
 Application Note

R01AN6111EJ0210 Rev.2.10 Page 1 of 59
Jan.10.24

RX671 Group
Example of Program Execution from Serial ROM Using QSPIX XIP Mode
Introduction
This application note describes an example of the use of the XIP mode of the QSPIX module (the QSPIX) on
the RX671 Group to execute a program located in the serial ROM.

The following three sample programs are provided with this application note as an example.

• Application program (an application program including program code allocated to the serial ROM)
• Writer program 1 (a program that copies a portion of the application program to the on-chip ROM for

writer program 1 and then writes the copied data to the serial ROM)
• Writer program 2 (a program that receives a portion of the application program from the host PC by serial

communication and then writes the received data to the serial ROM)

Target Device
RX671 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 2 of 59
Jan.10.24

Contents

1. XIP Mode and Prefetch Function on QSPIX .. 4
1.1 Overview of XIP Mode ... 4
1.2 Enabling XIP Mode .. 4
1.3 Terminating XIP Mode ... 5
1.4 Prefetch Function .. 5

2. Hardware Configuration ... 6
2.1 Renesas Starter Kit+ for RX671 .. 6
2.2 EK-RX671 .. 8

3. Sample Programs .. 10
3.1 Application Program .. 11
3.1.1 Program Specifications ... 11
3.1.1.1 Software .. 11
3.1.1.2 Build Settings in e2 studio .. 12
3.1.1.3 Outline Flowchart .. 18
3.1.2 Program Configuration .. 19
3.1.2.1 File Structure ... 19
3.1.2.2 Option-Setting Memory ... 19
3.1.2.3 Constants .. 20
3.1.2.4 Functions ... 21
3.2 Writer Program .. 22
3.2.1 Writer Program 1 ... 22
3.2.1.1 Program Specifications ... 22
3.2.1.2 Program Configuration .. 28
3.2.2 Writer Program 2 ... 31
3.2.2.1 Program Specifications ... 31
3.2.2.2 Program Configuration .. 35
3.3 FIT Modules Used ... 46
3.3.1 List of FIT Modules Used .. 46
3.3.2 FIT Module Settings .. 47
3.4 Operation Confirmation Conditions ... 50
3.5 Sample Program Operation Confirmation ... 51
3.5.1 Debugger Connection Settings for Application Program .. 52
3.5.2 Notes ... 55
3.5.2.1 Address of the Application Program to Be Allocated to the Serial ROM .. 55
3.5.2.2 Project Configuration ... 55
3.5.2.3 Note on Building the Writer Program 1 ... 55
3.5.2.4 Debugging the Portion of the Program in Serial ROM .. 55
3.5.2.5 Using Renesas Flash Programmer to Write the Application Program to the RX671 55

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 3 of 59
Jan.10.24

4. Importing a Project... 56
4.1 Procedure in e2 studio ... 56

5. Obtaining the Development Environment ... 57
5.1 e2 studio ... 57
5.2 Compiler Package ... 57

6. Additional Information .. 57
6.1 Notes on Using the Evaluation Version of C/C++ Compiler Package for RX Family 57

7. Reference Documents ... 57

Revision History .. 58

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 4 of 59
Jan.10.24

1. XIP Mode and Prefetch Function on QSPIX
In the example described in this application note, the XIP mode and prefetch function of the QSPIX are used
when reading instruction codes from the serial ROM.

XIP mode and the prefetch function are described below.

1.1 Overview of XIP Mode
Some serial ROM supports the speeding up of ROM read operations by omitting the reception of instruction
codes. This function is controlled by mode data contained in dummy cycles within the preceding SPI bus
cycle.

1.2 Enabling XIP Mode
XIP mode is available for use in memory map mode (AMOD bit in SPMR1 register set to 1). To enable XIP
mode, specify the value for activating the XIP mode of the serial ROM to be used in the MODE[7:0] bits in
the SPDCR register and set the XIPE bit in the SPDCR register to 1. The value specified in the MODE[7:0]
bits is transmitted during the dummy cycles in the next SPI bus cycle, as shown in Figure 1 illustrating XIP
mode control data. It is possible to determine if XIP mode is enabled by reading the XIPS flag in the SPDCR
register after the above SPI bus cycle ends. Note that the mode data for activating XIP mode differs
according to the type of serial ROM. It is therefore necessary to set the MODE[7:0] bits to match the serial
ROM to be used.

Figure 1 XIP Mode Control Data

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 5 of 59
Jan.10.24

1.3 Terminating XIP Mode
To terminate XIP mode, specify the value for terminating the XIP mode of the serial ROM used in the
MODE[7:0] bits in the SPDCR register and clear the XIPE bit in the SPDCR register to 0. The value specified
in the MODE[7:0] bits is transmitted during the dummy cycles in the next SPI bus cycle.

It is possible to determine if XIP mode has been terminated by reading the XIPS flag in the SPDCR register
after the above SPI bus cycle ends.

1.4 Prefetch Function
The QSPIX has a prefetch function.

The serial ROM memory read command can be used to read an infinite amount of data in a single SPI bus
cycle. However, if bus cycles issued by the CPU are individually converted into SPI bus cycles, the SPI bus
cycle is divided and this feature of the serial ROM cannot be utilized.

The prefetch function makes use of this characteristic to speed up instruction execution.

The prefetch function is enabled when the PFE bit in the SPMR0 register is set to 1. When the prefetch
function is enabled, the QSPIX continuously receives and buffers data without waiting for the next ROM read
request. When the CPU next reads the ROM, the QSPIX compares the addresses and returns the data in
the buffer to the CPU if the addresses match. If the addresses do not match, the data in the buffer is
discarded and a new SPI bus cycle is generated.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 6 of 59
Jan.10.24

2. Hardware Configuration
2.1 Renesas Starter Kit+ for RX671
Figure 2 shows Connection Between the RX671 and the Serial ROM (in the Case of Renesas Starter Kit+ for
RX671).

Figure 2 Connection Between the RX671 and the Serial ROM (in the Case of Renesas Starter Kit+ for

RX671)
Writer program 2 receives a portion of the application program from the host PC by serial communication.
Figure 3 shows Connection Between the RX671 and the Host PC.

The RSK has a USB serial conversion circuit. If the RSK is connected to the host PC by USB connection, the
RSK can work as a virtual COM port, which can be used to send data to, and receive data from, the RX671
by serial communication.

Figure 3 Connection Between the RX671 and the Host PC

Table 2.1 shows QSPIX Pins Used for Connection Between the RX671 and the Serial ROM.

Table 2.1 QSPIX Pins Used for Connection Between the RX671 and the Serial ROM

Pin Name I/O Function
QSSL Output Slave select pin
QSPCLK Output Clock output pin
QIO0 I/O Data 0 input/output
QIO1 I/O Data 1 input/output
QIO2 I/O Data 2 input/output
QIO3 I/O Data 3 input/output

RX671

QSSL
QSPCLK

QIO0
QIO1

Serial ROM
MX25L6433FM2I-08G

CS#
SCK
SI/IO0
SO/IO1

VCC

GND

QIO2 W#/ACC/IO2
QIO3 HOLD#/IO3

3.3 V

3.3 V

GND

Renesas Starter Kit+ for RX671

RX671
Host PC

(with serial communication software)

USB cable USB-serial
conversion

Serial
ROM

QSSL
QSPCLK

QIO0
QIO1
QIO2
QIO3

RXD10 TXD10

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 7 of 59
Jan.10.24

Table 2.2 shows SCI Pins Used for Connection Between the RX671 and the Host PC.

Table 2.2 SCI Pins Used for Connection Between the RX671 and the Host PC

Pin Name I/O Function
RXD10 Input Input pin for received data
TXD10 Output Output pin for transmitted data

The application program controls the LEDs mounted on the RSK board.

Table 2.3 shows Pins Used to Control LEDs.

Table 2.3 Pins Used to Control LEDs

Pin Name Function
P17 Controls LED0.
PF5 Controls LED1.
P03 Controls LED2.
P05 Controls LED3.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 8 of 59
Jan.10.24

2.2 EK-RX671
Figure 4 shows Connection Between the RX671 and the Serial ROM (in the Case of EK-RX671).

Figure 4 Connection Between the RX671 and the Serial ROM (in the Case of EK-RX671)

Writer program 2 receives a portion of the application program from the host PC by serial communication.
Figure 5 shows Connection Between the RX671 and the Host PC.

The EK has a USB serial conversion circuit. If the EK is connected to the host PC by USB connection, the
EK can work as a virtual COM port, which can be used to send data to, and receive data from, the RX671 by
serial communication.

Figure 5 Connection Between the RX671 and the Host PC

Table 2.4 shows QSPIX Pins Used for Connection Between the RX671 and the Serial ROM.

Table 2.4 QSPIX Pins Used for Connection Between the RX671 and the Serial ROM

Pin Name I/O Description
QSSL Output Slave select pin
QSPCLK Output Clock output pin
QIO0 I/O Data 0 input/output
QIO1 I/O Data 1 input/output
QIO2 I/O Data 2 input/output

RX671

QSSL
QSPCLK

QIO0
QIO1

Serial ROM
AT25QF641B

CS#
SCK
SI/SIO0
SO/SIO1

VCC

GND

QIO2 WP#/SIO2
QIO3 HOLD#/SIO3

3.3 V

3.3 V

GND

EK-RX671

RX671

USB-serial
conversion

Serial
ROM

RXD6

QSPCLK
QIO0
QIO1
QIO2
QIO3

QSSL

TXD6

Host PC
(with serial communication software)

USB cable

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 9 of 59
Jan.10.24

Table 2.5 shows SCI Pins Used for Connection Between the RX671 and the Host PC.

Table 2.5 SCI Pins Used for Connection Between the RX671 and the Host PC

Pin Name I/O Description
RXD6 Input Input pin for received data
TXD6 Output Output pin for transmitted data

The application program controls the LEDs mounted on the EK board.

Table 2.6 shows Pins Used to Control LEDs.

Table 2.6 Pins Used to Control LEDs

Pin Name Description
P56 Controls LED1.
P82 Controls LED2.
P25 Controls LED3.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 10 of 59
Jan.10.24

3. Sample Programs
The sample programs provided by this application note use the serial ROM as external memory, read the
program on the serial ROM, and execute it in XIP mode of the QSPIX.

Three sample programs are provided for each of the RSK and EK boards.

Table 3.1 Sample Programs (for the RSK Board)

Project Name Description
xip_sample_rx671 Application program

Application program that includes a program to be deployed on the serial ROM
serialROM_write1_direct
_rx671

Writer program 1
Program that loads a portion of the application program to the on-chip ROM
and writes it to the serial ROM

serialROM_write2_serial
_rx671

Writer program 2
Program that receives a portion of the application program from the host PC
via serial communication, and writes it to the serial ROM

Table 3.2 Sample Programs (for the EK Board)

Project Name Description
xip_sample_rx671_ek Application program

Application program that includes a program to be deployed on the serial ROM
serialROM_write1_direct
_rx671_ek

Writer program 1
Program that loads a portion of the application program to the on-chip ROM
and writes it to the serial ROM

serialROM_write2_serial
_rx671_ek

Writer program 2
Program that receives a portion of the application program from the host PC
via serial communication, and writes it to the serial ROM

The sample programs use e2 studio and Smart Configurator (SC) as an integrated development
environment. In addition, Firmware Integration Technology (FIT) modules are used as programs for
configuring the settings of and controlling peripheral functions.

For details of the FIT modules and settings used, refer to 3.3, FIT Modules Used.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 11 of 59
Jan.10.24

3.1 Application Program
3.1.1 Program Specifications
3.1.1.1 Software
The application program is divided between the MCU’s on-chip ROM and the serial ROM.

For a program that needs to run at a high speed, it is recommended that you allocate the program on the on-
chip ROM. For a program that does not need to run at a high speed, it is recommended that you allocate the
program on the serial ROM.

For the files generated when an application program is built, the files for the programs that are to be
allocated to the on-chip ROM and the files for the programs that are to be allocated to the serial ROM are
output separately.

(1) Address Allocation of Application Program
Figure 6 shows the address allocation of the application program. The program code allocated to the on-chip
ROM includes the processing for configuring initial settings for the RX671’s clocks, the QSPIX, and the serial
ROM; for transitioning to XIP mode; and for branching to the program code located in the serial ROM.

The program deployed on the serial ROM turns on the on-board LEDs sequentially.

The section name of the portion of the program allocated to the serial ROM is SerialROM_sec.

Note: 1. The on-chip ROM and on-chip RAM addresses assume the use of products with a ROM/RAM

capacity of 2 MB/384 KB. In addition, the serial ROM addresses assume a capacity of 8 MB.
Figure 6 Address Allocation of Application Program

[On-chip RAM]
0x00000000

[Serial ROM]
Section name: SerialROM_sec

A program that turns on LEDs
sequentially is deployed.

0x70000000

[On-chip ROM]
Initial settings of RX671 clocks,

QSPIX, and serial ROM;
transition to XIP mode;

branch to program code in
serial ROM; etc.

0xFFE00000

<Address*1>

0x707FFFFF

0xFFFFFFFF

0x0005FFFF

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 12 of 59
Jan.10.24

(2) Divided Output of Files Generated when Building Application Program
Figure 7 illustrates the divided output of the files generated the application program is built.

As shown in this figure, a program to be allocated to the on-chip ROM is output in only Motorola S format
(ROM_block.mot).

A program to be allocated to the serial ROM is output in both binary and Motorola S formats.

The file in binary format (SerialROM_block.bin) is used for writer program 1.

The file in Motorola S format (SerialROM_block.mot) is used for writer program 2.

Note: 1. The on-chip ROM and on-chip RAM addresses assume the use of products with a ROM/RAM

capacity of 2 MB/384 KB. In addition, the serial ROM addresses assume a capacity of 8 MB.
Figure 7 Divided Output of Files Generated when Building Application Program

3.1.1.2 Build Settings in e2 studio
The option settings that need to be configured in e2 studio are described below.

(1) Section Allocation of Program Code to be Assigned to Serial ROM
Proceed as follows to perform section allocation of the portion of program to be located in serial ROM.

Open the project’s Properties window, click C/C++ Build → Settings, and select Tool Settings from
among the tabs displayed at right. Then select Linker → Section to display the window shown in Figure 8,
Section Allocation of Program Code to be Located in Serial ROM (1/2).

Click the […] button to the right of Sections (-start).

Figure 8 Section Allocation of Program Code to be Located in Serial ROM (1/2)

[On-chip RAM]
0x00000000

[Serial ROM]
Section name: SerialROM_sec

A program that turns on LEDs
sequentially is deployed.

0x70000000

[On-chip ROM]
Initial settings of RX671 clocks,

QSPIX, and serial ROM;
transition to XIP mode;

branch to program code in
serial ROM; etc.

0xFFE00000

<Address*1>

0x707FFFFF

0xFFFFFFFF

0x0005FFFF

Output as binary file

< Files generated when program is built >

Output as Motorola S format file

SerialROM_block.bin

ROM_block.mot

Output as Motorola S format file

SerialROM_block.mot

File for writer program 1

File for writer program 2

click

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 13 of 59
Jan.10.24

Next, as shown in Figure 9, click the Add Section button in Section Viewer and add the address and
section name for the portion of the program to be allocated to the serial ROM.

For this application program, make sure that the following address is set:

Address: 0x70000000 (start address of QSPI area in serial ROM)

When you use writer program 1, do not change the preceding address.

When you use writer program 2, set a QSPI area address that is a multiple of 256 (the last byte is
0x00).

Section Name: SerialROM_sec

Figure 9 Section Allocation of Program Code to be Located in Serial ROM (2/2)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 14 of 59
Jan.10.24

(2) Divided Output of Files Generated when Building Application Program

Open the project’s Properties window, click C/C++ Build → Settings, and select Tool Settings from
among the tabs displayed at right. Then select Converter → Output to display the window shown in
Figure 10, Divided Output of Files Generated when Building Application Program in e2 studio (1/2).

Check the boxes next to Motorola S format file (-form=stype) and Binary file (-form=binary).

Figure 10 Divided Output of Files Generated when Building Application Program in e2 studio (1/2)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 15 of 59
Jan.10.24

Next, as shown in Figure 11, Divided Output of Files Generated when Building Application Program in
e2 studio (2/2), use the scroll bar on the right to scroll down to the bottom, click the Add button next to
Division output mot (for Stype) (-output=<File name>), and add the value ROM_block.mot=ffe00000-
ffffffff and the value SerialROM_block.mot=SerialROM_sec.

Next, click the Add button next to Division output bin file (for Bin) (-output=<File name>), and add the
value SerialROM_block.bin=SerialROM_sec.

Note that "SerialROM_sec" here indicates the section name of the program to be allocated to the serial ROM
as described in "3.1.1.2(1) Section Allocation of Program Code to be Assigned to Serial ROM".

Click the Apply and Close button to close the project’s Properties window. (It is not necessary to close the
window if you wish to configure additional settings.)

Figure 11 Divided Output of Files Generated when Building Application Program in e2 studio (2/2)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 16 of 59
Jan.10.24

(3) Branch width size (-branch) Option Setting
The address range of the QSPI area to be allocated in the serial ROM is 0x70000000 to 0x77FFFFFF, so a
24-bit branch width is insufficient for branching the program from the on-chip ROM to the serial ROM. It is
therefore necessary to change the setting of the Branch width size (-branch) option.

To configure the Branch width size (-branch) option, open the project’s Properties window, click C/C++
Build → Settings, and select Tool Settings from among the tabs displayed at right. Then select Common
→ CPU to display the window shown in Figure 12, Branch width size (-branch) Option Setting.

On the Branch width size (-branch) pulldown menu select None. Click the Apply and Close button to
close the project’s Properties window. (It is not necessary to close the window if you wish to configure
additional settings.)

Figure 12 Branch width size (-branch) Option Setting

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 17 of 59
Jan.10.24

(4) Checks the section larger than the specified range of addresses (-cpu) Option Setting
If the default -cpu option setting is used, an error occurs when assigning the program to the QSPI area
(address range 0x70000000 to 0x77FFFFFF) allocated in the serial ROM.

This is because the -cpu option enables checking of the address ranges to which sections are assigned,
causing the QSPI area to be judged as outside the specified range of addresses.

The application program requires that Checks the section larger than the specified range of addresses
(-cpu) be unselected.

Open the project’s Properties window, click C/C++ Build → Settings, and select Tool Settings from
among the tabs displayed at right. Then select Linker → Section → Advanced to display the window shown
in Figure 13, Checks the section larger than the specified range of addresses (-cpu) Option Setting.

Uncheck the box next to Checks the section larger than the specified range of addresses (-cpu).

Figure 13 Checks the section larger than the specified range of addresses (-cpu) Option Setting

Alternatively, you can check the box next to Checks the section larger than the specified range of
addresses (-cpu) and add the QSPI area to the -cpu option.

For instructions on configuring -cpu option settings, refer to CC-RX Compiler User’s Manual (R20UT3248).

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 18 of 59
Jan.10.24

3.1.1.3 Outline Flowchart
Figure 14 shows an outline flowchart of the application program (to be executed on the on-chip ROM).

Figure 15 shows an outline flowchart of the application program (to be executed on the serial ROM).

Figure 14 Outline Flowchart of the Application Program (to Be Executed on the On-chip ROM)

Notes: 1. The LEDs are toggled on/off each time the loop executes.
 2. A software loop is used for wait processing, and the wait duration is approximately 0.5 seconds.
 3. This process is not performed in the sample program for the EK-RX671 board.

Figure 15 Outline Flowchart of the Application Program (to Be Executed on the Serial ROM)

Application program
(execution in on-chip ROM)

Program code in serial ROM

Operating clock settings, unused pin processing, etc.RX671 initial settings

QSPIX initial settings

Set the register of the on-
board serial ROM

Enable XIP mode

Branches to program code in serial ROM.

End

Application program
(execution in serial ROM)

Wait processing*2

Configures initial output values and output settings
for general ports connected to LED.LED initial settings

LED0 control*1, *3

Wait processing*2

LED1 control*1

Wait processing*2

LED2 control*1

Wait processing*2

LED3 control*1

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 19 of 59
Jan.10.24

3.1.2 Program Configuration

3.1.2.1 File Structure
The files used by the application program are listed below. Note that FIT module files and files generated
automatically by SC are omitted.

Table 3.3 Files Used by Application Program

File Name Overview
main.c This is the main processing of the application program.

Initializes the QSPIX and the serial ROM status register, transitions to XIP
mode, and branches to the portion of the program in the serial ROM.

main_serial_rom.c Program code located in the serial ROM
serial_rom.h Serial ROM control command definitions

3.1.2.2 Option-Setting Memory
The option-setting memory setting used by the application program is shown below.

Table 3.4 Option-Setting Memory Setting Used by Application Program

Symbol Address Setting Value Description
MDE FE7F 5D00h to FE7F 5D03h FFFF FFFFh Little endian

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 20 of 59
Jan.10.24

3.1.2.3 Constants
The constants used by the application program are listed below.

Table 3.5 Constants Used by the Application Program (for the RSK Board)

Constant Name Setting value Description
LED_ON (0) Turns the LED on.
LED_OFF (1) Turns the LED off.
LED0 PORT1.PODR.BIT.B7 Port output data storage bit for LED0
LED1 PORTF.PODR.BIT.B5 Port output data storage bit for LED1
LED2 PORT0.PODR.BIT.B3 Port output data storage bit for LED2
LED3 PORT0.PODR.BIT.B5 Port output data storage bit for LED3
LED0_PDR PORT1.PDR.BIT.B7 Port direction control bit for LED0
LED1_PDR PORTF.PDR.BIT.B5 Port direction control bit for LED1
LED2_PDR PORT0.PDR.BIT.B3 Port direction control bit for LED2
LED3_PDR PORT0.PDR.BIT.B5 Port direction control bit for LED3
LED_INTERVAL (0x16000) Sets the LED turn-on interval to 0.5

seconds.
CMD_WREN (0x06) Write Enable (WREN) command for the

serial ROM
CMD_WRSR (0x01) Write Status Register (WRSR) command

for the serial ROM
CMD_RDSR (0x05) Read Status Register (RDSR) command

for the serial ROM
SERIALROM_ENTER_QSPI_MODE (0x40) Status Register settings data on the serial

ROM (settings to enable Quad mode)
SERIALROM_CONFIG_REG (0x00) Configuration Register settings data on

the serial ROM

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 21 of 59
Jan.10.24

Table 3.6 Constants Used by the Application Program (for the EK-RX671)

Constant Name Setting Value Description
LED_ON (1) Turns the LED on.
LED_OFF (0) Turns the LED off.
LED1 PORT5.PODR.BIT.B6 Port output data storage bit for LED1
LED2 PORT8.PODR.BIT.B2 Port output data storage bit for LED2
LED3 PORT2.PODR.BIT.B5 Port output data storage bit for LED3
LED1_PDR PORT5.PDR.BIT.B6 Port direction control bit for LED1
LED2_PDR PORT8.PDR.BIT.B2 Port direction control bit for LED2
LED3_PDR PORT2.PDR.BIT.B5 Port direction control bit for LED3
LED_INTERVAL (0x16000) Sets the LED turn-on interval to 0.5

seconds.
CMD_WREN (0x06) Write Enable (WREN) command for the

serial ROM
CMD_WRSR1 (0x01) Write Status Register (WRSR) command

for the serial ROM
CMD_WRSR2 (0x31) Write Status Register (WRSR) command

for the serial ROM
CMD_RDSR1 (0x05) Read Status Register (RDSR) command

for the serial ROM
CMD_RDSR2 (0x35) Read Status Register (RDSR) command

for the serial ROM
SERIALROM_ENTER_QSPI_MODE (0x02) Status Register settings data on the serial

ROM (settings to enable Quad mode)
SERIALROM_CONFIG_REG (0x00) Configuration Register settings data on

the serial ROM

3.1.2.4 Functions
The functions of the application program are listed below.

Table 3.7 Functions of Application Program

Function Name Overview
main Main processing

Initializes the QSPIX and the serial ROM status register; transitions
to XIP mode; and branches to the program on the serial ROM.

rom_access_error_callback Callback function for the QSPIX FIT module
Performs confirmation when a ROM access error interrupt occurs.

main_serial_rom Program code allocated to serial ROM
This code turns on the on-board LEDs sequentially.

led_wait Software wait processing to maintain LED-on interval (wait time:
approximately 0.5 seconds)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 22 of 59
Jan.10.24

3.2 Writer Program
This application note provides two simple writer programs for the serial ROM in order to verify operation.

One writer program (writer program 1) copies a portion of the application program to the on-chip ROM and
then writes the copied data to the serial ROM.

The other writer program (writer program 2) receives a portion of the application program from the host PC
by serial communication and then writes the received data to the serial ROM.

3.2.1 Writer Program 1
3.2.1.1 Program Specifications
(1) Software
Figure 16 illustrates binary file input and address allocation by the writer program 1. As shown in the figure, a
binary file (SerialROM_block.bin) resulting from divided output of the application program is input to the
writer program 1. Then the input binary file is allocated as ROM data to a user-defined address range in the
on-chip ROM. (The supplied writer program 1 allocates the binary file to a start address in the on-chip ROM.)

Notes: 1. The on-chip ROM and on-chip RAM addresses assume the use of products with a ROM/RAM

capacity of 2 MB/384 KB. In addition, the serial ROM addresses assume a capacity of 8 MB.
 2. On-chip ROM and on-chip RAM addresses for products with a ROM/RAM capacity of

2 MB/384 KB.
Figure 16 Binary File Input and Address Allocation by Writer Program 1

[On-chip RAM]
0x00000000

[Serial ROM]
Section name: SerialROM_sec

A program that turns on LEDs
sequentially is deployed.

0x70000000

[On-chip ROM]
Initial settings of RX671 clocks,

QSPIX, and serial ROM;
transition to XIP mode;

branch to program code in
serial ROM; etc.

0xFFE00000

<Address*1>

0x707FFFFF

0xFFFFFFFF

0x0005FFFF

Output as binary file

< Files generated when program is built >

Output as Motorola S format file

SerialROM_block.bin

ROM_block.mot

[Application program]

[On-chip RAM]
0x00000000

Contents of
SerialROM_block.bin

[On-chip ROM]
0xFFE00000

<Address*2>

0xFFFFFFFF

0x0005FFFF

Allocated as ROM
data in the writer
program 1 to a
user-defined

address range in
the on-chip ROM.

[Writer program 1]

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 23 of 59
Jan.10.24

Writer program 1 uses the on-board LEDs to check the status of the write to the serial ROM.

In the sample programs for the RSK board and the EK board, the LED status indicating the writing state is
different, because the number of on-board LEDs is different.

Table 3.8 shows Indication of the Writing State of the Serial ROM.

Table 3.8 Indication of the Writing State of the Serial ROM

Writing State RSK board EK board
Completion of
erasure

Okay (OK) LED0 is on. LED1 is on.
No good (NG) LED3 is on. LED1 is blinking (cycle: 1 Hz).

Completion of
writing

Okay (OK) LED1 is on. LED2 is on.
No good (NG) LED3 is on. LED2 is blinking (cycle: 1 Hz).

Verification
Okay (OK) LED2 is on. LED3 is on.
No good (NG) LED3 is on. LED3 is blinking (cycle: 1 Hz).

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 24 of 59
Jan.10.24

(2) Build Settings in e2 studio
The option settings that need to be configured in e2 studio are described below.

(a) Section Allocation of Addresses to be Assigned to Binary Data
Proceed as follows to perform section allocation of addresses to be assigned to binary data as preparation
for allocating the input binary file to a user-defined address in the on-chip ROM as ROM data.

Open the project’s Properties window, click C/C++ Build → Settings, and select Tool Settings from
among the tabs displayed at right. Then select Linker → Section to display the window shown in Figure 17,
Section Allocation of Addresses to be Assigned to Input Binary File (1/2).

Click the […] button to the right of Sections (-start).

Figure 17 Section Allocation of Addresses to be Assigned to Input Binary File (1/2)

Next, as shown in Figure 18, click the Add Section button in Section Viewer to add a section at a user-
defined address in the on-chip ROM. For the writer program 1, these values are as follows:

Address: 0xFFE00000 (start address in on-chip ROM)

Section Name: SerialROM_WriteData_sec

Figure 18 Section Allocation of Addresses to be Assigned to Input Binary File (2/2)

click

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 25 of 59
Jan.10.24

(b) Input Binary File Specification (-binary) Option Setting
The -binary option is used to input the binary file generated by the application program.

Open the project’s Properties window, click C/C++ Build → Settings, and select Tool Settings from
among the tabs displayed at right. Then select Linker → User to display the window shown in Figure 19,
Binary File Input Setting.

Click the Add button next to User-defined options (added after all specified options) and add the -binary
option setting.

The setting for the writer program 1 is as follows:

-binary="${WorkspaceDirPath}/xip_sample_rx671/HardwareDebug/SerialROM_block.bin"
(SerialROM_WriteData_sec:4/DATA)

Notes: 1. The above setting is split into two lines for explanatory purposes in this document, but the actual
option setting should not contain a line break.

 2. The setting shown above is a file path specification appropriate for the RSK board. If you use the
EK board, you must replace the project name with one that is appropriate for the EK board.

This setting will cause the input binary file to be assigned as follows:

Assigned section: SeriarlROM_WriteData_sec section (boundary alignment: 4)

Assigned section property: DATA

Figure 19 Binary File Input Setting

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 26 of 59
Jan.10.24

(3) Outline Flowchart
Figure 20 shows an outline flowchart of writer program 1 for the RSK board. Figure 21 shows an outline
flowchart of writer program 1 for the EK board.

Figure 20 Outline Flowchart of Writer Program 1 (for the RSK Board)

 Writer program 1

The initial output values (turn off all of LED0 to LED3)
and output settings of the general ports connected to
LED0 to LED3 are specified.

LED initial setup

The data written to the serial ROM is verified.

Erase 1st block
in serial ROM

Setting the operating clocks, handling unused pins, etc.,
on the RX671RX671 initial setup

Initial setup of the QSPIX moduleQSPIX initial setup

Turn LED0 on

The content of the binary file generated by the application
program is written to the 1st block of the serial ROM (from
address 0x00000000 on the serial ROM).

Write data to 1st block
in serial ROM

Turn LED2 on

Verify

Successful?

Yes

Successful?

Yes

Turn LED1 on

Successful?

Yes

End

Turn LED3 on

No

No

No

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 27 of 59
Jan.10.24

Figure 21 Outline Flowchart of Writer Program 1 (for the EK Board)

Writer program 1

The initial output values (turn off all of LED1 to LED3) and
output settings of the general ports connected to LED1 to
LED3 are specified.

LED initial setup

The data written to the serial ROM is verified.

Erase 1st block
in serial ROM

Setting the operating clocks, handling unused
pins, etc., on the RX671RX671 initial setup

Initial setup of the QSPIX moduleQSPIX initial setup

Turn LED1 on

The content of the binary file generated by the application
program is written to the 1st block of the serial ROM (from
address 0x00000000 on the serial ROM).

Write data to 1st block
in serial ROM

Turn LED3 on

Verify

Successful?

Yes

Successful?

Yes

Turn LED2 on

Successful?

Yes

End

Blink LED1

No

No

No

Blink LED2

Blink LED3

End

End

End

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 28 of 59
Jan.10.24

3.2.1.2 Program Configuration

(1) File Structure
The files used by the writer program 1 are listed below. Note that FIT module files and files generated
automatically by SC are omitted.

Table 3.9 Files Used by Writer Program 1

File Name Overview
serial_rom_write1_direct_rx671.c This is the main processing of the writer program 1.

Initializes the QSPIX and the serial ROM status register;
performs block erase, writes data, and verifies the data written to
the serial ROM.

serial_rom.h Serial ROM control command definitions

(2) Option-Setting Memory
The option-setting memory setting used by the writer program 1 is shown below.

Table 3.10 Option-Setting Memory Setting Used by Writer Program 1

Symbol Address Setting Value Description
MDE FE7F 5D00h to FE7F 5D03h FFFF FFFFh Little endian

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 29 of 59
Jan.10.24

(3) Constants
The constants used by the writer program 1 are listed below.

Table 3.11 Constants Used by Writer Program 1 (for the RSK Board)

Constant Name Setting value Description
LED_ON (0) Turns the LED on.
LED_OFF (1) Turns the LED off.
LED0 PORT1.PODR.BIT.B7 Port output data storage bit for LED0
LED1 PORTF.PODR.BIT.B5 Port output data storage bit for LED1
LED2 PORT0.PODR.BIT.B3 Port output data storage bit for LED2
LED3 PORT0.PODR.BIT.B5 Port output data storage bit for LED3
LED0_PDR PORT1.PDR.BIT.B7 Port direction control bit for LED0
LED1_PDR PORTF.PDR.BIT.B5 Port direction control bit for LED1
LED2_PDR PORT0.PDR.BIT.B3 Port direction control bit for LED2
LED3_PDR PORT0.PDR.BIT.B5 Port direction control bit for LED3
CMD_WREN (0x06) Write Enable (WREN) command for the

serial ROM
CMD_WRSR (0x01) Write Status Register (WRSR) command for

the serial ROM
CMD_RDSR (0x05) Read Status Register (RDSR) command for

the serial ROM
CMD_RDSCUR (0x2B) Read Security Register (RDSCUR)

command for the serial ROM
CMD_BE (0x52) Block Erase (BE) command for the serial

ROM
CMD_PP (0x02) Page Program (PP) command for the serial

ROM
SERIALROM_EXIT_QSPI_MODE (0x00) Status Register settings data on the serial

ROM (settings to disable Quad mode)
SERIALROM_CONFIG_REG (0x00) Configuration register settings data on the

serial ROM

Table 3.12 Constants Used by Writer Program 1 (for the EK Board)

Constant Name Setting Value Description
LED_ON (0) Turns the LED on.
LED_OFF (1) Turns the LED off.
LED0 PORT1.PODR.BIT.B7 Port output data storage bit for LED0
LED1 PORTF.PODR.BIT.B5 Port output data storage bit for LED1
LED2 PORT0.PODR.BIT.B3 Port output data storage bit for LED2
LED0_PDR PORT1.PDR.BIT.B7 Port direction control bit for LED0
LED1_PDR PORTF.PDR.BIT.B5 Port direction control bit for LED1
LED2_PDR PORT0.PDR.BIT.B3 Port direction control bit for LED2
CMD_WREN (0x06) Write Enable (WREN) command for the

serial ROM
CMD_WRSR (0x01) Write Status Register (WRSR) command for

the serial ROM
CMD_RDSR (0x05) Read Status Register (RDSR) command for

the serial ROM
CMD_RDSCUR (0x2B) Read Security Register (RDSCUR)

command for the serial ROM
CMD_BE (0x52) Block Erase (BE) command for the serial

ROM

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 30 of 59
Jan.10.24

Constant Name Setting Value Description
CMD_PP (0x02) Page Program (PP) command for the serial

ROM
SERIALROM_EXIT_QSPI_MODE (0x00) Status Register settings data on the serial

ROM (settings to disable Quad mode)
SERIALROM_CONFIG_REG (0x00) Configuration Register settings data on the

serial ROM

(4) Functions
The functions of the writer program 1 are listed below.

Table 3.13 Functions of Writer Program 1

Function Name Overview
main Main processing

Initializes the QSPIX and the serial ROM status register; performs
block erase of the serial ROM; programs the serial ROM; and verifies
the data written to serial ROM.

rom_access_error_callback Callback function for the QSPIX FIT module
Performs confirmation when a ROM access error interrupt occurs.

write_data_func Processing of writing data to serial ROM

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 31 of 59
Jan.10.24

3.2.2 Writer Program 2
3.2.2.1 Program Specifications
(1) Software
Writer program 2 uses the terminal software of the host PC to receive the SerialROM_block.mot file by serial
communication (via the XMODEM/SUM protocol) and then writes the file to the serial ROM.

Note that the SerialROM_block.mot file here is the SerialROM_block.mot file that was generated in Motorola
S format when the program (in the application program) to be allocated to the serial ROM is built.

For details, see "3.1.1.1(2) Divided Output of Files Generated when Building Application Program".

Table 3.14 shows the specifications of serial communication between the RX671 and host PC. For details
about how to set up the terminal software, see the documentation for the terminal software.

Table 3.14 Specifications of Serial Communication Between the RX671 and Host PC

Item Description
Communication method Asynchronous communication
Communication protocol XMODEM/SUM
Bit rate 115200 bps
Data length 8 bits
Parity None
Stop bit 1 bit
Flow control None

(2) Outline flowchart
Figure 22 shows Outline Flowchart for the Main Processing of Writer Program 2.

Figure 22 Outline Flowchart for the Main Processing of Writer Program 2

Main processing of
writer program 2

Initial setup

Serial ROM
update processing

The setup targets include the RX671 operation
clock, SCI settings, QSPIX settings, and pins.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 32 of 59
Jan.10.24

Figure 23 shows Outline Flowchart for the Processing to Update the Serial ROM for Writer Program 2.

Figure 23 Outline Flowchart for the Processing to Update the Serial ROM for Writer Program 2

Serial ROM update processing

Display an update
confirmation message

Wait for key entry

Key entry made

What is the entered key?

Y or y

No key entry made

Other than Y or y

Block erase for the serial ROM

Outputs a file download start message

Communication via the
XMODEM/SUM protocol

Analyze the receive data
and create write data

Has the wr ite data
been completed?

Yes
Write data to the serial ROM

and verify the written data

Yes

Output results

Was the erase successful?

Yes

Is communication normal?

Yes

Is the data normal?

Yes

Were the write and
verification successful?

Update completed?

End

No

Yes

No

No

No

No

Results that are output are as follows:
• Serial ROM update processing was completed.
• Initialization of the serial ROM update processing failed.
• Finalization of the serial ROM update processing failed.
• Initialization of the CMT module failed.
• A communication mode setting error for the serial ROM occurred.
• A block erase error for the serial ROM occurred.
• Send processing failed.
• Receive processing failed.
• A timeout occurred in communication via the XMODEM/SUM protocol.
• A data error occurred in communication via the XMODEM/SUM protocol.
• A data analysis error or serial ROM write error occurred.
• The update was canceled.

No

Set serial ROM communication mode

Was the setting successful?

Yes

No

*1

Note 1:
Block erase is performed from the first block of the serial ROM. The
number of blocks to be erased is set by using the
SEL_ERASE_BLOCK_NUM constant in the serial_rom_config.h file.

Initialize the CMT module
(for measuring the timeout of block

erase for the serial ROM)

Initialize the CMT module
(for measuring the timeout
of communication via the
XMODEM/SUM protocol)

Output an erase success message

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 33 of 59
Jan.10.24

(3) Screen Output of the Terminal Software and Operation of Writer Program 2
(a) Confirmation for the Update
Writer program 2 first performs initial setup for the RX671 operation clock, SCI, QSPIX, pins, etc., as the
main processing, and then uses the SCI to output a message (Figure 24) to the terminal software of the host
PC. Writer program 2 then waits for key entry from the terminal software.

RX671 Serial ROM Update ver1.00
Erase and write (Y/N)?

Figure 24 Update Confirmation Message Output on the Screen

(b) Start of Downloading the SerialROM_block.mot File
If writer program 2 receives Y or y from the terminal software, it performs block erase for the serial ROM,
waits for the file to be sent, and outputs the message shown in Figure 25.

Send the .mot file (the SerialROM_block.mot file generated when the application program was built) from the
terminal software via the XMODEM/SUM protocol.

For details about how to send the file from terminal software via the XMODEM/SUM protocol, see the
documentation for the terminal software.

Erasing has been done.
Start XMODEM download…

Figure 25 Message Output When File Download Starts

(c) Completion of Updating the Serial ROM
When the write to the serial ROM is completed, the message shown in Figure 26 is output.

Updating has been done.
>

Figure 26 Message Output When the Update of the Serial ROM Is Completed

(d) Error Messages That Can Be Output
If an error occurs, a message about the error is output. Table 3.15 lists the messages that can be output.

Table 3.15 Error Messages

Error Message Description
Initialize update error. Initialization of the update processing failed.

Finalize update error. Finalization of the update processing failed.

CMT module error. Initialization of the CMT module failed.

Serial ROM mode setting error. A communication mode setting error for the serial ROM
occurred.

Serial ROM Erasing error. A block erase error for the serial ROM occurred.

Send error Send processing failed.

Receive error. Receive processing failed.

Timeout. A timeout occurred in communication via the XMODEM/SUM
protocol.

Data error. A data error occurred in communication via the XMODEM/SUM
protocol.

Block processing error. A data analysis error or serial ROM write error occurred.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 34 of 59
Jan.10.24

(e) Cancellation of the Update
If writer program 2 receives a command other than Y or y in "(a) Confirmation for the Update", it outputs the
message shown in Figure 27 and cancels the update.

Command canceled.
>

Figure 27 Message Output When the Update Is Canceled

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 35 of 59
Jan.10.24

3.2.2.2 Program Configuration

(1) File Configuration
The following table lists the files used by writer program 2. Note that this list does not include files that are
automatically generated by the FIT module and SC.

Table 3.16 Files Used by Writer Program 2

File Name Summary
serial_rom_write2_serial_rx671.c Main processing of writer program 2

Performs processing such as initialization of the SCI and QSPIX,
output of an update confirmation message, and invocation of update
processing.

r_xmodem.c Processing of XMODEM/SUM communication
r_xmodem_if.h Interface file for the processing of XMODEM/SUM communication
r_fw_up_rx.c Processing of updating the serial ROM
r_fw_up_rx_if.h Interface file for the processing of updating the serial ROM
r_fw_up_rx_private.h Header file for the processing of updating the serial ROM
r_fw_up_buf.c Processing of buffering the serial ROM update data
r_fw_up_buf.h Header file for the processing of buffering the serial ROM update data
serial_rom.h Definition of the serial ROM control commands
serial_rom_config.h File for setting the number of blocks to be erased by the block erase

for the serial ROM
Use the SEL_ERASE_BLOCK_NUM constant in this file to set the
number of blocks to be erased from the first block of the serial ROM.

(2) Option-Setting Memory
The following table shows the option-setting memory settings that can be used for writer program 2.

Table 3.17 Option-Setting Memory Settings That Can Be Used for Writer Program 2

Symbol Address Setting Value Description
MDE FE7F 5D00h to FE7F 5D03h FFFF FFFFh Little endian

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 36 of 59
Jan.10.24

(3) Constants
Table 3.18 to Table 3.24 list the constants that can be used for writer program 2.

Table 3.18 Constants Used for Writer Program 2 (serial_rom_write2_serial_rx671.c)

Constant Name Setting value Description
RECV_BYTE_SIZE (1) Number of bytes of receive data to

request for the SCI FIT module
SEND_BYTE_SIZE (1) Number of bytes of send data to request

for the SCI FIT module
COMMAND_YES_UPPER (’Y’) Character code for "Y" as an entry

command
COMMAND_YES_LOWER (’y’) Character code for "y" as an entry

command
COMMAND_CR (’\r’) Character code for the carriage return as

an entry command
CMT_FREQUENCY_HZ (2) CMT frequency (for measuring the

timeout of communication via the
XMODEM/SUM protocol)

STRING_MAX_SIZE SCI_CFG_CH10_TX_BUFSIZ
(for the RSK)
SCI_CFG_CH6_TX_BUFSIZ
(for the EK)

Maximum size of the character string to
be output

Table 3.19 Constants Used for Writer Program 2 (r_xmodem.c)

Constant Name Setting value Description
XM_SOH (0x01) XMODEM/SUM control code "SOH"
XM_EOT (0x04) XMODEM/SUM control code "EOT"
XM_ACK (0x06) XMODEM/SUM control code "ACK"
XM_NAK (0x15) XMODEM/SUM control code "NAK"
XM_CAN (0x18) XMODEM/SUM control code "CAN"
XM_HEADER_SIZE (1+1+1) Header size (in bytes) of the

XMODEM/SUM data block
XM_DATA_SIZE (128) Data size (in bytes) of the

XMODEM/SUM data block
XM_SUM_SIZE (1) Check sum size (in bytes) of the

XMODEM/SUM data block
XM_BLOCK_SIZE (XM_HEADER_SIZE +

XM_DATA_SIZE +
XM_SUM_SIZE)

Size (in bytes) of the XMODEM/SUM
data block

XM_RETRY_COUNT (10) Number of retries before determining a
timeout of communication via the
XMODEM/SUM protocol

UINT8T_0 (0) 0 of the uint8_t type
UINT8T_1 (1) 1 of the uint8_t type

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 37 of 59
Jan.10.24

Table 3.20 Constants Used for Writer Program 2 (r_fw_up_rx.c)

Constant Name Setting value Description
FW_UP_FIRM_EN_8MB_ADDRESS (0x707FFFFF) Last address of the first 8 MB of the QSPI

area
CMT_FOR_ERASE_FREQUENCY_HZ (2) CMT frequency (for measuring the timeout

of the block erase for the serial ROM)

Table 3.21 Constants Used for Writer Program 2 (r_fw_up_rx_private.h)

Constant Name Setting value Description
FW_UP_BINARY_BUF_SIZE (256) Buffer size for the data to be written to the

serial ROM
FW_UP_BINARY_BUF_NUM (2) Number of buffers for the data to be

written to the serial ROM
FW_UP_BUF_NUM (60) Number of buffers for the Motorola S

record data (number of buffers that store
the information about each field of records
in Motorola S format based on record
analysis)

Table 3.22 Constants Used for Writer Program 2 (r_fw_up_buf.h)

Constant Name Setting value Description
MOT_S_CHECK_SUM_FIELD (0x02) Number of characters of the check sum

field of the Motorola S format
ADDRESS_LENGTH_S1 (0x04) Number of characters of the address field

of the Motorola S format (S1 type)
ADDRESS_LENGTH_S2 (0x06) Number of characters of the address field

of the Motorola S format (S2 type)
ADDRESS_LENGTH_S3 (0x08) Number of characters of the address field

of the Motorola S format (S3 type)
BUF_LOCK (1) Value for locking the Motorola S record

data buffers
BUF_UNLOCK (0) Value for unlocking the Motorola S record

data buffers

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 38 of 59
Jan.10.24

Table 3.23 Constants Used for Writer Program 2 (serial_rom.h)

Constant Name Setting Value Description
CMD_WREN (0x06) Write Enable (WREN) command for the

serial ROM
CMD_WRSR*1 (0x01) Write Status Register (WRSR) command for

the serial ROM
CMD_WRSR1*2 (0x01) Write Status Register (WRSR) command for

the serial ROM
CMD_WRSR2*2 (0x31) Write Status Register (WRSR) command for

the serial ROM
CMD_RDSR*1 (0x05) Read Status Register (RDSR) command for

the serial ROM
CMD_RDSR1*2 (0x05) Read Status Register (RDSR) command for

the serial ROM
CMD_RDSR2*2 (0x35) Read Status Register (RDSR) command for

the serial ROM
CMD_RDSCUR*1 (0x2B) Read Security Register (RDSCUR)

command for the serial ROM
CMD_BE (0x52) Block Erase (BE) command for the serial

ROM
CMD_PP (0x02) Page Program (PP) command for the serial

ROM
SERIALROM_EXIT_QSPI_MODE (0x00) Status Register settings data on the serial

ROM (settings to disable Quad mode)
SERIALROM_CONFIG_REG*1 (0x00) Configuration Register settings data on the

serial ROM
Notes: 1. This item does not exist in projects for the EK board.
 2. This item does not exist in projects for the RSK board.

Table 3.24 Constants Used for Writer Program 2 (serial_rom_config.h)

Constant Name Setting value Description
SEL_ERASE_BLOCK_NUM (1) Number of blocks to be erased from the

serial ROM

The user can set the value of SEL_ERASE_BLOCK_NUM.

Writer program 2 erases blocks from the first block of the serial ROM. Therefore, set
SEL_ERASE_BLOCK_NUM to the number of blocks to be erased from the first block. The default is 1.

For SEL_ERASE_BLOCK_NUM, the user can specify a value in the range from 1 to 128.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 39 of 59
Jan.10.24

(4) Type Definitions
Figure 28 to Figure 31 show the type definitions used for writer program 2.

typedef enum e_xmodem_proc_stage
{
 XMODEM_PROC_END = 0,
 XMODEM_PROCESSING,
 XMODEM_SOH_RECEIVED
} e_xmodem_proc_stage_t;

typedef struct st_xmodem_states
{
 uint8_t retry_counter;
 uint8_t expected_block_number;
 uint8_t recv_buf_index;
 uint8_t can_counter;
 uint8_t *precv_buf;
 e_xmodem_proc_stage_t proc_stage;
 xm_recv_func_t recv_func;
 xm_send_func_t send_func;
 xm_exec_func_t exec_func;
} st_xmodem_states_t;

Figure 28 Type Definitions Used for Writer Program 2 (r_xmodem.c)

typedef enum e_xmodem_err
{
 XMODEM_SUCCESS,
 XMODEM_SEND_ERR,
 XMODEM_RECV_ERR,
 XMODEM_TIMEOUT,
 XMODEM_PROC_BLOCK_ERR,
 XMODEM_RECV_CAN,
 XMODEM_DATA_ERR
} e_xmodem_err_t;

typedef e_xmodem_err_t (*xm_recv_func_t)(uint8_t* p_arg);
typedef e_xmodem_err_t (*xm_send_func_t)(uint8_t arg);
typedef e_xmodem_err_t (*xm_exec_func_t)(const uint8_t* p_buf, uint16_t size);

Figure 29 Type Definitions Used for Writer Program 2 (r_xmodem_if.h)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 40 of 59
Jan.10.24

typedef enum e_fw_up_return_t
{
 FW_UP_SUCCESS,
 FW_UP_ERR_OPENED,
 FW_UP_ERR_NOT_OPEN,
 FW_UP_ERR_NULL_PTR,
 FW_UP_ERR_INVALID_RECORD,
 FW_UP_ERR_BUF_FULL,
 FW_UP_ERR_BUF_EMPTY,
 FW_UP_ERR_INITIALIZE,
 FW_UP_ERR_ERASE,

FW_UP_ERR_CMT_FOR_ERASE,
 FW_UP_ERR_WRITE,
 FW_UP_ERR_VERIFY,
 FW_UP_ERR_INVALID_ADDRESS,
 FW_UP_ERR_INVALID_WRITE_SIZE,
 FW_UP_ERR_INTERNAL
} fw_up_return_t;

typedef struct st_fw_up_fl_data_t
{
 uint32_t src_addr;
 uint32_t dst_addr;
 uint32_t len;
 uint16_t count;
} fw_up_fl_data_t;

Figure 30 Type Definitions Used for Writer Program 2 (r_fw_up_rx_if.h)

typedef enum fw_up_mot_s_cnt_t
{
 STATE_MOT_S_RECORD_MARK = 0,
 STATE_MOT_S_RECORD_TYPE,
 STATE_MOT_S_LENGTH_1,
 STATE_MOT_S_LENGTH_2,
 STATE_MOT_S_ADDRESS,
 STATE_MOT_S_DATA,
 STATE_MOT_S_CHKSUM_1,
 STATE_MOT_S_CHKSUM_2
} fw_up_mot_s_cnt_t;

typedef struct MotSBufS
{
 uint8_t addr_length;
 uint8_t data_length;
 uint8_t *paddress;
 uint8_t *pdata;
 uint8_t type;
 uint8_t act;
 struct MotSBufS *pnext;
} fw_up_mot_s_buf_t;

typedef struct WriteDataS
{
 uint32_t addr;
 uint32_t len;
 uint8_t data[FW_UP_BINARY_BUF_SIZE];
 struct WriteDataS *pnext;
 struct WriteDataS *pprev;
} fw_up_write_data_t;

Figure 31 Type Definitions Used for Writer Program 2 (r_fw_up_buf.h)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 41 of 59
Jan.10.24

(5) Variables
Table 3.25 to Table 3.28 list the static-type variables used for writer program 2.

Table 3.29 lists the const-type variables used for writer program 2.

Table 3.25 Variables of the "static" Type Used for Writer Program 2
(serial_rom_write2_serial_rx671.c)

Type Variable Name Description Functions Supporting the
Variable

static sci_hdl_t s_sci_handle SCI module control
handle

main
send_string_sci
recv_byte_xm
send_byte_xm
update_serial_rom
exec_firmware

static volatile bool s_sci_send_end_flag Flag for judging
whether SCI send has
ended

sci_callback
send_string_sci

static volatile int32_t s_timeout_count Counter for judging
whether
communication via the
XMODEM/SUM
protocol has timed out

cmt_callback
recv_byte_xm

static volatile bool s_timeout_flag Flag for detecting a
timeout of
communication via the
XMODEM/SUM
protocol

cmt_callback
recv_byte_xm

static volatile bool s_start_timer_flag Flag for starting
judgment of whether
communication via the
XMODEM/SUM
protocol has timed out

cmt_callback
recv_byte_xm

Table 3.26 Variables of the "static" Type Used for Writer Program 2 (r_xmodem.c)

Type Variable Name Description Functions Supporting the
Variable

static uint8_t recv_buf[XM_BLOCK_S
IZE]

Buffer for the data
received via the
XMODEM/SUM
protocol

exec_xmodem

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 42 of 59
Jan.10.24

Table 3.27 Variables of the "static" Type Used for Writer Program 2 (r_fw_up_rx.c)

Type Variable Name Description Functions Supporting the
Variable

static bool is_opened Flag indicating
that initial setup
of the serial
ROM update is
complete

fw_up_open
fw_up_close
fw_up_put_data
fw_up_get_data
disable_quad_mode_serial_rom
erase_serial_rom
write_serial_rom

Static volatile int32_t s_timeout_count_for_erase Counter for
judging whether
the block erase
for the serial
ROM has timed
out

erase_serial_rom
cmt_callback_for_erase

static volatile bool s_timeout_flag_for_erase Flag for
detecting a
timeout of the
block erase for
the serial ROM

erase_serial_rom
cmt_callback_for_erase

static volatile bool s_start_timer_flag_for_erase Flag for starting
judgment of
whether the
block erase for
the serial ROM
has timed out

erase_serial_rom
cmt_callback_for_erase

Table 3.28 Variables of the "static" Type Used for Writer Program 2 (r_fw_up_buf.c)
Type Variable Name Description Functions

Supporting the
Variable

static
fw_up_mot_s_buf_t

mot_s_buf
[FW_UP_BUF_NUM]

Motorola S record data
buffer

fw_up_buf_init
fw_up_memory_init

static
fw_up_mot_s_buf_t

*papp_put_mot_s_buf Pointer to the Motorola S
record data buffer that is
currently used for analysis
of the Motorola S format

fw_up_buf_init
fw_up_put_mot_s

static
fw_up_mot_s_buf_t

*papp_get_mot_s_buf Pointer to the Motorola S
record data buffer that is
currently used for creating
the data to be written to the
serial ROM

fw_up_buf_init
fw_up_get_binary

static
fw_up_write_data_t

write_buf
[FW_UP_BINARY_BUF_NUM]

Data buffer for the write to
the serial ROM

fw_up_buf_init

static
fw_up_write_data_t

*papp_write_buf Pointer to the data buffer
that is currently used for
the write to the serial ROM

fw_up_buf_init
fw_up_get_binary

static
fw_up_mot_s_cnt_t

mot_s_data_state Record analysis status of
the Motorola S format

fw_up_buf_init
fw_up_put_mot_s

static uint32_t write_current_address Current write-destination
address of the serial ROM
(address in the QSPI area)

fw_up_buf_init
fw_up_get_binary

static bool detect_terminal_flag Termination record
detection flag

fw_up_buf_init
fw_up_put_mot_s
fw_up_get_binary

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 43 of 59
Jan.10.24

Table 3.29 Variables of the "const" Type Used for Writer Program 2
(serial_rom_write2_serial_rx671.c)

Type Variable Name Description Functions
Supporting the
Variable

static const uint8_t s_string_menu0[] "RX671 Serial ROM Update
ver1.00\r\n"

update_serial_rom

static const uint8_t s_string_update[] "Erase and Write (Y/N)?" update_serial_rom
static const uint8_t s_string_erase_success[] “Erasing has been done.\r\n” update_serial_rom
static const uint8_t s_string_download[] “Start XMODEM

download…\r\n”
update_serial_rom

static const uint8_t s_string_finish_xmodem[] “Updating has been done.\r\n” update_serial_rom
static const uint8_t s_string_cancel[] “Command canceled.\r\n” update_serial_rom
static const uint8_t s_string_input[] “> ” update_serial_rom
static const uint8_t s_string_crlf[] “\r\n” main

update_serial_rom
static const_uin8_t s_string_cmt_err[] "CMT module error.\r\n" update_serial_rom
static const uint8_t s_string_mode_setting_err[] "Serial ROM mode setting

error.\r\n"
update_serial_rom

static const uint8_t s_string_erase_err[] “Serial ROM Erasing error.\r\n” update_serial_rom
static const uint8_t s_string_send_err[] “Send error.\r\n” update_serial_rom
static const uint8_t s_string_recv_err[] “Receive error.\r\n” update_serial_rom
static const uint8_t s_string_timeout[] “Timeout.\r\n” update_serial_rom
static const uint8_t s_string_block_err[] “Block processing error.\r\n” update_serial_rom
static const uint8_t s_string_data_err[] “Data error.\r\n” update_serial_rom
static const uint8_t s_string_init_update_err[] “Initialize update error.\r\n” update_serial_rom
static const uint8_t s_string_fin_update_err[] “Finalize update error.\r\n” update_serial_rom

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 44 of 59
Jan.10.24

(6) Functions
Table 3.30 to Table 3.33 list the functions for writer program 2.

Table 3.30 Functions for Writer Program 2 (serial_rom_write2_serial_rx671.c)

Function Name Summary
main Main processing

Initializes the SCI and QSPIX, and invokes the serial ROM update
function.

update_serial_rom Serial ROM update function
Performs operations such as outputting a message or inputting a
command to the terminal software on the host PC and invoking a
function that changes the communication mode of the serial ROM,
function that performs the block erase for the serial ROM, and
function that processes communication via the XMODEM/SUM
protocol.

send_byte_xm Callback function for the XMODEM/SUM protocol
Sends 1-byte data.

recv_byte_xm Callback function for the XMODEM/SUM protocol
Receives 1-byte data.

block_proc_xm Callback function for the XMODEM/SUM protocol
Processes the data of 1 data block.

send_string_sci Character string send processing
rom_access_error_callback Callback function for the QSPIX FIT module

Performs confirmation when a ROM access error interrupt occurs.
sci_callback Callback function for the SCI FIT module

Confirms completion of SCI send processing.
cmt_callback Callback function for the CMT FIT module

Detects a timeout of communication via the XMODEM/SUM protocol.

Table 3.31 Functions for Writer Program 2 (r_modem.c)

Function Name Summary
exec_xmodem Processes communication via the XMODEM/SUM protocol.
xmodem_recv_soh Receives the header of the data block of the XMODEM/SUM

protocol.
xmodem_check_eot Checks the header of the data block of the XMODEM/SUM protocol.
xmodem_recv_block Receives 1 data block of the XMODEM/SUM protocol.
xmodem_analyze_block Analyzes data blocks of the XMODEM/SUM protocol.
xmodem_proc_data Processes the data of 1 data block of the XMODEM/SUM protocol.
xmodem_send_response Processes response of the XMODEM/SUM protocol.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 45 of 59
Jan.10.24

Table 3.32 Functions for Writer Program 2 (r_fw_up_rx.c)

Function Name Summary
fw_up_open Initializes the update of the serial ROM.
fw_up_close Finalizes the update of the serial ROM.
analyze_and_write_data Invokes functions such as the receive data analysis function, serial

ROM write data acquisition function, and serial ROM write function.
fw_up_put_data Analyzes the receive data.
fw_up_get_data Acquires the serial ROM write data.
disable_quad_mode_serial_rom Disables the QUAD mode of the serial ROM.
erase_serial_rom Block erase for the serial ROM

Performs block erase for the serial ROM from its first block. The
number of blocks to be erased is specified for
SEL_ERASE_BLOCK_NUM.

write_serial_rom Writes data to the serial ROM.
write_serial_rom_send_command Sends a command to write data to the serial ROM.
cmt_callback_for_erase CMT FIT module callback function

Detects a timeout of the block erase for the serial ROM.

Table 3.33 Functions for Writer Program 2 (r_fw_up_buf.c)

Function Name Summary
fw_up_buf_init Initializes the buffer that is used to update the serial ROM.
fw_up_memory_init Initializes the pointer to the buffer.
fw_up_put_mot_s Analyzes the records of the Motorola S format.
fw_up_get_binary Acquires the serial ROM write data.
fw_up_ascii_to_hexbyte Converts the data format from ASCII to binary.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 46 of 59
Jan.10.24

3.3 FIT Modules Used
This section shows the FIT modules that are used by the application program, writer program 1, and writer
program 2. This section also describes the settings of each FIT module.

3.3.1 List of FIT Modules Used
Table 3.34 lists the FIT modules that are used.

Table 3.34 List of FIT Modules Used

FIT
Module

Document Title Application
Program

Writer Program 1 Writer Program 2

BSP RX Family Board Support
Package Module Using
Firmware Integration
Technology (R01AN1685)

Used Used Used

QSPIX RX Family QSPIX Module
Using Firmware Integration
Technology (R01AN5685)

Used Used Used

CMT RX Family CMT Module Using
Firmware Integration
Technology
(R01AN1856)

- - Used

SCI RX Family SCI Module Using
Firmware Integration
Technology
(R01AN1815)

- - Used

BYTEQ RX Family BYTEQ Module
Using Firmware Integration
Technology
(R01AN1683)

- - Used

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 47 of 59
Jan.10.24

3.3.2 FIT Module Settings
The FIT module and e2 studio SC settings used are listed below. For SC settings, the items and setting
details match those displayed on the setting menu. For details of the FIT modules, refer to the associated
FIT module documents.

Table 3.35 BSP Module Settings

(Settings Common to the Application Program, Writer Program 1, and Writer Program 2)

Category Item Setting/Description
Smart Configurator >> Components >> r_bsp Properties are left in the default settings.
Smart Configurator >> Clocks Clock tab: Default settings
 VCC settings 3.3 (V)
 Main clock settings Operation: Checked.

Oscillation source: Resonator
Frequency: 24 MHz
Oscillation waittime: 9980 (µs) (actual value: 10000)

 PLL circuit settings Frequency Division: ×1
Frequency Multiplication: ×10.0

 System clock settings Clock source: PLL circuit
System clock (ICLK): ×1/2 120 (MHz)
Peripheral module clock (PCLKA): ×1/2 120 (MHz)
Peripheral module clock (PCLKB): ×1/4 60 (MHz)
Peripheral module clock (PCLKC): ×1/4 60 (MHz)
Peripheral module clock (PCLKD): ×1/4 60 (MHz)
External bus clock (BCLK): ×1/4 60 (MHz)
FlashIF clock (FCLK): ×1/4 60 (MHz)

 Sub-clock settings Operation: Checked.
(The sub-clock is not used, but the default setting is
left unchanged.)

 HOCO clock settings Stopped: Unchecked.
 LOCO clock settings Stopped: Unchecked.
 IWDT dedicated clock settings Stopped: Unchecked.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 48 of 59
Jan.10.24

Table 3.36 QSPIX Module Settings

(Settings Common to the Application Program, Writer Program 1, and Writer Program 2)

Category Item Setting/Description
Smart Configurator >> Components >> r_qspix_rx Use the default settings other than the settings

shown below:
 Resources >> QSPIX QSPIX0: Checked.

QSPCLK pin: Used: Checked.
QSSL pin: Used: Checked.
QIO0 pin: Used: Checked.
QIO1 pin: Used: Checked.
QIO2 pin: Used: Checked.
QIO3 pin: Used: Checked.

Smart Configurator >> Pins Use the default settings other than the changes
shown below:

 Function: QIO0 The following pin assignments are selected:
PD6/D6/MTIC5V/MTIOC8A/POE4#/SSLC2-A/
SDHI_D0-B/QIO0-B/IRQ6/AN101

 Function: QIO1 The following pin assignments are selected:
PD7/D7/MTIC5U/POE0#/SSLC3-A/SDHI_D1-B/
QIO1-B/IRQ7/AN100

 Function: QIO2 The following pin assignments are selected:
PD2/D2/MTIOC4D/TIC2/CRX0/MISOC-A/
SDHI_D2-B/QIO2-B/IRQ2/AN105

 Function: QIO3 The following pin assignments are selected:
PD3/D3/MTIOC8D/POE8#/TOC2/RSPCKC-A/
SDHI_D3-B/QIO3-B/IRQ3/AN104

 Function: QSPCLK The following pin assignments are selected:
PD5/D5/MTIC5W/MTIOC8C/POE10#/SSLC1-A/
SDHI_CLK-B/QSPCLK-B/IRQ5/AN102

 Function: QSSL The following pin assignments are selected:
PD4/D4/MTIOC8B/POE11#/SSLC0-A/
SDHI_CMD-B/QSSL-B/IRQ4/AN103

Table 3.37 CMT Module Settings (Settings for Only Writer Program 2)

Category Item Setting/Description
Smart Configurator >> Components >> r_cmt_rx Use the default settings.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 49 of 59
Jan.10.24

Table 3.38 SCI Module Settings (for Writer Program 2 Only) (for the RSK Board)

Category Item Settings or Description
Smart Configurator >> Components >> r_sci_rx Leave the default settings unchanged except the

following settings:
 Configurations Include software support for channel1: Not

Include software support for channel10: Include
Transmit end interrupt: Enable

 Resources >> SCI SCI10: Select this check box.
SCK10 pin: Select “Used”.
RXD10/SMISO10/SSCL10 pin: Select “Used”.
TXD10/SMOSI10/SSDA10 pin: Select “Used”.

Smart Configurator >> Pins Leave the default settings unchanged except the
following settings:

 Function: RXD10 In Pin Assignment, select
P86/MTIOC4D/TIOCA0/SMISO10/SSCL10/
RXD10/SMISO010/ SSCL010/RXD010/IRQ14.

 Function: TXD10 In Pin Assignment, select
P87/MTIOC4C/TIOCA2/SMOSI10/SSDA10/TXD10/
SMOSI010/SSDA010/TXD010/SDHI_DS-C/IRQ15.

Table 3.39 SCI Module Settings (for Writer Program 2 Only) (for the EK Board)

Category Item Settings or Description
Smart Configurator >> Components >> r_sci_rx Leave the default settings unchanged except the

following settings:
 Configurations Include software support for channel1: Not

Include software support for channel10: Include
Transmit end interrupt: Enable

 Resources >> SCI SCI6: Select this check box.
SCK6 pin: Select “Used”.
RXD6/SMISO6/SSCL6 pin: Select “Used”.
TXD6/SMOSI6/SSDA6 pin: Select “Used”.

Smart Configurator >> Pins Leave the default settings unchanged except the
following settings:

 Function: RXD6 In Pin Assignment, select
P01/TMCI0/RXD6/SMISO6/SSCL6/IRQ9/AN11.

 Function: TXD6 In Pin Assignment, select
P02/TMCI1/SCK6/IRQ10/AN109.

Table 3.40 BYTEQ Module Settings (Settings for Only Writer Program 2)

Category Item Setting/Description
Smart Configurator >> Components >> r_byteq Use the default settings.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 50 of 59
Jan.10.24

3.4 Operation Confirmation Conditions
This section shows the conditions under which operations of the application program, writer program 1, and
writer program 2 were verified.

Table 3.41 Operation Confirmation Conditions

Item Description
MCU R5F5671EHDFB (RX671 Group)
Operating frequency • Main clock: 24 MHz

• PLL circuit output clock: 240 MHz
• System clock (ICLK):

120 MHz (PLL circuit output clock divided by 2)
• Peripheral module clock A (PCLKA):

120 MHz (PLL circuit output clock divided by 2)
• Peripheral module clock B (PCLKB):

60 MHz (PLL circuit output clock divided by 4)
• Peripheral module clock C (PCLKC):

60 MHz (PLL circuit output clock divided by 4)
• Peripheral module clock D (PCLKD):

60 MHz (PLL circuit output clock divided by 4)
• Bus clock (BCLK): 60 MHz (PLL circuit output clock divided by 4)
• FlashIF clock (FCLK): 60 MHz (PLL circuit output clock divided by 4)

Operating voltage 3.3 V
Integrated development
environment

Renesas Electronics
e2 studio Version 2022-04

C compiler Renesas Electronics
C/C++ Compiler Package for RX Family V.3.04.00
Compiler options
-lang = c99
For other settings, refer to 3.1.1.2, Build Settings in e2 studio, and
3.2.1.1(2) Build Settings in e2 studio.

iodefine.h version V1.00
Endian order Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample program version Version 2.10
Emulator E2 emulator Lite
Board used Renesas Starter Kit+ forRX671 (product No.: RTK55671EHSxxxxxxx)

EK-RX671 (product No.: RTK5EK6710Sxxxxxxx)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 51 of 59
Jan.10.24

3.5 Sample Program Operation Confirmation
Figure 32 shows "Procedure for Verifying the Operation of the Application Program When Using Writer
Program 1".

Figure 32 Procedure for Verifying the Operation of the Application Program When

Using Writer Program 1
Figure 33 shows the Procedure for Verifying the Operation of the Application Program When Using Writer
Program 2.

Figure 33 Procedure for Verifying the Operation of the Application Program When

Using Writer Program 2

Start

Writer program 1 writes a portion of the application program to the serial
ROM.

Connect writer program 1 to debugger and
run the program

The portions of the application program on the serial ROM and on-chip
ROM are run.

Generates the following:
Program code to be allocated to the on-chip ROM: ROM_block.mot
Program code to be allocated to the serial ROM: SerialROM_block.bin
and SerialROM_block.mot

Build application program

Accepts SerialROM_block.bin as input and allocates it to the on-chip
ROM as ROM data. (If SerialROM_block.bin has been updated by the
application program, clean and rebuild the project.)

Build writer program 1

Connect application program to debugger and
run program

End

Start

Connect writer program 2 to debugger and
run the program

The portions of the application program on the serial ROM and on-chip ROM are run.

Generates the following:
Program code to be allocated to the on-chip ROM: ROM_block.mot
Program code to be allocated to the serial ROM: SerialROM_block.bin and
SerialROM_block.mot

Build application program

If you change the setting of the SEL_ERASE_BLOCK_NUM constant in
serial_rom_config.h, build writer program 2.

Build writer program 2

Connect application program to
debugger and run the program

End

Start terminal software on host PC

Use terminal software on host PC to
update serial ROM

Update the serial ROM by referring to the description in "3.2.2.1 (3) Screen Output of
the Terminal Software and Operation of Writer Program 2".

An update confirmation message is displayed in the terminal software screen on the
host PC.

For the communication settings of the terminal software on the host PC, specify them as
shown in "Table 3.10 Specifications of Serial Communication Between the RX671 and
Host PC".

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 52 of 59
Jan.10.24

3.5.1 Debugger Connection Settings for Application Program
The settings necessary for connecting the application program to the debugger in e2 studio are described
below.

Figure 34 to Figure 39 show the debugger connection settings for the application program.

From the Run menu, select Debug Configurations… to display the Debug Configurations dialog box.

From Renesas GDB Hardware Debugging select xip_sample_rx671 HardwareDebug ([1] in the figure),
select the Startup tab ([2] in the figure), and click the Add… button ([3] in the figure).

Figure 34 Debugger Connection Settings for Application Program (1/6)

When the Add download module dialog box appears, click the Workspace… button.

Figure 35 Debugger Connection Settings for Application Program (2/6)

[1]

[2]

[3]

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 53 of 59
Jan.10.24

Select xip_sample_rx671 → HardwareDebug → ROM_block.mot, then click the OK button.

Figure 36 Debugger Connection Settings for Application Program (3/6)

In the Add download module dialog box, click the OK button.

Figure 37 Debugger Connection Settings for Application Program (4/6)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 54 of 59
Jan.10.24

From the Load type pulldown menu next to the filename Program Binary [xip_sample_rx671.x], select
Symbols only.

Figure 38 Debugger Connection Settings for Application Program (5/6)

From the Load type pulldown menu next to the filename ROM_block.mot, select Image only. Finally, click
the Apply button.

Figure 39 Debugger Connection Settings for Application Program (6/6)

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 55 of 59
Jan.10.24

3.5.2 Notes
3.5.2.1 Address of the Application Program to Be Allocated to the Serial ROM
To use writer program 1, make sure that the application program code (the SerialROM_sec section) is
written to the serial ROM from the address 0x70000000.

Use writer program 1 to receive the binary data of the application program code to be allocated to the serial
ROM and write the received data to the first block (at address 0x00000000) in the serial ROM.

To use writer program 2, make sure that the address in the serial ROM at which the application program
code is to be allocated is a multiple of 256 of the QSPI area (the last byte is 0x00).

For the serial ROM installed on the RSK, data cannot be written across multiple pages and written data is
wrapped around at a page (256 bytes) boundary. Therefore, to write data with the maximum size (256 bytes)
by issuing a write command (Page Program command), the data must be written from an address that is a
multiple of 256.

3.5.2.2 Project Configuration
Place the application program project, xip_sample_rx671 (or xip_sample_rx671_ek), and the writer program
1 project, serialROM_write1_direct_rx671 (or serialROM_write1_direct_rx671_ek), in the same workspace.

When you use writer program 1, do not change the project name of the application program.

If you have to change the project name, you must change the SerialROM_block.bin file storage location (red
portion of the following path) specified for the -binary option in "3.2.1.1(2)(b) Input Binary File Specification (-
binary) Option Setting".

-binary="${WorkspaceDirPath}/xip_sample_rx671/HardwareDebug/SerialROM_block.bin"
(SerialROM_WriteData_sec:4/DATA,_g_SerialROM_WriteData)

Notes: 1. The above option setting is split into two lines for explanatory purposes in this document, but the
actual option setting should not contain a line break.

 2. The setting shown above is a file path specification appropriate for the RSK board. If you use the
EK board, you must replace the project name appropriate for the EK board.

3.5.2.3 Note on Building the Writer Program 1
If changes are made to the application program, clean and rebuild the writer program 1 project.

3.5.2.4 Debugging the Portion of the Program in Serial ROM
When the application program is connected to the debugger and the portion of the program in the serial
ROM is being debugged, it is not possible to set software breaks in the portion of the program in the serial
ROM.

3.5.2.5 Using Renesas Flash Programmer to Write the Application Program to the RX671
When using Renesas Flash Programmer (RFP) to write the application program to the RX671, use the file
ROM_block.mot generated when building the application program.

For information on using RFP, refer to Renesas Flash Programmer: Flash Memory Programming Software
User’s Manual (R20UT5038).

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 56 of 59
Jan.10.24

4. Importing a Project
The sample programs are distributed in e2 studio project format. This section shows how to import a project
into e2 studio. After importing a project, check the build and debug settings.

4.1 Procedure in e2 studio
To use sample programs in e2 studio, follow the steps below to import them into e2 studio. (Note that
depending on the version of e2 studio you are using, the interface may appear somewhat different from the
screenshots below.)

Figure 4.1 Importing a Project into e2 studio

Start the e2 studio and
select the File >> [Import …].

Select [Existing Projects into Workspace].

Select [Select root directory:].
Specify the directory which stored
the project to import.
e.g. an-r01an3956ej0100-rxv2-dsp
Each application note has its own
project name.

Select [Add project to working
sets] when using the working sets.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 57 of 59
Jan.10.24

5. Obtaining the Development Environment
5.1 e2 studio
Visit the following URL and download e2 studio.
https://www.renesas.com/jp/ja/software-tool/e-studio
Note that this document assumes that the version of e² studio is the same as or later than the version
indicated in "Table 3.41 Operation Confirmation Conditions". If the version is earlier than the indicated
version, some e² studio functions might be unavailable. Make sure to download the latest version of e2 studio
on the website.

5.2 Compiler Package
Visit the following URL and download the RX Family C/C++ Compiler Package.

https://www.renesas.com/jp/ja/software-tool/cc-compiler-package-rx-family

6. Additional Information
6.1 Notes on Using the Evaluation Version of C/C++ Compiler Package for

RX Family
The evaluation version of C/C++ Compiler Package for RX Family can only be used for a limited duration
and other usage limitations apply. When the evaluation period expires, the size of linkable objects is reduced
to 128 KB or less, which may cause incorrect generation of the load module.

For details, refer to the following software tool page for evaluation versions on the Renesas website:

https://www.renesas.com/jp/ja/software-tool/evaluation-software-tools

7. Reference Documents
• RX671 Group User’s Manual: Hardware (R01UH0899)
• CC-RX Compiler User’s Manual (R20UT3248)
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family QSPIX Module Using Firmware Integration Technology (R01AN5685)
• RX Family CMT Module Using Firmware Integration Technology (R01AN1856)
• RX Family SCI Module Using Firmware Integration Technology (R01AN1815)
• RX Family BYTEQ Module Using Firmware Integration Technology (R01AN1683)
• RX Smart Configurator User’s Guide: e² studio (R20AN0451)
• Renesas Flash Programmer: Flash Memory Programming Software User’s Manual (R20UT5038)
• Renesas Starter Kit+ for RX671 User’s Manual (R20UT4879)
• Renesas Starter Kit+ for RX671 CPU Board Schematics (R20UT4878)
• EK-RX671 User’s Manual (R20UT5234)
• EK-RX671 Schematics (D019442_04)

The latest version can be downloaded from the Renesas Electronics website.

https://www.renesas.com/jp/ja/software-tool/e-studio
https://www.renesas.com/jp/ja/software-tool/cc-compiler-package-rx-family
https://www.renesas.com/jp/ja/software-tool/evaluation-software-tools

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 58 of 59
Jan.10.24

Revision History

Rev. Date
Description
Page Summary

1.00 Jan. 21. 22 First edition issued
2.00 Jun. 30. 22 Global The information in "Function Specifications" was moved to

"Functions", and the "Function Specifications" section was
deleted.
The writer program in revision 1.00 was renamed to "writer
program 1".
The project name of the writer program in revision 1.00 was
changed from "serialROM_write_rx671" to
"serialROM_write1_direct_rx671".

6 "Figure 3 Diagram of Connection Between the RX671 and
the Host PC" was added.
The title of Table 2.1 was changed.
"Table 2.2 SCI Pins Used for Connection Between the
RX671 and Host PC" was added.

10 The cross-reference to the section that shows the FIT
modules used was corrected.

12 and 15 In Figure 7, output of a Motorola S format file was added as a
file that is generated when the program code to be allocated
to the serial ROM is built. The description in the body text was
also changed accordingly.
With these changes, in Figure 11,
"SerialROM_block.mot=SerialROM_sec" was added under
[Division output mot file (for Stype)]. The description in the
body text was also changed accordingly.

13 For the program code to be allocated to the serial ROM,
under the address that is to be set for the application
program, a supplementary explanation about the address to
be set was added.

19 In "Table 3.3 Files Used by Application Program", the file
name "cmd_serial_rom.h" was changed to "serial_rom.h".

22 Because writer program 2 was added in revision 2.00, the
section "3.2 Writer Program" was reorganized to have
subsections for writer program 1 (writer program in revision
1.00) and for writer program 2.

24 and 25 With a change to the project name of writer program 1, Figure
17 and Figure 19 were updated.

26 In the flowchart in Figure 20, in the supplementary
explanation about the processing "Write data to 1st block in
serial ROM", the address representation was changed from a
QSPI-area-based address (0x70000000) to a serial-ROM-
based address (0x00000000).

28 In "Table 3.9 Files Used by Writer Program 1", the file name
"cmd_serial_rom.h" was changed to "serial_rom.h".

31 to 45 Section "3.2.2 Writer Program 2" was added.
46 The information in "Table 3.34 List of FIT Modules Used"

was changed.

RX671 Group Example of Program Execution from Serial ROM Using QSPIX XIP Mode

R01AN6111EJ0210 Rev.2.10 Page 59 of 59
Jan.10.24

2.00 Jun. 30. 22 47 In "3.3.2 FIT Module Settings", the FIT module settings for the
CMT, SCI, and BYTEQ were added.

50 In "Table 3.41 Operation Confirmation Conditions", the
required versions of the integrated development environment,
compiler, and sample program were changed. Also, the cross-
reference indicated in the "Compiler options" column was
changed.

51 Figure 32 was modified because the writer program was
renamed to "writer program 1" and the number of files
generated when the application program is built increased.
Also, Figure 33 was added because writer program 2 was
added.

52 to 54 Figure 34 to Figure 39 were updated because project names
were changed or added.

55 "3.5.2.1 Address of the Application Program to Be Allocated to
the Serial ROM" was added to "3.5.2 Notes".
With the reorganization of the section, a cross-reference in
"3.5.2.2 Project Configuration" was changed.

57 Information about the FIT modules for the CMT, SCI, and
BYTEQ was added in "7 Reference Documents".

2.10 Jan. 10. 24 All Added sample programs for the EK board.
6 to 9 Added section 2.1, “Renesas Starter Kit+ for RX671”, and

section 2.2, “EK-RX671”, in Chapter 2, “Hardware
Configuration”.

10 Partially modified the description for compatibility with the EK
board.
Changed the title of Table 3.1 and added Table 3.2.

11 Partially modified the description for compatibility with the EK
board.
Deleted a description of the number of LEDs in Figure 6.

12 Deleted a description of the number of LEDs in Figure 7.
18 Partially modified the description for compatibility with the EK

board.
Added a footnote about controlling LEDs in Figure 15.

20 Changed the title of Table 3.5.
21 Added Table 3.6 and modified the contents of Table 3.7.
22 Partially modified the description for compatibility with the EK

board.
Deleted a description of the number of LEDs in Figure 16.

23 Added “Table 3.8 Indication of the Writing State of the Serial
ROM”.

24 and 25 Made minor corrections.
26 and 27 Changed the title of Figure 20 and added Figure 21, “Outline

Flowchart of Writer Program 1 (for the EK Board)”.
29 and 30 Changed the title of Table 3.11 and added Table 3.12,

“Constants Used by Writer Program 1 (for the EK Board)”.
36 Changed the setting value of STRING_MAX_SIZE in Table

3.18.
38 Added constants CMD_WRSR1, CMD_WRSR2,

CMD_RDSR1, and CMD_RDSR in Table 3.23.
49 Changed the title of Table 3.38 and added Table 3.39, “SCI

Module settings (for Writer Program 2 Only) (for the EK
Board)”.

50 Added “EK-RX671” in “Board used” in Table 3.41.
55 Added information related to the EK board in section 3.5.2.2,

“Project Configuration”.
57 Updated the list of reference documents.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
http://www.renesas.com/contact/

	1. XIP Mode and Prefetch Function on QSPIX
	1.1 Overview of XIP Mode
	1.2 Enabling XIP Mode
	1.3 Terminating XIP Mode
	1.4 Prefetch Function

	2. Hardware Configuration
	2.1 Renesas Starter Kit+ for RX671
	2.2 EK-RX671

	3. Sample Programs
	3.1 Application Program
	3.1.1 Program Specifications
	3.1.1.1 Software
	(1) Address Allocation of Application Program
	(2) Divided Output of Files Generated when Building Application Program

	3.1.1.2 Build Settings in e2 studio
	(1) Section Allocation of Program Code to be Assigned to Serial ROM
	(2) Divided Output of Files Generated when Building Application Program
	(3) Branch width size (-branch) Option Setting
	(4) Checks the section larger than the specified range of addresses (-cpu) Option Setting

	3.1.1.3 Outline Flowchart

	3.1.2 Program Configuration
	3.1.2.1 File Structure
	3.1.2.2 Option-Setting Memory
	3.1.2.3 Constants
	3.1.2.4 Functions

	3.2 Writer Program
	3.2.1 Writer Program 1
	3.2.1.1 Program Specifications
	(1) Software
	(2) Build Settings in e2 studio
	(a) Section Allocation of Addresses to be Assigned to Binary Data
	(b) Input Binary File Specification (-binary) Option Setting

	(3) Outline Flowchart

	3.2.1.2 Program Configuration
	(1) File Structure
	(2) Option-Setting Memory
	(3) Constants
	(4) Functions

	3.2.2 Writer Program 2
	3.2.2.1 Program Specifications
	(1) Software
	(2) Outline flowchart
	(3) Screen Output of the Terminal Software and Operation of Writer Program 2
	(a) Confirmation for the Update
	(b) Start of Downloading the SerialROM_block.mot File
	(c) Completion of Updating the Serial ROM
	(d) Error Messages That Can Be Output
	(e) Cancellation of the Update

	3.2.2.2 Program Configuration
	(1) File Configuration
	(2) Option-Setting Memory
	(3) Constants
	(4) Type Definitions
	(5) Variables
	(6) Functions

	3.3 FIT Modules Used
	3.3.1 List of FIT Modules Used
	3.3.2 FIT Module Settings

	3.4 Operation Confirmation Conditions
	3.5 Sample Program Operation Confirmation
	3.5.1 Debugger Connection Settings for Application Program
	3.5.2 Notes
	3.5.2.1 Address of the Application Program to Be Allocated to the Serial ROM
	3.5.2.2 Project Configuration
	3.5.2.3 Note on Building the Writer Program 1
	3.5.2.4 Debugging the Portion of the Program in Serial ROM
	3.5.2.5 Using Renesas Flash Programmer to Write the Application Program to the RX671

	4. Importing a Project
	4.1 Procedure in e2 studio

	5. Obtaining the Development Environment
	5.1 e2 studio
	5.2 Compiler Package

	6. Additional Information
	6.1 Notes on Using the Evaluation Version of C/C++ Compiler Package for RX Family

	7. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

