
 APPLICATION NOTE 

R01AN1657EU0111  Rev.1.11  Page 1 of 37 

Feb 3, 2014  

RX63N, RX631 Group 

Quick Design Guide 

Introduction 

This document answers common questions and points out subtleties of the MCU that might be missed unless the 

hardware manual was extensively reviewed.  The document is not intended to be a replacement for the hardware 

manual; it is intended to supplement the manual by highlighting some key items most engineers will need to start their 

own design.  It also discusses some design decisions from an application point of view. 

Target Device 

RX63N Group 

RX631 Group 

Contents 

1. Power Supplies ................................................................................................................................. 2 

2. Emulator Support .............................................................................................................................. 4 

3. MCU Operating Modes...................................................................................................................... 7 

4. Option Setting Memory...................................................................................................................... 8 

5. Clock Circuits .................................................................................................................................... 9 

6. Reset Requirements and the Reset Circuit ..................................................................................... 13 

7. Memory ........................................................................................................................................... 16 

8. Register Write Protection ................................................................................................................ 19 

9. I/O Ports and Register Structures ................................................................................................... 20 

10. I/O Port Configuration and the Multifunction Pin Controller (MPC) ................................................. 23 

11. Module Stop Function ..................................................................................................................... 28 

12. Interrupts ......................................................................................................................................... 29 

13. Low Power Consumption ................................................................................................................ 32 

14. External buses ................................................................................................................................. 34 

15. References ...................................................................................................................................... 36 

 

R01AN1657EU0111 
Rev.1.11 

Feb 3, 2014 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 2 of 37 

Feb 3, 2014  

1. Power Supplies 

The RX family has digital power supplies and analog power supplies.  The power supplies use the following pins. 

 

Digital Power Supplies 

Symbol Name Description 

VCC Power supply 3.3V power supply.  Connect to the system power supply.  
Connect this pin to VSS via a 0.1 uF capacitor placed close 
to the VCC pin. 

VSS Ground Ground 

VCL Power supply Connect this pin to VSS via a 0.1uF capacitor close to the 
VCL pin. 

VBATT Backup power Backup power pin. Supplies power to RTC and sub-clock 
oscillator in the absence of VCC.  When VBATT pin is not 
used, connect to VCC. 

VCC_USB USB power supply USB power supply pin.  Connect this pin to VCC.  If USB is 
not used, it is safe to omit the 10uF cap on VCC_USB. 

VCC_VSS USB ground USB ground pin.  Connect this pin to VSS. 

 

 

Analog Power Supplies 

Symbol Name Description 

AVCC0 12-bit ADC power 
supply 

Analog voltage supply pin for the 12-bit A/D converter.  
Connect this pin to VCC if the 12-bit ADC is not used. 

AVSS0 12-bit ADC ground Analog ground for the 12-bit A/D converter.  Connect this 
pin to VSS if the 12-bit ADC is not used. 

VREFH0 12-bit ADC high 
reference voltage 

Reference power supply pin for the 12-bit A/D converter.   
Connect this pin to VCC if the 12-bit ADC is not used. 

VREFL0 12-bit ADC low 
reference voltage 

Analog reference ground pin for the 12-bit A/D converter.  
Connect this pin to VSS if the 12-bit ADC is not used. 

VREFH 10-bit ADC & DAC 
analog supply 

Reference voltage input pin for the 10-bit A/D converter 
and D/A converter.  This is used as the analog power 
supply for these modules.  Connect this pin to VCC if 
neither the 10-bit ADC nor the DAC is used. 

VREFL 10-bit ADC & DAC 
analog ground 

Reference ground pin for the 10-bit A/D converter and D/A 
converter.  This is used as the analog ground for the 
respective modules.  Connect this pin to VSS. 

 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 3 of 37 

Feb 3, 2014  

1.1 References 

Further information regarding the power supply for the RX can be found in the following documents: 

R01UH0041EJ0160 RX63N Group, RX631 Group User’s Manual: Hardware 

Chapter 1, “Overview”, lists power pins in each package with recommended bypass capacitors. 

Chapter 6, “Resets”, discusses the Power-on reset and how to differentiate this from other reset sources. 

Chapter 8, “Voltage Detection Circuit”, provides details on the Low-Voltage Detection Circuit that can be used to 

monitor the power supply.  Chapter 7, “Option-Setting Memory” additionally describes how to enable Low-Voltage 

Detection 0 Circuit automatically at startup. 

Chapter 12, “Battery Backup Function”, shows how to provide battery backup to the RTC and sub-clock oscillator. 

If you plan to use the on-chip Analog to Digital Converters or the Digital to Analog Converter (DAC), see chapter 41, 

“12-Bit A/D Converter (S12ADa)”, chapter 42, “10-Bit A/D Converter (ADb)”, and Chapter 43, “D/A Converter 

(DAa)” for details on how to provide filtered power supplies for these peripherals. 

 

Table 1 R01UH0041EJ0160 – RX63N Group, RX631 Group User’s Manual: Hardware 

Chapter Name Description 

1 Overview Lists power pins in each package with notes on termination 
and bypassing. 

6 Resets Discusses the Power-on Reset and how to differentiate this 
from other reset sources. 

8 Voltage Detection 
Circuit 

Provides details on the Low-Voltage Detection Circuit that 
can be used to monitor the power supply. 

11 Low Power 
Consumption 

Using low power modes may allow you to reduce the 
voltage of the power supply.  See this chapter for details on 
how operating modes affect power supply requirements. 

12 Battery Backup 
Function 

Shows how to provide battery backup to the RTC and sub-
clock oscillator 

41 

42 

43 

12-Bit A/D Converter 

10-Bit A/D Converter 

D/A Converter 

If you plan to use the on-chip A/D or D/A converters, these 
chapters give details on how to provide filtered power 
supplies for these peripherals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 4 of 37 

Feb 3, 2014  

2. Emulator Support 

Three debug interfaces are available for members of the RX63x group: 

 2-wire FINE interface that supports full on-chip debugging.  It does not provide external trace-output 

function, real-time RAM monitoring, or hot-plug in.  Renesas emulators support a FINE connection through 

the standard 14-pin E1 interface. 

 14-pin E1 interface that supports full on-chip debugging using JTAG communications.  It does not provide 

external trace-output function.  These connectors are general-purpose connectors with a pitch of 2.54mm. 

 38-pin E20 interface that supports basic functions that employ JTAG and other communications, plus the 

external trace-output function for acquiring large amounts of trace data in real time.  The fine-pitch MICTOR 

connector is as compact as the 14-pin connectors, but this connection reduces the number of dedicated MCU 

pins available for user’s application. 

Boundary scan is available on members of the RX63x group that are in larger package sizes: LGA145, LGA177, and 

BGA176.  For full details on emulator support, refer to documents listed in chapter 15 - References. 

2.1 Fine 2-Wire Interface 

 

 

 

Notes: 

1. Pull down the EMLE signal with a 4.7k to 10k resistor.  PC7 is used to select between serial boot mode and 

user/USB boot mode; connection to this pin is specific to your application. 

2. The output of the reset circuit of the user system must be open collector.   

3. RxD1 and TxD1 signals are not required for debugging, but may be connected to the 14-pin connector for 

optional use with the Renesas Flash Programmer tool.  These pins ARE required to be connected for 

production programming. 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 5 of 37 

Feb 3, 2014  

2.2 E1 Emulator 14-Pin Interface 

 

 

 

Notes: 

1. A 4.7k to 10k resistor can be used to pull up the TRST# signal.  Note, however, that hot plug-in will not be 

available if TRST# is pulled up. 

2. For processing of MD, PC7, and EMLE, see section 3 - MCU Operating Modes. 

3. The output of the reset circuit of the user system must be open collector.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 6 of 37 

Feb 3, 2014  

2.3 E20 Emulator 38-Pin Interface 

 

 

 

Notes: 

1. A 4.7k to 10k resistor can be used to pull up the TRST# signal.  Note, however, that hot plug-in will not be 

available if TRST# is pulled up. 

2. For processing of MD, PC7, and EMLE, see section 3 - MCU Operating Modes. 

3. The output of the reset circuit of the user system must be open collector.   

 

2.4 Notes on Emulator Connections 

The following notes should be taken into consideration when designing emulator connections: 

1. RES# circuitry on the target must be open-collector.  Pull up the RES# signal on the RX; do not put a cap on 

this signal as it will affect the operation of the power-on reset circuit. 

2. Use 4.7K to 10K pull-ups on TCK, TDO, TMS, and TDI.  Use a pull-down on TRST#. 

3. Use pull-ups on trace connections: TRCLK, TRSYNC#, TRDATA0-3. 

4. Connect MD, PC7, and EMLE to the debug connector to use flash programming.  MD and PC7 should be 

pulled to levels appropriate to the application & boot modes; the emulator will override these when connected.  

Pull the EMLE pin low with a pull-down resistor; Renesas emulators will pull this signal high during 

debugging. 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 7 of 37 

Feb 3, 2014  

3. MCU Operating Modes 

The RX63N and RX631 Group MCU’s can enter one of three modes after reset: single-chip mode, serial boot mode, or 

User/USB boot mode.  The boot mode is selected by the MD pin and, optionally, the state of the PC7 port pin: 

 

Table 2 - Operating Modes Available at Reset 

 

Mode 

 

MD 

 

PC7 

 

Execution starts at 

Memory available for 

program/erasure 

Single-chip mode 1 Don’t care Address located at 0xFFFF FFFC 
 User flash area 

 Data flash area 

Serial boot mode 0 0 Factory loaded serial bootloader 

 User flash area 

 Data flash area 

 User boot area 

User/USB boot mode 0 1 Address located at 0xFF7F FFFC 
 User flash area 

 Data flash area 

 

User boot mode, along with the 16KB User Boot Mat flash area, provides the user with a convenient way to implement 

a custom bootloader.  For more information on this refer to the “Simple Flash API for RX” application note (see 

Chapter 15 –References).  The user boot area is preprogrammed at the factory with the Renesas USB bootloader.  The 

user can replace the Renesas USB bootloader with a custom bootloader; see the chapter “ROM (Flash memory for Code 

Storage)” in the Hardware Manual for details. 

The MCU can transition into 2 other operating modes after reset by modifying the ROME and EXBE bits in the System 

Control Register 0 (SYSCR0).  Clearing the ROME bit disables the on-board flash ROM areas.  Setting the EXBE bit 

enables the external memory bus.  The table below shows the details of each mode. 

 

Table 3 - Software Selectable Operating Modes 

 

Mode 

 

ROME EXBE On-Chip Rom External Bus 

After reset 1 0 Enabled Disabled 

On-chip ROM Enabled 

Extended Mode 
1 1 Enabled Enabled 

On-chip ROM Disabled 

Extended Mode 
0 1 Disabled*1 Enabled 

Notes 1. After disabling the On-Chip ROM by clearing the ROME bit, it cannot be re-eanbled. 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 8 of 37 

Feb 3, 2014  

4. Option Setting Memory 

A new feature on the RX63x is the Option Setting Memory.  These are flash-based registers that are set when the device 

is programmed, and that govern the operation of the chip immediately after reset.  The registers are detailed in Chapter 

7 of the Hardware Manual: “Option Setting Memory”.  

The flash option registers occupy space in the normal memory map.  Although the registers are located in a portion of 

the flash memory that was reserved on the RX62x, it is possible that some customers may have stored data in these 

locations inadvertently.  The user must check to ensure that no unwanted data is written to these locations or else 

unexpected behavior of the chip may result.  For instance, settings in the flash option registers can enable the 

Independent Watchdog Timer (IWDT) immediately after reset.  If data stored in program ROM inadvertently overlaps 

the flash option register, it is possible to turn on the IWDT on without realizing it.  This will cause the debugger to have 

communications problems with the board. 

The image below shows the Option setting memory which consists of the option function select registers and 4 other 

registers. These registers are divided into two groups located in flash-memory and are read on boot-up to determine 

endianness, and also if peripherals like the Independent Watchdog Timer (IWDT), the High-speed On-chip Oscillator 

(HOCO) and the Low Voltage Detection circuit (LVD0) are operational or not at boot time.  

 

Figure 1: Option Function Select registers 

Enabling the HOCO via these registers means that the HOCO is powered up and will start stabilizing immediately after 

reset.  This reduces the wait time when switching from the LOCO (the default clock source on startup) to the HOCO. If, 

however, power savings is a requirement, then the registers can be configured to leave the HOCO off on power-up. The 

OFS registers are also used to configure all the aspects of the IWDT operation.  

4.1 Option Setting Memory Registers 

Below is a summary of the Option Setting Memory registers.  Make sure that they are configured properly before 

startup. 

 

 OFS0 register 

o Independent Watchdog Timer (IWDT) auto start 

o IWDT timeout, frequency, windowing, interrupt type, and low power mode behavior 

o Watchdog Timer (WDT) auto start  

o WDT timeout, frequency, windowing, and interrupt type 

 OFS1 register 

o LVD0 enable after reset 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 9 of 37 

Feb 3, 2014  

o HOCO startup after reset 

 MDES/MDEB registers 

o Big/little endian mode 

 UB Codes: In order to use the User Boot mode with a customer bootloader, it is necessary to configure the UB 

codes. Refer to Section 7.3 in the hardware manual for details.  

 

Below is an example on how to set the option setting memory register, MDES, which is at the address 0xFFFFFF80.  

Note that unused/reserved bits are written to a ‘1’ as instructed in the Hardware Manual; be sure to set unused/reserved 

bits per the hardware manual. 

/* Allocate the name MDESreg to the address 0xFFFFFF80 */ 

#pragma address MDESreg = 0xFFFFFF80 

 

#ifdef __BIG 

/* Set as Big Endian */ 

const unsigned long MDESreg = 0xFFFFFFF8u  

#else 

/* Set as Little Endian */ 

const unsigned long MDESreg = 0xFFFFFFFFu 

#endif 

 

Most sample projects and demo code from Renesas includes code to set the option registers. 

 

5. Clock Circuits 

The RX63N/RX631 group MCUs have five oscillators (see Table 4 - RX63X Oscillators).  Four of these may be used 

as the source for the main system clock; the remaining oscillator is dedicated to the Independent Watchdog Timer.  In a 

typical system, the main clock is driven with an external crystal or clock.  This input is directed to the PLL where it is 

multiplied up to the 104-200 MHz input range required by the PLL, and then post-divided down into the final system 

clock speed which can have a maximum speed of 100 MHz. 

 

Table 4 - RX63X Oscillators 

Oscillator Input source Frequency Primary uses 

Main clock External crystal/resonator 

 

         -or- 

 

External clock 

4 MHz to 16 MHz 

 

 

 

Up to 20 MHz 

PLL input, main system clock, 

peripherals clocks, flash 

clock, bus clock, SDRAM 

clock, IEBUS clock, USB 

clock, CAN clock 

Sub-clock External crystal/resonator 32 kHz Real-time clock, system clock 

in low power modes 

High-speed on-chip 

(HOCO) 

On-chip oscillator 50 MHz Main system clock, peripheral 

clocks in low power modes 

Low-speed on-chip 

(LOCO) 

On-chip oscillator 125 kHz System clock at startup, in low 

power modes, & during main 

oscillator stop detection 

Independent Watchdog 

(IWDT) 

On-chip oscillator 125 kHz Independent watchdog timer 

clock 

 

5.1 Reset Conditions 

After reset, RX63x MCU’s begin running with the low-speed on-chip oscillator (LOCO) as their main clock source.  

The LOCO runs at 125 kHz which enables the part to start in a low-power state.  Application code should switch to a 

higher speed clock source as soon as is practical.  Particular care should be taken to make sure that a faster clock source 

is selected before the compiler startup code that initializes the C language runtime environment runs or else long startup 

times may result.  At reset, the main oscillator and the PLL are off by default.  The HOCO and IWDT may be on or off 

depending on the settings in the Option Setting Memory (see section 4). 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 10 of 37 

Feb 3, 2014  

5.2 Clock Frequency Requirements 

The ICLK must always be greater than or equal to the BCLK.  Minimum and maximum frequencies are shown in the 

table below. 

Table 5.5 : Frequency Range for MCU Clocks 

 ICLK PCLKA PCLKB PCLKC PCLKD 

Maximum Frequency [MHz] 100 100 50 100 50 

Minimum Frequency [MHz]  1  1  2   

1. The ICLK and PCLKA frequencies must be the same and at least 12.5 MHz if the Ethernet controller is in use 

2. The PCLKB must run at a frequency of at least 24 MHz if the USB is in use. 

 

 FCLK BCLK UCLK CANCLK IECLK 

Maximum Frequency [MHz] 50 100 48 20 50 

Minimum Frequency [MHz]  1  2 48   

1. The FCLK must run at a frequency of at least 4 MHz when writing or erasing ROM or data flash. 

2. While BLCK can be set to 100 MHz, the maximum frequency that can be output on the BCLK pin is 50 MHz. A 50 MHz 

clock can be output on the BCLK pin with a BCLK frequency of 100MHz by setting the BCLKDIV bit. 

 

5.2.1 Requirements for USB Communications 

The USB 2.0 Host/Function Module (USB) available on some members of the RX family requires a 48 MHz USB 

clock signal (UCLK).  UCLK is generated internally by dividing the PLL by either 3 or 4. The divider used depends on 

the setting of the UCK bits in the SCKCR2 register.  Additionally, the peripheral clock B (PCLKB) must be set to a 

minimum of 24 MHz when USB is enabled. 

5.2.2 Requirements for Ethernet Controller 

When the Ethernet controller (EtherC) and Ethernet DMA Controller (E-DMAC) are used, PCLKA (Ethernet) must be 

the same as ICLK, and both must be 12.5 MHz or greater.  

5.2.3 Requirements for Programming and Erasing ROM or Data Flash 

The FCLK must be at least 4MHz to perform programming and erasing on internal ROM and data flash. 

5.2.4 Requirements for SDRAM Controller 

When the SDCLK is used, BCLK cannot exceed 50 MHz. 

 

5.3 Lowering CGC Power Consumption 

The CGC area can account for 30%-40% of the power consumption of the chip. To aid in saving power, set the dividers 

for any unused clocks (i.e. BCLK) to the highest possible value whenever possible. Also, if not using a clock then make 

sure that it has been stopped by setting the appropriate register(s). The registers for controlling each clock source are 

shown in the table below. 

Table 5.6 : Clock Source Configuration Registers 

Oscillator Register Description 

Main clock MOSCCR Starts/stops main clock oscillator 

Sub-clock SOSCCR Starts/stops sub-clock oscillator 

High-speed on-chip (HOCO) 
HOCOCR Starts/stops HOCO  

HOCOPCR Turns power on/off for HOCO  

Low-speed on-chip (LOCO) LOCOCR Starts/stops LOCO  

Independent Watchdog (IWDT) ILOCOCR Starts/stops IWDT on-chip oscillator 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 11 of 37 

Feb 3, 2014  

5.4 Writing the System Clock Control Register 

Care should be taken when writing to the individual bit fields in the SCKCR register.  The hardware manual states: 

 

“To secure the processing after the clock frequency is changed, modify the pertinent clock control register to change the 

frequency, and then read the value from the register, and then perform the subsequent processing..” 

 

This means that every time a clock register is written, the user should read back the register and confirm the value has 

been changed before making any more modifications to other clock registers. The easiest way to avoid this situation and 

to ensure clock settings are correct is to write the entire register at once: 

 

Unsafe Safe 

/*ICLK=96MHz*/ 

SYSTEM.SCKCR.BIT.ICK = 1; 

/*PCLKA=96MHz*/ 

SYSTEM.SCKCR.BIT.PCKA = 1; 

/*PCLKB=48MHz*/ 

SYSTEM.SCKCR.BIT.PCKB = 2; 

/*FCLK=48MHz*/ 

SYSTEM.SCKCR.BIT.FCK = 2; 

/*BCLK=48MHz*/ 

SYSTEM.SCKCR.BIT.BCK = 2; 

/* ICLK=96MHz 

   PCLKA=96MHz 

   PCLKB=48MHz 

   FCLK=48MHz 

   BCLK=48MHz */     

SYSTEM.SCKCR.LONG = (unsigned long)0x21021200; 

 

 

5.5 Sample Code for Clock Setup 

A separate application note covers software startup of the chip including setting the clocks for various applications.  See 

the “Initial Setting” application note in the References section of this document. 

 

5.6 HOCO accuracy 

The internal high-speed on-chip oscillator (HOCO) runs at 50 MHz +/-10% (refer to the Electrical Specifications in the 

hardware manual for details. 

 

5.7 FlashIF Clock 

The FlashIF Clock (FCLK) is used as the operating clock for when programming and erasing internal flash (ROM and 

DF) and for reading from the data flash. Therefore, the frequency setting of the FCLK will have a direct impact on the 

amount of time it takes to read from the data flash. If the user’s program is reading from the data flash, or performing 

programming or erasures on internal flash, then using the maximum FCLK frequency is recommended.  

 

Please note that the FCLK frequency does not have any impact upon reading from ROM or reading and writing to RAM. 

Both of these memory areas are always single-cycle access. 

 

5.8 Board Design 

Refer to the “Usage Notes” section of the Clock Generation Circuit chapter in the Hardware Manual for more 

information on using the CGC and for board design recommendations. A separate application note, “RX63N/RX631 

Groups Design Guide for Low CL Sub-Clock Circuits” (R01AN1187EJ0100), provides details on board layout for 

clock circuits. 

5.8.1 Important notes regarding the Oscillation Stop Detection Circuit 

 The Oscillation Stop Detection circuit is disabled by default after reset, but may be enabled by writing to the 

OSTDE bit in the Oscillator Stop Detection Control Register (OSTDCR). 

 If oscillation stop detection is enabled and an oscillation stop is detected then the system clock will automatically 

transition to the LOCO. The system clock will stay on the LOCO until the OSTDF flag in the OSTDSR register is 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 12 of 37 

Feb 3, 2014  

cleared. In order to clear this flag the user must first change the CKSEL bits in the SCKCR3 register to choose the 

LOCO. After the flag has been cleared the user can transition back to the main clock or PLL. These steps are 

shown in the flow diagram from the hardware manual below. 

 When transitioning to the LOCO, the PLL multipliers and frequency dividers chosen in the SCKCR# and PLLCR# 

registers are not changed. 

 Because the main clock oscillator is turned off in the Software Standby and Deep Software Standby low power 

modes, the Oscillation Stop Detection circuit must be disabled before entering these modes. 

 The Oscillation Stop Detection circuit must be disabled before the main clock oscillator is stopped by setting the 

MOSTP bit in the MOSCCR. 

 To use the Non-Maskable Interrupt for oscillator stop, the OSTEN bit in Non-Maskable Interrupt Enable Register 

(NMIER) must be set. 

 Oscillation stop detection should only be enabled after the main clock has had proper settling time. 

 Application code servicing the Independent Watchdog Timer (IWDT) must take into account that the IWDT 

continues to run at the same rate even though the MCU is running at a reduced rate. 

 The main clock provided to the RTC (RTCMCLK) is not transitioned to the LOCO. This means if the RTC has the 

main clock selected as the count source and an oscillation stop occurs then the RTC will not count due to not 

having a valid clock source. 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 13 of 37 

Feb 3, 2014  

6. Reset Requirements and the Reset Circuit 

There are nine types of resets: 

Reset Name Source 

Pin reset RES# is driven low 

Power-on reset VCC rices (voltage detection: VPOR) 

Voltage-monitoring 0 reset VCC falls (voltage detection Vdet0) 

Voltage-monitoring 1 reset VCC falls (voltage detection Vdet1) 

Voltage-monitoring 2 reset VCC falls (voltage detection Vdet2) 

Deep software standby reset Deep software standby mode is canceled by an interrupt 

Independent watchdog timer 
reset 

The independent watchdog timer underflows, or a refresh 
occurs 

Watchdog timer reset The watchdog timer underflows, or a refresh occurs 

Software reset Register setting 

 

6.1 Pin Reset 

When the RES# pin is driven low, all processing is aborted and the RX enters a reset state. To reset the MCU while it is 

running, RES# should be held low for the specified reset pulse width (minimum of 2 ms); RES# can be held low for a 

shorter time during ROM or data flash programming and erasure (200 µsec) and about 1ms in Deep Software Standby, 

Software Standby, and Low Speed-2 mode.  Refer to the “Electrical Characteristics” chapter of the Hardware Manual 

for more detailed timing requirements.  Also refer to section 2, “Emulator Support” for details on reset circuitry in 

relation to debug support. 

There is no need to use an external capacitor on the RES# line because the POR circuit holds it low internally for a good 

reset and a minimum reset pulse of 2 ms is required to initiate this process.   

 

6.2 Power-On Reset 

The Power On Reset occurs when the RES# pin is high as power is applied to the MCU.  After VCC has exceeded the 

power on voltage, Vpor (2.6V), and the power-on reset time, tPOR(4.6 ms) has elapsed, the chip is released from the 

power-on reset state.  The power-on reset time is a period that allows for stabilization of the external power supply and 

the MCU.   

Because the POR circuit relies on having RES# high concurrently with VCC, don’t place a capacitor on the reset pin.  

This will slow the rise time of RES# in relation to VCC, preventing the POR circuit from properly recognizing the 

power-on condition. 

If the RES# pin is high when the power supply (VCC) falls to or below Vpor, a power-on reset is generated.  The chip 

is released from the power-on state after VCC has risen above Vpor and the tPOR has elapsed. 

After a power on reset, the PORF bit in RSTSR0 is set to 1; following a pin reset PORF is cleared to 0.   

 

6.3 Voltage-Monitoring Reset 

The RX63N group includes circuitry that allows the MCU to protect against unsafe operation during brownouts.  On-

board comparators check the supply voltage against three reference voltages, Vdet 0,Vdet1 and Vdet2.  As the supply 

dips below each reference voltage an interrupt or a reset can be generated.   Vdet0 is fixed (~ 2.8V) but Vdet1 and 

Vdet2 are configurable. 

When Vcc subsequently rises above Vdet0, Vdet1 or Vdet2, release from the voltage-monitoring reset proceeds after a 

stabilization time has elapsed. 

Low Voltage Detection (Vdet1 and Vdet2) is disabled by default after reset; Vdet0 can be enabled out of reset by using 

the Option Function register OFS1. For more details, see the chapter “Voltage Detection Circuit (LVD)” in the 

hardware manual for details. 

After an LVD Reset, the LVDnRF (n= 0, 1, 2) bit in RSTSR0 is set to 1 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 14 of 37 

Feb 3, 2014  

6.4 Deep Software Standby Reset 

This is an internal reset generated when deep software standby mode is canceled by an interrupt. 

When deep software standby mode is canceled, a deep software standby reset is generated, and clock oscillation starts.  

On receiving the interrupt, after the Deep Standby Cancellation Wait Time (tDSBY ~370 µsec) has elapsed, reset is 

canceled and normal processing starts.  For details of the deep software standby mode refer to the “Low Power 

Consumption” chapter of the hardware manual. 

After a Deep Software Standby Reset, the DPSRSTF bit in RSTSR0 is set to 1 

 

6.5 Independent Watchdog Timer Reset 

This is an internal reset generated by the Independent Watchdog Timer (IWDT). 

When the IWDT underflows, an independent watchdog timer reset is optionally generated (NMI can be generated 

instead) and the UNDFF bit in the IWDTSR is set to a 1.  After a short delay (960 µsec), the IWDT reset is canceled. 

 

6.6 Watchdog Timer Reset 

This is an internal reset generated by the Watchdog Timer (WDT). 

When the WDT overflows, a watchdog timer reset is optionally generated (NMI can be generated instead), and the 

WDTRF bit in RSTSR2 is set to a 1.  After a short delay (960 µsec) the WDT reset is canceled. 

 

6.7 Software Reset 

This is an internal reset generated by writing 0xA501 to the SWRR register. The internal reset time when using 

software reset is a maximum of 960 µsec. When using software reset, make sure that the watchdogs are serviced first 

before issuing the software reset command. 

 

6.8 Determining the Reset Source 

The RX63N allows the user to determine the reset signal generation source. Refer to the hardware manual section 6.3.9 

Determination of Reset Generation Source for the flow diagram. 

The following code sample shows how to determine the source that caused a reset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 15 of 37 

Feb 3, 2014  

#define RST_SRC_SW    0x001 /* Software reset */ 

#define RST_SRC_DSSTDBY  0x002 /* Deep software standby reset */ 

#define RST_SRC_VDET2   0x004 /* Voltage monitor 2 reset */ 

#define RST_SRC_VDET1   0x008 /* Voltage monitor 1 reset */ 

#define RST_SRC_WDT   0x010 /* Watchdog timer reset */ 

#define RST_SRC_IWDT   0x020 /* Independent watchdog reset */ 

#define RST_SRC_VDET0   0x040 /* Voltage monitor 0 reset */ 

#define RST_SRC_POR   0x080 /* Power on reset */ 

#define RST_SRC_PIN   0x100 /* Pin reset */ 

 

int ResetSource () 

{ 

  /* Check for software reset */ 

  if (SYSTEM.RSTSR2.BIT.SWRF == 1) return (RST_SRC_SW) ; 

 

  /* Check for deep software standby reset */ 

  if (SYSTEM.RSTSR0.BIT.DPSRSTF == 1) return (RST_SRC_DSSTDBY) ; 

  

   /* Check for voltage monitoring reset on Vdet2 */ 

  if (SYSTEM.RSTSR0.BIT.LVD2RF == 1) return (RST_SRC_VDET2) ; 

 

  /* Check for voltage monitoring reset on Vdet1 */ 

  if (SYSTEM.RSTSR0.BIT.LVD1RF == 1) return (RST_SRC_VDET1) ; 

 

  /* Check for watchdog timer (WDT) reset */ 

  if (SYSTEM.RSTSR2.BIT.WDTRF == 1) return (RST_SRC_WDT) ; 

 

  /* Check for independent watchdog timer (IWDT) reset */ 

  if (SYSTEM.RSTSR2.BIT.IWDTRF == 1) return (RST_SRC_IWDT) ; 

 

   /* Check for voltage monitoring reset on Vdet0 */ 

  if (SYSTEM.RSTSR0.BIT.LVD0RF == 1)  return (RST_SRC_VDET0) ; 

 

  /* Check for power on reset */ 

  if (SYSTEM.RSTSR0.BIT.PORF == 1) return (RST_SRC_POR) ; 

 

  /* If no other reset sources were indicated, then it must have been a pin reset */ 

  return (RST_SRC_PIN) ; 

} 

  

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 16 of 37 

Feb 3, 2014  

7. Memory 

The RX600 Series of MCU’s have a 32-bit memory space spanning 4 Gbyte that includes areas for on-chip memory and 

peripherals.  Some members of the family include a 256 Mbyte region that allows access to devices connected to 

external memory buses.  Program and data memory share the address space; separate buses are used to access each, 

increasing performance and allowing same-cycle access of program and data.  Contained within the memory map are 

regions for on-chip RAM, peripheral I/O registers, program ROM and data flash, and external memory. 

 

Address Memory Map  

0x0000 0000 
RAM 

(up to 128K) 

 

0x0002 0000 Reserved  

0x0008 0000 
Peripheral I/O Registers 

 

0x0010 0000 On-chip data flash 
(up to 32K) 

 

0x0010 8000 Part-specific memory 
(see data sheet) 

 

0x0100 0000 External Address Space 
(CS Area - 112 Mbyte) 

 

0x0800 0000 External Address Space 
(SDRAM Area - 128 Mbyte) 

 

0x1000 0000 Reserved  

0xFF00 0000 
Reserved 

External Address Space 

In On-Chip ROM Disabled 
Extended Mode 

(16 Mbyte) 

0xFFE0 0000 On-Chip ROM 
(up to 2 Mbytes) 

0xFFFF FFFF 

 

7.1 On-Chip RAM 

Members of the RX family include high-speed on-chip RAM that can be accessed in a single cycle at CPU speeds up to 

100 MHz.  Data stored in RAM is retained in all low-power modes of the CPU; the entire RAM or a portion of it may 

be powered down during Deep Software Standby Mode to further reduce power consumption.  Depending on the RX 

device, up to 128K of on-chip RAM is accessed starting at address 0x00000000. 

7.2 Peripheral I/O Registers 

Blocks of peripheral I/O registers appear at various locations in the memory map depending on the device and the 

current operating mode.  The majority of peripheral I/O registers occupy a region from address 0x00080000 to 

0x00100000.  This region contains registers that are available at all times in all modes of operation.  Other blocks of 

peripheral registers, such as those to control access flash memory, vary in location and size by device; consult the 

hardware manual for specifics.  The Renesas tool chain generates C header files that map all of the peripheral I/O 

registers for a specific device to easily accessible C data structures. 

7.3 Program ROM & Data Flash 

The RX600 Series of MCUs feature two flash memory sections: program ROM and data flash.  The program ROM is 

designed to store user application code and constant data.  The data flash is designed to store information that may be 

updated from time to time such as configuration parameters, user settings, or logged data.  The units of programming 

and erasure in the data flash area are much smaller than that of the program ROM (2 bytes for Data Flash versus 128 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 17 of 37 

Feb 3, 2014  

bytes for ROM).  This makes the data flash more suited for storing information that would benefit from the finer 

granularity of the data flash area, such as configuration parameters. 

Both the data flash and ROM areas can be programmed or erased by application code.  This enables field firmware 

updates without having to connect an external programming tool.  To speed development of code that supports in-

application programming of the flash, Renesas supplies a “Simple Flash API for RX” application note that includes 

sample code.  This application note can be found on the Renesas web site; see chapter 15 - References. 

One some RX600 Series MCUs another flash area is available to the user.  This small flash area can be used along with 

User Boot Mode to hold a custom bootloader that the user designs.  This area cannot be erased or programmed during 

normal user application execution which makes it ideal for storing a bootloader. 

7.3.1 Enabling Data Flash Memory 

Out of reset the data flash memory cannot be read, programmed, or erased. In order to allow these accesses the data 

flash must be enabled. There are two sets of registers in the data flash that enable these types of accesses. The first are 

the E2 Data Flash Read Enable Registers (DFLRE#) which enable read capabilities on individual data flash blocks. The 

second are the E2 Data Flash P/E Enable Registers (DFLWE#) which allow programming and erasing operations on 

individual data flash blocks. Both sets of registers are 16-bits wide and require a key to be written along with the 

desired settings. 

7.3.2 Blank Checking of Data Flash Memory 

Data flash locations on the RX cannot be checked for blank (i.e. erased) by comparing the read value to 0xFF. The 

reason for this is that RX data flash cells actually have 2 cells per bit (compared to 1 cell per bit for ROM). This means 

that there are 4 different states the bit can be in; though only 3 are used: undefined, 0, and 1. Erased data flash locations 

on the RX have a value of undefined (not 0 or 1) and therefore the read bit value cannot be used to determine if the bit 

is erased. When a data flash bit is programmed, one of the cells is always changed depending on whether a 0 or 1 is 

being written.  If the user wishes to know if a data flash location is erased then they should use the blank check 

command in the Flash Control Unit. The “Simple Flash API for RX Application Note” also includes an API function 

that serves this purpose. 

7.3.3 Background Operation 

RX600 MCUs support background operations for ROM and data flash. This means that when a program or erase is 

started, the user can keep executing and accessing memory from memory areas other than the one being operated on. 

For example, the CPU can execute application code from ROM while the data flash memory is being erased or 

programmed. Also, the CPU can execute application code from RAM while the ROM memory is being erased or 

programmed. The only exception to this rule is that the data flash cannot be accessed during ROM programming or 

erasing. 

7.3.4 Data Flash in Low-Speed Operating Mode 2 

The data flash cannot be accessed when the MCU is in low-speed operating mode 2. If the MCU transitions into another 

operating mode then the data flash can be accessed normally. 

7.3.5 ID Code Protection 

RX600 MCUs have a 32-byte memory area that is used as an ID code. If this ID code is left blank (0xFF’s) then no 

protection is enabled and access to the MCU is allowed through boot mode or using the on-chip debugger. If the ID 

code is set then the user can control access to these modes. The user can choose to always disallow connections, or can 

choose to allow connections when a matching ID code is input. Refer to the “ID Code Protection (Boot Mode)” and “ID 

Code Protection on Connection of the On-Chip Debugger” sections of the hardware manual for more information. 

7.3.6 Parallel Programmer Protection 

RX600s MCU have the ability to limit what operations parallel ROM programmers can perform on the MCU. The 

choices include allowing both reading and writing, prohibiting writing, and prohibiting writing and reading. Which 

option is chosen is performed by setting a constant value at specified memory address. See ‘ROM Code Protection’ in 

the hardware manual for more details. 

7.4 External Memory & Chip Selects 

Some members of the RX family include an external data bus for connection to external memory and devices.  Some 

members also include a built-in SDRAM controller that allows the use of up to 128 Mbytes of external SDRAM.  Eight 

programmable chip selects provide a number of options that are settable on a per-chip select basis to allow connection 

to a wide range of external devices.  The external chip select area of the memory map begins at address 0x0100 0000.  

Consult the hardware manual for details. 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 18 of 37 

Feb 3, 2014  

The external memory bus is off by default and must be enabled through writing to a number of registers.  The 

SYSCR0.EXBE bit must be set (see chapter 3 of the HW manual), followed by the setting the pin functions in the 

Multi-Function Pin Controller (chapter 22 of the HW manual), and then registers that control the external bus (chapter 

16 of the HW manual.  Review these chapters carefully as there are specific constraints on how to write the registers. 

7.4.1 Special note about CS0 

Chip select zero is mapped in memory to the same space as the internal ROM of the device.  When using chip select 

zero, the device boots out of internal ROM.  Application code must then enable CS0 and disable on-chip ROM. The 

ROM is disabled by clearing the SYSCR0.ROME bit (see chapter 3 of the HW manual).  When disabling on-chip ROM, 

the on-chip data flash is also disabled.  Once on-chip ROM is disabled it cannot be re-enabled without resetting the chip.  

Users are advised not to use chip select zero unless they have very specific reasons for doing so. 

7.4.2 Using External 16-bit Memory Devices 

When connecting an external 16-bit memory device that has a byte select line, connect A1 of the MCU to A0 of the 

memory and A0 of the MCU to the byte select line. 

7.5 Memory Access Speed 

Both the RAM and internal ROM can be accessed in a single cycle with no wait states.  This is true to up to the current 

maximum operating frequency of the RX600 Series, which is 100MHz.  The system peripheral clock limits speed when 

accessing peripheral I/O registers.  An example: if the clocks are set at their maximums (System clock: 100MHz, 

Peripheral Clock B: 50MHz), it will take 2 CPU cycles to access a peripheral I/O register.  Accesses to the data flash 

are controlled by the FlashIF Clock (FCLK).  The data flash memory takes 6 cycles of the FCLK to read 1 or 2 bytes. 

7.6 Data Alignment 

There are no limits for aligning data.  The MCU is capable of doing byte, word, and long accesses on odd memory 

locations.  While it is still optimal to align data accesses, it is not required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 19 of 37 

Feb 3, 2014  

8. Register Write Protection 

The Register Write Protection function protects certain registers in the MCU from inadvertent changes.  The system 

Protect Register (PRCR) contains bits that enable writing to other registers in the MCU.  PRCR is a sixteen bit register 

with a key in the upper byte and the protection bits in the lower byte.  A key code of A5 hex must be written to the 

upper 8 bits of PRCR to modify any of the lock bits in the lower byte.  Setting a PRC bit to a 1 allows writing of the 

protect registers.  Protection is enabled by default after reset (all PRC bits are zero after reset). 

 
Figure 2 - PRCR Register 

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 

PRKEY[7:0] — — — — PRC3 — PRC1 PRC0 

                                

 

Table 7 - PRCR Protection Bits 

PRCR bit Description 

PRC0  Registers in the Clock Generation Circuit (CGC) that control operation of 
the MCU’s clocks: SCKCR, SCKCR2, SCKCR3, PLLCR, PLLCR2, BCKCR, 
MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR 

PRC1  Registers related to the operating modes: SYSCR0, SYSCR1 

 Registers related to the low power consumption functions: SBYCR, 
MSTPCRA, MSTPCRB, MSTPCRC, OPCCR, RSTCKCR, MOSCWTCR, 
SOSCWTCR, PLLWTCR, DPSBYCR, DPSIER0 to DPSIER3, DPSIFR0 to 
DPSIFR3, DPSIEGR0 to DPSIEGR3 

 Registers related to clock generation circuit: MOFCR, HOCOPCR 

 Software reset register: SWRR 

PRC3  Registers related to the Low Voltage Detection circuit (LVD): LVCMPCR, 
LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR 

PRKEY[7:0] Write 0xA5 to these bits to allow writing to the PRC bits.  To modify the 
system protection, write 0xA5 to the PRKEY bits while setting the PRC bits. 

 

 

8.1 System Protection Example code 

 

To unlock all registers, write 0xA50B to the PRCR.  Set it back to 0xA500 to protect them all again. 

/* Disable write protection for all protected registers */ 

SYSTEM.PRCR.WORD = 0xA50B; 

/* Change system clock divisors */ 

SYSTEM.SCKCR.LONG = 0x21031222 ; 

/* Turn write protection back on for all protected registers */ 

SYSTEM.PRCR.WORD = 0xA500; 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 20 of 37 

Feb 3, 2014  

9. I/O Ports and Register Structures 

Renesas supplies a C language header file named ‘iodefine.h’ that allows users to easily access I/O registers through 

unions and structures.  The syntax of using these unions and structures to access hardware registers is: 

Peripheral.Register<.AccessWidth>.<Bit> 

Where: 

Peripheral is the name of a specific peripheral such as: SCI0, ICU, AD0, etc. 

Register is the register abbreviation for a specific register such as: SCR, IPR, ADCR, etc. 

AccessWidth is an optional field used when an I/O register has more than one field.  One of four keywords 

specifies how to access the register: LONG, WORD, BYTE, or BIT. 

Bit is an optional field that is only used when AccessWidth is BIT.  It specifies the name of a single bit or range 

of bits in a register such as: TIE, IPR, or MODE. 

Note that Peripheral, Register, and Bit match the mnemonics used in the RX Hardware Manual. 

If accessing a register that does not have bit fields, use the peripheral and register name only.  An example is ‘MTU0 

Timer Counter’ shown in the table below. 

What to access Bits to Access How to access 

System Clock Control Register (SCKCR) 32 SYSTEM.SCKCR.LONG 

MTU0 Timer Counter 16 MTU0.TCNT 

SCI Channel 3, Receive Data Register (RDR) 8 SCI3.RDR 

SCI Channel 3, Serial Control Register (SCR) 8 SCI3.SCR.BYTE 

SCI Channel 3, Receive enable bit in SCR 1 SCI3.SCR.BIT.RE 

Port 2, Pin 5, Port Direction Register Bit 1 PORT2.PDR.BIT.B5 

Counter Clear bit field in TMR0 TCR register 2 TMR0.TCR.BIT.CCLR 

CMT0 Compare Match Timer Control Register 16 CMT0.CMCR.WORD 

 

9.1 I/O Register Macros 

 

New macros in the iodefine.h for RX family parts make it easier to refer to ICU control registers, module stop registers, 

DTC enable registers, and interrupt vector numbers by the logical names associated with the peripherals.  These macros 

allow portability across RX family members by hiding specific register and vector numbers.  See the documentation 

contained in iodefine.h and sections below for details. 

Some examples: 

Macro Usage example 

IR(“module name”, “bit name”)  if ( IR(SCI0,TXI0) == 1)… 

IEN(“module name”, “bit name”) IEN(SCI0,TXI0) = 1 ; 

IPR(“module name”, “bit name”) IPR(SCI0,TXI0) = 0x02 ; 

MSTP(“module name”) MSTP(SCI0) = 0 ; 

VECT(“module name”, “bit name”) #pragma interrupt         

 (MySciTxIsr(vect=VECT(SCI0,TXI0)) 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 21 of 37 

Feb 3, 2014  

9.1.1 ICU Register Macros 

 

These macros help with accesses to the following registers in the ICU: 

 Interrupt Request Registers (IRn) 

 DTC Activation Enable Register (DTCERn) 

 Interrupt Request Enable Register (IERm) 

 Interrupt Priority Register (IPRm) 

Instead of having to refer to the values for ‘n’ and ‘m’, the user can specify the desired peripheral and interrupt.  

Application code then becomes portable across members of the RX family that share the same peripheral. 

Examples are below. 

Without Macro With Macro 

ICU.IR[176].BIT.IR = 0; IR(TMR2, CMIA2) = 0; 

ICU.DTCER[176].BIT.DTCE = 1; DTCE(TMR2, CMIA2) = 1; 

ICU.IER[0x16].BIT.IEN0 = 1; IEN(TMR2, CMIA2) = 1; 

ICU.IPR[176].BIT.IPR = 3; IPR(TMR2, CMIA2) = 3; 

 

 

9.1.2 Vector Number Macro 

 

When using the Renesas compiler, interrupt service routines written in C language are hooked to specific interrupts 

vectors using the #pragma interrupt directive: 

#pragma interrupt (INT_RXI0(vect=214)) 

void INT_RXI0 (void) ; 

 

The above example hooks the C language function “INT_RXI0” to interrupt vector number 214, which is the receive 

interrupt for SCI0.  This same interrupt source (RXI0) may not use the same vector number (214) on other members of 

the RX family.  To provide portability, the VECT() macro allows the user to specify a logical name for an interrupt 

source which is then expanded by a part-specific iodefine.h file to the correct vector number. 

The syntax is: 

 VECT(Peripheral, Source) 

Where: 

Peripheral is the name of a specific peripheral such as: SCI0, TMR2, AD0, etc. 

 Source is the name of an interrupt source in that peripheral such as: RXI0, CMIA2, ADI0, etc. 

Example: 

Without Macro 

/* Declare ISR for TMR2 – CMIA2 */ 

#pragma interrupt TMR2_CMIA2(vect=176) 

 

With Macro 

/* Declare ISR for TMR2 – CMIA2 */ 

#pragma interrupt TMR2_CMIA2(vect=VECT(TMR2,CMIA2)) 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 22 of 37 

Feb 3, 2014  

9.1.3 Module Stop Control Macro 

 

The Module Stop Control Registers allow individual peripherals to be turned on or off for power savings.  By default, 

most peripherals are off at power up and must be powered on before accessing their control registers (see hardware 

manual for details).  The Module Stop Control Registers contain bit fields for a number of peripherals; these registers 

change in layout from part to part in the RX family.  The MSTP( ) macro simplifies control of the stop state of 

peripherals and makes code portable. 

To use this macro, specify the name of the peripheral: 

 MSTP (Peripheral) 

Example: 

Without Macro With Macro 

/* Turn on TMR2 */ 

SYSTEM.MSTPCRA.BIT.MSTPA4 = 0; 

/* Turn on TMR2 */ 

MSTP(TMR2) = 0; 

 

Care should be taken when using the MSTP() macro because sometimes multiple peripheral channels will map to the 

same MSTP bit. For example, the MSTPA15 bit controls CMT0 and CMT1 (both channels are part of CMT unit 0). 

This means that both MSTP(CMT0) and MSTP(CMT1) will resolve to SYSTEM.MSTPCRA.BIT.MSTPA15. This is 

not a problem when powering on a peripheral but could cause a problem when powering down. If the user turns off 

CMT0 to save power by using ‘MSTP(CMT0) = 1;’ then they will also turn off CMT1 even if they did not intend to. 

The user can avoid this problem by always checking to make sure both channels are not in use before powering down. 

 

9.2 I/O Registers and Endian Settings 

 

The RX I/O Registers are at fixed locations and byte orders in memory regardless of the endian setting of the processor.  

When accessing data memory, the most significant byte of a 16-bit word can be stored at either an odd or even address 

depending on the endian setting; this is not the case with the RX I/O Registers. 

Always access I/O registers using the proper access instruction for the size of the register; do not access word or 

long word registers with byte instructions, or long word registers with word instructions.  Do not assume that 

registers for a particular peripheral are big-endian or little-endian. 

This can confuse some compilers depending on the data structures used to access I/O Registers, particularly when using 

bit fields in 16-bit or wider registers. The iodefine.h file generated by the Renesas tools uses directives specific to the 

Renesas compiler (such as “__evenaccess”) to ensure that access to the I/O registers is correct regardless of the endian 

setting of the processors. 

Because of this: 

The user is strongly advised to use only the structures in iodefine.h file to access I/O registers  

and  

to check the compiler output at the assembly language level if changes are made to the file. 

 

  



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 23 of 37 

Feb 3, 2014  

10. I/O Port Configuration and the Multifunction Pin Controller (MPC) 

The I/O Ports and MPC sections of the Hardware Manual describe exact pin configurations based on peripheral 

selection and other register settings. Some general information is listed below. 

 

10.1 Setting Up and Using Port as GPIO 

 Select a pin as an output by writing a “1” to the corresponding Port Direction Register (PDR) 

 The Port Direction Register (PDR) is read/write. Setting the value to a “1” selects the pin as an output. Default 

state for I/O Ports is “0” (input).  The port direction registers can be read on the RX. 

 The Port Output Data Register (PODR) is read/write. When the PODR is read the state of the output data latch 

(not the pin level) is read. 

 The Port Input Register (PIDR) is read only.  Read the PIDR register to read the pin state. 

 The Port Mode Register (PMR) is read/write and is used to specify whether individual pins function as GPIO 

or as peripheral pins. Out of reset all PMR registers are set to 0 which sets all pins to work as GPIO. If a PMR 

register is set to 1 then that corresponding pin will be used for peripheral functions. The peripheral function is 

defined by that pin’s MPC setting. 

 When setting a pin as an output it is recommended that the desired output value of the port be written to the 

data latch first, then the direction register is set to an output. Though not important in all systems, this prevents 

an unintended output glitch on the port being setup. 

 

Examples: 

Set up Port 0, bit 1 as an input: 

/* Make pin an input */ 

PORT0.PDR.BIT.B1 = 0; 

/* See if input is high */ 

if (PORT0.PIDR.BIT.B1 == 1) … 

 

Set up Port 0, bit 1 as an output: 

/* Set the output level first to prevent glitches */ 

PORT0.PODR.BIT.B1 = 1; 

/* Make pin an output */ 

PORT0.PDR.BIT.B1 = 1; 

 

 

10.1.1 Internal Pull-Ups 

 

 Each pin on ports 0 through 9, A through G, and J has the option of enabling a pull-up resistor.  The pull-up is 

controlled by the Pull-Up Resistor Control Register (PCR).  Each bit in the PCR register controls the 

corresponding pin on the port.  Set the PCR bit to “1” to enable the pull-up and to “0” to disable it. 

 Out of reset all PCR registers are cleared to 0 therefore all pull-up resistors are disabled. 

 The pull-up is automatically turned off whenever a pin is designated as an external bus pin, a GPIO output, or 

a peripheral function output pin. 

 

10.1.2 Open-Drain Output 

 Pins configured as outputs normally operate as CMOS outputs. 

 Each pin on ports 0 through 9, A through G, and J has the option being configured as a NMOS open-drain 

output. 

 The Open Drain Control Registers (ODR0 & ODR1) control which pins operate in open-drain mode. The 

ODR0 registers control the settings for pins 0 through 3 on each port. The ODR1 registers control the settings 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 24 of 37 

Feb 3, 2014  

for pins 4 through 7 on each port. Setting the applicable bit in each register to a “1” makes the output open-

drain.   

 Because of parasitic diodes on the RX port pins, maximum voltage to open drain outputs must be limited to 

VCC. 

10.1.3 Drive Capacity 

 Each pin on ports 0, 2, 5, 9, A to E, and G has the option of enabling high-drive output.  Whether normal or 

high drive is enabled is controlled by the Drive Capacity Control Registers (DSCR). 

 Out of reset all DSCR registers are cleared to 0 therefore all pins are set to normal drive output. Setting “1” to 

a DSCR bit will enable high-drive output for the selected pin. 

 The maximum total output of all pins summed together is 80mA. 

 The differences between normal and high drive are shown below: 

 Drive Capacity Max (mA) 

Permissible output current per pin (average) Normal Drive 2.0 

Permissible output current per pin (average) High Drive 3.8 

Permissible output current per pin (maximum) Normal Drive 4.0 

Permissible output current per pin (maximum) High Drive 7.6 

 

10.2 Setting Up and Using Port Peripheral Functions 

The Multi-Function Pin Controller (MPC) is a new feature on the RX63x that replaces the Port Function Control 

registers on the RX62x.  The result is a much more flexible assignment of pins to peripherals functions, with a much 

finer granularity of selection.   

 Since many pins have multiple functions the RX63N/RX631 Group has Pin Function Control Registers 

(PmnPFS where m = port, n = pin) that allow you to change the function assigned to a pin.   

 Each pin has its own PmnPFS register. For example, the P10PFS register allows you to choose whether you 

want port 1 pin 0 to be assigned to the MTU or TMR peripheral. 

 Each PmnPFS register allows a pin to be used for peripheral function (PSEL bits), as an IRQ input pin (ISEL 

bit), or as an analog input pin (ASEL bit). If the ASEL bit is set to “1” (use pin as analog input pin) then the 

pin’s PMR bit should be set for GPIO use and the pin’s PDR bit should be set for input.  

 Refer to the appropriate register under Multi-Function Pin Controller (MPC) >> Register Descriptions in the 

HW manual for a table of the available peripheral functions for each pin. 

 In order to ensure that no unexpected edges are input or output on peripheral pins make sure to clear the PMR 

bit for the targeted pin before modifying the pin’s PmnPFS register. 

 All PmnPFS registers are write protected out of reset. In order to write to these registers the Write-Protect 

Register (PWPR) must first be used to enable writing. 

 Care should be taken when setting PmnPFS registers such that a single function is not assigned to multiple pins. 

The user should not do this but the MCU will allow it. If this occurs the function on the pins will be undefined. 

 If you are using the external bus, the Ethernet controller, or USB, there are additional registers in the MPC that 

must be configured before using these peripherals. 

 The example below shows the steps for setting port 0, bit 1 to be a SCI receiver input pin (RXD6). These steps 

are defined in the Multi-Function Pin Controller (MPC) >> Usage Notes >> Procedure for Specifying 

Input/Output Pin Function section of the RX63N HW manual. 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 25 of 37 

Feb 3, 2014  

Example - Enabling SCI6 to use port 0, bit 1 as SCI receiver input pin 

 

/* Allow writing to MSTP registers. */ 

SYSTEM.PRCR.WORD = 0xA50B;           

/* Enable SCI6 (take out of stop mode) */ 

MSTP(SCI6) = 0; 

/* Configure SCI6. */ 

... 

/* Clear PMR bit for P0_1 before changing P01PFS register. */ 

PORT0.PMR.BIT.B1 = 0; 

/* Set P0_1 as input pin. */ 

PORT0.PDR.BIT.B1 = 0; 

/* Unlock protection register */ 

MPC.PWPR.BIT.B0WI = 0;              

/* Unlock MPC registers */ 

MPC.PWPR.BIT.PFSWE = 1;             

/* Set P0_1 to be used for RXD6 function. */ 

MPC.P01PFS.BYTE = 0x0A; 

/* Assign P0_1 to be used for peripheral function. */ 

PORT0.PMR.BIT.B1 = 1; 

 

/* Set other port registers and re-enable MPC & MSTP register protection. */ 

 

 

10.3 Setting Up and Using IRQ Pins 

 Certain port pins can be used as hardware interrupt lines (IRQ). See the Multi-Function Pin Controller (MPC) 

>> Overview section of the HW Manual for information on which pins are available for your MCU. When 

looking through the list of available IRQ pins you will notice that some have a “-DS” postfix (e.g. IRQ1-DS). 

The “-DS” designates that this pin can be used to wake the MCU out of deep software standby mode. 

 To set a port pin to be used as an IRQ pin, the Interrupt Input Function Select bit (ISEL) in the pin’s PFS 

register must be set to “1”.  

 Pins can be used for both IRQ and peripheral functions simultaneously. To enable this the user should set both 

the ISEL and PSEL bits in the pin’s PFS register. 

 IRQ pins can trigger interrupts on detection of:  

o Low level 

o Falling edge 

o Rising edge 

o Rising and falling edges  

Which trigger is selected is chosen using the IRQ Control Registers (IRQCRi).  

 Digital filtering is available for IRQ pins.  The filters are based on repetitive sampling of the signal at one of 

four selectable clock rates (PCLK, PCLK/8, PCLK/32, PCLK/64).  They filter out short pulses: any high or 

low pulse less than 3 samples at the filter rate.  The filters are useful for filtering out ringing and noise in these 

lines, but are much too quick for filtering out long events like mechanical switch bounce.  Enabling filtering 

adds a short bit of latency (the filter time) to the hardware IRQ lines. 

 Digital filtering can be enabled for each IRQ pin independently. This is done by setting the IRQ Pin Digital 

Filter Enable Registers (IRQFLTEi). 

 The clock rate for digital filtering is configurable for each IRQ pin independently. This is done by setting the 

IRQ Pin Digital Filter Setting Registers (IRQFLTCi). 

 The example below shows code to enable IRQ8 with falling edge detection on port 4, pin 0. 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 26 of 37 

Feb 3, 2014  

Example - Enabling port 4, bit 0 as IRQ8 input 

 

/* P4_0 is not being used for peripheral function. */ 

PORT4.PMR.BIT.B0 = 0; 

/* Make pin an input */ 

PORT4.PDR.BIT.B0 = 0; 

/* Unlock protection register */ 

MPC.PWPR.BIT.B0WI = 0;              

/* Unlock MPC registers */ 

MPC.PWPR.BIT.PFSWE = 1;             

/* Set P4_0 to be used for IRQ8 function. */ 

MPC.P40PFS.BYTE = 0x40; 

/* Set IRQ type (falling edge) */ 

ICU.IRQCR[8].BIT.IRQMD = 0x01; 

/* Clear any pending interrupts. */ 

IR(ICU,IRQ8) = 0; 

/* Set interrupt priority to 3 */ 

IPR(ICU,IRQ8) = 0x03; 

/* Enable the interrupt */ 

IEN(ICU,IRQ8) = 1; 

/* Be sure to write an interrupt handler!!! */ 

 

10.4 Unused Pins 

NOTE: 

Some pins require specific termination: See the “I/O Ports: Handling 

of Unused Pins” section of the Hardware Manual for specific 

recommendations.   

Unused pins that are left floating can consume extra power and leave the system more susceptible to noise problems.  

Terminate unused pins with one of the methods detailed here: 

1. The first option is to set the pin to an input (the default state after Reset) and connect the pin to Vcc or Vss using a 

resistor.  There is no difference from a MCU standpoint between one connection or another; however, there may be 

an advantage from a system noise perspective.  Vss is probably the most typical choice.  Avoid connecting a pin 

directly to Vcc or Vss since an accidental write to the port’s direction register that sets the pin to an output could 

create a shorted output. 

2. A second method is to set the pin to an output.  It does not matter whether the pin level is set high or low; however, 

setting the pin as an output and making the output low connects the pin internally to the ground plane.  This may 

help with overall system noise concerns.  A disadvantage of setting unused pins to outputs is that the configuration 

of the port must be done via software control.  While the MCU is held in Reset and until the direction register is set 

for output the pin will be a floating input and may draw extra current.  If the extra current can be tolerated during 

this time, this method eliminates the external resistors required in the first method. 

3. A variation on leaving the pins as inputs and terminating them with external resistors uses the internal pull-ups 

available on some ports of the MCU.  This has the same limitation as setting the pins to outputs (requires the 

program to set up the port) but it does limit the effect of accidental pin shorts to ground, adjacent pins or Vcc since 

the device will not be driving the pin. 

10.5 Nonexistent Pins 

When using a MCU with less than 177 or 176 pins, set the corresponding bits of nonexistent ports in the PDR register to 

“1” (output) and in the PODR register to “0”. The user can see which ports are available on each MCU package by 

reviewing the “Specifications of I/O Ports” table in the I/O Ports section of the HW Manual. For example pins 0 and 1 

on port 1 are only available on 177 and 176 pin packages.  A separate application note covers software startup of the 

chip including initialization of nonexistent pins.  See the “Initial Setting” application note in the References section of 

this document. 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 27 of 37 

Feb 3, 2014  

10.6 Electrical Characteristics 

GPIO require CMOS level inputs (High ≥0.8 * Vcc, Low≤ 0.2*Vcc) see electrical characteristics for more information 

 

10.7 MPC Register Setting Summary 

The following table can be found in section 22.4 of the Hardware Manual.  Additional information can be found there. 

   PmnPFS  

Item PMR.Bn PDR.Bn ASEL ISEL PSEL[4:0] Point to note 

After a reset 0 0 0 0 00000b Pins function as general input port 

pins after release from the reset 

state. 

General input ports 0 0 0 0/1 X Set the PmnPFS.ISEL bit to 1 if 

these are multiplexed with interrupt 

inputs. 

General output ports 0 1 0 0 X  

Peripheral functions 1 X 0 0/1 Peripheral 

function 

setting 

Set the PmnPFS.ISEL bit to 1 if 

these are multiplexed with interrupt 

inputs. 

Interrupt inputs 0 0 0 1 X  

NMI X X X X* X Register settings are not required 

Analog inputs and 

outputs 

0 0 1 X* X Set these as general input port pins 

so that the output buffers are turned 

off 

Time-capture event-

input pins 

0 0 X 0/1 X Set these as general input port pins 

so that the output buffers are turned 

off. 

External bus 0 X 0 0 X Set the PMR.Bn bit and the 

PmnPFS.ISEL bit to 0 and switch 

the input buffers off 

JTAG-IF 0 X X 0 X Set the PMR.Bn bit and the 

PmnPFS.ISEL bit to 0 and switch 

the input buffers off 

FINE interface 0 X X 0 X Set the PMR.Bn bit and the 

PmnPFS.ISEL bit to 0 and switch 

the input buffers off 

EXTAL/XTAL 0 0 X X* X Set these as general input port pins 

so that the output buffers are turned 

off 

XCIN/XCOUT 0 0 X X* X Set these as general input port pins 

so that the output buffers are turned 

off. 

X: setting not required 

0/1: Setting the PmnPFS.ISEL bit to 0 makes the pin incapable of functioning as an IRQ pin. 

 Setting the PmnPFS.ISEL bit to 1 makes the pin capable of functioning as an IRQ pin 

*Even if the PmnPFS.ISEL bit is set to 1, the pin will not function as an IRQn input pin. 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 28 of 37 

Feb 3, 2014  

11. Module Stop Function 

To maximize power efficiency, the RX family of MCU’s allow on-chip peripherals to be shut down individually by 

writing to the Module Stop Control Registers (MSTPCRi, i=A, B, C).  After reset most of the modules are stopped 

(exceptions are DMAC, EXDMAC, DTC, and on-chip RAM; see hardware manual for details).  

Before accessing any of the registers for a peripheral, it must be enabled by taking out of stop mode by writing a ‘0’ to 

the corresponding bit in the MSTPCRi register.  The MSTPCRi registers are protected registers and they have to be 

unprotected by writing to the PRCR registers first (see section 8 - Register Write Protection).  See example below. 

Peripherals may be shut down by writing a ‘1’ to the proper bit in the MSTPCRi register. 

The MSTP() macro in iodefine.h makes it easy to enable and disable peripherals using their name. 

Example – Turning on SCI6 using the MSTP macro 

/* Disable write protection for the MSTP registers */ 

SYSTEM.PRCR.WORD = 0xA502; 

/* Enable SCI6 (take out of stop mode) */ 

MSTP(SCI6) = 0 ; 

/* Enable write protection for the MSTP registers */ 

SYSTEM.PRCR.WORD = 0xA500; 

/* You can now access SCI6 control registers */ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 29 of 37 

Feb 3, 2014  

12. Interrupts 

The RX family has a sophisticated Interrupt Control Unit (ICU) that handles asynchronous events from over 200 

sources.  These sources include on-board peripherals, external hardware, and software requests. The Interrupt Control 

Unit chapter of the Hardware Manual lists each source for specific parts.   

Local interrupt enable flags in each peripheral gate a signal from the peripheral to the ICU. These signals set Interrupt 

Status Flags in individual ICU Interrupt Request registers (IRx) that exist for each interrupt source. Within the ICU, 

individual bits in the Interrupt Request Enable Registers (IERx) determine whether an interrupt is taken when the Status 

Flag becomes set. 

To handle simultaneous interrupt requests from multiple sources, the ICU allows each interrupt source to be assigned a 

priority.  These priorities are compared to the current priority level in the CPU status register IPL bits, and an interrupt 

is only serviced if its priority is greater than the CPU’s current IPL and all other active requests.  Two active sources 

with the same priority level are serviced in vector number order, lowest vector first. 

The steps to enable an interrupt are: 

1. The peripheral or port pin generating the interrupt must be enabled and configured in both the Port setup 

registers and the Multifunction Pin Controller Registers. 

2. Set an interrupt priority for the interrupt source (IPR macro) to a value greater than zero (zero = disabled). 

3. Enable the interrupt in the peripheral (local enable bit) 

4. Enable the interrupt in the ICU (IEN macro) 

For edge-triggered interrupts, the Interrupt Status Flags in the IR registers are cleared automatically when an interrupt 

fires and the CPU vectors to the Interrupt Service Routine (ISR).  The flags must be manually cleared when using 

polled operation rather than interrupts. 

For level-sensitive interrupts, the Interrupt Status Flag in the IR register stays set until the interrupt source is cleared. 

 

12.1 Nesting Interrupts 

The global interrupt enable bit in the Processor Status Word (PSW), the ‘I’ bit, is cleared whenever an interrupt is taken, 

disabling all further interrupts including higher priority interrupts.  To allow nesting of interrupts and pre-emption of the 

ISR by higher priority interrupts, the ‘I’ bit must be set in the ISR.  When declaring an interrupt in C (#pragma 

interrupt), use the ‘enable’ keyword to automatically set the ‘I’ bit when the interrupt is taken.  Refer to RX compiler 

manual for more info. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 30 of 37 

Feb 3, 2014  

12.2 Interrupt Vector Tables 

The RX family has a fixed interrupt vector table and a relocatable interrupt vector table.  Each vector in the vector table 

consists of four bytes and specifies the address where the corresponding exception handler starts. 

 

12.2.1 Fixed Vector Table 

The fixed vector table is allocated to a fixed address range. The individual vectors for the privileged instruction 

exception, undefined instruction exception, floating-point exception, non-maskable interrupt, and reset are allocated to 

addresses in the range from FFFFFF80h to FFFFFFFFh.  Also included in the fixed vector table are some locations that 

are reserved for system configuration and ROM protection.  Figure 3- Fixed Vector Table shows the fixed vector table. 

Figure 3- Fixed Vector Table 

Address Description 

FFFFFF80h Endian select register (MDES) in single-chip mode 

FFFFFF84h (Reserved) 

FFFFFF88h Option Function Select Register 1 (OFS1) 

FFFFFF8Ch Option Function Select Register 2 (OFS2) 

FFFFFF90h –  

FFFFFF98h 
(Reserved) 

FFFFFF9Ch ROM protection code 

FFFFFFA0h –  

FFFFFFCCh 
(Reserved) 

FFFFFFA0h – 

FFFFFFACh 
ID Code for flash protection 

FFFFFFD0h Privileged instruction exception  

FFFFFFD4h Access exception 

FFFFFFD8h (Reserved) 

FFFFFFDCh Undefined instruction exception 

FFFFFFE0h (Reserved) 

FFFFFFE4h Floating-point exception 

FFFFFFE8h –  

FFFFFFF4h 
(Reserved) 

FFFFFFF8h Non-maskable interrupt 

FFFFFFFCh Reset 

 

Do not store data in areas marked “Reserved” in the fixed vector table; some of these areas are used by the RX for 

specific functions such as the code protection mechanism.  User data must be stored below address FFFF FF80h. 

 

12.2.2 Relocatable Vector Table 

 

The address where the relocatable vector table is placed can be adjusted.  The table is a 1,024-byte region that contains 

all vectors for unconditional traps and interrupts and starts at the address (IntBase) specified in the interrupt table 

register (INTB).  Figure 4 - Relocatable Vector Table shows the relocatable vector table.  

Each vector in the relocatable vector table has a vector number from 0 to 255.  Each of the INT instructions, which act 

as the sources of unconditional traps, is allocated to the vector that has the same number as that of the instruction itself 

(from 0 to 255). The BRK instruction is allocated to the vector with number 0. Furthermore, vector numbers within the 

set from 0 to 255 are also allocated to other interrupt sources, such as on-chip peripherals, on a per-product basis. 

Note that the value of the Interrupt Table Register (INTB) is undefined after reset.  The Renesas tool chain can 

automatically generate startup code that initializes the INTB register.  INTB can only be changed when the MCU is in 

supervisor mode. 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 31 of 37 

Feb 3, 2014  

 

Figure 4 - Relocatable Vector Table 

 

12.3 Fast Interrupts 

For applications where interrupt response is critical, interrupt latency can be reduced through the use of the Fast 

Interrupt.  The Fast Interrupt specifies one interrupt source in the Fast Interrupt Vector register (FINTV) as a high-

priority interrupt, and uses dedicated registers for saving the Program Status Word (BPSW) and Program Counter 

(BPC).  Further speed enhancements can be realized by instructing the compiler to reserve some of the general purpose 

CPU registers for exclusive use by the Fast Interrupt service routine.  With a dedicated set of CPU registers reserved for 

its sole use, the response of Fast Interrupt service routine is improved by eliminating the need to save and restore 

processor context on the stack during entry and exit.  The performance of the main application code may be slightly 

degraded due to the smaller register set available to it. 

 

12.4 Interrupt Stack Pointers 

A separate Interrupt Stack Pointer (ISP) is used during exception processing.  This greatly reduces RAM requirements 

when using an RTOS since room for an interrupt stack does not need to be allocated as part of each task’s stack.  The 

ISP is automatically set by the startup code generated by the Renesas tool chain (see “Startup Program Creation” in the 

RX Software manual for details).  Register R0 is used as the stack pointer and contains the current value of the active 

stack pointer (ISP or USP) depending on the processor mode. 

 

12.5 Interrupt Request Groups 

In some cases, interrupts from multiple sources are grouped into a single request group.  Interrupt signals in each group 

are collectively handled by a single interrupt request and vector.  Within each group, individual sources may be enabled 

or disabled.  Refer to the Interrupt Control Unit (ICU) chapter in the hardware manual for details. 

 

12.6 Interrupt Unit Selection 

For some MTU and TPU interrupt sources, request from the two peripheral modules are handled as one interrupt 

request.  The ICU can be set to service either the MTU or TPU interrupts through the single request and vector.  Refer 

to the section “Unit Selection’ in the Interrupt Control Unit (ICU) chapter in the hardware manual for details. 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 32 of 37 

Feb 3, 2014  

13. Low Power Consumption 

The RX63N has register settings that allow the MCU to operate with lower power consumption. These modes are 

referred to as the Operating Power Control Modes and are controlled by the OPCCR register. Below is a summary of 

these modes and the maximum permissible clocking and voltage levels under each mode. 

Table 8 - Operating Power Control Modes 

 

Note that while it may be possible to set the value in the OPCCR register to any of the low power operating modes, 

unless the clocking and voltage levels are not already set to meet the requirements of said mode, setting the OPCCR 

register will not have any effect in lowering power consumption. 

In order to achieve the lowest power numbers, use the maximum possible dividers in the clock generation circuits.  

In addition to the Operating Power Control Modes, the RX63N also has Low Power Consumption modes where the 

CPU is inactive and the other peripherals/clocks are switched on or off depending on how much power needs to be 

conserved.  These modes are activated by configuring the appropriate control registers (refer to Figure 11.1 in the 

hardware manual) and then executing the wait() instruction.  

Since the low power modes can be exited on receiving an interrupt, all pending requests should be handled and the I 

flag cleared prior to executing the wait() instruction.  

The table below is a summary of the three Low Power Consumption modes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operating Power 

Control Mode 

OPCM

[2] bits 

Operating Frequency/Voltage Range 

During Flash READ During Flash 

PROGRAM/ERASE 
 

ICLK 

(max) 

FCLK 

(max) 

PCLKA 

(max) 

PCLKB 

(max) 

BCLK 

(max) 

Voltage V FCLK Voltage V 

High Speed 

Operating Mode 

000b 100 MHz 50 MHz 100 MHz 50 MHz 100 MHz 2.7-3.6 4-50 

MHz 

2.7-3.6 

Low Speed 

Operating Mode 1 

110b 1 MHz  1 MHz 1 MHz  1 MHz  1 MHz 2.7-3.6 P/E 

Disabled 

P/E 

Disabled 
 

Low Speed 

Operating Mode 2 

111b 32 - 125 

KHz  

32 - 125 

KHz 

125 KHz  125 KHz  125 KHz  2.7-3.6 P/E 

Disabled 

P/E 

Disabled 
 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 33 of 37 

Feb 3, 2014  

Table 9 – Low Power Consumption Modes 

 

State of 

operation 

 

Sleep Mode 

All-Module Clock 

Stop Mode 

Software Standby 

Mode 

Deep Software 

Standby Mode 

Transition 

condition 

Control register + 

instruction 

Control register + 

instruction 

Control register + 

instruction 

Control register + 

instruction 

Canceling 

method other 

than resets 

Interrupt Interrupt *1 Interrupt *2 Interrupt *3 

State after 

cancellation *4 

Program execution 

state (interrupt 

processing) 

Program execution 

state (interrupt 

processing) 

Program execution 

state (interrupt 

processing) 

Program execution 

state (reset 

processing) 

Main Clock 

Oscillator 

Operation possible Operation possible Operation 

possible*5 

Operation 

possible*5 

Sub-Clock 

Oscillator 

Operation possible Operation possible Operation 

possible*6 

Operation 

possible*6 

High Speed On-

Chip Oscillator 

Operation possible Operation possible Stopped Stopped 

Low Speed On-

Chip Oscillator 

Operation possible Operation possible Stopped Stopped 

IWDT-dedicated 

On-Chip 

Oscillator 

Operation possible*7 Operation 

possible*7 

Operation 

possible*7 

Stopped 

(undefined) *7 

PLL Operation possible Operation possible Stopped Stopped 

CPU Stopped (retained) Stopped (retained) Stopped (retained) Stopped 

(undefined) 

On-chip RAM 1 

(0001 0000h to 

0001 FFFFh) 

Operation possible 

(retained) 

Stopped (retained) Stopped (retained) Stopped 

(undefined) 

On-chip RAM 0 

(0000 0000h to 

0000 FFFFh) 

Operation possible 

(retained) 

Stopped (retained) Stopped (retained) Stopped (retained/ 

undefined)*8 

Flash Memory Operating  Stopped (retained) Stopped (retained) Stopped (retained) 

USB 2.0 

Host/Function 

Operating possible Stopped 

(retained)*9 

Stopped (retained) Stopped (retained/ 

undefined) *10 

Watchdog timer 

(WDT) 

Stopped (retained) Stopped (retained) Stopped (retained) Stopped 

(undefined) 

Independent 

Watchdog Timer 

(IWDT) 

Operation possible*7 Operation 

possible*7 

Operation 

possible*7 

Stopped 

(undefined) *7 

Realtime clock 

(RTC) 

Operation possible Operation possible Operation possible Operation possible 

8-bit timer (unit 0, 

unit 1) (TMR) 

Operation possible Operation 

possible*11 

Stopped (retained) Stopped 

(undefined) 

Voltage detection 

circuit (LVD) 

Operation possible Operation possible Operation possible Operation 

possible*12*13 

Power-on reset 

circuit 

Operating Operating Operating Operating*13 

Peripheral 

modules 

Operation possible Stopped(Retained) Stopped(Retained) Stopped 

(undefined) 

I/O pin state Operating Retained *14 Retained *15 Retained *15 

Note : Refer to table 11.2 in the hardware manual for additional information relevant to this table.  

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 34 of 37 

Feb 3, 2014  

14. External buses 

Some members of the RX family include external bus controllers and SDRAM controllers. 

14.1 Endian of External Memory Areas 

Memory accesses for devices connected to external buses may be configured by software for big endian or little endian 

access.  The access mode is set on a per-chip-select basis by setting the EMODE bit in the chip select control register 

(CSiCR) or the SDC mode register (SDCMOD).  Note that the EMODE bit changes the access relative to the MCU’s 

main operating mode which is specified in the MDEB and MDES registers. Instruction code can only be allocated in an 

external memory area when its endian matches that of the MCU (EMODE = 0). See the table below for example 

configurations. 

MDE CPU Endian EMODE Access to external devices Can MCU run instruction code from this area? 

7 Little endian 0 Little endian Yes 

0 Big Endian 1 Little endian No 

0 Big Endian 0 Big endian Yes 

7 Little Endian 1 Big endian No 

 

14.2 Bus Width & Multiplexing 

 

The access width of external memory areas can be set to 8-bit, 16-bit, or 32-bit. Width settings are set on a per-chip-

select basis by setting the BSIZE bits in the CSiCR register or the SDC Control Register (SDCCR). The address and 

data lines of chip-select regions can be multiplexed by setting the MPXEN bit in the CSiCR register. Note that if 

MPXEN bit is set (data and address lines are multiplexed) then 32-bit access width should not be chosen since operation 

cannot be guaranteed. 

 

14.3 Drive Strength for Bus Signals 

 

When using an external memory area, pins that control the bus signals should be set for high-drive capacity output. See 

Section 10.1.3 for more information on setting the drive capacity of a pin. 

14.4 Bus Errors 

Two types of bus errors can be detected: illegal address accesses and bus access timeouts. Illegal address errors are 

detected for external areas that are disabled, and for reserved areas. Reference Section Error! Reference source not 

found. for locations of reserved areas. Timeout errors are detected when bus accesses do not complete in 768 cycles.  

When a bus error occurs the bus error interrupt (BURERR) will be generated. The code below shows the enabling of the 

bus error interrupt. 

 

 

 

 

 

 

 

 

 

 

 

 



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 35 of 37 

Feb 3, 2014  

/* Enable the bus error interrupt to catch accesses to illegal/reserved areas of  

   memory and bus access timeouts. The ISR for this interrupt can be found below  

   in the function "bus_error_isr" */ 

/* Clear any pending interrupts */ 

IR(BSC,BUSERR) = 0; 

/* Make this the highest priority interrupt (adjust as necessary for your  

   application). */ 

IPR(BSC,BUSERR) = 0x0F;  

/* Enable the interrupt in the ICU*/ 

IEN(BSC,BUSERR) = 1;  

/* Enable illegal address interrupt in the BSC */ 

BSC.BEREN.BIT.IGAEN = 1; 

/* Enable timeout detection interrupt in the BSC */ 

BSC.BEREN.BIT.TOEN = 1; 

 

The code below shows an example of a bus error interrupt handler. 

 
/******************************************************************************* 

* Function name: bus_error_isr 

* Description  : This interrupt will fire if the user tries to access code or  

*                data from one of the reserved areas in the memory map,  

*                including the areas covered by disabled chip selects. This  

*                interrupt will also fire if a bus timeout is detected. A nop()  

*                statement is included here as a convenient place to set a  

*                breakpoint during debugging and development, and further  

*                handling should be added by the user for their application. 

* Arguments    : none 

* Return value : none 

*******************************************************************************/ 

#pragma interrupt (bus_error_isr(vect=VECT(BSC,BUSERR))) 

void bus_error_isr (void) 

{ 

    /* Clear the bus error */ 

    BSC.BERCLR.BIT.STSCLR = 1; 

 

    /* To find the address that was accessed when the bus error occurred, read  

       the register BSC.BERSR2.WORD.  The upper 13 bits of this register contain  

       the upper 13-bits of the offending address (in 512K byte units). */ 

     

    /* nop() for convenience of setting a breakpoint. */ 

    nop(); 

} 

  



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 36 of 37 

Feb 3, 2014  

15. References 

The following documents were used in creating this Quick Design Guide: 

 

Reference Document Number Description 

1 R01UH0041EJ0160_RX63N631 RX63N Group, RX631 Group User Manual: Hardware 

2 R20UT0398EJ0300_E1E20 E1 Emulator E20 Emulator User’s Manual 

3 R20UT0399EJ0600_E1E20_RX E1/E20 Emulator Additional Document for User’s Manual 

(RX User System Design) 

4 R01AN0252ET0101_RX RX Family Debug Console Function Using E1 

5 R01AN0287EU0300_RX RX600 & RX200 Series The Flash Loader Project 

6 R01AN0544EU0240 RX600 & RX200 Series Simple Flash API for RX 

7 R01AN1245EJ0100 RX63N Group, RX631 Group Initial Setting 

 

 

 

  



RX63N, RX631 Group Quick Design Guide 

R01AN1657EU0111  Rev.1.11  Page 37 of 37 

Feb 3, 2014  

Website and Support 

Renesas Electronics Website 

http://www.renesas.com/ 
 
Inquiries 

http://www.renesas.com/inquiry 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All trademarks and registered trademarks are the property of their respective owners. 

http://www.renesas.com/
http://www.renesas.com/inquiry


 

A-1 

Revision Record 

 

Rev. 

 

Date 

Description 

Page Summary 

1.00 Apr.10.2013 — First edition issued 

1.10 July.4.2013 9 

 

11 

12 

18 

 

27 

Added setup for big-endian mode 

Described initial states of system clocks after reset 

Added section 5.5 

Added reference to Low CL Sub-Clock app note 

Added details about enabling external bus and disabling on-

chip ROM 

Added section 10.7 

1.11 Feb.3.2014 7 

8 

Corrected typo in table 2 (PC7 column) 

“Independent Watchdog Timer” was incorrectly called “Internal 

Watchdog Timer” 

 



 

 

General Precautions in the Handling of MPU/MCU Products 

 
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the 

products covered by this document, refer to the relevant sections of the document as well as any technical updates that 

have been issued for the products. 

 

1.  Handling of Unused Pins 

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the 

manual. 

 The input pins of CMOS products are generally in the high-impedance state. In operation with an 

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an 

associated shoot-through current flows internally, and malfunctions occur due to the false 

recognition of the pin state as an input signal become possible. Unused pins should be handled as 

described under Handling of Unused Pins in the manual. 

2.  Processing at Power-on 

The state of the product is undefined at the moment when power is supplied. 

 The states of internal circuits in the LSI are indeterminate and the states of register settings and 

pins are undefined at the moment when power is supplied. 

In a finished product where the reset signal is applied to the external reset pin, the states of pins 

are not guaranteed from the moment when power is supplied until the reset process is completed. 

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function 

are not guaranteed from the moment when power is supplied until the power reaches the level at 

which resetting has been specified. 

3.  Prohibition of Access to Reserved Addresses 

Access to reserved addresses is prohibited. 

 The reserved addresses are provided for the possible future expansion of functions. Do not access 

these addresses; the correct operation of LSI is not guaranteed if they are accessed. 

4.  Clock Signals 

After applying a reset, only release the reset line after the operating clock signal has become stable. 

When switching the clock signal during program execution, wait until the target clock signal has 

stabilized. 

 When the clock signal is generated with an external resonator (or from an external oscillator) 

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. 

Moreover, when switching to a clock signal produced with an external resonator (or by an external 

oscillator) while program execution is in progress, wait until the target clock signal is stable. 

5.  Differences between Products 

Before changing from one product to another, i.e. to a product with a different part number, confirm 

that the change will not lead to problems. 

 The characteristics of an MPU or MCU in the same group but having a different part number may 

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect 

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity 

to noise, and amount of radiated noise. When changing to a product with a different part number, 

implement a system-evaluation test for the given product. 

 



 

 

 

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.  You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free.  Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document.  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality".  The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.).  You must check the quality grade of each Renesas Electronics product before using it

in a particular application.  You may not use any Renesas Electronics product for any application for which it is not intended.  Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics.  Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions.  Further, Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product.  Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.  Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations.  You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction.  When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel:  +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved. �

Colophon 4.0


	1.  Power Supplies
	1.1 References

	2. Emulator Support
	2.1 Fine 2-Wire Interface
	2.2 E1 Emulator 14-Pin Interface
	2.3 E20 Emulator 38-Pin Interface
	2.4 Notes on Emulator Connections

	3. MCU Operating Modes
	4. Option Setting Memory
	4.1 Option Setting Memory Registers

	5. Clock Circuits
	5.1 Reset Conditions
	5.2 Clock Frequency Requirements
	5.2.1 Requirements for USB Communications
	5.2.2 Requirements for Ethernet Controller
	5.2.3 Requirements for Programming and Erasing ROM or Data Flash
	5.2.4 Requirements for SDRAM Controller

	5.3 Lowering CGC Power Consumption
	5.4 Writing the System Clock Control Register
	5.5 Sample Code for Clock Setup
	5.6 HOCO accuracy
	5.7 FlashIF Clock
	5.8 Board Design
	5.8.1 Important notes regarding the Oscillation Stop Detection Circuit


	6. Reset Requirements and the Reset Circuit
	6.1 Pin Reset
	6.2 Power-On Reset
	6.3 Voltage-Monitoring Reset
	6.4 Deep Software Standby Reset
	6.5 Independent Watchdog Timer Reset
	6.6 Watchdog Timer Reset
	6.7 Software Reset
	6.8 Determining the Reset Source

	7. Memory
	7.1 On-Chip RAM
	7.2 Peripheral I/O Registers
	7.3 Program ROM & Data Flash
	7.3.1 Enabling Data Flash Memory
	7.3.2 Blank Checking of Data Flash Memory
	7.3.3 Background Operation
	7.3.4 Data Flash in Low-Speed Operating Mode 2
	7.3.5 ID Code Protection
	7.3.6 Parallel Programmer Protection

	7.4 External Memory & Chip Selects
	7.4.1 Special note about CS0
	7.4.2 Using External 16-bit Memory Devices

	7.5 Memory Access Speed
	7.6 Data Alignment

	8. Register Write Protection
	8.1 System Protection Example code

	9. I/O Ports and Register Structures
	9.1 I/O Register Macros
	9.1.1 ICU Register Macros
	9.1.2 Vector Number Macro
	9.1.3 Module Stop Control Macro

	9.2 I/O Registers and Endian Settings

	10. I/O Port Configuration and the Multifunction Pin Controller (MPC)
	10.1 Setting Up and Using Port as GPIO
	10.1.1 Internal Pull-Ups
	10.1.2 Open-Drain Output
	10.1.3 Drive Capacity

	10.2 Setting Up and Using Port Peripheral Functions
	10.3 Setting Up and Using IRQ Pins
	Example - Enabling port 4, bit 0 as IRQ8 input

	10.4 Unused Pins
	10.5 Nonexistent Pins
	10.6 Electrical Characteristics
	10.7 MPC Register Setting Summary

	11. Module Stop Function
	12. Interrupts
	12.1 Nesting Interrupts
	12.2 Interrupt Vector Tables
	12.2.1 Fixed Vector Table
	12.2.2 Relocatable Vector Table

	12.3 Fast Interrupts
	12.4 Interrupt Stack Pointers
	12.5 Interrupt Request Groups
	12.6 Interrupt Unit Selection

	13. Low Power Consumption
	14. External buses
	14.1 Endian of External Memory Areas
	14.2 Bus Width & Multiplexing
	14.3 Drive Strength for Bus Signals
	14.4 Bus Errors

	15. References
	Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products



