Page 15 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.3 Procedure for Incorporating Code from the Code Generation Tool
This section gives an example of the procedure when the Code Generation Tool is used while EWARM is the IDE. The
assumed operating mode is SPI boot mode.

6.3.1 Generating Code with the Code Generation Tool
In this sample program, PORTM7 is set up to switch LED10 on and off in response to compare-match interrupts
produced by the cyclic counter operation of CMT0. A description of the example of the procedure for this sample
program follows.

(1) Starting the Tool for Generating Code

(2) Creating a New Project
The following setting is necessary to create the new project.
• Select the microcontroller (an R7S910018CBG in the figure), and specify the compiler to use (that of IAR

EWARM), the name of the project, and where to create the project.

• Note on the Name and Location of the Project
The desired location specified by the user will be the place where the project is to be initially created with the
Code Generation Tool, but the location for storage of the output file of the Code Generation Tool is separated
per operating mode of the sample program.

Example of the Sample Program:
 Folder name for 16-bit bus boot mode: cg_src_nor
 Folder name for SPI boot mode: cg_src_serial
For how to incorporate each created folder into the sample program for making the initial settings of devices,
refer to Section 6.3.2 (1), Importing the Environment of the code created by the Code Generation Tool
(Copying).

R01AN3860EJ0110 Rev.1.10 Page 16 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(3) Compare Match Timer (CMT) and Port Settings

[Settings for the Compare Match Timer]
Set up the compare match timer for use with the settings below.
 Channel to use: CMT0
 Clock setting: PCLKD/512
 Interval: 100 ms
 Interrupt from compare match (CMI0): Enabled
 Priority level: 15

• Screenshot [1]: Settings of CMT0

• Selecting "Used" for a peripheral module allows you to set the module up. Add the settings to suit your needs. Lock icons appear in
the project tree to indicate that code is to be created from the settings.

R01AN3860EJ0110 Rev.1.10 Page 17 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Settings for the Port]
Set up the port pin for use as listed below.
 Used pin: PORTM7 (connected to LED10)
 Input/output: Output
 Setting for output: Select "Output 1".

• Screenshot [2]: Setting of PORTM7

(4) Setting Modules for the Clock Signals and Bus
The settings for this example are as shown for the Initial Settings sample program (SPI boot mode).

[Setting the Clock Oscillator]
Make the oscillator settings listed below.
 Setting of boot mode: SPI boot
 Setting of PLL1 circuit: Check "Operation".
 Setting of low-speed on-chip oscillator (LOCO): Check "Operation".
 Clock source: PLL1
 CPU clock (CPUCLK): 450 (MHz)
 External bus clock: 75 (MHz)

• "Output 1" is set on PM7 as the output port pin to switch LED10 on in the example of this sample program.

R01AN3860EJ0110 Rev.1.10 Page 18 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

• Screenshot [3]: Clock Setting

Note: Values other than those framed in red are the default values of the Code Generation Tool.

R01AN3860EJ0110 Rev.1.10 Page 19 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Setting the Bus State Controller]
Make the settings listed below.
 General setting: Use Bus operation setting
 Setting for CS0: SRAM
 Setting for CS1: SRAM
 Setting for CS2: SDRAM
 Setting for CS3: Common with those for CS2
 Setting for address pin selection (Address pin check setting): Group check
 Setting for group selection (Address pin group check setting): A1 to A25

• Screenshot [4]: Settings for the bus state controller (General setting)

Note: Values other than those framed in red are the default values of the Code Generation Tool.

R01AN3860EJ0110 Rev.1.10 Page 20 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

CS0:
 Area setting: Bus width of 16 bits
 Bus timing setting: Numbers of cycles for each parameter
 External wait setting: For [External wait mask], select [External wait input is ignored]

• Screenshot [4]: Settings for the bus state controller (Settings for CS0)

R01AN3860EJ0110 Rev.1.10 Page 21 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

CS1:
 Area setting: Bus width of 16 bits
 Bus timing setting: Numbers of cycles for each parameter
 External wait setting: For [External wait mask], select [External wait input is ignored]

• Screenshot [4]: Settings for the bus state controller (Settings for CS1)

CS2:
 Area setting: Bus width of 16 bits for CS2 (default)
 Area setting: Bus width of 16 bits for CS3 (default)
 Type: Normal SDRAM (default)
 Number of address bits: Numbers of address bits for rows and columns in each area
 Mode setting: Burst read/burst write for each area
 Clock select: CKIO/16
 Constant register value for refresh time (Refresh compare match value): 36
 Enable compare match interrupt: Release the checkmark
 Bus timing setting: Numbers of cycles for each parameter

R01AN3860EJ0110 Rev.1.10 Page 22 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

• Screenshot [4]: Settings for the bus state controller (Settings for CS2)

Note: Values other than those framed in red are the default values of the Code Generation Tool.

R01AN3860EJ0110 Rev.1.10 Page 23 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Set the output of user functions for the same modules as in the sample program for the Initial Settings.
• Generate your own code to handle processing for the initial set-up (r_xxx_user.c).

By default, code is not generated for API functions of the code generation tool that are not displayed with an icon
that includes a lock. Here, we describe the setting when the R_BSC_Create_UserInit function is to be used. Select
the API function in the code preview of the project tree, right-click on that entry, and select [Generate Code]. This
causes the R_BSC_Create_UserInit function to be generated in the r_cg_bsc_user.c file at the time of actual code
generation. When the function is selected, the icon of an open lock is displayed. For the details on usage of the Code
Generation Tool, refer to AP4, Applilet3 User's Manual: Common Operations (R20UT3420EJ).
 Created file: r_cg_bsc_user.c
The statements for settings by API functions in the generated code will be explained in point (6), following the
description of setting up and generating the code.

R01AN3860EJ0110 Rev.1.10 Page 24 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Settings for the SPI Multi I/O Bus Controller]
 General setting: Select "External address space read mode" as the module setting.
 Transfer speed setting: Set "Base bit rate" as 75 Mbps
 Transfer format setting: Settings for clock delay, etc.

• Screenshot [5]: Settings for SPI multi I/O bus controller (General setting)

[Note]
To accelerate the serial flash memory, initially set the SPIBSC to the SPI operating mode and the serial flash
memory to the quad I/O mode in the sample program for the initial settings. After that, re-set the mode to that of
reading from the external address space.
On the other hand, in this procedure, the SPIBSC is set to be used in external address space read mode and the serial
flash memory in single I/O mode. The command to be used is the FAST READ4B (0x0C) command.

Note: Values other than those framed in red are the default values of the Code Generation Tool.

R01AN3860EJ0110 Rev.1.10 Page 25 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Setting]:
Other types of settings are made in the red frames of the figure below.

• Screenshot [5]: Settings for the SPI multi I/O bus controller (Setting)

Note: Values other than those framed in red are the default values of the Code Generation Tool.

R01AN3860EJ0110 Rev.1.10 Page 26 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(5) Pin Function Settings
Make settings for those pins for which the multiplexed function is actually to be used.
Example for this Sample: Each Screen for Setting and Describing Pin Functions from [Device List View] (1/3)

R01AN3860EJ0110 Rev.1.10 Page 27 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Example for this Sample: Each Screen for Setting and Describing Pin Functions from [Device List View] (2/3)

Example for this Sample: Each Screen for Setting and Describing Pin Functions from [Device List View] (3/3)

R01AN3860EJ0110 Rev.1.10 Page 28 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

• Select [Device List View] from the icon on the tool bar to select the bus state controller and set BS# pin
(PORT41). Setting of high driving ability output from CKIO pin (PORT10) is done in step (6), following the
code generation.

Note: Pins with multiplexed functions will have their default settings immediately after release from the reset state. Make sure that the
multiplexed pin functions that are actually to be used are selected. Settings for pins which are not selected as [Locked] can be
changed to another setting. To avoid unnecessary contention, please select the pins to be used as [Locked] (recommended)
after checking. Make sure that there are no errors that will lead to contention and so on.

(6) Code Generation and Modification with User-Defined Code
Generate the code after completing the settings from (1) to (5).
When the code is generated, the folder cg_src is created immediately below the folder cg_rc_serial, in which the
project of the Code Generation Tool generated. The source code and header code are generated in the former folder.

• Modifying generated code
The Code Generation Tool overwrites code whenever it generates new code. To merge code written by the user
with newly generated code, it must be written between specific comment lines to protect it from being
overwritten. [Merge file] is the default setting for file generation control.

The comment lines to indicate code to be merged are written in each file of code output by the Code Generation
Tool as shown below. The comment lines protect the user code since the code between them is not overwritten in the
case of merging with an existing file when code is generated again.

/* Start user code. Do not edit comment generated here */

 ←Write code between these lines.
/* End user code. Do not edit comment generated here */

Note: Please don't modify or move the comments for use in merging. If they are modified or moved, merging will not be successful.

R01AN3860EJ0110 Rev.1.10 Page 29 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Setting an API function for the Bus State Controller]
The code shown below should be written in modifying the file created in step (4).
 Target file: r_cg_bsc_user.c
 Target API function: R_BSC_Create_UserInit
• Setting of high driving ability output for PORT10.

Setting the pin function of the clock for the bus (CKIO)
• Setting of WCR for SDRAM to the CS2 space (BSC_CS2WCR_1)

When the e2studio (with equivalent functionality to AP4 1.04) is used, the additional settings should be made
here.

• Calling the API function for initial settings of the SDRAM (R_BSC_InitializeSDRAM)
The API function for the initial settings of the SDRAM is called in the user's own code for initialization
processing.

Write the following code between the comment lines to retain user code in the target API function during the
process of merging.

[Setting the API Function for Response to the Compare Match Timer]
The following code is written in the interrupt processing routine by modifying the file created in step (3).
 Target file: r_cg_cmt_user.c
 Target API function: r_cmt_cmi0_interrupt
• Write the code for switching LED10 on or off in the interrupt processing routine for the compare match in

response to operation of the cyclic counter.

Write the following code between the comment lines to retain user code in the target API function during the
process of merging.

 /* Start user code. Do not edit comment generated here */

 /* Set PORT1 as high-drive output setting for connecting SDRAM */

 PORT1.DSCR.WORD = 1; ←Setting of high driving ability output for PORT10
 /* Set wait control register of CS2 space */

 BSC.CS2WCR.CS2WCR_1.LONG = 0x00000400; ←Setting of WCR for SDRAM to the CS2 space (required
only for the e2studio)

 R_BSC_InitializeSDRAM(); ←Setting of API function for initial settings of SDRAM
 /* End user code. Do not edit comment generated here */

 /* Start user code. Do not edit comment generated here */

 /* Toggle the PORTM7 output level(LED10) */

 PORTM.PODR.BIT.B7 ^= 1; ←Interrupt processing (switching LED10 on or off)
 /* End user code. Do not edit comment generated here */

R01AN3860EJ0110 Rev.1.10 Page 30 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Setting the API Function for the User Application Program]
After the code is generated, the file r_cg_main.c to contain the main processing is created by the Code Generation
Tool under the folder cg_src. In this step, the file r_cg_main.c in the folder for the SPI boot mode version cg_src is
needed to be modified.
In the main processing of the user application in the file r_cg_main.c , function R_MAIN_UserInit is called. For this
sample program, the calling function of the main processing as stated in the function should be common to the 16-
bit bus boot version and SPI boot (serial) version.
 Target file: r_cg_main.c
 Target API function: R_MAIN_UserInit
 Added common main function name: user_app_main

Write the following code between the comment lines to retain user code in the target API function during the
process of merging.

Note: The name of the function to act as the common main function can be as desired by the user, but it must be the same name as
that of the common main function created in Section 6.3.2 (4), Creating a Common main File.

void R_MAIN_UserInit(void)

{

 /* Start user code. Do not edit comment generated here */

 user_app_main(); ←Common main function to be added
 /* End user code. Do not edit comment generated here */

}

R01AN3860EJ0110 Rev.1.10 Page 31 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.3.2 Incorporation in the Sample Program of RZ/T1 Group Initial Settings
The code generated by the Code Generation Tool should be incorporated in the EWARM version of the sample program
environment for making initial settings.

As the example for this sample program, incorporation of the code generated and written in Section 6.3.1, Generating
Code with the Code Generation Tool, is described below.

Remark: From this point forward, the numbers of line and etc. are described on the basis of Rev. 1.30 of the sample
program of the Initial Settings. When incorporating the code from the previous steps, use the latest version of
the sample program of the Initial Settings at that point in time.

(1) Importing the Environment of the code created by the Code Generation Tool (Copying)
Copy the project folder of the Code Generation Tool itself which was created in 6.3.1 (2), Creating a New
Project, to the folder for storage (src) of the source files among the project files of the sample program of the Initial
Settings.

Examples for this Sample Program:
 Code Generation Tool Project name for 16-bit bus boot mode: cg_src_nor
 Code Generation Tool Project name for SPI boot mode: cg_src_serial

Note: Since the name of the folder created to hold the code generated by the Code Generation Tool is fixed to "cg_src", use different
project names for the 16-bit bus boot mode version (cg_src_nor) and the SPI boot mode version (cg_src_serial) to contain the
separate versions of the sample program.
After the code is generated, each of the project folders will contain "cg_src" folder and the workspace file (.cgp).

[Supplementary Note]

When code generated by the code generation tool is incorporated in the e2studio environment, move iodefine.h from the
inc folder to immediately below the project folder. For details, see Table 6.2, Folder Structure of the Sample
Program of the Initial Settings Following Incorporation of the Code from the Code Generation Tool (2/2), in
Section 6.1.1, Project Settings.

R01AN3860EJ0110 Rev.1.10 Page 32 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(2) Editing the Loader Code in the Sample Program of the Initial Setting
Setting of the clock oscillator, the bus state controller, and of the SPI multi I/O bus controller which are used in the
sample program of the Initial Setting should be used after having been replaced by those created in Section 6.3.1
(4), Setting Modules for the Clock Signals and Bus, with the settings made in the Code Generation Tool in that
step. Therefore, the settings specified by the loader program in the sample program of the Initial Setting should be
disabled (commented out).
• Edit the file loader_init2.c in the common folder for the storage of source files (src) under the project folder

(RZ_T1_init_boot) of the sample program of the Initial Setting.
The two points to be edited in the loader code are the 111th line and the 119th line, both in function loader_init2.

Note 1. If you plan to have the loader program speed up the clock and buses, it is possible to call the functions for
various settings without commenting lines out. However, take care with this, as the settings of the clock and
buses will be remade in the initial settings of later processing by the Code Generation Tool in this sample
program. For details, see section 9 (1), Usage Note on the bus_init() Function.

Note 2. In the bus_init() function, the setting of the serial flash memory is changed from the single I/O mode to the quad
I/O mode. However, when the code is generated in accord with this procedure, the read command (FAST
READ4B) is used under the condition of the serial flash memory being in single I/O mode. When the bus_init()
function is used to set the buses in the loader program, be sure to set it to quad I/O mode. For details, see
section 9 (1), Usage Note on the bus_init() Function.

(3) Move the Initial Settings Function for the Error Control Module (ECM) to the Loader Code
In the sample program of the Initial Setting the function to set the ECM up is called from the main processing. In
this program, the common main created by the user should replace the main of the sample program of the Initial
Setting.
Therefore, move the function call for setting up the ECM (ecm_init), which handles the initial setting up of the
ERROROUT pin, to the initial settings part of the loader code.
• Move the ecm_init function from init_main.c to loader_init2.c (or, if you are using the DS-5 IDE, cpu_init.c).

The file init_main.c should be under the sample folder of the folder for the storage of source files (src) in the
project file of the sample program of the Initial Setting.
Setting of extended pseudo-error 35 for ECM is not necessary, so it should be removed.
Processing of the extended pseudo-error for ECM in loader_init2.c should also be removed.

The following lines of the file init_main.c should be copied to the file loader_init2.c.

Source of copying: File init_main.c
• (1) Function definition, 86th line

• (2) Calling function ecm_init from the 117th (comment) and 118th (call) lines of the main function

 /* Set CPU clock and LOCO clock */

// cpg_init(); ←Comment out the function for initial settings of the clock oscillator.*1

 snip

 /* Initialize the bus settings */

// bus_init(); ←Comment out the function for initial settings of the bus controllers
(BSC, SPIBSC).*2

void ecm_init(void);

 /* Initialize the ECM function */

 ecm_init();

R01AN3860EJ0110 Rev.1.10 Page 33 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

• (3) The code for the ecm_init function is from the 177th line to the 202nd line.

Destination file for copying: File loader_init2.c
• Add the function declaration that was copied in step (1) to "Private variables and functions" as the 98th line.

• Place the call of ecm_init() between the calls of function set_low_vec and function main in the processing by
loader_init2.
Add the call of function ecm_init from step (2) as the 129th line.

Note 1. The processing of function ecm_init is placed in the ATCM. Therefore, the DMB instruction is added to ensure the wait setting
of ATCM, executed by R_ATCM_WaitSet() immediately before the processing.

/***

* Function Name: ecm_init

snip
***/

void ecm_init(void)

{

snip
}

/***

 End of function ecm_init

***/

/***

Private variables and functions

***/

void loader_init2(void);

void reset_check(void);

void cpg_init(void);

void copy_to_atcm(void);

void copy_4byte(uint32_t *src, uint32_t *dst, uint32_t bytesize);

void ecm_init(void); ←Add the declaration of function ecm_init.

void loader_init2(void)

{

snip
 /* Set RZ/T1 to Low-vector (SCTLR.V = 0) */

 set_low_vec();

 /* Wait for ensuring the wait setting of ATCM */

 asm("dmb"); /* Ensuring Context-changing */ ←Added waiting for the wait setting of ATCM*1

 /* Initialize the ECM function */

 ecm_init(); ←Add call of function ecm_init.
 /* Jump to _main() */

 _main();

}

R01AN3860EJ0110 Rev.1.10 Page 34 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

• Add the code for function ecm_init from step (3) before the end of the file. (Remove the setting of the extended
pseudo-error from line 354 to line 359)

/***

 End of function copy_4byte

***/

/***

* Function Name: ecm_init

snip
***/

void ecm_init(void) ←Add function ecm_init.
{

 volatile uint8_t result;　　　 ←Remove the declaration of result, since it is not used

 /* Initialize ECM function */

 R_ECM_Init();

 /***/　　　 ←Remove the lines from here up to the assignment to result.
 /* Set extended pseudo error 35 */

 /***/

 /* Enables internal reset configuration */

 result = R_ECM_Write_Reg32(ECM_COMMON, &(ECM.ECMIRCFG1.LONG), 0x00000004);

}

/***

 End of function ecm_init

***/

/* End of File */

R01AN3860EJ0110 Rev.1.10 Page 35 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

• Remove the processing of the extended pseudo-error for ECM from the reset_check function in loader_init2.
/***

* Function Name : reset_check

* Description : Check the reset source and execute the each sequence.

* When error source number 35 is generated, set P77 pin to High.

* Arguments : none

* Return Value : none

***/

void reset_check(void)

{

 volatile uint8_t result;　　　　 ← Remove the declaration of result, since it is not used
 volatile uint32_t dummy;　　　　 ← Remove the declaration of dummy, since it is not used
 /* Check the reset status flag and execute the each sequence */

 if (RST_SOURCE_ECM == SYSTEM.RSTSR0.LONG) // ECM reset is generated

 {

 /* Clear reset status flag */

 R_RST_WriteEnable(); // Enable writing to the RSTSR0 register

 SYSTEM.RSTSR0.LONG = 0x00000000; // Clear reset factor flag

 R_RST_WriteDisable(); // Disable writing to the RSTSR0 register

 /* Check the ECM error source */　　　　←Remove the if statement and the processing in case the condition
is satisfied below

 if (1 == ECMM.ECMMESSTR1.BIT.ECMMSSE102) // Error source number 35 is generated

 {

 snip

 }

 snip

/***

 End of function reset_check

***/

}

R01AN3860EJ0110 Rev.1.10 Page 36 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(4) Creating a Common main File
In user application programs created with the Code Generation Tool, different files are used in the 16-bit bus boot
mode version and SPI boot mode version.
The main processing which is common to both the 16-bit bus boot mode version and the SPI boot mode version
should be created in a common main file.
For this sample program, it should be created in the sample folder where the source files are stored (src) in the
project file of the same sample program of the Initial Setting as file init_main.c, since it is the common main
function.
The names of files can be selected as desired by the user. In this sample program, the names of the functions to be
created should be called from the user application program created with the Code Generation Tool so they should be
as below.

Example for this Sample Program:
 Common main function to be created: user_app_main
 File to be created: user_main.c

Create the file as follows with reference to the user_main.c file for this program.
～

/***

Includes <System Includes> , "Project Includes"

***/

#include "r_cg_cmt.h" ←Include file of definitions for the CMT0 Function
#include "iodefine.h"

#include "r_system.h"

/***

snip
/***

Private variables and functions

***/

void user_app_main(void); ←Declaration of function user_app_main.

/***

* Outline : user main processing

* Function Name: user_app_main

snip
***/

void user_app_main (void) ←Body of function user_app_main
{

 R_CMT0_Start(); ←Start use of CMT0 by the sample program
}

/***

 End of function main

***/

/* End of File */

R01AN3860EJ0110 Rev.1.10 Page 37 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(5) Setting the target source code from the Code Generation Tool to be compiled
In the case of EWARM, set the source code from the Code Generation Tool to be compiled for the sample program
in the initial settings by following the procedure below.

[Add Project Connection]
• Select [Add Project Connection...] from the [Project] menu. The [Add Project Connection] dialog box should be

displayed.
Select [IAR Project Connection] for [Connect using] and click on [OK].

• Screen [5]-1 Adding a Project Connection

• The [Select IAR Project Connection File] dialog box should be displayed. Select [IAR Project Connection File]
(.ipcf) and click on [Open].
The project file for connection includes the registered information of the source files.
The files selected here should be created after the code has been generated in the following folder
(recommended) by the Code Generation Tool.

Examples of folder names for reference:
 Folder name of 16-bit bus boot version: cg_src_nor
 Folder name of SPI boot mode version: cg_src_serial

The files to be compiled should be added as shown below after they are completed.

R01AN3860EJ0110 Rev.1.10 Page 38 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

• Screen [5]-2 Example of the addition of files to be compiled

Remark: In DS-5 and e2studio, when a file is added to the folder created by the Code Generation Tool, the project
automatically recognizes the file.

Note: Regarding the use of [Add Project Connection], see section 3.12.1, How to create a project connection between IAR
Embedded Workbench and AP4, in AP4, Applilet3 Common Operations User's Manual (R20UT3420EJ).

R01AN3860EJ0110 Rev.1.10 Page 39 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(6) Setting exception from compilation of the main function which is used in the initial set-up
• Select init_main file in the work space and right-click on it.

Select [Remove] to set the exception from compilation.

(7) Setting compilation of the common main function
• Add user_main.c to be compiled in the init folder.

R01AN3860EJ0110 Rev.1.10 Page 40 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(8) Set the include path for incorporating of the newly added code output by the Code Generation Tool
• Select [Options...] from the [Project] menu and select [C/C + + Compiler] → [Preprocessor].

Add the folder created by the code generation tool to the setting for additional include directories with the path
to the working files as in the example below.

Example for this Sample Program:
$PROJ_DIR$\src\cg_src_serial\cg_src

R01AN3860EJ0110 Rev.1.10 Page 41 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(9) Rebuild All
• Select [Rebuild All] from the [Project] menu as shown below.

Rebuilding should start after this is selected. Please check that there are no errors.

R01AN3860EJ0110 Rev.1.10 Page 42 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(10) Downloading and Debugging
• Select [Download and Debug] from [Project] on the tool bar as shown below. After the emulator is connected,

the program will be written to the external serial flash memory by the dedicated flash downloader. You can then
start debugging.

R01AN3860EJ0110 Rev.1.10 Page 43 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.4 Fixed-Width Integer Types
Table 6.6 lists fixed-width integer types for the sample code.

6.5 Function
Refer to the application note of the RZ/T1 Group Initial Settings products for the functions of the sample program of the
Initial Setting that are also used in this sample program. Table 6.7 below only lists the function to be added to the sample
program of the Initial Setting.

Table 6.6 Fixed-Width Integer Types for the Sample Code

Symbol Description

int8_t 8-bit signed integer (defined in the standard library)

int16_t 16-bit signed integer (defined in the standard library)

int32_t 32-bit signed integer (defined in the standard library)

uint8_t 8-bit unsigned integer (defined in the standard library)

uint16_t 16-bit unsigned integer (defined in the standard library)

uint32_t 32-bit unsigned integer (defined in the standard library)

Table 6.7 Function

Function Name

user_app_main

R01AN3860EJ0110 Rev.1.10 Page 44 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.6 Flowchart

6.6.1 Loader Program Processing
Figure 6.3 is a flowchart of processing by the loader program.

Refer to the application note on initial settings for RZ/T1 group products for details of the flow of the loader program
part.

Figure 6.3 Loader Program Processing

Start of loader program

Initial settings for the stack, VFP, and variables
(for the loader program)

Judgment of ATCM wait time

Settings for the MPU and the cache

Branch to the user application program

ECM settings
Taken from the main function
of the initial settings program

Judgment of reset

Transfer of the application program

Setting the low vector

R01AN3860EJ0110 Rev.1.10 Page 45 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.6.2 Processing by the Application Program Created by the Code Generation Tool
Figure 6.4 is a flowchart of the application program created by the Code Generation Tool.

Note: The API functions generated by the Code Generation Tool are used.
The main function of the user application becomes the main processing produced by the Code Generation Tool for each of
the boot modes that are selected.

Figure 6.4 Application Program Created by the Code Generation Tool

Code Generation Tool
Starting the user application program

Run the user application
main function

Register the FIQ handler

Perform dummy writing to the VIC.HVA0 register

Make the pin-function settings
MPC and port settings

Set the clock oscillator (450 MHz)
Clock-frequency settings for the CPU

and peripheral I/O modules

Set the bus-state controller (BSC)
Memory-bus (CSx) wait and
external bus clock settings

Set the pin for use by the user
Port settings

Set the timer for use by the user/Set the timer interrupt
CMT0 settings

Make the SPI multi I/O bus controller settings (SPIBSC)
Memory bus (SPIBSC) wait setting

Branch to common main

R01AN3860EJ0110 Rev.1.10 Page 46 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.6.3 Common main Processing
Figure 6.5 shows the flowchart of the common main processing.

6.6.4 Interrupt Processing by the Timer Selected by the User (CMT0)
Figure 6.6 is a flowchart of processing in response to interrupts from the timer selected by the user (CMT0)

Figure 6.5 Common main Processing

Figure 6.6 Interrupt Processing by the Timer Selected by the User (CMT0)

Common main function

Setting to start the timer for use by the user (CMT0)

Handling the interrupt from the timer for use by the user
(CMT0)

Switch LED10 on if it is off and off if it is on.

return

R01AN3860EJ0110 Rev.1.10 Page 47 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

7. Sample Program
The sample program can be downloaded from the Renesas Electronics website.

R01AN3860EJ0110 Rev.1.10 Page 48 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

8. Related Documents
• User's Manual: Hardware

RZ/T1 Group User's Manual: Hardware
Download the latest version from the Renesas Electronics website.

RZ/T1 Evaluation Board RTK7910022C00000BR User's Manual
Download the latest version from the Renesas Electronics website.

• Technical Update and Technical News
Download the latest version from the Renesas Electronics website.

• User's manuals related to the development environment
The latest version for the IAR integrated development environment (IAR Embedded Workbench® for ARM) is
available from the IAR Systems website.

The latest version for the ARM integrated development environment (Development Studio 5TM) is available from
the ARM website.

The latest version for the Renesas Electronics integrated development environment (e2studio) is available from the
Renesas Electronics website.

R01AN3860EJ0110 Rev.1.10 Page 49 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

9. Usage Note
(1) Usage Note on the bus_init() Function

In this sample program, the bus_init() function that is the base program of the initial setting sample program is used
without lines commented out. Therefore, when the bus_init() function is used while setting buses in the loader program,
take care on the following points.

In the bus_init() function, the setting of the serial flash memory is changed from the single I/O mode to the quad I/O
mode. On the other hand, as the function is expected to operate in single I/O mode in this sample program, reading of the
serial flash memory does not proceed normally. When the bus_init() function is used, settings for the quad I/O mode are
required as described in Section 6.3.1 (4), Setting Modules for the Clock Signals and Bus, [Settings for the SPI
Multi I/O Bus Controller], such as setting 0xEC (4READ4B) in the command.

R01AN3860EJ0110 Rev.1.10 Page 50 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Website and Support
Renesas Electronics website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

C - 1

Revision History Guide for Applying the Code Generation Tool to the Sample Program

Rev. Date
Description

Page Summary
1.00 Jun. 30, 2017 — First Edition issued
1.10 Apr. 11, 2018 2. Operating Environment

4 Table 2.1 Operating Environment, Tool for generating code: The version of the AP4 from
Renesas, modified. Note modified.

3. Related Application Notes
5 Application note document numbers, added

6. Software
13 6.1.3 Exception Processing Vector Table: The address of the 34-byte area, modified
13 Table 6.4 Exception Processing Vector Table, Note: The address, modified
16 6.3.1 Generating Code with the Code Generation Tool: The description on the code gener-

ation tool, modified
24 Screenshot [5]: Settings for SPI multi I/O bus controller (General setting), modified. Note

modified.
25 Screenshot [5]: Settings for the SPI multi I/O bus controller (Setting), modified
27 Example for this Sample: Each Screen for Setting and Describing Pin Functions from

[Device List View] (3/3), modified
29 The description of [Setting an API function for the Bus State Controller] in section 6.3.1,

modified. The description on the code, modified
31 6.3.2 Incorporation in the Sample Program of RZ/T1 Group Initial Settings, Remark: The

revision of the sample program of the initial settings, modified
32 6.3.2, (2) Editing the Loader Code in the Sample Program of the Initial Setting: Note 1,

modified. Note 2, added.
33 6.3.2, (3): loader_init2.c processing: The waiting function for the wait setting of ATCM was

added beween set_low_vec(); and /* Initialize the ECM function */. Note 1, added.
9. Usage Note

49 9. Usage Note, added

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well

as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
⎯ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

General Precautions in the Handling of MPU/MCU Products

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

(Rev.4.0-1 November 2017)

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

ご注意書き

	Introduction
	Target Devices
	Table of Contents
	1. Specifications
	2. Operating Environment
	3. Related Application Notes
	4. Peripheral Functions
	5. Hardware
	5.1 Hardware Configuration Examples
	5.2 Pins

	6. Software
	6.1 Operation Overview
	6.1.1 Project Settings
	6.1.2 Preparation
	6.1.3 Exception Processing Vector Table

	6.2 Interrupts
	6.3 Procedure for Incorporating Code from the Code Generation Tool
	6.3.1 Generating Code with the Code Generation Tool
	6.3.2 Incorporation in the Sample Program of RZ/T1 Group Initial Settings

	6.4 Fixed-Width Integer Types
	6.5 Function
	6.6 Flowchart
	6.6.1 Loader Program Processing
	6.6.2 Processing by the Application Program Created by the Code Generation Tool
	6.6.3 Common main Processing
	6.6.4 Interrupt Processing by the Timer Selected by the User (CMT0)

	7. Sample Program
	8. Related Documents
	9. Usage Note
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

