
 APPLICATION NOTE

R01AN0891EJ0100 Rev.1.00 Page 1 of 60
Mar 13, 2012

RX62N Group, RX621 Group
Ethernet Flash Boot Loader Using M3S-T4-Tiny

Introduction
This application note presents an Ethernet flash boot loader that uses the M3S-T4-Tiny TCP/IP protocol stack. This
flash boot loader writes an S format file transferred from the host PC over an Ethernet connection to the
microcontroller's internal flash memory.

Note that this application note uses the sample code and libraries described in the following application notes.

• Data transfer over an Ethernet
RX Family TCP/IP for Embedded system M3S-T4-Tiny: Introduction Guide Rev. 1.02 (R20AN0051EJ0102)

• Erasing and writing internal flash memory
RX600 Series Simple Flash API for RX600 Rev2.20 (R01AN0544EU0220)

The application note has the following features.

• An S format program stored on a PC can be written to flash memory.
This application note uses an application (the host PC sample program) running on the host PC to transfer an S
format file over an Ethernet connection, and erases the microcontroller's internal flash memory and writes that file to
the flash memory.

• The written program can be run.
The S format program written to the microcontroller's internal flash memory can be executed on the microcontroller.

• Ethernet Specifications

TCP is used as the transport layer protocol.

Target Device
RX62N and RX621 Group microcontrollers

If the code provided with this application note is used on any other microcontroller, it must be modified according to the
specifications of that microcontroller and thoroughly tested.

R01AN0891EJ0100
Rev.1.00

Mar 13, 2012

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 2 of 60
Mar 13, 2012

Contents

1. Specifications .. 3

2. Confirmed Operating Conditions... 4

3. Related Application Notes... 4

4. Hardware Description.. 5

5. Software Description ... 7

6. Sample Download Code ... 50

7. Host PC Sample Program... 50

8. S Format.. 51

9. Notes ... 53

10. Sample Programs.. 59

11. Reference Documents... 59

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 3 of 60
Mar 13, 2012

1. Specifications
The sample code in this application note operates with a host PC connected with an Ethernet cable and the RX62N RSK.

If a reset is cleared with switch SW3 on the RX62N RSK not held down, the RX62N RSK will communicate with the
host PC (which uses the host PC sample program) using the TCP/IP protocol and a program in the S format file stored
on the host PC will be transferred as data to the RX62N RSK and written to the microcontroller's internal flash memory.
Note that the area that this sample code can overwrite is limited to part of the user MAT and the area used by the
sample code itself is not overwritten. See section 5.3, Operation Overview, for details.

If a reset is cleared with switch SW3 on the RX62N RSK held down, the program written to the microcontroller's
internal flash memory (also referred to as the downloaded code) will be executed.

The result of writing the program to internal flash memory is displayed in the LEDs (LED0 to LED3) on the RX62N
RSK. See section 5.6, Sample Code LED Display, for details on the content displayed.

Table 1.1 lists the peripheral function used and their uses, and figure 1.1 shows an example of using this application
note.

Table 1.1 Peripheral Functions and their Uses

Peripheral Function Use
ROM (Flash memory used for storing program code) The internal flash memory is programmed using

ROM P/E mode.
ETHERC: Ethernet controller Communication with the host PC
EDMAC: Dedicated DMA controller used by the

Ethernet controller
Controls transmission and reception of data in
communication with the host PC

CMT: Compare match timer Used for time management by the TCP/IP protocol
stack (M3S-T4-Tiny)

Figure 1.1 Usage Example

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 4 of 60
Mar 13, 2012

2. Confirmed Operating Conditions
The sample code provided with this application note has been confirmed to operate under the conditions listed in tables
2.1 and 2.2.

Table 2.1 Confirmed Operating Conditions

Item Description
Microcontroller used RX62N Group (R5F562N8BDBG)
Device used R5F562N8BDBG
Operating frequency • EXTAL: 12 MHz

• ICLK: 96 MHz
• PCLK: 48 MHz
• BCLK: 24 MHz
• SDCLK: 24 MHz

Operating voltage 3.3 V
Integrated development environment Renesas Electronics

High-performance Embedded Workshop Version 4.09.00.007
Renesas Electronics
RX Standard Toolchain Version 1.1.0.0

C compiler

cpu=rx600
-include="$(PROJDIR)\src\bsp","$(PROJDIR)\src\FlashAPI",
"$(PROJDIR)\src\driver","$(PROJDIR)\src\t4\lib",
"$(PROJDIR)\src\user_app"
-output=obj="$(CONFIGDIR)\$(FILELEAF).obj"
-debug
-nologo
*1

Processor mode Supervisor mode
Operation mode Single-chip mode
Endian Little endian / big endian
Version of the sample code Ver.1.00
Evaluation board used The RSK + RX62N packed with the Renesas Development Tools

(catalog number: R0K5562N0S000BE) is used.
Note: Add the setting "-endian=big" if the big endian order is used.

Table 2.2 Confirmed Operating Conditions (Host PC Sample Program)

Item Description
Hardware PC/AT compatible (an Ethernet interface is required)
Operating system Microsoft Windows XP Professional, Service Pack 3
Tools used Command prompt (cmd.exe)

3. Related Application Notes
The following application notes are related to this document and should be referred to when using this application note.

• RX Family TCP/IP for Embedded system M3S-T4-Tiny: Introduction Guide Rev.1.02 (R20AN0051EJ)
• RX600 Series Simple Flash API for RX600 Rev.2.20 (R01AN0544EU)

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 5 of 60
Mar 13, 2012

4. Hardware Description
4.1 List of Used Pins
Table 4.1 lists the pins and functions used.

Table 4.1 Used Pins and their Functions

Pin Name I/O Description
ET_MDC Output Reference clock signal for information transfer via ET_MDIO

Connected to the PHY MDC pin.
ET_MDIO I/O Bidirectional signal for exchange of management information

between this LSI and PHY-LSI
Connected to the PHY MDIO pin.

ET_LINKSTA Input Inputs link status from PHY-LSI
Connected to the PHY LINK/PHYAD1 pin.

ET_TX_CLK Input Transmit clock
Connected to the PHY TX_CLK pin.

ET_ETXD0 Output 4-bit transmit data
Connected to the PHY TXD0 pin.

ET_ETXD1 Output 4-bit transmit data
Connected to the PHY TXD1 pin.

ET_ETXD2 Output 4-bit transmit data
Connected to the PHY TXD2 pin.

ET_ETXD3 Output 4-bit transmit data
Connected to the PHY TXD3 pin.

ET_TX_EN Output Transmit enable signal
Connected to the PHY TX_EN pin.

ET_TX_ER Output Sends error state occurred during data reception to the PHY-LSI
Connected to the PHY TX_ER pin.

ET_COL Input Collision detection signal
Connected to the PHY COL pin.

ET_CRS Input Carrier detection signal
Connected to the PHY CRS pin.

ET_RX_CLK Input Receive clock
Connected to the PHY CLK pin.

ET_ERXD0 Input 4-bit receive data
Connected to the PHY RXD0 pin.

ET_ERXD1 Input 4-bit receive data
Connected to the PHY RXD1 pin.

ET_ERXD2 Input 4-bit receive data
Connected to the PHY RXD2 pin.

ET_ERXD3 Input 4-bit receive data
Connected to the PHY RXD3 pin.

ET_RX_DV Input Indicates that valid receive data is on ET_ERXD3 to ET_ERXD0
Connected to the PHY RX_DV pin.

ET_RX_ER Input Receive error
Identifies error state occurred during data reception
Connected to the PHY RX_ER pin.

MDE Input Mode pin
The endian order is changed under control of the MDE pin.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 6 of 60
Mar 13, 2012

Pin Name I/O Description
MD0 Input Mode pin

The operating mode is changed under control of the MD0 pin.
MD1 Input Mode pin

The operating mode is changed under control of the MD1 pin.
P07 Input Sample code operation selection pin
P02 Output LED connection
P03 Output LED connection
P05 Output LED connection
P34 Output LED connection

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 7 of 60
Mar 13, 2012

5. Software Description
5.1 Software Structure of the Sample Code
In the sample code, the RX Family M3S-T4-Tiny: Introduction Guide application note is used for Ethernet
communication and the RX Family RX600 Simple Flash API application note is used for the erase and write processing
for the internal flash memory.

Figure 5.1 shows software structure of the sample code and table 5.1 gives an overview of the software.

Figure 5.1 Software Structure of the Sample Code

Table 5.1 Software Overview

Module Overview
Application The application calls functions provided by M3S-T4-Tiny and

receives an S-typ format file over the Ethernet from the Host PC. It
also uses the Simple Flash API functions to erase and write to the
internal flash memory.

M3S-T4-Tiny The TCP/IP protocol stack
Ethernet driver This driver allows applications to use the Ethernet controller

(ETHERC) and the dedicated Ethernet DMA controller (EDMAC).
Timer driver This driver allows applications to use the compare match timer

(CMT).
Simple Flash API API that allows applications to erase and write to the internal flash

memory.
Host PC sample program This sample program runs on the host PC.

It communicates with the RX62N RSK from the host PC using the
TCP/IP protocol over an Ethernet connection and sends an S
format file on the host PC to the RX62N RSK.
See section 7, Host PC Sample Program, for details.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 8 of 60
Mar 13, 2012

5.2 Sample Code Folder Structure
Figure 5.2 shows the structure of the folders that hold the sample code.

RX62N_Ethernet_Flash

download.zip

host_tool.zip

RX62N_Ether_Flash_t4

RX62N_Ether_Flash_t4

Debug

Debug_RX600_E1_E20_SYSTEM

Release

src

bsp

driver

FlashAPI

t4

user_app

• • • • • • • • • • • • • • bsp folder
: Holds one set of files generated by HEW

• • • • • • • • • • • • driver folder
: Holds the Ethernet driver and the timer driver.

• • • • • • • • • • • FlashAPI folder
: Holds the Simple Flash API.

• • • • • • • • • • • • • • t4 folder
: Holds the M3S-T4-Tiny.

• • • • • • • • • • • user_app folder
: Holds the application.

• • • • • • • • • • • • • • • • HEW Debug folder

• • • • • • • • • • • • • • • HEW Release folder

• • • • • HEW Debug_RX600_E1_E20_SYSTEM folder

• Download code examples

• Host PC sample program

Figure 5.2 Sample Code Folder Structure

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 9 of 60
Mar 13, 2012

5.3 Operation Overview
5.3.1 Operation after a reset is cleared
After a reset is cleared, the sample code checks the state of switch SW3 (pin P07 on the microcontroller) on the RX62N
RSK. If this switch is not being pressed (if microcontroller pin P07 is high), it runs the Ethernet flash boot downloader,
which uses M3S-T4-Tiny, and rewrites the internal flash memory with data acquired over the Ethernet connection. If,
however, the switch is being pressed (if microcontroller pin P07 is low), it runs the downloaded code.

Figure 5.3 shows the operation after a reset is cleared.

Figure 5.3 Operation After a Reset is Cleared

5.3.2 Object of Overwriting
The object area that the M3S-T4-Tiny based Ethernet flash boot loader overwrites is restricted to a certain part of the
user MAT (referred to as the download area in this document). The area used for the sample code itself, FFFF A000h to
FFFF FFFFh, is not overwritten.

Figure 5.4 shows the memory allocation.

Figure 5.4 Memory Allocation

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 10 of 60
Mar 13, 2012

5.3.3 M3S-T4-Tiny Based Ethernet Flash Boot Loader Operation
The M3S-T4-Tiny based Ethernet flash boot loader uses the following procedure to program the download area. Figure
5.5 shows the download area programming procedure.

Preparations for running the M3S-T4-Tiny based Ethernet flash boot loader.

(1) Set the PC IP address and subnet mask as shown below and connect the RX62N RSK to the PC with an Ethernet
cable.
IP address: 192.168.0.2
Subnet mask: 255.255.255.0

(2) Open a command prompt window on the PC and switch to the directory that holds the host PC sample program
(RX62N-test_client.exe).

Run the M3S-T4-Tiny based Ethernet flash boot loader.

(1) After performing the above preparations, specify the RX62N RSK IP address (192.168.0.3), the port number (1024),
the name of the S format file to be written (as the arbitrary file name) as command line arguments and run the host
PC sample program (RX62N-test_client.exe) as shown in figure 5.6.

(2) After the RX62N RSK reset is cleared, a TCP connection will be established between the host PC and the RX62N
RSK, and after the host PC checks the file size, it sends the file size to the RX62N RSK.

(3) After receiving the file size, the RX62N RSK erases the download area and reports completion of the erase
operation to the host PC.

(4) After receiving confirmation of erase completion, the host PC sends S format data to the RX62N RSK.
(5) The RX62N RSK receives up to 1,400 bytes of S format data at a time and after analyzing the data, writes it in 256-

byte units to the download area.
(6) The processing of steps (4) and (5) above are repeated until an S format end record (an S7, S8, or S9 record) is

detected.
(7) The result of the write operation is displayed in the LEDs on the RX62N RSK and either normal completion or error

termination of the write operation is reported to the host PC.
(8) If the erase and write of the download area completes normally, the result will be displayed on the host PC as shown

in figure 5.7.

Figure 5.5 Programming the Download Area

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 11 of 60
Mar 13, 2012

C:\>
C:\>RX62N-test_client.exe 192.168.0.3 1024 download.mot

Command Prompt

Figure 5.6 Host PC Sample Program: Argument Input

C:\>
C:\>RX62N-test_client.exe 192.168.0.3 1024 download.mot

RX62N-test_client

connected to the server.

[send] Data size : 5536 byte
[recv] The flash programming start.
[send] Data : 5536 byte
[recv] The flash programming was completed.

Please press <Enter> key.

Command Prompt

Figure 5.7 Host PC Sample Program: Execution Results

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 12 of 60
Mar 13, 2012

5.3.4 M3S-T4-Tiny Based Ethernet Flash Boot Loader Operation
Figures 5.8 and 5.9 shows the overall flow of operations including operations on the host PC. Note that the arrows
between the host PC and the RX62N RSK indicate TCP communication.

RX62N-RSKHost PC

Failure

Success

Winsock initialization

Socket generation

Session initialization

Ethernet initialization

Port 1024 connection
waitSocket connection

Write data size reception
waitFile open

File read

Connection request

ACK

Data size transmission

Write data size
ACK

1 2

Self loop

Did erase succeed?

Target area erase

Success

Failure

Erase error message
transmission

Message reception wait

Write start message
transmission

Message transmission

ACK Socket release

Self loop

Figure 5.8 Overall Flow of Operations

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 13 of 60
Mar 13, 2012

Write data (FIN transmitted after all data transmitted)

ACK

Data transmission
(FIN transmitted after all

data transmitted)
Write data reception wait

Did write succeed?

Target area write

Data reception wait Write complete notification
transmission

Write error notification
transmission

Socket release Socket release

Ethernet terminationExit Winsock

return return

Write complete or error notification

ACK

Failure

Success

Failure

Success

1 2

File termination check

Update complete?

Completed

Not complete

Success

Did terminate succeed?

Self loop

Success

Did write succeed?

Self loop

Failure

Failure

Write start message
received?

Received

Error message received

return

Figure 5.9 Overall Flow of Operations (continued)

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 14 of 60
Mar 13, 2012

5.4 Executing the Download Code
If switch SW3 is in the pressed state (the microcontroller pin P07 is low) when a microcontroller reset is cleared, the
sample code will run the download code.

5.4.1 Download code execution start position
The sample program runs the download code by performing a function call to the address stored at location FFFF
9FFCh. Therefore the download code must store its start address at location FFFF 9FFCh.

Figure 5.10 shows the execution start position of the download code.

Download area
(User ROM)

Sample code ROM

FFFF FFFFh

FFFF A000h

FFF8 0000h

FFFF 9FFCh In the operation selection processing, the
address stored at location FFFF 9FFCh
(the download code start position) is
called as a function.
Note: If the download code start

position is FFFF FFFFh,
processing will stop.

FFF8 0000h

Figure 5.10 Download Code Execution Start Position

Note: If nothing was written to the download code execution start position (that is, if the download code execution
start position is FFFF FFFFh), the sample code executes a while (1) infinite loop to stop processing.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 15 of 60
Mar 13, 2012

5.5 Data Flow During Write
Figure 5.11 shows the data flow internal to the microcontroller when the download code is written to flash memory.

(1) The data received over the Ethernet is transferred to a receive ring buffer.
(2) One record of the S format data is copied to an S format buffer (this is ASCII data).
(3) At the same time as analyzing the S format data header section, the ASCII data is converted to binary and stored in

an S format buffer (for binary data).
See section 8, S Format, for the S format data analysis specifications used in this application note.

(4) The data is stored in a write buffer.
In the RX62N and RX621 group microcontrollers, data is written to the user MAT in units of 256 bytes. Therefore,
the sample code iterates steps (2) to (4) above until a total of 256 bytes of write data has been stored in the write
buffer. Also, if the total amount of write data exceeds 256 bytes, the excess data is stored temporarily and used for
the next write of 256 bytes of data.

(5) The assembled 256 bytes of data are written to flash memory using the Simple Flash API.

Figure 5.11 Data Flow During Write

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 16 of 60
Mar 13, 2012

Figure 5.12 shows the data structures used when writing data to flash memory.

'S'

Receive ring buffer
fl_ring_data

• Just 1 record is copied.
• Control codes are

discarded.

(2)

Length1
Length2
Addr1
Addr2

Addr i

• •
 •

Data1
Data2

• •
 •

Data i
Sum1
Sum2

'S'
n

• •
 •

Motorola S format data buffer (ASCII)
fl_wr_mot_s

'S'

Length1
Length2
Addr1
Addr2

Addr i

• •
 •

Data1
Data2

• •
 •

Data i
Sum1
Sum2

Motorola S format data buffer (binary)
fl_wr_mot_s_bin

Length1

Data1
Data2

• •
 •

Data i

(3)

Write buffer
fl_writing_data

Data1
Data2

• •
 •

Data256

• Data is converted from ASCII to binary.
• The address and data length size is

converted to 32 bits.
• The checksum is calculated and

checked.
• If the record format is S3, the header

section ("S3") and the sum are
discarded and processing proceeds to
step (4).

• If the record format is anything other
than S3, all data is discarded.

(4)

• •
 •

Temporary storage buffer (binary)
fl_wr_mot_s_bin_surplus

Length1

Data1
Data2

• •
 •

Data j

If the total amount
of data including
that stored the
previous time
exceeds 256 bytes,
the excess data is
stored temporarily.

n n Addr1
Addr2
Addr3
Addr4

Addr1
Addr2
Addr3
Addr4

Addr1
Addr2
Addr3
Addr4

• The data length
is discarded

• The address is stored
in a write buffer*

• The data is stored in
a write buffer.

Figure 5.12 Data Structures Used for Writing

Note: In the RX62N and RX621 group microcontroller internal flash memory, a start address used for a write
operation must be aligned on a 256-byte boundary. Accordingly, the sample code performs processing to assure
that write start addresses are aligned on 256-byte boundaries when storing addresses to write buffers. See the
flowchart in section 5.13.12, Download area write data creation, for details on this processing.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 17 of 60
Mar 13, 2012

5.6 Sample Code LED Display
The sample code displays the result of writing to the internal flash memory on the LEDs on the RX62N RSK. Note that
the LEDs (LED0 to LED3) will be turned off during the download processing.

Table 5.2 lists the LED display states produced by the sample code.

Table 5.2 Sample Code LED Display O: On, ×: Off

LED Display State
LED3 LED2 LED1 LED0 Description

O O O O Indicates that the write to the internal flash memory succeeded. (Write
success)

× × × O Indicates that Ethernet initialization failed. (Ethernet initialization error)
× × O × Indicates that Ethernet termination failed. (Ethernet termination error)
× × O O Indicates that Ethernet connection failed. (Ethernet connection error)
× O × × Indicates that Ethernet reception failed. (Ethernet receive error)
× O × O Indicates that Ethernet disconnection failed. (Ethernet disconnect error)
× O O × Indicates that erase of the internal flash memory failed. (Erase error)
× O O O Indicates that write of the internal flash memory failed. (Write error)
O × × × Indicates that the post-write verification of internal flash memory failed.

(Verify error)
O × × O Indicates that even though processing proceeded to the end of the file,

there was no S format end record. (File end error)
O × O × Indicates that the download code start address was found to be FFFF

FFFFh when the download code was run. (Download code not written
error)

O × O O Indicates that an abnormality was detected in the S format data
checksum. (Checksum error)
See section 8, S Format.

O O × × Indicates that the download code was an unsupported S format. (Format
error)
See section 8, S Format.

O O × O Indicates that write data for locations outside the download area was
detected. (Address error)
See section 8, S Format.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 18 of 60
Mar 13, 2012

5.7 Memory Requirements
Table 5.3 lists the required memory sizes.

Table 5.3 Memory Requirements

Memory Used Size Notes
ROM 24,318 bytes Since the sample code is allocated to locations FFFF

A000h to FFFF FFFFh, the amount of ROM that can be
written is the total ROM capacity minus 24,576 bytes.

RAM 40,796 bytes The user code can use this area when it runs.
Note: The sizes of required memory areas vary with the version and compiler options of the C compiler.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 19 of 60
Mar 13, 2012

5.8 File Structure
Table 5.4 lists the files that make up the sample code.

Note that files automatically generated by the integrated development environment, download code examples, and the
host PC sample program are not included.

Table 5.4 File Structure

File Overview Notes
r_flash_api_rx600.c The RX600 Series RX600 Simple Flash

API program
For details, see the RX600 Series
RX600 Simple Flash API
application note.

r_flash_api_rx600.h External reference include header for the
RX600 Series RX600 Simple Flash API
program.

For details, see the RX600 Series
RX600 Simple Flash API
application note.

r_flash_api_rx600_private.
h

External reference include header for the
RX600 Series RX600 Simple Flash API
program.

For details, see the RX600 Series
RX600 Simple Flash API
application note.

r_flash_api_rx600_config.h Parameter settings include header for the
RX600 Series RX600 Simple Flash API
program.

For details, see the RX600 Series
RX600 Simple Flash API
application note.

mcu_info.h Parameter settings include header for the
RX600 Series RX600 Simple Flash API
program.

For details, see the RX600 Series
RX600 Simple Flash API
application note.

r_Flash_main.c Flash programming data processing
r_Flash_main.h External reference include header for the

flash programming data processing

r_Flash_buff.c Ethernet receive ring buffer related
processing

r_Flash_buff.h External reference include header for the
Ethernet receive ring buffer related
processing

TrgtPrgDmmy.c Dummy program for allocating the
download code area

main.c The main() function
Other files The programs from the RX Family M3S-

T4-Tiny: Introduction Guide
See the RX Family M3S-T4-Tiny:
Introduction Guide application note
for details.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 20 of 60
Mar 13, 2012

5.9 Constants
Table 5.5 lists the constants used in the sample code.

Table 5.5 Constants Used in the Sample Code

Constant Set Value Description
FL_T4_API_TIMEOUT 1000 M3S-T4-Tiny function timeout time
FL_INPUT_BUFSIZE 1400 Receive buffer size for data received from the

Ethernet
FL_RINGBUFF_SIZE 1400 Receive ring buffer size for data received from the

Ethernet
FL_MOTS_ADDR_SIZE 4 S format data address buffer size
FL_MOTS_SUM_SIZE 1 S format data checksum buffer size
FL_START_BLOCK_NUM 6 First block in the download area
FL_END_BLOCK_NUM 37 Last block in the download area
FL_START_WRITE_ADDRESS FFF80000h First address in the download area
FL_END_WRITE_ADDRESS FFFF9FFFh Last address in the download area
FL_RCV_BLANK_SIZE 1400 Ring buffer capacity

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 21 of 60
Mar 13, 2012

5.10 Structures and Unions
Figure 5.13 shows the structures and unions used in the sample code.

/* buffer for mot S format data */
typedef struct {

uint8_t type[2]; /* "S0", "S1" and so on */
uint8_t len[2]; /* "0-255" */
uint8_t addr_data_sum[512];

} Fl_prg_mot_s_t;

/* buffer for write data
(this data is the converted data from mot S format data) */

typedef struct {
uint8_t len;
uint32_t addr;
uint8_t data[256];

} Fl_prg_mot_s_binary_t;

/* buffer for writing flash */
typedef struct {

uint32_t addr;
uint8_t data[256];

} Fl_prg_writing_data_t;

Figure 5.13 Structures and Unions Used in the Sample Code

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 22 of 60
Mar 13, 2012

5.11 Functions
Table 5.6 lists the functions. Note, however, that the Simple Flash API, TCP/IP protocol stack, and Ethernet driver
functions are not shown here.

Table 5.6 Functions

Function Name Overview
R_Fl_Mode_Entry Operation selection processing
R_Fl_Ether_Sample_Init Ethernet initialization
R_Fl_Ether_Sample_Quit Ethernet termination
R_Fl_Flash_Update Main flash write processing
R_Fl_EraseTrgtArea Erase processing
R_Fl_Ers_EraseFlash Erase download area
R_Fl_PrgramTrgtArea Write download area
R_Fl_Prg_PrgramFlash Write processing
R_Fl_Prg_StoreMotS Store S format data
R_Fl_Prg_ProcessForMotS_data Header analysis, binary conversion, and write of an S format record
R_Fl_Prg_MotS_AsciiToBinary Convert S format data from ASCII to binary
R_Fl_Prg_MakeWriteData Create write data for the download area
R_Fl_Prg_WriteData Write to download area
R_Fl_Prg_ClearMotSVariables Clear the variables related to the S format data
R_Fl_RcvDataString Store received Ethernet data
R_Fl_RingCheckBlank Check the amount of free capacity in the ring buffer used to store

data received over the Ethernet
R_Fl_RingInit Initialize ring buffer used to store data received over the Ethernet
R_Fl_RingEnQueue Store data in the ring buffer used to store data received over the

Ethernet
R_Fl_RingDeQueue Read data from the ring buffer used to store data received over the

Ethernet
R_Fl_RingCheck Verify number of data items in ring buffer used to store data received

over the Ethernet
R_Fl_AsciiToHexByte Convert data from ASCII to binary
R_Fl_LED_Ini LED initialization
R_Fl_LED_Fnc LED on/off state processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 23 of 60
Mar 13, 2012

5.12 Function Specifications
This section shows the specifications of the functions in the sample code.

R_Fl_Mode_Entry
Overview Operation selection processing
Header r_Flash_main.h
Declaration void R_Fl_Mode_Entry(void)
Description • Selects the operation performed.

• Performs LED initialization.
Arguments None
Return values None
Notes Executes the download code if the RX62N RSK switch SW3 is pressed. If SW3 is not

pressed, the sample code switches to M3S-T4-Tiny based Ethernet flash boot loader
after this function returns.

R_Fl_Ether_Sample_Init
Overview Ethernet initialization
Header r_Flash_main.h
Declaration Fl_API_SMPL_rtn_t R_Fl_Ether_Sample_Init(void)
Description • Calls the function that initializes and starts the LAN controller.

• Calls the function that initializes the M3S-T4-Tiny protocol stack.
• Initializes LED display on the RX62N RSK.

Arguments None
Return values • If initialization completes normally: FLASH_API_SAMPLE_OK

• If initialization does not complete normally: FLASH_API_SAMPLE_NG
Notes

R_Fl_Ether_Sample_Quit
Overview Ethernet termination
Header r_Flash_main.h
Declaration Fl_API_SMPL_rtn_t R_Fl_Ether_Sample_Quit(void)
Description • Calls the function that terminates M3S-T4-Tiny operation.

• Calls the function that stops the LAN controller.
Arguments None
Return values • If termination completes normally: FLASH_API_SAMPLE_OK

• If termination does not complete normally: FLASH_API_SAMPLE_NG
Notes

R_Fl_Flash_Update
Overview Main flash write processing
Header r_Flash_main.h
Declaration Fl_API_SMPL_rtn_t R_Fl_Flash_Update(void)
Description • Calls an M3S-T4-Tiny function to receive an S format file from the host PC.

• Calls the function that rewrites the internal flash memory with the contents of the
received S format file.

Arguments None
Return values • If the flash write processing completes normally: FLASH_API_SAMPLE_OK

• If the flash write processing does not complete normally: FLASH_API_SAMPLE_NG
Notes

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 24 of 60
Mar 13, 2012

R_Fl_EraseTrgtArea
Overview Erase processing
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_EraseTrgtArea(void)
Description Calls the function that erases the download area.
Arguments None
Return values • If the flash erase processing completes normally: FLASH_API_SAMPLE_OK

• If the flash erase processing does not complete normally: FLASH_API_SAMPLE_NG
Notes

R_Fl_Ers_EraseFlash
Overview Erase download area
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Ers_EraseFlash(void)
Description Erases the download area.
Arguments None
Return values • If the erase operation completes normally: FLASH_API_SAMPLE_OK

• If the erase operation does not complete normally: FLASH_API_SAMPLE_NG
Notes The processor status word (PSW) interrupt priority level (IPL) is modified to prevent ROM

access by interrupts during the erase operation.

R_Fl_PrgramTrgtArea
Overview Write download area
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_PrgramTrgtArea(void)
Description Calls the function that performs the write processing.
Arguments None
Return values • If the write operation completes normally: FLASH_API_SAMPLE_OK

• If the write operation does not complete normally: FLASH_API_SAMPLE_NG
Notes

R_Fl_Prg_PrgramFlash
Overview Write processing
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_PrgramFlash(void)
Description • If there is data in the receive ring buffer, calls the function that analyzes a single S

format record.
• When a single S format record has been analyzed, calls the function that performs

header analysis, conversion to binary, and writing to the download area.
• If the end of file is reached, verifies whether an S format end record has been

received. (If no end record has been received, returns FLASH_API_SAMPLE_NG.)
Arguments None
Return values • If writing to the download area terminates normally: FLASH_API_SAMPLE_OK

• If writing to the download area did not terminate: FLASH_API_SAMPLE_NG
Notes

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 25 of 60
Mar 13, 2012

R_Fl_Prg_StoreMotS
Overview Store S format data
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_StoreMotS(uint8_t)
Description • Stores the data passed in the argument as S format data one byte at a time.

• Discards all data until the first 'S' (ASCII data) is acquired.
Arguments First argument: mot_data : S format data
Return values • If a single S format data item (from the 'S' to the checksum) was stored:

FLASH_API_SAMPLE_OK
• If a single S format data item was not stored: FLASH_API_SAMPLE_NG

Notes • This function is used by passing S format data 1 byte at a time in the argument.
• The checksum is not checked.

R_Fl_Prg_ProcessForMotS_data
Overview Header analysis, binary conversion, and write of an S format record
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_ProcessForMotS_data(void)
Description • Analyses the S format header and calls the function that converts to binary.

• Calls the function that stores data in a write buffer.
• Calls the function that writes data to the download area.

Arguments None
Return values • If the function completes normally: FLASH_API_SAMPLE_OK

• If data that differs from the S format is found: FLASH_API_SAMPLE_NG
Notes

R_Fl_Prg_MotS_AsciiToBinary
Overview Convert S format data from ASCII to binary
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_MotS_AsciiToBinary(Fl_prg_mot_s_t *,

Fl_prg_mot_s_binary_t *)
Description • Converts S format data in ASCII code to binary data.

• Verifies the checksum of the converted binary data.
Arguments First argument: *tmp_mot_s : Pointer to S format data in ASCII
 Second argument: *tmp_mot_s_binary : Pointer to variable that holds the converted to

 binary data
Return values • If conversion completed normally: FLASH_API_SAMPLE_OK

• If a checksum error occurred: FLASH_API_SAMPLE_NG
Notes

R_Fl_Prg_MakeWriteData
Overview Create write data for the download area
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_MakeWriteData(void)
Description Creates data divided at each 256-byte unit.
Arguments None
Return values • If creation of 256 bytes of write data completed: FLASH_API_SAMPLE_OK

• If creation of 256 bytes of write data did not complete: FLASH_API_SAMPLE_NG
Notes

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 26 of 60
Mar 13, 2012

R_Fl_Prg_WriteData
Overview Write to download area
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_WriteData(void)
Description • Verifies that the write is to the download area.

• Performs the write to the download area.
• Verifies the data written.
• Calls the error handler if the write failed.

Arguments None
Return values • If the write completed normally: FLASH_API_SAMPLE_OK

• If the write did not complete normally: FLASH_API_SAMPLE_NG
Notes The processor status word (PSW) interrupt priority level (IPL) is modified to prevent ROM

access by interrupts during the write operation.

R_Fl_Prg_ClearMotSVariables
Overview Clear the variables related to the S format data
Header None
Declaration static void R_Fl_Prg_ClearMotSVariables(void)
Description Clears the variables related to the S format data.
Arguments None
Return values None
Notes

R_Fl_RcvDataString
Overview Store received Ethernet data
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_RcvDataString(void *, uint16_t)
Description Stores data received over the Ethernet in a receive ring buffer.
Arguments First argument: *tranadr : Pointer to a buffer that holds data received over

 the Ethernet
 Second argument: length : Length of the data received over the Ethernet
Return values • If the store completed normally: FLASH_API_SAMPLE_OK

• If the store did not complete normally: FLASH_API_SAMPLE_NG
Notes

R_Fl_RingCheckBlank
Overview Check the amount of free capacity in the ring buffer used to store data received over the

Ethernet
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_RingCheckBlank(void)
Description Verifies that there is enough space in ring buffer used to store data received over the

Ethernet for the amount of data received in one transfer (1400 bytes).
Arguments None
Return values • If there is enough space: FLASH_API_SAMPLE_OK

• If there is not enough space: FLASH_API_SAMPLE_NG
Notes

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 27 of 60
Mar 13, 2012

R_Fl_RingInit
Overview Initialize ring buffer used to store data received over the Ethernet
Header r_Flash_buff.h
Declaration void R_Fl_RingInit(void)
Description Initializes the ring buffer used to store data received over the Ethernet.
Arguments None
Return values None
Notes

R_Fl_RingEnQueue
Overview Store data in the ring buffer used to store data received over the Ethernet
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_RingEnQueue(uint8_t)
Description Stores data the ring buffer used to store data received over the Ethernet.
Arguments First argument: enq_data : Data to be stored
Return values • If the store completed normally: FLASH_API_SAMPLE_OK

• If a buffer full error occurred: FLASH_API_SAMPLE_NG
Notes

R_Fl_RingDeQueue
Overview Read data from the ring buffer used to store data received over the Ethernet
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_RingDeQueue(uint8_t *)
Description Reads data from the ring buffer used to store data received over the Ethernet
Arguments First argument: *deq_data : Pointer to buffer to store read data
Return values • If the data was read normally: FLASH_API_SAMPLE_OK

• If there was no data to read: FLASH_API_SAMPLE_NG
Notes

R_Fl_RingCheck
Overview Verify number of data items in ring buffer used to store data received over the Ethernet
Header r_Flash_buff.h
Declaration uint32_t R_Fl_RingCheck(void)
Description Verifies the number of data items in ring buffer used to store data received over the

Ethernet.
Arguments None
Return values Returns the number of data items stored.
Notes

R_Fl_AsciiToHexByte
Overview Convert data from ASCII to binary
Header r_Flash_buff.h
Declaration uint8_t R_Fl_AsciiToHexByte(uint8_t, uint8_t)
Description Converts a 2-byte ASCII coded data item to 1 byte of binary data.
Arguments First argument: in_upper : ASCII code data (high order)
 Second argument: in_lower : ASCII code data (low order)
Return values Returns the converted binary data.
Notes

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 28 of 60
Mar 13, 2012

R_Fl_LED_Ini
Overview LED initialization
Header None
Declaration static void R_Fl_LED_Ini(void)
Description Performs the processing required to set the initial states of the LEDs on the RX62N RSK.
Arguments None
Return values None
Notes

R_Fl_LED_Fnc
Overview LED on/off state processing
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_LED_Fnc(uint8_t)
Description Performs the processing for turning the LEDs on the RX62N RSK on or off.

See section 5.6, Sample Code LED Display, for details.
Arguments First argument: in_data : Value used to set the LED on/off states
Return values • If the operation completed normally: FLASH_API_SAMPLE_OK

• If the operation did not complete normally: FLASH_API_SAMPLE_NG
Notes The bits in the in_data argument are used as the on/off setting values for the individual

LEDs. The correspondence with the LEDs is shown below. The bits in the argument
should be set to 0 to turn the corresponding LED off, and to 1 to turn it on.
bit[0]: LED0, bit[1]: LED1, bit[2]: LED2, bit[3]: LED3

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 29 of 60
Mar 13, 2012

5.13 Flowcharts
5.13.1 Operation Selection Processing
Figure 5.14 shows the flowchart for the operation selection processing.

R_Fl_Mode_entry

Set mode entry pins

Mode entry pin state?

return

Run download code

Clear mode entry pin PORT0.ICR.BIT.B7 0

PORT0.DDR.BIT.B7 0
PORT0.ICR.BIT.B7 1

Low

High

Is download
code reset vector a value other than

FFFF FFFFh?

A value other than
FFFF FFFFh

"FFFF FFFFh"

Set LED display state
R_FI_LED_Fnc()

LED initialization
R_FI_LED_Ini()

Figure 5.14 Operation Selection Processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 30 of 60
Mar 13, 2012

5.13.2 Ethernet Initialization Processing
Figure 5.15 shows the flowchart for the Ethernet initialization processing.

R_Fl_Ether_Sample_Init

return ret_code

Set ret_code to OK

Did initialize and
start succeed?

Failure

Initialize and start LAN
controller

lan_open()

Success

Set ret_code to NG

Acquire T4 work size
tcpudp_get_ramsize()

Does that
exceed the allocated T4 work

area size?

Exceeds that size

Does not exceed that size

Open T4 library
tcpudp_open()

Did open succeed?
Failure

Success

Stop LAN controller
lan_close()

Set LED display state
R_Fl_LED_Fnc()

Set LED display state
R_Fl_LED_Fnc()

Initialize LED display
R_FI_LED_Fnc()

Figure 5.15 Ethernet Initialization Processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 31 of 60
Mar 13, 2012

5.13.3 Ethernet Termination Processing
Figure 5.16 shows the flowchart for the Ethernet termination processing.

R_Fl_Ether_Sample_Quit

return ret_code

Close T4 library
tcpudp_close()

Stop LAN controller
lan_close()

Set ret_code to OK

Figure 5.16 Ethernet Termination Processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 32 of 60
Mar 13, 2012

5.13.4 Main Write Processing
Figures 5.17 and 5.18 show the flowcharts for the main flash memory write processing.

Figure 5.17 Main Write Processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 33 of 60
Mar 13, 2012

return ret_code

Send write complete message
tcp_snd_dat()

Send error message
tcp_snd_dat()

Data transmission completion procedure
tcp_sht_cep()

Did completion processing
succeed?

Disconnect TCP connection
tcp_cls_cep()

Set ret_code to NG

Failure

Success

Failure

Success

Set ret_code to NG

Set ret_code to NG

Did update processing
succeed?

Failure

Success

21

Set LED display state
R_FI_LED_Fnc()

Figure 5.18 Main Write Processing (continued)

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 34 of 60
Mar 13, 2012

5.13.5 Erase Processing
Figure 5.19 shows the flowchart for the erase processing.

R_Fl_EraseTrgtArea

return ret_code

Erase target area
R_Fl_Ers_EraseFlash()

Set ret_code to OK

Set LED display state
R_FI_LED_Fnc()

Did erase succeed?

Set ret_code to erase
result

Failure

Success

Figure 5.19 Erase Processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 35 of 60
Mar 13, 2012

5.13.6 Erase Download Area
Figure 5.20 shows the flowchart for the erase download area.

R_Fl_Ers_EraseFlash

return ret_code

Set ret_code to OK

Download area erase
complete?

Completed

Not complete

Set ret_code to NG

Did erase succeed?

Erase flash memory
(Using Simple Flash

API function)
R_FlashErase()

Success

Failure

Save current PSW.IPL

Set PSW.IPL to
FLASH_READY_IPL (5)

Restore original PSW.IP

Figure 5.20 Erase Download Area

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 36 of 60
Mar 13, 2012

5.13.7 Write Processing
Figure 5.21 shows the flowchart for the write processing.

Figure 5.21 Write Processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 37 of 60
Mar 13, 2012

5.13.8 Download Area Write Operation
Figure 5.22 shows the flowchart for the download area write operation.

Figure 5.22 Download Area Write Operation

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 38 of 60
Mar 13, 2012

5.13.9 S Format Data Store Operation
Figure 5.23 shows the flowchart for the S format data store operation.

Figure 5.23 S Format Data Store Operation

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 39 of 60
Mar 13, 2012

5.13.10 S Format Header Analysis, Conversion to Binary, and Write Operations
Figure 5.24 shows the flowchart for the S format header analysis, conversion to binary, and write operations.

R_Fl_Prg_ProcessForMotS_data

return

Header low order value?

0

3

7, 8, 9

default

Convert S format record from ASCII to binary
R_Fl_Prg_MotS_AsciiToBinary()

Convert S format record from ASCII to binary
R_Fl_Prg_MotS_AsciiToBinary()

Did conversion succeed?

Write target area
R_Fl_Prg_WriteData()

Success

Failure

Clear S format variables
R_Fl_Prg_ClearMotSVariables()

Set end code detection flag

Start code detection flag state?

Set start code detection flag

Start code detection flag state?

Start code detection flag state?

Convert S format record from ASCII to binary
R_Fl_Prg_MotS_AsciiToBinary()

Write target area
R_Fl_Prg_WriteData()

Create write data
R_Fl_Prg_MakeWriteData()

Have write preparations
completed?

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set

Cleared

Set

Cleared

Not completed

Completed

Set

Cleared

Set ret_code to OK

Did write succeed?
Success

Failure

Set ret_code to NG

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Did write succeed?

Success Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Set LED display state
R_FI_LED_Fnc()

Did conversion succeed?

Success

Failure

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Failure

Set LED display state
R_FI_LED_Fnc()

Did conversion succeed?

Success

Failure

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Set LED display state
R_FI_LED_Fnc()

Is there remaining data?

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

None

Data remains

Figure 5.24 Format Header Analysis, Conversion to Binary, and Write Operations

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 40 of 60
Mar 13, 2012

5.13.11 S Format Data ASCII to Binary Conversion
Figure 5.25 shows the flowchart for the S format data ASCII to binary conversion.

R_Fl_Prg_MotS_AsciiToBinary

return ret_code

Convert data length to
binary

R_Fl_AsciiToHexByte()

Store data length
(Subtracts the length of address

and checksum)

Error detected

No error

Set ret_code to NG

Convert all data to binary
R_Fl_AsciiToHexByte()

Checksum error?

Store address

Store data

Set ret_code to OK

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Set LED display state
R_FI_LED_Fnc()

Figure 5.25 S Format Data ASCII to Binary Conversion

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 41 of 60
Mar 13, 2012

5.13.12 Download Area Write Data Creation
Figure 5.26 shows the flowchart for the download area write data creation.

R_Fl_Prg_MakeWriteData

return ret_code

Set ret_code to NG

Total write data 256?
Under 256

256 or greater

Is write address set?

Already set

Not set

Store binary S format data in
write buffer

Set write address

Total write data > 256?

256 or less

257 or greater

Store just 256 bytes of binary
S format data in write buffer

Store remaining data
Set remaining data write

address

Set ret_code to OK

Figure 5.26 Download Area Write Data Creation

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 42 of 60
Mar 13, 2012

5.13.13 Download Area Write
Figure 5.27 shows the flowchart for the download area write.

R_Fl_Prg_WriteData

return ret_code

Did write succeed?

Success

Failure

Set ret_code to OK

Write flash memory
(Using Simple Flash API

function)
R_FlashWrite()

Read written data

Is written data correct?

Correct

Not correct

Clear write address
Clear write buffer

Is remaining data
write address set?

Already set

Not set

Store remaining data in write
buffer

Clear S format data complete flag

Clear remaining data write
address

Set write address

Is write address within
download area?

Within download area

Outside download area

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Initialize S format conversion
R_Fl_Prg_ClearMotSVariables()

Set ret_code to NG

Set LED display state
R_Fl_LED_Fnc()

Set LED display state
R_FI_LED_Fnc()

Set LED display state
R_FI_LED_Fnc()

Save current PSW.IPL

Set PSW.IPL to
FLASH_READY_IPL (5)

Restore original PSW.IP

Figure 5.27 Download Area Write

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 43 of 60
Mar 13, 2012

5.13.14 Clear S Format Data Related Variables
Figure 5.28 shows the flowchart for the clear S format data related variables.

Figure 5.28 Clear S Format Data Related Variables

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 44 of 60
Mar 13, 2012

5.13.15 Store Ethernet Receive Data
Figure 5.29 shows the flowchart for the store Ethernet receive data.

R_Fl_RcvDataString

return ret_code

Set ret_code to OK

Is there space in
receive buffer?

No

Read receive data count
R_Fl_RingCheck()

Yes

Save receive data Set ret_code to NG

Figure 5.29 Store Ethernet Receive Data

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 45 of 60
Mar 13, 2012

5.13.16 Check for Empty Space in Ethernet Receive Data Storage Ring Buffer
Figure 5.30 shows the flowchart for the check for empty space in Ethernet receive data storage ring buffer.

Figure 5.30 Check for Empty Space in Ethernet Receive Data Storage Ring Buffer

5.13.17 Initialize Ethernet Receive Data Storage Ring Buffer
Figure 5.31 shows the flowchart for the initialize Ethernet receive data storage ring buffer.

R_Fl_RingInit

return

Initialize buffer
Initialize buffer pointer

Initialize buffered data count

Figure 5.31 Initialize Ethernet Receive Data Storage Ring Buffer

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 46 of 60
Mar 13, 2012

5.13.18 Store Data in Ethernet Receive Data Ring Buffer
Figure 5.32 shows the flowchart for the store data in Ethernet receive data ring buffer.

Figure 5.32 Store Data in Ethernet Receive Data Ring Buffer

5.13.19 Read Data from Ethernet Receive Data Ring Buffer
Figure 5.33 shows the flowchart for the read data from Ethernet receive data ring buffer.

Figure 5.33 Read Data from Ethernet Receive Data Ring Buffer

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 47 of 60
Mar 13, 2012

5.13.20 Check Data Count in Ethernet Receive Data Ring Buffer
Figure 5.34 shows the flowchart for the check data count in Ethernet receive data ring buffer.

R_Fl_RingCheck

return

Set return value to
data count

Figure 5.34 Check Data Count in Ethernet Receive Data Ring Buffer

5.13.21 Convert Data from ASCII to Binary
Figure 5.35 shows the flowchart for the convert data from ASCII to binary.

R_Fl_AsciiToHexByte

return

Convert high-order 4 bits

Convert low-order 4 bits

Figure 5.35 Convert Data from ASCII to Binary

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 48 of 60
Mar 13, 2012

5.13.22 LED Initialization Processing
Figure 5.36 shows the flowchart for the LED initialization processing.

Figure 5.36 LED Initialization Processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 49 of 60
Mar 13, 2012

5.13.23 LED On/Off Processing
Figure 5.37 shows the flowchart for the LED On/Off processing.

R_Fl_LED_Fnc

Turn on LED 0

Return ret_code

PORT0.DR.BIT.B2 1

Is in_data
argument greater than

0xF?

Greater than 0xF

0xF or smaller

Set ret_code to OK

Set ret_code to NG

Is bit 0 of in_data
argument 0x00?

0x00

A value other than 0x00
Turn off LED 0

PORT0.DR.BIT.B2 0

Turn on LED 1

PORT0.DR.BIT.B3 1

Is bit 1 of in_data
argument 0x00?

0x00

A value other than 0x00
Turn off LED 1

PORT0.DR.BIT.B3 0

Turn on LED 2

PORT0.DR.BIT.B5 1

Is bit 2 of in_data
argument 0x00?

0x00

A value other than 0x00
Turn off LED 2

PORT0.DR.BIT.B5 0

Turn on LED 3

PORT0.DR.BIT.B4 1

Is bit 3 of in_data
argument 0x00?

0x00

A value other than 0x00
Turn off LED 3

PORT0.DR.BIT.B4 0

Figure 5.37 LED On/Off Processing

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 50 of 60
Mar 13, 2012

6. Sample Download Code
This application note includes a sample download code file (download.zip). This program lights in sequence the LEDs
on the board described in section 2, Confirmed Operating Conditions. Refer to this program for examples of download
reset vector and section settings. Note that the download code is expected to use 512 KB of ROM.

7. Host PC Sample Program
This application note includes both the source code and executable file for a sample program that runs on the host PC
(host_tool.zip).

The host PC sample program corresponds to the application layer in the TCP/IP model.

This program is a console application and is run by specifying the RX62N RSK IP address and port number and the file
name of the S format file to be written. It attempts to connect to the specified IP address and port number and then
transmits the data in the S format file to the RX62N RSK. Note that in this program, the maximum size of the S format
file is set to be 2,048 KB.

This program uses the Winsock library to implement TCP data transfers.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 51 of 60
Mar 13, 2012

8. S Format
This section describes the S format supported by the sample code.

8.1 Record Formats
Figure 8.1 shows the record formats supported by the sample code.

Figure 8.1 Record Formats Supported by Sample Code

8.2 Record Structure
Figure 8.2 shows the record structure supported by the sample code. S type format record sequences with orders other
than those shown in figure 8.2 are not supported.

Figure 8.2 Record Structure Supported by the Sample Code

8.3 Load Address
The sample code only supports S format files with increasing load addresses. Do not use decreasing order or out of
order load address S format files with the sample code.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 52 of 60
Mar 13, 2012

8.4 Error Detection
The sample code detects errors if there are problems with the S format file received.

(a) Checksum error

The sample code verifies the checksum at each received S format record. A checksum error is detected if that
verification finds an abnormality.

(b) Format error

A format error is detected if the sample code receives an S format file that meets any of the following conditions.

• If an unsupported record (S1, S2, S4, S5, or S6) is detected
• If a header record (S0) is detected twice
• If a data record (S3) or an end record (S7, S8, or S9) is detected before a header record.

Figure 8.3 shows the format error detection conditions.

Figure 8.3 Format Error Detection Conditions

(c) Address error

An address error is detected if write data for any address outside the download area is received.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 53 of 60
Mar 13, 2012

9. Notes
9.1 Ethernet Cable Insertion/Removal During Erase or Write
Do not disconnect the Ethernet cable during erase or write of the download area.

9.2 HEW Settings
The sample code runs by copying the code in ROM to RAM during flash memory write operations. See the RX Family
RX600 Simple Flash API application note for details on the settings.

9.3 Reset Vector for the Download Code
The execution start position for the download code written using the sample code is determined by the value written at
the download reset vector (FFFF 9FFCh). Therefore the download code must be set up so that its reset vector is
allocated at FFFF 9FFCh. See section 5.3, Operation Overview, for details.

Also, see section 6, Sample Download Code, for details on the download code.

9.4 Changing the ROM Capacity
The ROM capacity of the microcontroller used by the sample code is 512 KB.

If a microcontroller with a ROM capacity of 384 KB, or 256 KB, is used, change FL_END_BLOCK_NUM #define
directive in the file r_Flash_main.h to match the capacity used.

Table 9.1 lists the ROM capacities.

Table 9.1 ROM Capacities

Catalog
Number

ROM
Capacity

Download Area
ROM Capacity

Download Area
Start Address

Download Area Block
Numbers

R5F562x8 512 K 488 K FFF8 0000h EB6 to EB37
R5F562x7 384 K 360 K FFFA 0000h EB6 to EB29
R5F562x6 256 K 232 K FFFC 0000h EB6 to EB21

9.5 Operating Mode
The sample code only supports operation in single-chip mode.

Set Pin 1 and Pin 2 in SW4 on the RX62N RSK to OFF (MD0 = high, MD1 = high).

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 54 of 60
Mar 13, 2012

9.6 Endian Order
The sample code in this application note supports both little endian and big endian orders. Note that both the flash boot
loader and the download code must be set to the same endian order.

9.6.1 Using Little Endian
When operating using the little endian order, perform the following settings. Also, Pin 3 in SW4 on the RX62N RSK
board must be set to ON (MDE = low).

1. Start up the RX Standard Toolchain from the Build item in the HEW toolbar.
2. Select Little-endian in the CPU endian tab and click OK.
3. In the HEW workspace window project tree, select "Exclude from build" in the context menu for the file

T4_Library_rx600_ether_big.lib and select "Clear exclude from build:" in the context menu for the file
T4_Library_rx600_ether_little.lib.

4. Rebuild the project.

9.6.2 Using Big Endian
When operating using the big endian order, perform the following settings. Also, Pin 3 in SW4 on the RX62N RSK
board must be set to OFF (MDE = high).

1. Start up the RX Standard Toolchain from the Build item in the HEW toolbar.
2. Select Big-endian in the CPU endian tab and click OK.
3. In the HEW workspace window project tree, select "Exclude from build" in the context menu for the file

T4_Library_rx600_ether_little.lib and select "Clear exclude from build:" in the context menu for the file
T4_Library_rx600_ether_big.lib.

4. Rebuild the project.

9.7 Modifying the Host PC Sample Program
This application note includes both the source files and an executable file (host_tools.zip) for the host PC sample
program.

The customer, however, must take responsibility for any modifications made to the host PC sample program.

The host PC sample program was developed using Microsoft Visual C++ 2010 (Microsoft Visual Studio 2010
Professional).

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 55 of 60
Mar 13, 2012

9.8 Changes to the RX Family RX600 Simple Flash API
This application note uses sample code from the RX Family RX600 Simple Flash API. See the RX Family RX600
Simple Flash API application note for the specifications of the RX Family RX600 Simple Flash API.

9.8.1 Files Used
The files used are r_flash_api_rx600.c, r_flash_api_rx600.h, r_flash_api_rx600_private.h, r_flash_api_rx600_config.h
and mcu_info.h.

9.8.2 Changes
The files in the RX600 Simple Flash API that are changed are r_flash_api_rx600_config.h and mcu_info.h.

• Changes to the file r_flash_api_rx600_config.h
(1) To prevent ROM access by interrupts during flash write and erase operations, the processor status word (PSW)

interrupt priority level (IPL) field is changed to the value specified in the following macro definition. In this
application note, the value 5 is used.
Macro definition: #define FLASH_READY_IPL 5

(2) The following Simple Flash API settings are changed.

Before change: #define IGNORE_LOCK_BITS
 #define COPY_CODE_BY_API
 #define FLASH_API_USE_R_BSP

After change: //#define IGNORE_LOCK_BITS
 //#define COPY_CODE_BY_API
 //#define FLASH_API_USE_R_BSP

• Changes to the file mcu_info.h

(1) The files stored in the Simple Flash API r_bsp/board/rskrx62n folder are used.
(2) The following Simple Flash API settings are changed.

Before change: #define BCLK_HZ (12000000)
After change: #define BCLK_HZ (24000000)

9.9 Changes to the RX Family M3S-T4-Tiny: Introduction Guide
This application note uses sample code and library from the RX Family M3S-T4-Tiny: Introduction Guide. See the RX
Family M3S-T4-Tiny: Introduction Guide application note for the RX Family M3S-T4-Tiny specifications.

9.9.1 Files Used
The files used are r_t4_itcpip.h, T4_Library_rx600_ether_big.lib, T4_Library_rx600_ether_little.lib, config_tcpudp.c,
phy.c, phy.h, r_ether.c, r_ether.h, reg_accsess.h, t4_driver.c, timer.c and timer.h.

Note that the config_tcpdup.c T4 configuration file is used in the TCP Blocking Call file in the RX Family M3S-T4-
Tiny: Introduction Guide project.

9.9.2 Changes
There are no changes to any of the files used.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 56 of 60
Mar 13, 2012

9.10 Changes to HEW Generated Files
In this application note, certain parts of the HEW generated files are modified.

9.10.1 Changes
The following files are modified: dbsct.c, hwsetup.c, intprg.c, resetprg.c, stacksct.h, and vect.h.

• Changes to the file dbsct.c (2 places)
(1) Addition of a section that performs the copy processing from the D section to the R section.

Before change: { sectop("D_1"), secend("D_1"), sectop("R_1") }
After change: { sectop("D_1"), secend("D_1"), sectop("R_1") },

{ sectop("PFRAM"), secend("PFRAM"), sectop("RPFRAM") }
(2) Addition of a section that clears the B section to 0

Before change: { sectop("B_1"), secend("B_1") }
After change: { sectop("B_1"), secend("B_1") },

{ sectop("B_RX_DESC"), secend("B_RX_DESC") },
{ sectop("B_TX_DESC"), secend("B_TX_DESC") },
{ sectop("B_RX_BUFF_1"), secend("B_RX_BUFF_1") },
{ sectop("B_TX_BUFF_1"), secend("B_TX_BUFF_1") },
{ sectop("B_ETH_BUFF"), secend("B_ETH_BUFF") },
{ sectop("B_flash_api_sec"), secend("B_flash_api_sec") },
{ sectop("B_flash_api_sec_2"), secend("B_flash_api_sec_2") },
{ sectop("B_flash_api_sec_1"), secend("B_flash_api_sec_1") }

• Changes to the file hwsetup.c (4 places)

(1) Addition of files to be included
Before change: None
After change: #include "r_ether.h"

(2) System clock settings
Before change: None
After change: /* CPG setting */

io_set_cpg();
(3) I/O port settings

Before change: None
After change: /* Setup the port pins */

ConfigurePortPins();
(4) Clearing the module stop state for peripheral modules

Before change: None
After change: /* Enables peripherals */

EnablePeripheralModules();

• Changes to the file intprg.c (1 place)

(1) Changes to CMTU0_CMT0
Before change: void Excep_CMTU0_CMT0(void){ }
After change: void Excep_CMTU0_CMT0(void){ timer_interrupt(); }

• Changes to the file resetprg.c (1 place)

(1) Addition of an operation selection processing function
Before change: None
After change: /* **** Mode entry **** */

R_Fl_Mode_Entry();

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 57 of 60
Mar 13, 2012

• Changes to the file stacksct.h (1 place)
(1) Modification of the stack size

Before change: #pragma stacksize su=0x100
After change: #pragma stacksize su=0x300

• Changes to the file vect.h (1 place)

(1) Commenting out ETHER_EINT
Before change: #pragma interrupt (Excep_ETHER_EINT(vect=32))

 void Excep_ETHER_EINT(void);
After change: //#pragma interrupt (Excep_ETHER_EINT(vect=32))

//void Excep_ETHER_EINT(void);

9.10.2 Added Sections
Table 9.2 lists the added sections

Table 9.2 Added Sections

Section Name Description
RPFRAM Initialized data area (variables area) section for the flash memory

programming code that operates in RAM
TRGT_DMMY_FIXEDVECT Download code fixed vector section
B_RX_DESC Uninitialized data area section for the Ethernet driver (receive

descriptor)
B_TX_DESC Uninitialized data area section for the Ethernet driver (transmit

descriptor)
B_ETH_BUFF Uninitialized data area section for Ethernet receive buffers and M3S-

T4-Tiny working memory
B_ETH_BUFF_1 Uninitialized data area section for Ethernet receive buffers and M3S-

T4-Tiny working memory (Align = 1)
B_RX_DESC_1 Uninitialized data area section for the Ethernet driver (receive

descriptor) (Align = 1)
B_TX_DESC_1 Uninitialized data area section for the Ethernet driver (transmit

descriptor) (Align = 1)
B_flash_api_sec Uninitialized data area section for flash memory programming code
B_flash_api_sec_2 Uninitialized data area section for flash memory programming code

(Align = 2)
B_flash_api_sec_1 Uninitialized data area section for flash memory programming code

(Align = 1)

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 58 of 60
Mar 13, 2012

9.10.3 Include File Directory
The following include file directory settings are added.

• $(PROJDIR)\src\bsp is added to the include directories.
• $(PROJDIR)\src\FlashAPI is added to the include directories.
• $(PROJDIR)\src\driver is added to the include directories.
• $(PROJDIR)\src\t4\lib is added to the include directories.
• $(PROJDIR)\src\user_app is added to the include directories.

9.10.4 Linker Settings
The following linker setting that maps from ROM to RAM is added.

• ROM PFRAM is mapped to RPFRAM.

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 59 of 60
Mar 13, 2012

10. Sample Programs
The sample program can be downloaded from the Renesas Electronics Web site.

11. Reference Documents
• RX62N Group, RX621 Group User’s Manual: Hardware, Rev.1.20

(The latest version can be downloaded from the Renesas Electronics Web site.)

• Technical Updates/Technical News

(The latest information can be downloaded from the Renesas Electronics Web site.)

• C Compiler Manual

RX Family C/C++ Compiler Package V.1.01 Release 00
RX Family C/C++ Compiler Package User’s Manual V.1.0.1.0
(The latest version can be downloaded from the Renesas Electronics Web site.)

• Application Notes

RX600 Series Simple Flash API for RX600 Rev2.20 (R01AN0544EU)
(The latest version can be downloaded from the Renesas Electronics Web site.)
RX Family TCP/IP for Embedded system M3S-T4-Tiny: Introduction Guide Rev1.02 (R20AN0051EJ0102)
(The latest version can be downloaded from the Renesas Electronics Web site.)

RX62N Group, RX621 Group Ethernet Flash Boot Loader Using M3S-T4-Tiny

R01AN0891EJ0100 Rev.1.00 Page 60 of 60
Mar 13, 2012

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Mar.13.12 — First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
⎯ The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

	Introduction
	Target Device
	1. Specifications
	2. Confirmed Operating Conditions
	3. Related Application Notes
	4. Hardware Description
	4.1 List of Used Pins

	5. Software Description
	5.1 Software Structure of the Sample Code
	5.2 Sample Code Folder Structure
	5.3 Operation Overview
	5.3.1 Operation after a reset is cleared
	5.3.2 Object of Overwriting
	5.3.3 M3S-T4-Tiny Based Ethernet Flash Boot Loader Operation
	5.3.4 M3S-T4-Tiny Based Ethernet Flash Boot Loader Operation

	5.4 Executing the Download Code
	5.4.1 Download code execution start position

	5.5 Data Flow During Write
	5.6 Sample Code LED Display
	5.7 Memory Requirements
	5.8 File Structure
	5.9 Constants
	5.10 Structures and Unions
	5.11 Functions
	5.12 Function Specifications
	5.13 Flowcharts
	5.13.1 Operation Selection Processing
	5.13.2 Ethernet Initialization Processing
	5.13.3 Ethernet Termination Processing
	5.13.4 Main Write Processing
	5.13.5 Erase Processing
	5.13.6 Erase Download Area
	5.13.7 Write Processing
	5.13.8 Download Area Write Operation
	5.13.9 S Format Data Store Operation
	5.13.10 S Format Header Analysis, Conversion to Binary, and Write Operations
	5.13.11 S Format Data ASCII to Binary Conversion
	5.13.12 Download Area Write Data Creation
	5.13.13 Download Area Write
	5.13.14 Clear S Format Data Related Variables
	5.13.15 Store Ethernet Receive Data
	5.13.16 Check for Empty Space in Ethernet Receive Data Storage Ring Buffer
	5.13.17 Initialize Ethernet Receive Data Storage Ring Buffer
	5.13.18 Store Data in Ethernet Receive Data Ring Buffer
	5.13.19 Read Data from Ethernet Receive Data Ring Buffer
	5.13.20 Check Data Count in Ethernet Receive Data Ring Buffer
	5.13.21 Convert Data from ASCII to Binary
	5.13.22 LED Initialization Processing
	5.13.23 LED On/Off Processing

	6. Sample Download Code
	7. Host PC Sample Program
	8. S Format
	8.1 Record Formats
	8.2 Record Structure
	8.3 Load Address
	8.4 Error Detection

	9. Notes
	9.1 Ethernet Cable Insertion/Removal During Erase or Write
	9.2 HEW Settings
	9.3 Reset Vector for the Download Code
	9.4 Changing the ROM Capacity
	9.5 Operating Mode
	9.6 Endian Order
	9.6.1 Using Little Endian
	9.6.2 Using Big Endian

	9.7 Modifying the Host PC Sample Program
	9.8 Changes to the RX Family RX600 Simple Flash API
	9.8.1 Files Used
	9.8.2 Changes

	9.9 Changes to the RX Family M3S-T4-Tiny: Introduction Guide
	9.9.1 Files Used
	9.9.2 Changes

	9.10 Changes to HEW Generated Files
	9.10.1 Changes
	9.10.2 Added Sections
	9.10.3 Include File Directory
	9.10.4 Linker Settings

	10. Sample Programs
	11. Reference Documents
	 Website and Support

