RENESAS APPLICATION NOTE

RZ/T1 Group RO1AN3860EJ0110

Guide for Applying the Code Generation Tool to the Sample Program Rev.1.10
Apr. 11, 2018

Introduction

This application note describes the process of incorporating a control program for peripheral modules of the
microcontroller (device driver program) in the sample program of the RZ/T1 Group Initial Settings. The code for the
control program is generated by the automatic generation tool for I/O drivers (hereinafter called the Code Generation
Tool).

The resulting sample program enables periodic counter operation of the compare match timer (CMT) that produces
compare-match interrupts which are used to switch an LED on and off.

Target Devices

RZ/T1 Group

When applying the program covered in this application note to another microcontroller, modify the program to suit the
specifications of the target microcontroller and extensively evaluate the program after modification.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 1 of 50
Apr. 11, 2018

o > w b

Table of Contents

SPECIICALIONS ...ttt a e e e e e e e aaaaaaaaaeaa et e e erara—a———— 3
Operating ENVIFONMENT ... e e e e e e e e ennbe e e e e eneee 4
R P (= To [N o] o] [for=T i o] T Vo) (= TSR 5
Peripheral FUNCHONS ..ottt e e e e e e e e s e e e e e e e e e e e e e e annnnnes 6
L V0 11T 7= T 7
5.1 Hardware Configuration EXampPIesccooiiiiiiiiiii e 7
5.2 P UTP TP 8
RS T0 iA1= -SSR 9
6.1 OPEratioN OVEIVIEBWottt e e e e e e e ettt eeeeeeeeeeeeeeaabsaaeeeeeaaaeeaaaans 9
6.1.1 e o)1=t ST 110V £ PP PP 11
6.1.2 (=T 0= = 1[0 o ISP 13
6.1.3 Exception Processing Vector Table...........occuiiiiiiii e 13
6.2 L (=T 5 U]) 7SR 14
6.3 Procedure for Incorporating Code from the Code Generation ToOl...........ccccooieiiiiiiiiiieee... 15
6.3.1 Generating Code with the Code Generation TOOlcooeiiiiiiiiiiiiiiiieee e 15
6.3.2 Incorporation in the Sample Program of RZ/T1 Group Initial Settingsccccceeeee.... 31
6.4 FiXed-Width INteger TYPES. . ..o oot e e e e e e e e e e e e e e e e eeees 43
6.5 T g T2 1) o SRS 43
6.6 [0 1Yo =T PSS 44
6.6.1 Loader Program ProCeSSINGc.coiuuiiiii ittt 44
6.6.2 Processing by the Application Program Created by the Code Generation Tool........... 45
6.6.3 CommOoN MaIN PrOCESSINGuuueiiiiiiiiiiie e e e e e e e e e e ee e e e e e e e e e e s erreeeaaeeeeseennnnnnes 46
6.6.4 Interrupt Processing by the Timer Selected by the User (CMTO)..........cccccvvvrveveeernennn. 46
ST T 0] o] (=3 oo = 1o PRSP 47
Related DOCUMENTES ..ottt e e e e e ettt e e e e e e e e e e e e e e e s nneneaeeeeaaeeeaaaannns 48
L0 1S T=To 1= o) = PP 49

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

1. Specifications

Table 1.1 lists the peripheral functions used and their applications and Figure 1.1 shows the operating environment.

Table 1.1 Peripheral Functions and Their Applications
Peripheral Module Application
Clock generation circuit (CPG) Provides the CPU clock and low-speed on-chip oscillator
Interrupt Controller (ICUA) Processing the compare-match interrupt (CMI0)
Compare match timer (CMT) Periodic counter operation and tests for matches by the compare match timer
Bus state controller (BSC) Connection of NOR flash memory to the CS0 and CS1 spaces and SDRAM to the CS2
and CS3 spaces.
SPI multi 1/O bus controller (SPIBSC) Used to connect the serial flash memory to SPI multi I/0O space
Error control module (ECM) Initial setting of the ERROROUT# pin
General I/0 port Control of pin output to turn the LED on and off

Host computer*!

usSB
(Host/Func)

Debugger
DL e — L
: CAN LAN EtherCAT

ICE*

Microphone
headphone

DC5V output
(Inchﬁi:iizgso) RZ/T1 evaluation board
Y Serial RTK7910018C00000BE
Note 1. Indicates the device that the user needs to prepare.
Figure 1.1 Operating Environment
RO1AN3860EJ0110 Rev.1.10 RENESAS Page 3 of 50

Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

2. Operating Environment

The sample program covered in this application note runs in the environment below.

Table 2.1 Operating Environment

Item Description

Microcomputer RZ/T1 Group

Operating frequency CPUCLK =450 MHz

Operating voltage 33V

Integrated development environment From IAR Systems:

(any of those listed) Embedded Workbench for ARM Version 7.80.2
From ARM:
DS-5TM 5.25

From Renesas:
e2studio 5.2.0

Tool for generating code From Renesas:
AP4 1.07
Note: The e2studio includes a plug-in that has equivalent functionality for generating code
to that of AP4 1.04.

Operating mode SPI boot mode
16-bit bus boot mode
Board used RZ/T1 evaluation board
(RTK7910018C00000BE)
Device used ¢ NOR flash memory (for connection to the CS0 and CS1 spaces)
(Functions used on the board) Manufacturer: Macronix International Co., Ltd.

Model: MX29GL512FLT2I-10Q

e SDRAM (for connection to the CS2 and CS3 spaces)
Manufacturer: Integrated Silicon Solution Inc.
Model: 1S42S16320D-7TL

¢ Serial flash memory
Manufacturer: Macronix International Co., Ltd.
Model: MX25L51245G

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 4 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

3. Related Application Notes

Other application notes that are related to this one are listed below. Please refer to them, too.

e RZ/T1 Group Initial Settings (RO1AN2554EJ)
e RZ/T1 Group Compare Match Timer (CMT) (RO1AN2555EJ)

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 5 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

4. Peripheral Functions

See the RZ/T1 Group User's Manual: Hardware for basic descriptions of operating modes and the clock generation
circuit (CPG), compare match timer (CMT), interrupt controller (ICUA), bus state controller (BSC), SPI multi I/O bus
controller (SPIBSC), error control module (ECM), reset system, and general I/O ports.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 6 of 50
Apr. 11, 2018

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

5. Hardware

5.1 Hardware Configuration Examples

Figure 5.1 shows an example of the hardware configuration for this application.

RZ/T1
ICUA ~ Low power
(Interrupt control unit A) Cortex-R4F consumption
Write protection
CMT Cho I/O port for registers
PM7
LED10
Figure 5.1 Example of the Hardware Configuration
RO1AN3860EJ0110 Rev.1.10 -IENESAS Page 7 of 50

Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

52 Pins

Table 5.1 lists pins to be used and their functions.

Table 5.1 Pins and Functions
Pin Name Input/Output Function
A1 to A25*1 Output Address signal output for NOR flash memory and SDRAM
DO to D15*1 Input/Output Data signal input and output for NOR flash memory and SDRAM
CSo#*1 Output Device selection signal output to NOR flash memory in the CS0 space
CS1#1 Output Device selection signal output to NOR flash memory in the CS1 space
CS2#*1 Output Device selection signal output to SDRAM in the CS2 space
CS3#*1 Output Device selection signal output to SDRAM in the CS3 space
RAS#*1 Output RAS# control signal output to SDRAM
CAS# *1 Output CASH# control signal output to SDRAM
RD/WR#*1 Output Read control signal or write control signal output to SDRAM
CKE*1 Output CK enabling control signal output to SDRAM
RD#*1 Output Strobe signal output indicating reading
BS# Output Not used in this sample program.
WEO#/DQMLL*1 Output Write strobe signal output for D15 to D8
WE1#/DQMLU* Output Write strobe signal output for D7 to DO
SPBSSL*! Output Slave selection
SPBCLK*1 Output Clock output
SPBMO/SPBIO0*1 Input/Output Master output data: data 0
SPBMI/SPBIO1*1 Input/Output Master input data: data 1
SPBIO2*1 Input/Output Data 2
SPBIO3*1 Input/Output Data 3
MDO Input Boot mode selection:
MD1 Input MDO = L MD1 = L MD2 = ':II_':'(SPI poot mode)
MDO ="L", MD1 ="H", MD2 = "L" (16-bit bus boot mode)
MD2 Input
PM7*1 Output Lighting and darkening LED10

Note: The mark "#" indicates negative logic (i.e. active low).
Note 1. The function for this pin is to be set by the Code Generation Tool for that purpose.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 8 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6. Software

6.1 Operation Overview

This sample program is based on the sample program of the RZ/T1 Group Initial Settings. The loader program of the
sample program of of the Initial Settings is used as it is for the loader program (loader) section. The user application
program (user application) incorporates the code generated by the Code Generation Tool with the common main code.
The actual process of incorporation will be described later.

See Application Note: RZ/T1 Group Initial Settings for more details on the operation of the sample program of the RZ/T1
Group Initial Settings.

Figure 6.1 shows the configuration outline of the sample program produced in this application note.

Sample program of Initial Settings Code Generation Tool

AT

This part of the
sample program of .
the Initial Settings is Loader section

used as it is.

Code created by the tool

User application
section

Common main

______________________ , 4

Added for this sample program

e The user application section in the sample program of the Initial Settings should be replaced with the user application section
generated with the Code Generation Tool.

¢ Incorporating code from the Code Generation Tool as in this process can, for example, allow more efficient program development
in the case of changes to the set-up of peripheral functions.

e A common main function was generated for this sample program to replace that in the sample program of the Initial Settings.

Figure 6.1 Configuration of This Sample Program in Outline
RO1AN3860EJ0110 Rev.1.10 RENESAS Page 9 of 50

Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Figure 6.2 shows the operation of the loader and user application initial sections in outline.

After the device is booted up, the loader sets up the stack among other things, copies the user application program, and
causes execution to branch to the address where the user application program starts.

As you see in the figure below, both the loader from the sample program of the Initial Settings and the user application
code generated through automatic code generation make settings for the clock and bus controllers. Therefore, in this
program, conflicts between the settings have been avoided by disabling (commenting out) the settings for the clock and
bus controllers in the loader.

The code generated by code generation for the user application sets up the interrupt controller, the clock, the buses and
other peripheral modules. Settings in this part of the code are made to suit the operating mode in use (in this case, SPI
boot, 16-bit bus boot).

Settings to start cyclic counter operation of the compare match timer (CMT) and for switching the LED on and off in
response to compare match A interrupts are made in the common main function, which is independent of the operating
mode.

This process of incorporation demonstrates how users are able to use code produced by setting in the Code Generation
Tool as desired with the loader section of the sample program of the Initial Settings.

Loader section User application section
in the BTCM area in the ATCM area
| 16-bit bus boot (NOR) version
Start of loader program Craatad buctha Code & ian Taal
SPI-boot (serial) version

| Created by the Code Generation Tool

Initialization of stack, VFP, variables, etc. Code Generation Tool
Starting the application program

Clock oscillator settings (450 MHz) |
Set by the Code Generation Tool following deletion . .
from the program of the Initial Settings.*' Interrupt and pin settings

Bus-controller settings (BSC, SPIBSC) |
Set by the Code Generation Tool following deletion

from the program of the Initial Settings.*' . X
| Settings by code from the Code Generation Tool

Settings of clock oscillator,
bus state controller,

Copying of the user application program and SPI multi /0 bus controller,
variables compare match timer and other user settings

ECM settings*?
Taken from main for the Initial Settings (Branch to common main)

Code Generation Tool
Branching to the application program Common main

Note 1. Settings for the clock oscillator and bus controllers in the loader program are commented out to avoid conflict with the
settings from the Code Generation Tool.
However, if you would like to speed up copying to the ATCM, etc.in the loader program, you can move the code for settings
produced by the code generator to the loader program.

Note 2. The compare match timer (CMT) is used to produce periods of waiting in setting up the error control module (ECM), and the
CMT is reinitialized after that process.
To avoid conflict with code from the Code Generation Tool, setting the ECM up was transferred from the main process of the
sample program of the Initial Settings to the loader program for this application. See Application Note: RZ/T1 Group Initial
Settings for more details on setting the ECM up.

Figure 6.2 Outline of Operations after Booting Up the Device
RO1AN3860EJ0110 Rev.1.10 RENESAS Page 10 of 50

Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.1.1 Project Settings
This sample program includes three projects as listed below.
(1) RZ_T1_init_boot —[RZ_T1_init_nor_boot.eww: 16-bit bus boot version

RZ_T1_init_serial_boot.eww: SPI boot version

(2) RZ_T1_init_ram —— RZ_T1_init.eww : Version for execution from RAM

Table 6.1 and Table 6.2 show the hierarchies of folders following incorporation of the code generated by the Code
Generation Tool with that from the sample program of the Initial Settings for two of the IDEs.

The folders and the files incorporated with the sample program are in bold type. Other than those parts, the structure is
the same as that of the sample program of the Initial Settings.

See Application Note: RZ/T1 Group Initial Settings for the development environment and project settings.

Table 6.1 Folder Structure of the Sample Program of the Initial Settings Following Incorporation of the Code
from the Code Generation Tool (1/2)

Main Hierarchy of Folders (EWARM)

Project folder | | Subfolder Remark
RZ_T1_init_boot inc Folder for storing the include files for the sample program of
the Initial Settings
lib Library folder for EWARM
— src [cg_src_nor T cg_src [Folder generated with the Code Generation Tool]
(16-bit bus boot version (NOR))
L *.cgp e Output folder for the source code (cg_src)
e Working file for the Code Generation Tool (.cgp)
— *ipcf * Project connection file (.ipcf)
—— cg_src_serial T cg_src [Folder generated with the Code Generation Tool]
(SPI boot version (serial))
L *.cgp e Output folder for the source code (cg_src)
e Working file of the Code Generation Tool (.cgp)
— *ipcf * Project connection file (.ipcf)
— common Sample program folder of the original initial settings program
— drv Driver folder
— sample user_main.c | Folder for the main program of the original initial settings
program
Common main
(user_app_main)
RZ_T1_init_ram inc Include files for the RAM version of the original initial settings
program
lib Library folder for EWARM
— src [cg_src_ram cg_src [Additional folder for files from the Code Generation Tool]
(RAM version)
*.cgp e Output folder for the source code (cg_src)
e Working file of the Code Generation Tool (.cgp)
*.icpf * Project connection file (.ipcf)
—— common Sample program folder for the original initial settings program
— drv Driver folder
L— sample user_main.c | Folder for folder main in the RAM-execution version of the
original initial settings program
Common main
(user_app_main)
RO1AN3860EJ0110 Rev.1.10 -IENESAS Page 11 of 50

Apr. 11, 2018

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

Table 6.2

from the Code Generation Tool (2/2)

Folder Structure of the Sample Program of the Initial Settings Following Incorporation of the Code

Main Hierarchy of Folders (e2studio)

Project folder Subfolder

Remark

RZ_T_nor_sample .setting

inc

src -1

CodeGenerator

cg_src

common

drv

sample

iodefine.h*1

user_main.c

[Folder generated with the Code Generation Tool]
(16-bit bus boot version (NOR))
* Working file for the Code Generation Tool
(-cap)

Folder for storing the include files for the sample
program of the Initial Settings

[Folder generated with the Code Generation Tool]
(16-bit bus boot version (NOR))
e Output folder for the source code (cg_src)

Sample program folder of the original initial settings
program

Driver folder

Folder for the main program of the original initial
settings program

Common main

(user_app_main)

iodefine for the e2studio, transferred from the inc
folder

RZ_T_sflash_sample .setting

inc

CodeGenerator

cg_src

common

drv

sample

iodefine.h*1

user_main.c

[Folder generated with the Code Generation Tool]
(SPI boot version (serial))
* Working file of the Code Generation Tool (.cgp)

Folder for storing the include files for the sample
program of the Initial Settings

[Folder generated with the Code Generation Tool]
(SPI boot version (serial))
e Output folder for the source code (cg_src)

Sample program folder of the original initial settings
program

Driver folder

Folder for the main program of the original initial
settings program

Common main

(user_app_main)

iodefine for the e2studio, transferred from the inc
folder

RZ_T_ram_sample .setting

inc

CodeGenerator

cg_src

common

drv

sample

iodefine.h*1

user_main.c

[Folder generated with the Code Generation Tool]
(RAM version)
e Working file of the Code Generation Tool (.cgp)

Include files for the RAM version of the original initial
settings program

[Folder generated with the Code Generation Tool]
(RAM version)
e Output folder for the source code (cg_src)

Sample program folder of the original initial settings
program

Driver folder

Folder for the main program of the RAM version of the
original initial settings program

Common main

(user_app_main)

iodefine for the e2studio, transferred from the inc
folder

Note 1. When incorporating code generated with the Code Generation Tool in the e2studio environment, place iodefine.h from the inc
folders of each of the projects immediately below the project folder.

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 12 of 50

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.1.2 Preparation

Settings for SW4 on the RZ/T1 evaluation board (RTK7910018C00000BE) depend on the project to be used. Table 6.3
lists the settings. Each setting of SW4 is shown in the RZ/T1 Evaluation Board RTK7910018C00000BE User's Manual.
For details, see Section 8, Related Documents.

Table 6.3 Settings of SW4

Sample Program SW4-1 SW4-2 SW4-3 SW4-4 SW4-5 SW4-6
16-bit bus boot mode version ON OFF ON ON ON OFF
SPI boot mode version ON ON ON ON ON OFF
RAM execution version Any setting of SW4 above

6.1.3 Exception Processing Vector Table

The RZ/T1 has 7 types of exception processing (for resets, undefined instructions, software interrupts, abortion of
prefetching, abortion of data, and IRQ and FIQ exceptions). The vectors are allocated to the 34-byte area starting from
address 0000 0000H (address range 0000 0000h to 0000 0024h) when the Code Generation Tool is used.

Write the branch instruction for processing of each exception in the exception processing vector table.

Table 6.4 shows the exception processing vector table in this program. Please adjust it as necessary.

Table 6.4 Exception Processing Vector Table
Exception Handler Address Remark
RESET exception 0000 0000h Branches to itself (to avoid branching to an unknown address)
Undefined instruction exception 0000 0004h Branches to itself (user definable)
Software interrupt exception 0000 0008h Branches to itself (user definable)
Prefetch abort exception 0000 000Ch Branches to itself (user definable)
Data abort exception 0000 0010h Branches to itself (user definable)
Reserved 0000 0014h Branches to itself (user definable)
IRQ exceptions 0000 0018h Branches to itself (to avoid branching to an unknown address)
FIQ exceptions 0000 001Ch Branches to itself (overwritten by the Code Generation Tool)

Note: In the application program, locations from 0000 001Ch to 0000 0024h including those for FIQ exceptions above should be
overwritten by code generated by the Code Generation Tool.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 13 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.2 Interrupts

Table 6.5 shows the interrupt to be used in the sample program.

Table 6.5 Interrupt to be Used in the Sample Program
Interrupt (Source ID) Priority Level Outline of Processing
CMTO interrupt (CMIO) 15 Whenever matches in comparison are detected (at the 100-ms

interval specified by the Code Generation Tool), this interrupt is
generated and LED10 is turned off if on and on if off as a
result.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 14 of 50
Apr. 11, 2018

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

6.3

Procedure for Incorporating Code from the Code Generation Tool

This section gives an example of the procedure when the Code Generation Tool is used while EWARM is the IDE. The

assumed operating mode is SPI boot mode.

6.3.1

Generating Code with the Code Generation Tool

In this sample program, PORTM?7 is set up to switch LED10 on and off in response to compare-match interrupts

produced by the cyclic counter operation of CMTO0. A description of the example of the procedure for this sample

program follows.

(1) Starting the Tool for Generating Code

(2) Creating a New Project

The following setting is necessary to create the new project.

e Select the microcontroller (an R7S910018CBG in the figure), and specify the compiler to use (that of AR
EWARM), the name of the project, and where to create the project.

4

% op4 - O *
""" File | View _ Peripheral unctions
[New Ctrl+N
= Open Ctrl+0

Save Ctrl+5
&l SaveAs

Clo

Generate Report

Recent Projects 3

Exit

Eaay

41

% New Project

Microcontroller: FZ

Uzing microcontroller:

Using compiler:

deE DICNAINNNIC D0

L

©

ARMCGC (DS-%) GGG (e studio)

IAR EWARM

|E><tended RAR: TME, Pin count: 320

Project name:

Place:

Browze

Cancel

¢ Note on the Name and Location of the Project

The desired location specified by the user will be the place where the project is to be initially created with the

Code Generation Tool, but the location for storage of the output file of the Code Generation Tool is separated

per operating mode of the sample program.

Example of the Sample Program:

Folder name for 16-bit bus boot mode: cg_src_nor

Folder name for SPI boot mode: cg src_serial

For how to incorporate each created folder into the sample program for making the initial settings of devices,
refer to Section 6.3.2 (1), Importing the Environment of the code created by the Code Generation Tool

(Copying).

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 15 of 50

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(3) Compare Match Timer (CMT) and Port Settings

[Settings for the Compare Match Timer]
Set up the compare match timer for use with the settings below.
Channel to use: CMTO
Clock setting: PCLKD/512
Interval: 100 ms
Interrupt from compare match (CMI0): Enabled
Priority level: 15

e Screenshot [1]: Settings of CMTO0

i E:mpafe MtatCh Timer 7| Generate code | % Al el A
-0 rececmte
o oM GMT0 foMT1 GMT2 GMTZ GMTS GMTS

----- ’é‘j F_GMTI Create Compare match timer operation setting

----- &' RLGMTO Start
{?ﬂ R:OMTU:Stop O Unuzed @ Uged
gmg Count clock setting
GMTS () PGLEDSS () PGLEDA 32 () PGLEDS 128 (®) PGLEDAE12
CMT4
CMTS Interval value setting
[l rce et pserc Iterval value |IUU | | ms v| {Actual values: 99.997013)
S GMTO
& | remt cmil_interrupt Interrupt setting
"""] R_GMT0 Greate_Userhnit Enable compare match interrupt (GMI0)
G
CMT2 Priority |Leve| 18)
GMT3
CuTd
CMTS
L 00 rocgcmth J

e Selecting "Used" for a peripheral module allows you to set the module up. Add the settings to suit your needs. Lock icons appear in
the project tree to indicate that code is to be created from the settings.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 16 of 50
Apr. 11, 2018

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

[Settings for the Port]

Set up the port pin for use as listed below.
Used pin: PORTM?7 (connected to LED10)
Input/output: Output

Setting for output: Select "Output 1".

e Screenshot [2]: Setting of PORTM?7

j_ﬂ' Peripheral Functions | ¥ Code Preview |7 Property
S Generatecode L W W LT WO DD O DD D BB ToET B L oD

Fortl Port1 Fort2 Port3 Fortd Forth Porth
PaortE FortF PortG PortH Paortd Paortk Fortl

PO
® Unused OIn () Out Disables input pull-up and pull-down resistors

PR
® Unused O In () Out Disables input pull-up and pull-down resistors

P2
®) Unused O hh) Out Digables input pull-up and pull-down resistor

PM3
® Unused O () Out Dizables input pull-up and pull=down resistor

P4
(®) Unused O) Out Dizables input pull-up and pull-down resistor

PME
® Unused O () Out Dizables input pull=up and pull=down resistors

PME
@ Unuged O In () Out Dizables input pull-up and pull-down resistars

PM7?
) Unuged O In &) Out Dizables input pull-up and pull-down resistors Cutput 1

e "Output 1" is set on PM7 as the output port pin to switch LED10 on in the example of this sample program.

(4) Setting Modules for the Clock Signals and Bus
The settings for this example are as shown for the Initial Settings sample program (SPI boot mode).

[Setting the Clock Oscillator]

Make the oscillator settings listed below.
Setting of boot mode: SPI boot
Setting of PLL1 circuit: Check "Operation".
Setting of low-speed on-chip oscillator (LOCO): Check "Operation".
Clock source: PLL1

CPU clock (CPUCLK): 450 (MHz)

External bus clock: 75 (MHz)

RO1AN3860EJ0110 Rev.1.10

Apr. 11, 2018

RENESAS

Page 17 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

e Screenshot [3]: Clock Setting

f Code Preview

4 Peripheral Functions

% Property

Clock setting Debug interface setting Block diagram

GlGenerstecode L FWHUBDADOUDD SR FRETBT QWU D

Boat mode setting
(O 16-bit/22-bit bus boot (®) SPI boot
Main clock oscillator setting
Main clock oscillation saurce FiRT/ MR (Clock source iz set based on the status of OSCTH)
Frequency [|tz
Qscillation stop detection function | Disabled v
PLLO circuit setting
Frequency [1200 | ()
PLL1 circuit setting
Operation
Frequency (800 (MHz)
Low speed an-chip oscillator (LOGO) setting
Operation
Frequency |40 H)
Internal clock setting {Clock source is PLLD or Bl
Clock source [PLLI v
GPU elock (CPUCLK) 450 v| (MH2)
System clock (IGLK) | (M)
High=speed peripheral module clock (POLKnl 150 (MHz)
High-speed peripheral module clock (PCLKBI]’-‘) (MHz)
1
Extemal bus clock (CKI) | v (MHz)I
Trace interface clock (TOLK) 150 v (MHe)
Internal clock setting (Glack source is PLLO)
High-speed peripheral module clock (PCLKC]'WD | (MH)
Low-speed peripheral module clock (PCI.KD]i 75 (MHz)
Low-speed peripheral module clock (PGLKE)| 75 o] (e
Low-zpeed peripheral module clock (PCLKF)| 0 | (MHz)
Low-speed peripheral module clock (POLKG)'l B0 v (MH2)
Low-speed peripheral madule clock (PGLKHY50 (MHz)
High-speed serial clock (SERIGLK) | 150 | (MHz)
IWDT clock sstting
TWDT clack (IWDTGLE) [120 | &H2)
ECM clock setting
ECM clock (EGMGLK) [240 (kHz)
Etherriet elock setting
Ethemet clock D (ETGLKD) I 125 | (MHz)
Ethemet clock E (ETCLKE) [% v (M)
Delta-sigma clock setting
Delta-sigma interface clock 0 clock source [PE.LU v
Clocks input to MCLKD™2 pins
Delta-sigma interface clock 0 (DSGLKD) | % v (MHz)
DSCLED output polarity | Mot inverted i
Delta-sigma interface clock 1 clock source | PLLO v
Delta=sigma interface clock | (DSCLK1) [25 ~ | (MHz)
DSCGLET output polarity | Mot inverted v

Note: Values other than those framed in red are the default values of the Code Generation Tool.

RO1AN3860EJ0110 Rev.1.10

Apr. 11, 2018

RENESAS

Page 18 of 50

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Setting the Bus State Controller]
Make the settings listed below.
General setting: Use Bus operation setting
Setting for CS0: SRAM
Setting for CS1: SRAM
Setting for CS2: SDRAM
Setting for CS3: Common with those for CS2
Setting for address pin selection (Address pin check setting): Group check
Setting for group selection (Address pin group check setting): Al to A25

e Screenshot [4]: Settings for the bus state controller (General setting)

"¢ Peripheral Functions | _{ Code Preview |7 Property
BlGeneratecode L ¥ B AHUBDL DD AUDD LS TS D R D
CS0 CSl CS2 ©S3 CSé Osh
3.7 op;ratmn setting

) Unused (® Lsed
External bus area setting
[4] Use G50 (60000000h t0 G3FFFFFFh, 40000000k to 43FFFFFFh mirra SRAM v|
[Use GS1(64000000h t0 G7FFFFFFh, 4000000k to 47FFFFFFh mimo SRAM v]
[#] Use G52 (68000000h to GBFFFFFFh, 48000000k to 4BFFFFFFh mim SORAM v |
SDRAM

[] Use G54 (70000000h %o 73FFFFFFh, 50000000k to 53FFFFFFh mirror SRAM

[] Use CE5 (74000000h to 77FFFFFFh, 54000000k to G7FFFFFFh miro SRAM

fddress pin check setting
(®) Group check () Discrete check

Addrezs pin eroup check setting

Group pins start witﬂuﬁi w Group pins end with . A25 v |

fddress output pin setting

Note: Values other than those framed in red are the default values of the Code Generation Tool.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 19 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

CSO0:
Area setting: Bus width of 16 bits

Bus timing setting: Numbers of cycles for each parameter

External wait setting: For [External wait mask], select [External wait input is ignored]

e Screenshot [4]: Settings for the bus state controller (Settings for CS0)

"%« Peripheral Functions | [Code Preview | 7% Property
FGenerecode L@ B AT BDAODADO BB T EIBE QW 4D
General setting] ' G501 Jcs1 ©s2 cs3 oSt csE
Area setting :
Bus width | 16 bits v|
Bus timing setting
Mumber of cycles Period
Mumber of access waits 6 [[e0 K
Delay from RO, WEn# negation to address, CS negatiord | 05 || |566667 | tne)
Delay from address, OS assertion to RD#, WEn# assertidh{ 25 || [s8333333 | ts)
Idle inzertion between read-read cvcles in same G5 | 1] w |] {ns)
Idle inzertion between read-write cvcles in same G5 |II v| [l {ns)
Idle ingertion between read-read cycles in different G5 |J] v| 0 | (ns)
Idle insertion between read-write cycles in different GS | [0 V| o | (ns)
Idle insertion between write-read and write-write cycles | 1 V| 13333333 | (ns)
External wait setting
External wait mask | External wait input is ignored v|
Treaoe
255 3400
RO1AN3860EJ0110 Rev.1.10 RENESAS Page 20 of 50

Apr. 11, 2018

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

CS1:
Area setting: Bus width of 16 bits

Bus timing setting: Numbers of cycles for each parameter

External wait setting: For [External wait mask], select [External wait input is ignored]

e Screenshot [4]: Settings for the bus state controller (Settings for CS1)

%] Generate code | /% EESDOOO0DD e TET 129
General setting G300 | g os2 Css CE4 CEh
Area setting
Bus width [16 bits v ||
Busz timing setting
Mumber of cvcles Period
Mumber of read access waits | fi v| |8EI | ne)
Mumber of write accesz waits |Same as read v| |BU | ns)
Delay from RD¥ WEn# negation to address, ©F negation | 0h v| |E.EEEEE? | (ns)
Delay from address, G5 assertion to RD# WEn# asserticui 2h v| |33.333333 | (nz)
[le insertion between read-read cyvcles in zame G35 | I} v| |D | s
Idle inzertion betmeen read-write cvcles in same G5 | I v| |U | ne)
Idle ingertion betmeen read-read cycles in different C3 | I} v| |U | nz)
[dle insertion between read-write cvcles in different ©5 | I} v| |D | ns)
[Mle insertion between write-read and write—write cyvcles | 1 v| |13.333333 | (nz)
External wait zetting
External wait mask | External wait input iz ighored w ||
Dizable
28h 400

3G 9 G 2

CS2:

Area setting: Bus width of 16 bits for CS2 (default)
Area setting: Bus width of 16 bits for CS3 (default)

Type: Normal SDRAM (default)

Number of address bits: Numbers of address bits for rows and columns in each area

Mode setting: Burst read/burst write for each area

Clock select: CKIO/16

Constant register value for refresh time (Refresh compare match value): 36

Enable compare match interrupt: Release the checkmark

Bus timing setting: Numbers of cycles for each parameter

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 21 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

Screenshot [4]: Settings for the bus state controller (Settings for CS2)

24 peripheral Funr:tions-: . Code Preview |7 Property | x
Generatecode L ¥ W EZBDALDDADDSRTBTSBE 6o u B

General setting G50 CS51 CS3 OS54 CSE

Area setting
G52 bus width | 16 bits ~|
CS3 bus width [16 bits ~|
Type MNormal SORAM v]
Bark active mode | Auto-precharee mode v|
G52 number of bits for row address [13 bits ~|
G52 number of bits for column address [10bits ~|
C53 rnumber of bits for row address | 13 bits ~ |
G53 number of bits for column address | 10 bits ~|

Mode setting
G52 mode register setting | Burst read/burst write vJ
[] Enable CS2 extension mode register write command (EMRS)

000000000
C53 mode register setting Burst read/burst write ~
[[] Enable GS3 extension mode register write command (EMRS)
O 10000000

Bus refreshing setting
[Enable refresh
Refresh mode | Auto-refresh mode v|
Clock select I | CKIO/ 18 ~| I
Refresh count | 1 v|
Refresh compere metch value I o
Refresh request during DMA burst transfer | Aecept the refresh request ~

I [] Enable compare match interrupt I
m— Level 16

Bus timing setting TY——— e
G52 GAS latency |26 666667 | (ne)
CS3 GAS latency [26 666667 | e
futo-precharge startup wait cycles |2656656? J {ns)
Auto-precharge completion wait cycles " | [13.333333 |)
Idle states from REF command/Self-refresh release to AGTV/REF/MRS comll § v| |ﬁﬁ.ﬁﬁﬁﬁﬁ? | {ns)
Waits between AGTY command and READ(A)/WRIT(A) command [~| [13333333 |)
CS? idle insertion between read-read cycles in same S |U v_‘ |ﬂ | (ns)
G52 idle insertion between read-write cycles in same GS [D vl [0 """"""""""""""""] (ns)
52 Hle insertion between read-read cycles in different G5 [0 ~| [o |)
CS2 idle insertion between read-write cycles in different GS [0 ~| [0 | e
G52 idle insertion between write-read and write-write cycles |] w | |(I | (ns)
(53 idle insertion between read-read cycles in same S ™ N e
GS53 idle inzertion between read-write cycles in same GS | i vl |[l | (ns)
(53 Kle insertion between read-read cycles in different CS [0 v] [0] e
C53% idle insertion between read-write cycles in different CS [D vl |l'l] {ns)
GS53 idle inzertion between write-read and write-write cycles | i vl |[l | (ns)

Note: Values other than those framed in red are the default values of the Code Generation Tool.

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 22 of 50

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Set the output of user functions for the same modules as in the sample program for the Initial Settings.

e Generate your own code to handle processing for the initial set-up (r_xxx_user.c).

S Buses
- rcebser B_""’ses
| R_BSC Create -4 reebsce
--&'| R_BSC InitializeSDRAM 4| RS0 Create
7| R_BSC_SDRAMPower Down_Start 4 | BBSC InitializeSDRAM

2| F_BSC SDRAMPower Doven Start
| R_ESC_SODRAMPower Down_Stop
| R_BSC_SDRAMDespPawer Down_Start
R_BESC_SDRAMDespPower Down_Stop

* ’fj -%l

4’| R_BSC_SDRAMPower Down_Stap

L5y hed o] Generate Code *%| R_BSC Create Userhit
------ i = Mot Generate Code :‘” r_bsc_hsccml_ln&rrupt
..... 0 rce hec " r bse_tostf_interrupt
E- DMA& Contrd 55 Rename g reebsch
Ewent Link Default
L0 Ports
[l Multi-Funct|
n Plaid ik ad T

By default, code is not generated for API functions of the code generation tool that are not displayed with an icon
that includes a lock. Here, we describe the setting when the R BSC_Create UserlInit function is to be used. Select
the API function in the code preview of the project tree, right-click on that entry, and select [Generate Code]. This
causes the R_ BSC_Create Userlnit function to be generated in the r_cg_bsc_user.c file at the time of actual code
generation. When the function is selected, the icon of an open lock is displayed. For the details on usage of the Code
Generation Tool, refer to AP4, Applilet3 User's Manual: Common Operations (R20UT3420EJ).

Created file: r_cg_bsc_user.c
The statements for settings by API functions in the generated code will be explained in point (6), following the
description of setting up and generating the code.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 23 of 50
Apr. 11, 2018

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

[Settings for the SPT Multi I/O Bus Controller]
General setting: Select "External address space read mode" as the module setting.
Transfer speed setting: Set "Base bit rate" as 75 Mbps
Transfer format setting: Settings for clock delay, etc.

e Screenshot [5]: Settings for SPI multi I/O bus controller (General setting)

"24 Peripheral Functions | | Code Preview [Property |
Foeneatecode LFBHEHDADDADDRRSTBIBE AW U2
r—

Function setting

() Unused (®) External address space read mode () SPI operating mode

Transfer speed setting
Baze bit rate 75000 (Kbps) (Actual value: 75000, Error: 0%)

Data alignment setting
Enable data swap in 8-bit units

Transfer format setting

SPESEL signal polarity

Active low v |
SPBCLK output during SPESSL inactivation (GPOLY Outpuit level 0 v |
SPBCLK edees for data transmission/reception (GPHAT/GPHAR) Transmit at even edge/Receive at even ede |
Period from activation of SPESSL signal to SPECLK output (Clock delay) 1 SPECLK cycle |

Period from last edge of SPEGLK signal to SPBSSL inactivation (SPBSSL negation delay) |[15 SPECLK cycles

1
™ |

Period from transfer end to next transfer start (Next access delay) [1 SPBCLK cycle

~|

Note: Values other than those framed in red are the default values of the Code Generation Tool.

[Note]

To accelerate the serial flash memory, initially set the SPIBSC to the SPI operating mode and the serial flash
memory to the quad I/O mode in the sample program for the initial settings. After that, re-set the mode to that of

reading from the external address space.

On the other hand, in this procedure, the SPIBSC is set to be used in external address space read mode and the serial

flash memory in single I/O mode. The command to be used is the FAST READ4B (0x0C) command.

ROTAN3860EJ0110 Rev.1.10 RENESAS
Apr. 11, 2018

Page 24 of 50

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Setting]:
Other types of settings are made in the red frames of the figure below.

e Screenshot [5]: Settings for the SPI multi I/O bus controller (Setting)

24 Peripheral Functions | [f Code Preview |75 Property
5] Generate code o=

General setting | m‘

Read control setting

AP B AT DAOD R T EITBE &

Read operation [Burst read v]

Burst leneth [2 ~ | (4-bit blacks)

SPBSS5L inactivation condition | Inactivate SPBSSL after each transfer ~|
Bit size setting

Command bit-size | 1-bit size (Command output on SPEMO pin) ~ |

Optional command bit-size [1-bit size (Optional command output on SPEMO pin)

32-bit extended address setting
External address valid range IB,‘tS [24:0]

Upper address value (EAW) Inxun |

Note: Values other than those framed in red are the default values of the Code Generation Tool.

Address bit-size [1-bit size (Address output on SPEMO pin) ~|
Opkice: viata bi-obe [l-bltSlZB D i Iy ———]
Dummy cycle bit-size [1-bit size (Dummy Hi-Z on SPBMI pin) ~]
Data e [l—bltsuze(DatamwtonSPElMl T e v]
Data pin status setting
Status during SPBSSL Inactivation Status for 1-bit/2-bit size

SPBIOD pin [Output value Hi-Z] | Output walue Hi-Z V]
SPBIO pin ,E)ﬂtpul value Hi-Z v [Output value Hi-Z]

Cutput last bit of previous transh Output value 0

Output lazt bit of previous transh Ouput value 1

Data format setting

Command quuc |
Address bit count | 37 bits s |
[[] Optional command enable

D00
[[] Option data enable

1 byte

000
4] Dummy cycle enable
Dummy cycle count I 8 cvcles s |

ROTAN3860EJ0110 Rev.1.10 RENESAS
Apr. 11, 2018

Page 25 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

(5) Pin Function Settings

Make settings for those pins for which the multiplexed function is actually to be used.

Example for this Sample: Each Screen for Setting and Describing Pin Functions from [Device List View] (1/3)

a0

- Za Peripheral Functions | .if Code Preview

[Property |] Device List View

Glock Generation Gircuit
Encoder UF

Interrupt Cantroller

DA Controller

/O Ports

Multi-Function Timer Pulse Unit
Port Qutput Enable 3

General PWM Timer

16-Bit Timer Pulse Unit
Programmable Pulse Generator
Compare Match Timer W

Serial Communications Interface with FIFO
12G Bus Interface

Serial Peripheral Interface

SPI Multi /O Bus Contraller
AZ Interface

Error Control Module

12-Bit A/D Converter

Gigabit Ethernet MAC
EtherGAT Slave Controller

USE 210 HS Host/Function Module
CAN Interface

Serial Sound Interface

Others

Locked Pin Function

[A0

Al

[Jaz

v jas

A4

AS

N

M jar

M jrs

A9

[+ jatw0
& jan
A12
A13
[V fars
=N I3H
A16
A7
[jare
A19
AZ0
A
¥ ja22
M jazs
AZ4
A25
lv] joo
D1

D2
[jos
[v] jo4
D5
D&
v jo7
[v] jos
Dg
D10
[jon
¥ jo1z
D13
D14
v fo1s

Available Assignment

Mot assigned

PGO/ A1/ PO2

PG/ A2/ PO3

PG2/ A3/ PO4I TOCO/ RSPCK1

PG3/ A4/ POSITICT MISO1

PG4/ AS/ POGI TOC1 MOSH

PGS/ A6/ TCLKAS POT! SSL10

PG/ AT/ TCLKB/ PO/ S5L11

PGTI AB/ POS

PHI A%/ PO10

PH1 A10/ MTIOC28/ PO

PH2/ A1/ MTIOC2A/ PO12

PH3/ A12/ MTIOC1B/ PO13

PH4/ IRQ4/ A13/PO14

PHS/ A14/ PO15

PH6G/ A15/ MTIOCTD/ RTS0#

PHTI A16/ MTICSW

P20V A17/ MTCLKD

P25/ A18/ MTCLKC/ TEND1

P26/ A19f MTIOCSDY DREQ1

P271 A20f MTIOCSC! TIOCBO RTS0:#

PTe/A21/ DREQ2

PT7/ A22/ DACK2

PK2/ A23

PK3/A24

P97/ AN107/ IRQT/ A25/ ADTRG1

P00/ DO/ MTIOCEA/ TIOCAT ADTRG1/ TRACECTL
P01/ D1/ MTICSW/ TIOCA2

P02/ D2/ MTICSVI TIOCA3

P03/ D3 MTIC5U/ TIOCA4

P04/ D4/ MTIOC3CI TIOCAS

P05/ D5/ MTIOC3A

P06/ D&/ MTIOC2B/ TIOCED

PO7/ DT/ MTIOC2A/ TIOCB1

PED/ D&/ MTIOC 1B/ TIOCB2/ TRACEDATAD

PE1/ DS/ MTCLKD! TIOCB3/ SSLO03 TRACEDATA1
PE2f IRG2/ D10/ MTCLKC/ TIOCB4/ SSL....

PE3/ IRQ3/ D11/ MTIOCOD/ TIOCBS! CTS18/ S5L..
PE4/ D12/ MTIOCOB/ TIOCCO/ RTS1#/ SSL...
PES D13/ MTIOCOGC/ TIOCC3/ TXD1/ MOS....
PEGf IRQE! D14/ MTIOCOA TIOCDO RED 1 MIS....
PE7/ D15/ MTIOCTA/ TIOCD3/ POES# SCK1/ RSPC...

Pin Number

Not assigned
R7
Ve
R8
T8
vr
va
T8
RS
Vo
V10
R10
Ti0
R
T12
R12
Vi1
vi2
Y14
T4
R14
J20
J19
F15
G15
E1d
u1s
V19

uzo
U1
Vi
P15
F1&
Ti9
T20
N15
P18
N1&
N18
Mig
L1&

Pin Direction Pin Remarks

Out
Qut
Out
Qut
Out
Qut
Out
Out
Qut
Qut
Out
Out
Out
Qut
Out
Out
Qut
Qut
Out
Out
Qut
Qut
Out
Qut
Out
IniOut
InfQut
In/Qut
IniQut
IniOut
In/Out
InfQut
IniQut
IniOut
InfCut
InfOut
IniQut
In/Out
InfQut
IniQut
InfCut

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 26 of 50

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Example for this Sample: Each Screen for Setting and Describing Pin Functions from [Device List View] (2/3)

£4 Peripheral Functions | | Code Preview |7 Property}’] Device List View |
naeo
Glock Generation Gircuit
Encoder I/F Locked Pin Function Available Assignment | Search Ay L Pin Number Pin Direction Pin Remarks
| Bus state controller | i [P21/ IRQ1/ CS0% MTICSV/ TIOCB1/ CTS0# * VI3 - Oul
Controller csig PD1/ AN10/ CS1# ~ Ei6 + Oul
/O Ports
cs2t P45/ CS2# v VIS ~ Out
Multi-Function Timer Pulse Unit ¥ -
Port Output Enable 3 [v] Jecsae PT4/ CS3%/ PO29 * M19 ~ Out
General PWM Timer [cse Hot assigned + MNotassigned - -
16-Bit Timer Pulse Unit [css# Not assigned ~ MNotassigned = -
Programmable Pulse Generator
Co Match Timer W ™ P22/ IRQ2/ RD# MTIOCTB! TIOCDO/ SCKO v w4 ~ Oul
Serial Gommunications Interface with FIFO [P24/ IRQ12/ RD/ WR# RXD0 - WI3 - Oul
12C Bus hterface : P24/ IRQ12/ RD/ WR# RXDO v W13 = _Out
Serial Peripheral Interface
i BS# P41/ BS# SCKO v Y15 v Oul
SPI Multi /O Bus Gontroller - I
AT Interface [0 Ane Not assigned + MNotassigned ~ -
Error Control Module] Mot assigned v MNotassigned = -
12-Bit A/D Gonverter ¥ P36/ WEQ#/ DQMLL POD - |17 - Out
Gigabit Ethernet MAC |
EtherGAT Slave Gantroller P37/ WE 12/ DQMLU/ PO1 v T8 v Out
USB 2.0 HS Host/Function Module O ot assigned + MNotassigned =~ -
GAN Interface m Not assigned v Notassigned « -
Serial Sound Interface -
v - ul
e ™ P36/ WEO# DQMLLI POD ™ Out
¥ P37/ WE 12/ DQMLU/ PO1 v T8 ~ Oul
O Not assigned + MNotassigned ~ -
] Not assigned v Motassigned ~ -
™ PO/ AN100/ RAS# TIOCAS! TXD4 v F1§ v Oul
PRI/ CAS# PO ~ Hi9 * Oul
™ P46/ CKE v Vi§ v Out
v P10/ IRQ0/ CKIO/ TIOCAD! TRAGECLK v Y19 * Oul

_J Peripheral Functions

L] o

Clock Generation Gircuit

Encoder IFF Locked Pin Funclion Available Assignment | 5 2 Pin Number Pin Direcfion Pin Remarks
Interrupt Contraller

Bus state controller PE2/ SPECLK > w > Out
EfMF\ Gantroller P60/ SPBSSL/ CTXDO/ TENDO v Ul v Out

0 Ports

Multi-Function Timer Pulse Unit PE3/ SPEMOI SPEICD v |u2 ~ [fOut
Fart Qutput Enalile 3 PE4/ SPEMI/ SPBIOT - V2 w IniOut
General PuM Timer [=PBIO2 Mot assigned ~ HMotassigned ~ -
16-Bit Timer Pulse Unit SPEIO3 Not assigned = Motassigned ~ -
Programmable Pulse Generator

Compare Match Timer W PEMO PE3/ SPEMOC/ SPEICD ~ Uz » Out
Serial Gommunications Interface with FIFO! PEMI PB4/ SPEMI/ SPBIO1 - V2 - In

12C Bus Interface

Serial Peripheral Interface
ISFI Multi IO Bus Controller

AT Interface

Error Control Module

12-Bit &/0 Converter

Gigabit Ethernet MAG

EtherCAT Slave Controller

USE 2.0 HS Host/Function Madule

CAN Interface

Serial Sound Interface

Others

RO1AN3860EJ0110 Rev.1.10 -zENESAS Page 27 of 50

Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

e Select [Device List View] from the icon on the tool bar to select the bus state controller and set BS# pin
(PORT41). Setting of high driving ability output from CKIO pin (PORT10) is done in step (6), following the
code generation.

Note: Pins with multiplexed functions will have their default settings immediately after release from the reset state. Make sure that the
multiplexed pin functions that are actually to be used are selected. Settings for pins which are not selected as [Locked] can be

changed to another setting. To avoid unnecessary contention, please select the pins to be used as [Locked] (recommended)
after checking. Make sure that there are no errors that will lead to contention and so on.

(6) Code Generation and Modification with User-Defined Code
Generate the code after completing the settings from (1) to (5).
When the code is generated, the folder cg_src is created immediately below the folder cg rc_serial, in which the
project of the Code Generation Tool generated. The source code and header code are generated in the former folder.

e Modifying generated code
The Code Generation Tool overwrites code whenever it generates new code. To merge code written by the user
with newly generated code, it must be written between specific comment lines to protect it from being
overwritten. [Merge file] is the default setting for file generation control.

Opticns | Help
Cempiler *
| File Generation Control — » Do nothing if file exists
Report Type k ' Merge file
AP| Qutput Control 3 Overwrite file
Text File Enceding IF

The comment lines to indicate code to be merged are written in each file of code output by the Code Generation
Tool as shown below. The comment lines protect the user code since the code between them is not overwritten in the
case of merging with an existing file when code is generated again.

/* Start user code. Do not edit comment generated here */
«—Write code between these lines.
/* End user code. Do not edit comment generated here */

Note: Please don't modify or move the comments for use in merging. If they are modified or moved, merging will not be successful.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 28 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Setting an API function for the Bus State Controller]
The code shown below should be written in modifying the file created in step (4).
Target file: r cg bsc user.c
Target API function: R BSC_Create Userlnit
e Setting of high driving ability output for PORT10.
Setting the pin function of the clock for the bus (CKIO)
e Setting of WCR for SDRAM to the CS2 space (BSC_CS2WCR 1)
When the e2studio (with equivalent functionality to AP4 1.04) is used, the additional settings should be made
here.
e Calling the API function for initial settings of the SDRAM (R_BSC _InitializeSDRAM)
The API function for the initial settings of the SDRAM is called in the user's own code for initialization

processing.

Write the following code between the comment lines to retain user code in the target API function during the

process of merging.

/* Start user code. Do not edit comment generated here */

/* Set PORT1 as high-drive output setting for connecting SDRAM */

PORT1.DSCR.WORD = 1; «—Setting of high driving ability output for PORT10

/* Set wait control register of CS2 space */

BSC.CS2WCR.CS2WCR_1.LONG = 0x00000400; «—Setting of WCR for SDRAM to the CS2 space (required
only for the e2studio)

R_BSC_InitializeSDRAM() ; «—Setting of API function for initial settings of SDRAM

/* End user code. Do not edit comment generated here */

[Setting the API Function for Response to the Compare Match Timer]

The following code is written in the interrupt processing routine by modifying the file created in step (3).
Target file: r cg cmt_user.c
Target API function: r_cmt_cmiO_interrupt

e Write the code for switching LED10 on or off in the interrupt processing routine for the compare match in

response to operation of the cyclic counter.

Write the following code between the comment lines to retain user code in the target API function during the

process of merging.

/* Start user code. Do not edit comment generated here */

/* Toggle the PORTM7 output level (LED10) */
PORTM.PODR.BIT.B7 *= 1; «—Interrupt processing (switching LED10 on or off)

/* End user code. Do not edit comment generated here */

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 29 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

[Setting the API Function for the User Application Program]
After the code is generated, the file r cg main.c to contain the main processing is created by the Code Generation
Tool under the folder cg_src. In this step, the file r_cg main.c in the folder for the SPI boot mode version cg_src is
needed to be modified.
In the main processing of the user application in the filer cg main.c, function R MAIN Userlnit is called. For this
sample program, the calling function of the main processing as stated in the function should be common to the 16-
bit bus boot version and SPI boot (serial) version.

Target file: r cg main.c

Target API function: R MAIN Userlnit

Added common main function name: user_app_main

Write the following code between the comment lines to retain user code in the target API function during the

process of merging.

void R_MAIN UserInit (void)

{

/* Start user code. Do not edit comment generated here */
user_app_main() ; «—Common main function to be added

/* End user code. Do not edit comment generated here */

Note: The name of the function to act as the common main function can be as desired by the user, but it must be the same name as
that of the common main function created in Section 6.3.2 (4), Creating a Common main File.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 30 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.3.2 Incorporation in the Sample Program of RZ/T1 Group Initial Settings

The code generated by the Code Generation Tool should be incorporated in the EWARM version of the sample program
environment for making initial settings.

As the example for this sample program, incorporation of the code generated and written in Section 6.3.1, Generating
Code with the Code Generation Tool, is described below.

Remark: From this point forward, the numbers of line and etc. are described on the basis of Rev. 1.30 of the sample
program of the Initial Settings. When incorporating the code from the previous steps, use the latest version of
the sample program of the Initial Settings at that point in time.

(1) Importing the Environment of the code created by the Code Generation Tool (Copying)
Copy the project folder of the Code Generation Tool itself which was created in 6.3.1 (2), Creating a New
Project, to the folder for storage (src) of the source files among the project files of the sample program of the Initial
Settings.

Examples for this Sample Program:
Code Generation Tool Project name for 16-bit bus boot mode: cg_src_nor
Code Generation Tool Project name for SPI boot mode: cg_src_serial

4 | AP4_jccarm
4 RZ_T1_init_boot_AP4
Debug
inc
lib
settings
a | src < Copy to src folder

og_src_nor

og_sre_serial

common
drv

sample

Note: Since the name of the folder created to hold the code generated by the Code Generation Tool is fixed to "cg_src", use different
project names for the 16-bit bus boot mode version (cg_src_nor) and the SPI boot mode version (cg_src_serial) to contain the
separate versions of the sample program.

After the code is generated, each of the project folders will contain "cg_src" folder and the workspace file (.cgp).

[Supplementary Note]

When code generated by the code generation tool is incorporated in the e2studio environment, move iodefine.h from the
inc folder to immediately below the project folder. For details, see Table 6.2, Folder Structure of the Sample
Program of the Initial Settings Following Incorporation of the Code from the Code Generation Tool (2/2), in
Section 6.1.1, Project Settings.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 31 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(2) Editing the Loader Code in the Sample Program of the Initial Setting
Setting of the clock oscillator, the bus state controller, and of the SPI multi I/O bus controller which are used in the
sample program of the Initial Setting should be used after having been replaced by those created in Section 6.3.1
(4), Setting Modules for the Clock Signals and Bus, with the settings made in the Code Generation Tool in that
step. Therefore, the settings specified by the loader program in the sample program of the Initial Setting should be
disabled (commented out).
o [Edit the file loader_init2.c in the common folder for the storage of source files (src) under the project folder
(RZ_T1 init boot) of the sample program of the Initial Setting.
The two points to be edited in the loader code are the 111th line and the 119th line, both in function loader_init2.

/* Set CPU clock and LOCO clock */

// cpg_init () ; «—Comment out the function for initial settings of the clock oscillator.*1
snip
/* Initialize the bus settings */

// bus_init () ; < Comment out the function for initial settings of the bus controllers

(BSC, SPIBSC).*2

Note 1. If you plan to have the loader program speed up the clock and buses, it is possible to call the functions for
various settings without commenting lines out. However, take care with this, as the settings of the clock and
buses will be remade in the initial settings of later processing by the Code Generation Tool in this sample
program. For details, see section 9 (1), Usage Note on the bus_init() Function.

Note 2. In the bus_init() function, the setting of the serial flash memory is changed from the single /0O mode to the quad
I/O mode. However, when the code is generated in accord with this procedure, the read command (FAST
READA4B) is used under the condition of the serial flash memory being in single I/0O mode. When the bus_init()
function is used to set the buses in the loader program, be sure to set it to quad I1/0 mode. For details, see
section 9 (1), Usage Note on the bus_init() Function.

(3) Move the Initial Settings Function for the Error Control Module (ECM) to the Loader Code

In the sample program of the Initial Setting the function to set the ECM up is called from the main processing. In

this program, the common main created by the user should replace the main of the sample program of the Initial

Setting.

Therefore, move the function call for setting up the ECM (ecm_init), which handles the initial setting up of the

ERROROUT pin, to the initial settings part of the loader code.

e Move the ecm_init function from init_main.c to loader_init2.c (or, if you are using the DS-5 IDE, cpu_init.c).
The file init_main.c should be under the sample folder of the folder for the storage of source files (src) in the
project file of the sample program of the Initial Setting.

Setting of extended pseudo-error 35 for ECM is not necessary, so it should be removed.
Processing of the extended pseudo-error for ECM in loader init2.c should also be removed.

The following lines of the file init_main.c should be copied to the file loader_init2.c.

Source of copying: File init_main.c

e (1) Function definition, 86th line

void ecm_init (void) ;

e (2) Calling function ecm _init from the 117th (comment) and 118th (call) lines of the main function

/* Initialize the ECM function */

ecm_init () ;

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 32 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

e (3) The code for the ecm_init function is from the 177th line to the 202nd line.

/***

* Function Name: ecm_init
snip
***/

void ecm_init (void)

{
snip

}

/***

End of function ecm init

***/

Destination file for copying: File loader init2.c

e Add the function declaration that was copied in step (1) to "Private variables and functions" as the 98th line.

/***

Private variables and functions
***/

void loader_ init2(void) ;

void reset_check (void) ;

void cpg_init (void) ;

void copy_ to_atcm(void) ;

void copy_ 4byte(uint32_t *src, uint32_t *dst, uint32_t bytesize);

void ecm_init (void) ; «—Add the declaration of function ecm_init.

o Place the call of ecm_init() between the calls of function set low_vec and function main in the processing by
loader init2.
Add the call of function ecm_init from step (2) as the 129th line.

void loader init2(void)

{
snip
/* Set RZ/T1 to Low-vector (SCTLR.V = 0) */

set low vec();

/* Wait for ensuring the wait setting of ATCM */

asm("dmb"); /* Ensuring Context-changing */ «—Addaiwﬂﬁngﬁﬁthe“mﬁsmﬁngofATCNF1
/* Initialize the ECM function */

ecm_init () ; «—Add call of function ecm_init.

/* Jump to _main() */

_main() ;

Note 1. The processing of function ecm_init is placed in the ATCM. Therefore, the DMB instruction is added to ensure the wait setting
of ATCM, executed by R_ATCM_WaitSet() immediately before the processing.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 33 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

e Add the code for function ecm_init from step (3) before the end of the file. (Remove the setting of the extended
pseudo-error from line 354 to line 359)

/***

End of function copy 4byte
***/
/***
* Function Name: ecm init
snip
***/

void ecm init (void) «—Add function ecm_init
{

volatile uint8_t result; «—Remove the declaration of result, since it is not used

/* Initialize ECM function */
R_ECM TInit();

JERKIEK KA KKK I K KKK KK IAK I XK I AK I AR KA KA R K kX * ok x / «—Remove the lines from here up to the assignment to result.

/* Set extended pseudo error 35 */

/***/

/* Enables internal reset configuration */

result = R ECM Write Reg32(ECM COMMON, & (ECM.ECMIRCFGL.LONG), 0x00000004) ;

}

/***

End of function ecm init

***/

/* End of File */

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 34 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

e Remove the processing of the extended pseudo-error for ECM from the reset_check function in loader_init2.

/***

* Function Name : reset check
* Description : Check the reset source and execute the each sequence.

* When error source number 35 is generated, set P77 pin to High.

* Arguments : none
* Return Value : none
***/

void reset_check (void)

{

volatile uint8_t result; < Remove the declaration of result, since it is not used
volatile uint32_t dummy; < Remove the declaration of dummy, since it is not used
/* Check the reset status flag and execute the each sequence */

if (RST_SOURCE_ECM == SYSTEM.RSTSRO.LONG) // ECM reset is generated

{

/* Clear reset status flag */

R_RST WriteEnable() ; // Enable writing to the RSTSRO register
SYSTEM.RSTSRO.LONG = 0x00000000; // Clear reset factor flag
R_RST WriteDisable() ; // Disable writing to the RSTSRO register
/* Check the ECM error source */ <—Remove the if statement and the processing in case the condition
is satisfied below
if (1 == ECMM.ECMMESSTR1.BIT.ECMMSSE102) // Error source number 35 is generated
{
snip
1
snip

/***
End of function reset_ check

***/

}

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 35 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(4) Creating a Common main File
In user application programs created with the Code Generation Tool, different files are used in the 16-bit bus boot
mode version and SPI boot mode version.
The main processing which is common to both the 16-bit bus boot mode version and the SPI boot mode version
should be created in a common main file.
For this sample program, it should be created in the sample folder where the source files are stored (src) in the
project file of the same sample program of the Initial Setting as file init_main.c, since it is the common main
function.
The names of files can be selected as desired by the user. In this sample program, the names of the functions to be
created should be called from the user application program created with the Code Generation Tool so they should be
as below.

Example for this Sample Program:
Common main function to be created: user app main

File to be created: user_main.c

Create the file as follows with reference to the user main.c file for this program.

~

/***

Includes <System Includes> , "Project Includes"
***/

#include "r cg cmt.h" «Include file of definitions for the CMT0 Function
#include "iodefine.h"

#include "r system.h"
/***

snip

/***

Private variables and functions

***/

void user app main(void) ; «—Declaration of function user_app_main

/***
* Outline : user main processing

* Function Name: user_app_main

snip

***/

void user app main (void) «—Body of function user_app_main
{

R_CMTO_Start() ; «—Start use of CMTO by the sample program
}

/***

End of function main

***/

/* End of File */

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 36 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

(5) Setting the target source code from the Code Generation Tool to be compiled
In the case of EWARM, set the source code from the Code Generation Tool to be compiled for the sample program
in the initial settings by following the procedure below.

[Add Project Connection]

e Select [Add Project Connection...] from the [Project] menu. The [Add Project Connection] dialog box should be
displayed.
Select [IAR Project Connection] for [Connect using] and click on [OK].
e Screen [5]-1 Adding a Project Connection
2& RZ_T1_init_serial_boot - IAR Embedded Workbench IDE - ARM 7.80.2 - [m] x
File Edit View -jet/JTAGjet Tools Window Help
0= ﬁ\ﬂms. [~] BRI
Workspace Add Group... Add Project Connection x - x
Debug Import File List...
Files Add Project Connection... Connect using: IAR Project Connection ~
Egm:ﬁcnmmull_ﬁ'ﬂ_—\ GNTIgUTatons. . o
FaCseia Remove
bu Create New Project.
Add Existing Project...
Options. Alt+F7
Version Control System > @ Select IAR Project Connection File x
Make LT « - A | <« iccarm > RZ_T1_init_boot » src » cg_src_serial " |c_, o
Compile Cerl+F7
Rebuild All =l N @
Clean 2t - §s 4
Batch build... 2]
cgsre .
C-STAT Static Analysis >] test IAR_APAipcf . 2 KE
Stop Build Ctrl+Break
Download and Debug Ctrl+D
—H grhvecty Debug without Downloading :
&1 Cinit File Name(N): | test AR AP4.pct | <] 1R Project Connection File (i ~
user_
F=C1Renesa I Open (i
=y
= :
SFR Setup.
Open Device Descripticn File >
Save List of Registers...
[]

The [Select IAR Project Connection File] dialog box should be displayed. Select [IAR Project Connection File]
(.ipcf) and click on [Open].

The project file for connection includes the registered information of the source files.

The files selected here should be created after the code has been generated in the following folder
(recommended) by the Code Generation Tool.

Examples of folder names for reference:
Folder name of 16-bit bus boot version: cg_src_nor

Folder name of SPI boot mode version: cg_src_serial

The files to be compiled should be added as shown below after they are completed.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 37 of 50
Apr. 11, 2018

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

e Screen [5]-2 Example of the addition of files to be compiled

Workspace ﬂ
Debug b
Files &
=[i |RZ_T1_init_serial_boot-Debug* [v | |
& (] common :
—2 (Jinit
L@ IE! init_main.c .
—H L1 Renesas_Al
Laeg_sre
@ [r_cg_bsce .
— [r_cg_bsch
@ [r_cg_hsc_user.c '
& [0 r_co_cgee :
— B r_co_coch
@ [r_co_cgc_user.c :
@ [0 r_co_cmtc :
— [r_eg_emth
@ [0 r_co_cmit_userc .
— |l r_cg_interrupthandlers b
— [0 r_ca_intpra.c .
— [r_co_macrodriverh
@ [0 r_co_main.c .
@ [r_cg_mpcc '
— [l r_co_mpch
@ [0 r_cq_portc .
— 1 r_co_porth
@ [0) r_co_port_userc .
—@ [r_cq_spibsce -
— 1 r_cg_spibsch
@ [0) r_co_spibsc_userc .
=@ [c]r_co_systeminitc .
— [r_co_userdefineh
B test_IAR_AP4.ipc!
E Tioupd
— B RZ_T1_init_serial_bootmap
L@ [YRZ_T1_init_serial_hootout
RZ_T1_init_senial_boot
Note: Regarding the use of [Add Project Connection], see section 3.12.1, How to create a project connection between IAR
Embedded Workbench and AP4, in AP4, Applilet3 Common Operations User's Manual (R20UT3420EJ).

Remark: In DS-5 and e2studio, when a file is added to the folder created by the Code Generation Tool, the project
automatically recognizes the file.

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS Page 38 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

(6) Setting exception from compilation of the main function which is used in the initial set-up

Select init_main file in the work space and right-click on it.
Select [Remove] to set the exception from compilation.

= T init | |
CI Cutput Opticns...
— blDLib_Co Make
— [OLik_De _
| DLib_Pro Compile
— k1 DLikb_Th Rebuild All
— [iodefine.l Clean
— [r_ecm.h
— icu_ini C-STAT Static Analysis
— k1r_mpch) _
| r_parth Stop Build
— [k1r_system
T Add
— [n] stdint.h
— [=xencodin Miarraie
— h]ycheckl Rename...
— [klvwvalsh
(3 Output Version Control System

Open Containing Folder..
File Properties...

Set as Active

(7) Setting compilation of the common main function

Add user main.c to be compiled in the init folder.

B @RZ_T1_init_serial hont-Na

v I I

« RZ_T1init boot > src » sample I

8 [commaon Options...
3] serial_boo
@ [bus_init_
& B loader_
—Brz_TI_ R
[spibsc_t -
@) spibsc_t b
F@E)spibsci C.TAT Static Analysis >
8 B spibsc_i
L@ () spibsc_i
8) exitc

@ Ebloader_jnt, | Add

@ init_main.c
user_main.c

Select user_main.c from specified folder

& [loader_init;
& () r_atcrm_init

| Add Files... I <
Add Group... : [5
File Name(N): | user_main.c

Remove

v

@ Bir_cpo.c Rename...

Ha B r_ecm.c

& [r_icu_inite
Ha B r_mpec

@] r_ram_init.c
Fa B r_resetc
L@ Ehvector.asm
|— O [ey ey

@] Output

Versicn Control System >

BE

gelmline | |
| “8 B user mainc .

| FeCouwut
| | Biodefineh
| L— Brsystemh
Laoutput

Source Files (".c;™.cpp;™.cc;h™ v

Cancel

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 39 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

(8) Set the include path for incorporating of the newly added code output by the Code Generation Tool

e Select [Options...] from the [Project] menu and select [C/C + + Compiler] — [Preprocessor].

Add the folder created by the code generation tool to the setting for additional include directories with the path

to the working files as in the example below.

Example for this Sample Program:

$PROJ_DIRS$\src\cg_src_serial\cg_src

Project

I-jet/ITAGjet Tools
Add Files...

Add Group...

Import File List...

Add Project Connection...

Edit Configurations...
Remove

Create New Project..,
Add Existing Project...

Window Help

Opticns... Alt+F7 I

Version Control System 2

Make F7
ompile Ctrl+F7

Rebuild All

Clean

Batch build... F&

C-STAT Static Analysis >

Ctrl+Break
Download and Debug Ctrl+D

Debug without Downleading

Attach to Running Target

Download

SFR Setup

Open Device Description File >

Save List of Registers...

Options for nede “RZ_T1_init_serial_boot”

Category:
[General Options ~ | | [Mubifile Compilation

| Static Analysis Discard Unused Fublics
| Runtime Checking

[Cic - compier |

Assembier
Output Conver ter

Language2 Code

[Jignore standard include directories

Optimizations Output List

Factory Seltings

Preprocessor Dja 4 | *

Custom Buid

Build Actions SPROJ_DIRS¥inc

Linker SPROJ_DIRS¥src¥cg_sre_serial¥cg_sre

Debugger
Simulator

Additivnalinclude directariess fone per ine).

angel

CADI Preinclude file:
CMSIS DAP

GDB Server

TAR ROM-monitor
Ijet/ITAGjet
Iink/3-Trace

TI Stellanis
Macraigor

PE micro

Defined symbols: (one per line)

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 40 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

(9) Rebuild All

e Select [Rebuild All] from the [Project] menu as shown below.

Rebuilding should start after this is selected. Please check that there are no errors.

Project |-jet/JTAGjet Tools Window

Add Files...

Add Group...

Import File List...

Add Project Connection...

Edit Configurations...

Remove

Create Mew Project...
Add Existing Project..

Options...
Version Control System

Make

Compile

Help

Alt+FT

Bebuild All

Clean

Batch build...
C-5TAT Static Analysis
Stop Build

Download and Debug
Debug without Downloading
Attach to Running Target
Make & Restart Debugger
Restart Debugger

Download
5FR Setup

Open Device Description File
Save List of Registers...

RO1AN3860EJ0110 Rev.1.10

Apr. 11, 2018

RENESAS

Page 41 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

(10) Downloading and Debugging

e Select [Download and Debug] from [Project] on the tool bar as shown below. After the emulator is connected,

the program will be written to the external serial flash memory by the dedicated flash downloader. You can then

start debugging.

Project jet/lTAGet Tools Window Help
Add Files...
Add Group.
Import Fle List..
Add Project Connection...

Edit Configurations...

Create New Project.
Add Existing Project.

& RZ_T1_init_serial_boot - IAR Embedded Workbench IDE - ARM 7,802

Options... AlsF7

Version Cantrol System >

Make FT

Cl-F7

Rebuild All

Clean

Batch build... 8

C-STAT Static Analysis >

Stop Build Ctrl+Break
| oownicad and Debug Ctl+D

Debug without Downloading
Attach to Running Target

Download »
SFR Setup

Open Device Description File >
Save List of Registers...

Fie Edit View Project Debug Disassembly Ijet/TAGjet Tools Window Help
Do & - Iy wnEpepah nUXS dd
CriRZrLEZ2IX
i
Wiorkspace * [iGader s | T - x Desssenty =
Debug v = Gow [| Memoy v
| Files 2w Al e Disassermbly "
EIRZ_T1_init_serial_boot-.. v Fobine Sendeaintii. ps £17 FIQ node
| FaCscommen 1DR_PRG_WBLOCKsSBase
| | Fe0seriol_boot loader_initl
|| HBRexitc stack_init:
|| e @oader intasm 0x8020000 0x£1020011 CPS A7
|| 2 B loader ini2.c P ' STACK
|| FaBr_stem_nite 0x802004: 0xeS9£d278 1DR se, [BC,
|| FeBcpac : e ARG s
|| FeRreome 0x802008: 0x£1020012 CPS 18
|| B Cewintc ST LodosE bt d5 sp. ASFECTRQ.ST
|| Fe B mpee 0x80200c 1DR SP, [EC.
|| @ B rem_initc ps #2 B
o B r_resete 0x802010; 0 crs 22
La b, =S
Facint 10R ES
L B user_mainc i =
@ CIRenes s el — 0x802018: 0x£102001b CFS 227
Leo ldr sp, =STE(FIQ_STACK) dr sp. =SFE(UNDSTACK
e nade 0x80 OxeS9td26c IDR e, [RC
7 SFE(IRQ_STACK) s #31 ; Systea mode
-] o 0802020 0x£102001F crs 231
- 1dr sp, ~SFE(CSTACK)
- 0x802024: 0xeS9fd268 DR e, [PC
k@ R _cg_cge_usere ps 13 | SVC aode
|| FeDrcgeme 0x802028: Ox£1020013 CFS By
— cmth dr sp, =SFE(SVC_STACK
|| FeDco omtuserc 0x80202c: 0xeS9fd264 DR se. [PC
i cg_interuphandlers h rc plS. #0. x0 0082 UE 1
|) intprg.c: vEp_init;
|| = Brca_mecrodiverh 0802030 Oxeell0fSO MRC p1S, 0.
|| e Bceamanc Gy ey er 30, 10, #0xF00000
} ¢ Soeles i and @il acces 02802034; 0x=38008£0 ORR RO, RO, 8
\ wor pls, #0. x0, ol. €0, #
|| FeBrcgporc ; Cantext-ch 0x802038: 0xee010£50 NCR P15, 50
— Ri_cg_porth b Ensining Cont
| @ Br_cg_port_userc mov 0, #0x40000000 0x80203c: 0x£STE{06E 15B
|| @@ cospibsce v vmsr fpexc, x0 nov %0, #0x4000000¢ les Vi toe
[CRETT . N |- nvanonan conitn wew o e
Messages File Line e
| Configuration is uprio-date. vy
= bty Buid
Rescty Errers 0, Warnings 0 [

RO1AN3860EJ0110 Rev.1.10

Apr. 11, 2018

RENESAS

Page 42 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

6.4 Fixed-Width Integer Types

Table 6.6 lists fixed-width integer types for the sample code.

Table 6.6 Fixed-Width Integer Types for the Sample Code

Symbol Description

int8_t 8-bit signed integer (defined in the standard library)
int16_t 16-bit signed integer (defined in the standard library)
int32_t 32-bit signed integer (defined in the standard library)
uint8_t 8-bit unsigned integer (defined in the standard library)
uint16_t 16-bit unsigned integer (defined in the standard library)
uint32_t 32-bit unsigned integer (defined in the standard library)

6.5 Function

Refer to the application note of the RZ/T1 Group Initial Settings products for the functions of the sample program of the

Initial Setting that are also used in this sample program. Table 6.7 below only lists the function to be added to the sample

program of the Initial Setting.

Table 6.7 Function

Function Name

user_app_main

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 43 of 50

RZ/T1 Group

Guide for Applying the Code Generation Tool to the Sample Program

6.6 Flowchart

6.6.1 Loader Program Processing

Figure 6.3 is a flowchart of processing by the loader program.

C Start of loader program)

Initial settings for the stack, VFP, and variables
(for the loader program)

Judgment of reset

Judgment of ATCM wait time

Transfer of the application program

Settings for the MPU and the cache

Setting the low vector

ECM settings
Taken from the main function
of the initial settings program

< Branch to the user application program >

Figure 6.3 Loader Program Processing

Refer to the application note on initial settings for RZ/T1 group products for details of the flow of the loader program

part.

RO1AN3860EJ0110 Rev.1.10
Apr. 11, 2018

RENESAS

Page 44 of 50

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.6.2 Processing by the Application Program Created by the Code Generation Tool

Figure 6.4 is a flowchart of the application program created by the Code Generation Tool.

Code Generation Tool
Starting the user application program

Register the FIQ handler

Perform dummy writing to the VIC.HVAO register

Make the pin-function settings
MPC and port settings

Set the clock oscillator (450 MHz)
Clock-frequency settings for the CPU
and peripheral 1/0O modules

Set the bus-state controller (BSC)
Memory-bus (CSx) wait and
external bus clock settings

Set the pin for use by the user
Port settings

Set the timer for use by the user/Set the timer interrupt
CMTO settings

Make the SPI multi I/O bus controller settings (SPIBSC)
Memory bus (SPIBSC) wait setting

Run the user application
main function

Branch to common main

Note: The API functions generated by the Code Generation Tool are used.
The main function of the user application becomes the main processing produced by the Code Generation Tool for each of
the boot modes that are selected.

Figure 6.4 Application Program Created by the Code Generation Tool

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 45 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

6.6.3 Common main Processing

Figure 6.5 shows the flowchart of the common main processing.

(Common main function >

Setting to start the timer for use by the user (CMTO0)

Figure 6.5 Common main Processing

6.6.4 Interrupt Processing by the Timer Selected by the User (CMTO)

Figure 6.6 is a flowchart of processing in response to interrupts from the timer selected by the user (CMTO0)

Handling the interrupt from the timer for use by the user
(CMTO)

Switch LED10 on if it is off and off if it is on.

C return)

Figure 6.6 Interrupt Processing by the Timer Selected by the User (CMTO0)
RO1AN3860EJ0110 Rev.1.10 RENESAS Page 46 of 50

Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

7. Sample Program

The sample program can be downloaded from the Renesas Electronics website.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 47 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

8. Related Documents

e User's Manual: Hardware
RZ/T1 Group User's Manual: Hardware
Download the latest version from the Renesas Electronics website.

RZ/T1 Evaluation Board RTK7910022C00000BR User's Manual
Download the latest version from the Renesas Electronics website.

e Technical Update and Technical News
Download the latest version from the Renesas Electronics website.

e User's manuals related to the development environment
The latest version for the IAR integrated development environment (IAR Embedded Workbench® for ARM) is
available from the [AR Systems website.

The latest version for the ARM integrated development environment (Development Studio 5TM) is available from
the ARM website.

The latest version for the Renesas Electronics integrated development environment (e2studio) is available from the
Renesas Electronics website.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 48 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

9. Usage Note

(1) Usage Note on the bus_init() Function

In this sample program, the bus_init() function that is the base program of the initial setting sample program is used
without lines commented out. Therefore, when the bus_init() function is used while setting buses in the loader program,
take care on the following points.

In the bus_init() function, the setting of the serial flash memory is changed from the single I/O mode to the quad I/O
mode. On the other hand, as the function is expected to operate in single I/O mode in this sample program, reading of the
serial flash memory does not proceed normally. When the bus_init() function is used, settings for the quad I/O mode are
required as described in Section 6.3.1 (4), Setting Modules for the Clock Signals and Bus, [Settings for the SPI
Multi I/O Bus Controller], such as setting 0XEC (4READ4B) in the command.

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 49 of 50
Apr. 11, 2018

RZ/T1 Group Guide for Applying the Code Generation Tool to the Sample Program

Website and Support

Renesas Electronics website
http://www.renesas.com/
Inquiries

http://www.renesas.com/contact/

RO1AN3860EJ0110 Rev.1.10 RENESAS Page 50 of 50
Apr. 11, 2018

Revision History

Guide for Applying the Code Generation Tool to the Sample Program

Description
Rev. Date
Page Summary
1.00 Jun. 30, 2017 — First Edition issued
1.10 Apr. 11,2018 | 2. Operating Environment

4

Table 2.1 Operating Environment, Tool for generating code: The version of the AP4 from
Renesas, modified. Note modified.

3. Related Application Notes

5 Application note document numbers, added
6. Software

13 6.1.3 Exception Processing Vector Table: The address of the 34-byte area, modified

13 Table 6.4 Exception Processing Vector Table, Note: The address, modified

16 6.3.1 Generating Code with the Code Generation Tool: The description on the code gener-
ation tool, modified

24 Screenshot [5]: Settings for SPI multi I/O bus controller (General setting), modified. Note
modified.

25 Screenshot [5]: Settings for the SPI multi 1/0O bus controller (Setting), modified

27 Example for this Sample: Each Screen for Setting and Describing Pin Functions from
[Device List View] (3/3), modified

29 The description of [Setting an API function for the Bus State Controller] in section 6.3.1,
modified. The description on the code, modified

31 6.3.2 Incorporation in the Sample Program of RZ/T1 Group Initial Settings, Remark: The
revision of the sample program of the initial settings, modified

32 6.3.2, (2) Editing the Loader Code in the Sample Program of the Initial Setting: Note 1,
modified. Note 2, added.

33 6.3.2, (3): loader_init2.c processing: The waiting function for the wait setting of ATCM was

added beween set_low_vec(); and /* Initialize the ECM function */. Note 1, added.

9. Usage Note

49

| 9. Usage Note, added

All trademarks and registered trademarks are the property of their respective owners.

C-1

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LS| are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LS| is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

— The characteristics of Microprocessing unit or Microcontroller unit products in the same group but
having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or
other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

10. Itis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

RENESAS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

	Introduction
	Target Devices
	Table of Contents
	1. Specifications
	2. Operating Environment
	3. Related Application Notes
	4. Peripheral Functions
	5. Hardware
	5.1 Hardware Configuration Examples
	5.2 Pins

	6. Software
	6.1 Operation Overview
	6.1.1 Project Settings
	6.1.2 Preparation
	6.1.3 Exception Processing Vector Table

	6.2 Interrupts
	6.3 Procedure for Incorporating Code from the Code Generation Tool
	6.3.1 Generating Code with the Code Generation Tool
	6.3.2 Incorporation in the Sample Program of RZ/T1 Group Initial Settings

	6.4 Fixed-Width Integer Types
	6.5 Function
	6.6 Flowchart
	6.6.1 Loader Program Processing
	6.6.2 Processing by the Application Program Created by the Code Generation Tool
	6.6.3 Common main Processing
	6.6.4 Interrupt Processing by the Timer Selected by the User (CMT0)

	7. Sample Program
	8. Related Documents
	9. Usage Note
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

