
 APPLICATION NOTE

R01AN1807EJ0100 Rev. 1.00 Page 1 of 56
Dec 16, 2013

RX220 Group
Communication Example Using the RSPI

Abstract
This document describes a method of full-duplex synchronous serial communications using the SPI operation (four-
wire method) of the serial peripheral interface (RSPI) in the RX220 Group.

The sample code in this application note registers projects for the master device (master) and slave device (slave) in one
workspace. The master or slave is selected by the active project in the High-performance Embedded Workshop.

Products
- RX220 Group 100-pin package with a ROM size between 64 KB and 256 KB

- RX220 Group 64-pin package with a ROM size between 32 KB and 256 KB

- RX220 Group 48-pin package with a ROM size between 32 KB and 256 KB

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1807EJ0100
Rev. 1.00

Dec 16, 2013

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 2 of 56
Dec 16, 2013

Contents

1. Specifications ... 4

2. Operation Confirmation Conditions .. 5

3. Reference Application Note .. 5

4. Hardware (Master) .. 6
4.1 Pins Used ... 6

5. Software (Master) ... 7
5.1 Operation Overview ... 8
5.2 File Composition .. 11
5.3 Option-Setting Memory .. 11
5.4 Constants ... 12
5.5 Structure/Union List ... 13
5.6 Variables .. 13
5.7 Functions .. 14
5.8 Function Specifications .. 14
5.9 Flowcharts .. 20

5.9.1 Main Processing ... 20
5.9.2 Port Initialization ... 21
5.9.3 Peripheral Function Initialization ... 21
5.9.4 Callback Function (Completion of RSPI Transmission to/Reception from Slave 0) 21
5.9.5 Callback Function (Completion of RSPI Transmission to/Reception from Slave 1) 22
5.9.6 Callback Function (RSPI Transmit/Receive Error) ... 22
5.9.7 User Interface Function (RSPI Initialization) ... 23
5.9.8 User Interface Function (RSPI Transmit/Receive Start) ... 25
5.9.9 User Interface Function (Obtain RSPI State) ... 27
5.9.10 RSPI Transmit Interrupt ... 27
5.9.11 RSPI Idle Interrupt ... 28
5.9.12 RSPI Receive Interrupt .. 29
5.9.13 RSPI Error Interrupt ... 30
5.9.14 RSPI0.SPEI0 Interrupt Handling ... 31
5.9.15 RSPI0.SPRI0 Interrupt Handling ... 31
5.9.16 RSPI0.SPTI0 Interrupt Handling ... 32
5.9.17 RSPI0.SPII0 Interrupt Handling ... 32

6. Hardware (Slave) .. 33
6.1 Pins Used ... 33

7. Software (Slave) ... 34
7.1 Operation Overview ... 35
7.2 File Composition .. 37
7.3 Option-Setting Memory .. 37
7.4 Constants ... 38
7.5 Structure/Union List ... 39
7.6 Variables .. 39

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 3 of 56
Dec 16, 2013

7.7 Functions .. 40
7.8 Function Specifications .. 40
7.9 Flowcharts .. 45

7.9.1 Main Processing ... 45
7.9.2 Port Initialization ... 46
7.9.3 Peripheral Function Initialization ... 46
7.9.4 Callback Function (Completion of RSPI Transmission to/Reception from the Master) 46
7.9.5 Callback Function (RSPI Transmit/Receive Error) ... 47
7.9.6 User Interface Function (RSPI Initialization) ... 48
7.9.7 User Interface Function (RSPI Transmit/Receive Start) ... 50
7.9.8 User Interface Function (Obtain RSPI State) ... 52
7.9.9 RSPI Transmit Interrupt .. 52
7.9.10 RSPI Receive Interrupt .. 53
7.9.11 RSPI Error Interrupt ... 54
7.9.12 RSPI0.SPEI0 Interrupt Handling ... 55
7.9.13 RSPI0.SPRI0 Interrupt Handling ... 55
7.9.14 RSPI0.SPTI0 Interrupt Handling ... 55

8. Sample Code .. 56

9. Reference Documents .. 56

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 4 of 56
Dec 16, 2013

1. Specifications
Full-duplex synchronous serial communications are performed between one master and two slaves (slave 0 and slave 1)
using the SPI operation (four-wire method) of the RSPI.

The master transmits and receives 3-byte data to and from slave 0. When the 3-byte transmission and reception have
been completed, LED0 is turned on. Then the master transmits and receives 3-byte data to and from slave 1. When the
3-byte transmission and reception have been completed, LED1 is turned on. If an error occurs during a transmission or
reception, the operation is terminated and LED2 is turned on.

Slave 0 and slave 1 transmit and receive 3-byte data to and from the master. When the 3-byte transmission and
reception have been completed, LED1 is turned on. If an error occurs during a transmission or reception, the operation
is terminated and LED2 is turned on.

- RSPI mode: SPI operation (four-wire method)
- Communication mode: full-duplex synchronous serial communications
- Transfer rate: 6.25 kbps
- Transfer bit length: 8 bits
- Parity: None
- Sequence length: 1 sequence
- Number of frames: 1 frame

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows a Usage Example.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
RSPI Full-duplex synchronous serial communications
I/O ports Turn on LEDs

RX220 Group

MOSIA
MISOA

Renesas Starter Kit for RX220

P15
P16

Output for LED1
Output for LED2

RX220 Group

MOSIA
MISOA

Renesas Starter Kit for RX220

P14

P16

Output for LED0

Output for LED2

RSPCKA RSPCKA

SSLA0
SSLA1

SSLA0

Master Slaves

Slave 0

RX220 Group

MOSIA
MISOA

Renesas Starter Kit for RX220

P15
P16

Output for LED1
Output for LED2

RSPCKA

SSLA0

Slave 1

P15Output for LED1

Figure 1.1 Usage Example

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 5 of 56
Dec 16, 2013

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used R5F52206BDFP (RX220 Group)
Operating frequencies - Main clock: 20 MHz

- System clock (ICLK): 20 MHz (main clock divided by 1)
- Peripheral module clock B (PCLKB): 20 MHz (main clock divided by 1)

Operating voltage 5.0 V
Integrated development
environment

Renesas Electronics Corporation
 High-performance Embedded Workshop Version 4.09.01

C compiler Renesas Electronics Corporation
C/C++ Compiler Package for RX Family V.1.02 Release 01

Compile options
-cpu=rx200 -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -nologo

(The default setting is used in the integrated development environment.)
iodefine.h version Version 1.0A
Endian Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Renesas Starter Kit for RX220 (product part no.: R0K5RX220C000BE)

3. Reference Application Note
For additional information associated with this document, refer to the following application note.

- RX220 Group Initial Setting Rev. 1.00 (R01AN1494EJ0100_RX220)

The initial setting functions in the reference application note are used in the sample code in this application note. The
revision number of the reference application note is the one when this application note was made. However the latest
version is always recommended. Visit the Renesas Electronics Corporation website to check and download the latest
version.

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 6 of 56
Dec 16, 2013

4. Hardware (Master)

4.1 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

The number of pins in the sample code is set for the 100-pin package. When using products with less than 100 pins,
select pins appropriate to the product used.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function

P14 Output Outputs a signal for LED0
(completion of RSPI transmission to/reception from slave 0)

P15 Output Outputs a signal for LED1
(completion of RSPI transmission to/reception from slave 1)

P16 Output Outputs a signal for LED2 (RSPI transmit/receive error)
PA0/SSLA1 Output Outputs a signal to select slave 1.
PA4/SSLA0 Output Outputs a signal to select slave 0.
PC5/RSPCKA Output Clock output pin
PC6/MOSIA Output Data output pin
PC7/MISOA Input Data input pin

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 7 of 56
Dec 16, 2013

5. Software (Master)
After a reset, the user interface function (RSPI initialization) is called to initialize the RSPI.

After the initialization, slave 0 is specified, the user interface function (RSPI transmit/receive start) is called, and
transmission and reception are enabled. When the 3-byte transmission and reception have been completed, RSPI
transmission and reception are disabled, and the callback function (completion of RSPI transmission to/reception from
slave 0) is called. LED0 is turned on with the callback function.

After the transmission and reception have been completed between the master and slave 0, transmission and reception
between the master and slave 1 are performed in the same manner. After the transmission and reception have been
completed, the callback function (completion of RSPI transmission to/reception from slave 1) is called. LED1 is turned
on with the callback function.

If a transmit/receive error occurs, RSPI transmission and reception are disabled, the callback function (RSPI
transmit/receive error) is called, and LED2 is turned on.

Settings for the peripheral function are as follows and Figure 5.1 shows the Software Configuration.

RSPI

- RSPI mode: SPI operation (four-wire method)
- Communication mode: Full-duplex synchronous serial communications
- Transfer rate: 6.25 kbps
- Clock source: PCLKB (20 MHz)
- Transfer bit length: 8 bits
- Parity: None
- Sequence length: 1 sequence
- Number of frames: 1 frame
- Error detection: Overrun error
- Interrupt source: RSPI error interrupt (SPEI) enabled

 RSPI receive interrupt (SPRI) enabled
 RSPI transmit interrupt (SPTI) enabled
 RSPI idle interrupt (SPII) enabled

Main processing (main.c)

User interface function (RSPI initialization)

User interface function
(RSPI transmit/receive start)

Callback function
(Completion of RSPI transmission

to/reception from slave 0)

Callback function
(Completion of RSPI transmission

to/reception from slave 1)

Callback function
(RSPI transmit/receive error)

SPI operation (four-wire method)
serial communication (rspi.c)

Main processing

RSPI idle interrupt function

RSPI transmit/receive error
interrupt function

User interface function (obtain RSPI state)

Calls functions

RSPI transmit interrupt function

Internal function (static)External function (global)

RSPI receive interrupt function

Figure 5.1 Software Configuration

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 8 of 56
Dec 16, 2013

5.1 Operation Overview
Figure 5.2 and Figure 5.3 show the timing of serial communication with the SPI operation (four-wire method), and (1)
to (9) in the figures correspond to numbers in the operation descriptions below.

(1) Initialization
Initializes the RSPI using the user interface function (RSPI initialization).

(2) Starting transmission to/reception from slave 0
Calls the user interface function (RSPI transmit/receive start) with slave 0 selected as the argument.
With the user interface function, verifies the SPSR.IDLNF bit. When the bit is 1 (RSPI is in the transfer state),
returns RSPI_BUSY (RSPI transmission/reception being processed). When the bit is 0 (RSPI is in the idle state),
sets the transmit/receive busy flag to 1 and the SPCMD0.SSLA[2:0] bits to 000b (SSL0). Sets the SPCR.SPEIE bit
to 1 (enables the generation of RSPI error interrupt requests), the SPCR.SPTIE bit to 1 (enables the generation of
RSPI transmit interrupt requests), the SPCR.SPE bit to 1 (enables the RSPI function), and SPCR.SPRIE bit to 1
(enables the generation of RSPI receive interrupt requests). Sets the IEN bits for the RSPI error interrupt, RSPI
receive interrupt, and RSPI transmit interrupt to 1 and starts a transmission and reception.

(3) Transmitting data to slave 0
In the RSPI transmit interrupt handling, writes the value in the transmit buffer for slave 0 to the SPDR register.
When the last data has been written, sets the SPTIE bit to 0 (disables the generation of RSPI transmit interrupt
requests) and the SPCR2.SPIIE bit to 1 (enables the generation of idle interrupt requests).

(4) Receiving data from slave 0
In the RSPI receive interrupt handling, writes the value in the SPDR register to the receive buffer for slave 0. When
the last data has been received, sets the SPRIE bit to 0 (disables the generation of RSPI receive interrupt requests)
and the SPEIE bit to 0 (disables the generation of RSPI error interrupt requests).

(5) Completing the transmission to/reception from slave 0
When the transmission and reception for the last data have been completed, the RSPI idle interrupt request is
generated. In the RSPI idle interrupt handling, sets the SPE bit to 0 (disables the RSPI function), the SPIIE bit to 0
(disables the generation of idle interrupt requests), the transmit/receive busy flag to 0, and calls the callback
function (completion of RSPI transmission to/reception from slave 0). Then LED0 is turned on.

(6) Starting a transmission to/reception from slave 1
Sets 001b (SSL1) to the SPCMD0.SSLA[2:0] bits and performs the same operations as (2) above to start a
transmission and reception.

(7) Transmitting data to slave 1
In the RSPI transmit interrupt handling, writes the value in the transmit buffer for slave 1 to the SPDR register.
Performs the same operations as (3) above to transmit data.

(8) Receiving data from slave 1
In the RSPI receive interrupt handling, writes the value in the SPDR register to the receive buffer for slave 1.
Performs the same operations as (4) above to receive data.

(9) Completing the transmission to/reception from slave 1
Performs the same operations as (5) above to complete transmission and reception. Calls the callback function
(completion of RSPI transmission to/reception from slave 1). Then LED1 is turned on.

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 9 of 56
Dec 16, 2013

Set to 1 by a program Set to 0 by a program

0

1

0

1

(2)

0

1

0

1

0

1

0

1

0

1

0

1

SPCR.SPE bit

IEN bit for the RSPI
transmit interrupt

IEN bit for the RSPI
idle interrupt

IR flag for the RSPI
idle interrupt

Transmit/receive
busy flag

SPCR.SPTIE bit

IR flag for the RSPI
transmit interrupt

A (41h)

Set to 1 by a program

Set to 0 by a program

(1)

Becomes 0 by an interrupt
acceptance

SPCR2.SPIIE bit

0

1

0

1

SPCR.SPRIE bit

SPCR.SPEIE bit

0

1

0

1

IEN bit for the RSPI
receive interrupt

IR flag for the RSPI
receive interrupt

Set to 1 by a program Set to 0 by a program

Becomes 0 by an interrupt
acceptance

SSLA0 pin (1)

SSLA1 pin (1)

RSPCKA pin (1)

MOSIA pin (1)

MISOA pin (1) 1 (31h)

B (42h)

2 (32h)

C (43h)

3 (33h)

P14 pin (LED0)

P15 pin (LED1)

(3) (3) (4)(3) (4) (4) (5)

Becomes 0 by an interrupt
acceptance

Becomes 0 when the SPIIE bit
is cleared

Transmit data in the master

Transmit data in the slave

0

1IEN bit for the RSPI
error interrupt

Set to 1 by a program Set to 0 by a program

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

Note:
1. Pull-up resistor is connected externally.

Figure 5.2 Timing of Serial Communication with SPI Operation (Four-Wire Method) when
Transmitting to/Receiving from Slave 0

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 10 of 56
Dec 16, 2013

Set to 0 by a program

0

1

0

1

(6)

0

1

0

1

0

1

0

1

0

1

0

1

SPCR.SPE bit

IEN bit for the RSPI
transmit interrupt

IEN bit for the RSPI
idle interrupt

IR flag for the RSPI
idle interrupt

Transmit/receive
busy flag

SPCR.SPTIE bit

IR flag for the RSPI
transmit interrupt

D (44h)

Set to 1 by a program

Set to 1 by a program

Set to 0 by a program

Becomes 0 by an interrupt
acceptance

SPCR2.SPIIE bit

0

1

0

1

SPCR.SPRIE bit

SPCR.SPEIE bit

0

1

0

1

IEN bit for the RSPI
receive interrupt

IR flag for the RSPI
receive interrupt

Set to 1 by a program Set to 0 by a program

Becomes 0 by an interrupt
acceptance

SSLA0 pin (1)

SSLA1 pin (1)

RSPCKA pin (1)

MOSIA pin (1)

MISOA pin (1) 1 (31h)

E (45h)

2 (32h)

F (46h)

3 (33h)

P14 pin (LED0)

P15 pin (LED1)

(7) (7) (8) (7) (8) (8) (9)

Becomes 0 by an interrupt
acceptance

Transmit data in the slave

Transmit data in the master

0

1IEN bit for the RSPI
error interrupt

Set to 1 by a program Set to 0 by a program

Becomes 0 when the SPIIE bit
is cleared

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

Note:
1. Pull-up resistor is connected externally.

Figure 5.3 Timing of Serial Communication with SPI Operation (Four-Wire Method) when
Transmitting to/Receiving from Slave 1

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 11 of 56
Dec 16, 2013

5.2 File Composition
Table 5.1 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 5.1 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing

r_init_stop_module.c Stop processing for active peripheral functions after a
reset

r_init_stop_module.h Header file for r_init_stop_module.c
r_init_non_existent_port.c Nonexistent port initialization
r_init_non_existent_port.h Header file for r_init_non_existent_port.c
r_init_clock.c Clock initialization
r_init_clock.h Header file for r_init_clock.c

rspi.c Serial communication with SPI operation (four-wire
method)

rspi.h Header file for rspi.c

5.3 Option-Setting Memory
Table 5.2 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 5.2 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents
OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh The IWDT is stopped after a reset.

OFS1 FFFF FF8Bh to FFFF FF88h FFFF FFFFh
The voltage monitor 0 reset is disabled
after a reset.
HOCO oscillation is disabled after a reset.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 12 of 56
Dec 16, 2013

5.4 Constants
Table 5.3 to Table 5.5 list the Constants Used in the Sample Code.

Table 5.3 Constants Used in the Sample Code (main.c)

Constant Name Setting Value Contents
LED0_REG_PODR PORT1.PODR.BIT.B4 LED0 output data store bit
LED0_REG_PDR PORT1.PDR.BIT.B4 LED0 I/O select bit
LED0_REG_PMR PORT1.PMR.BIT.B4 LED0 pin mode control bit
LED1_REG_PODR PORT1.PODR.BIT.B5 LED1 output data store bit
LED1_REG_PDR PORT1.PDR.BIT.B5 LED1 I/O select bit
LED1_REG_PMR PORT1.PMR.BIT.B5 LED1 pin mode control bit
LED2_REG_PODR PORT1.PODR.BIT.B6 LED2 output data store bit
LED2_REG_PDR PORT1.PDR.BIT.B6 LED2 I/O select bit
LED2_REG_PMR PORT1.PMR.BIT.B6 LED2 pin mode control bit
LED_ON 0 LED output data: Turned on
LED_OFF 1 LED output data: Turned off
TR_SIZE 3 Transmission/reception size
BUF_SIZE TR_SIZE Buffer size

Table 5.4 Constants Used in the Sample Code (rspi.c)

Constant Name Setting Value Contents
SPSR_ERROR_FLAGS 0Dh Bit pattern of an error flag in the RSPI.SPSR register

B_RSPI_BUSY state.bit.b_rspi_busy
Transmit/receive busy flag

0: Transmission/reception ready
1: Transmission/reception busy

B_RX_ORER state.bit.b_rx_orer
Overrun error flag

0: Overrun error not occurred
1: Overrun error occurred

Table 5.5 Constants Used in the Sample Code (rspi.h)

Constant Name Setting Value Contents

RSPI_OK 00h Return value of the RSPI_PreTrans function:
RSPI transmit/receive start

RSPI_NOT_IDLE 01h Return value of the RSPI_PreTrans function:
RSPI transmission/reception being processed

RSPI_NG 02h Return value of the RSPI_PreTrans function:
Argument error

RSPI_SSL0 0000h Setting value of the SSL signal assertion setting bit in RSPI
command registers 0 to 7 (SSL0 selected).

RSPI_SSL1 0010h Setting value of the SSL signal assertion setting bit in RSPI
command registers 0 to 7 (SSL1 selected).

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 13 of 56
Dec 16, 2013

5.5 Structure/Union List
Figure 5.4 shows the Structure/Union Used in the Sample Code.

#pragma bit_order left /* Bit field order: The bit field members are allocated from upper bits */
#pragma unpack /* The boundary alignment value for structure members: Alignment by member type */
typedef union
{

uint8_t byte;
struct
{

uint8_t b_rspi_busy :1; /* Transmit/receive busy flag 0: Transmission/reception ready 1: Transmission/reception busy */
uint8_t b_rx_orer :1; /* Overrun error flag 0: Overrun error not occurred 1: Overrun error occurred */
uint8_t :6; /* Not used */

} bit;
} rspi_state_t;
#pragma packoption /* End of specification for the boundary alignment value for structure members */
#pragma bit_order /* End of specification for the bit field order */

Figure 5.4 Structure/Union Used in the Sample Code

5.6 Variables
Table 5.6 lists the static Variables.

Table 5.6 static Variables

Type Variable Name Contents Function Used
static uint8_t tx_buf_0[] Transmit buffer for slave 0 main
static uint8_t rx_buf_0[BUF_SIZE] Receive buffer for slave 0 main
static uint8_t tx_buf_1[] Transmit buffer for slave 1 main
static uint8_t rx_buf_1[BUF_SIZE] Receive buffer for slave 1 main
static const uint8_t * pbuf_tx Pointer to the transmit buffer RSPI_PreTrans

rspi_spti_isr static uint8_t tx_cnt Transmit counter
static uint8_t * pbuf_rx Pointer to the receive buffer RSPI_PreTrans

rspi_spri_isr static uint8_t rx_cnt Receive counter

static rspi_state_t state RSPI state

RSPI_PreTrans
RSPI_GetState
rspi_spii_isr
rspi_spei_isr

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 14 of 56
Dec 16, 2013

5.7 Functions
Table 5.7 lists the Functions.

Table 5.7 Functions

Function Name Outline
main Main processing
port_init Port initialization
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_NonExistentPort Nonexistent port initialization
R_INIT_Clock Clock initialization
peripheral_init Peripheral function initialization
cb_rspi_slave0_end Callback function (completion of RSPI transmission to/reception from slave 0)
cb_rspi_slave1_end Callback function (completion of RSPI transmission to/reception from slave 1)
cb_rspi_rx_error Callback function (RSPI transmit/receive error)
RSPI_Init User interface function (RSPI initialization)
RSPI_PreTrans User interface function (RSPI transmit/receive start)
RSPI_GetState User interface function (obtain RSPI state)
rspi_spti_isr RSPI transmit interrupt
rspi_spii_isr RSPI idle interrupt
rspi_spri_isr RSPI receive interrupt
rspi_spei_isr RSPI error interrupt
Excep_RSPI0_SPEI0 RSPI0_SPEI0 interrupt handling
Excep_RSPI0_SPRI0 RSPI0_SPRI0 interrupt handling
Excep_RSPI0_SPTI0 RSPI0_SPTI0 interrupt handling
Excep_RSPI0_SPII0 RSPI0_SPII0 interrupt handling

5.8 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header None
Declaration void main(void)
Description After initialization, starts RSPI transmission to and reception from slave 0. When the

transmission and reception have been completed, starts RSPI transmission to and
reception from slave 1.

Arguments None
Return Value None

port_init
Outline Port initialization
Header None
Declaration static void port_init(void)
Description Initializes the ports.
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 15 of 56
Dec 16, 2013

R_INIT_StopModule
Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h
Declaration void R_INIT_StopModule(void)
Description Configures the setting to enter the module stop state.
Arguments None
Return Value None
Remarks Transition to the module stop state is not performed in the sample code. Refer to the

RX220 Group Initial Setting Rev. 1.00 application note for details on this function.

R_INIT_NonExistentPort
Outline Nonexistent port initialization
Header r_init_non_existent_port.h
Declaration void R_INIT_NonExistentPort(void)
Description Initializes port direction registers for ports that do not exist in products with less than

100 pins.
Arguments None
Return Value None
Remarks The number of pins in the sample code is set for the 100-pin package

(PIN_SIZE=100). After this function is called, when writing in byte units to the PDR
registers or PODR registers which have nonexistent ports, set the corresponding bits
for nonexistent ports as follows: set the I/O select bits in the PDR registers to 1 and
set the output data store bits in the PODR registers to 0.
Refer to the RX220 Group Initial Setting Rev. 1.00 application note for details on this
function.

R_INIT_Clock
Outline Clock initialization
Header r_init_clock.h
Declaration void R_INIT_Clock(void)
Description Initializes the clock.
Arguments None
Return Value None
Remarks The sample code selects processing which uses PLL as the system clock without

using the sub-clock.
Refer to the RX220 Group Initial Setting Rev. 1.00 application note for details on this
function.

peripheral_init
Outline Peripheral function initialization
Header None
Declaration static void peripheral_init(void)
Description Initializes peripheral functions used.
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 16 of 56
Dec 16, 2013

cb_rspi_slave0_end
Outline Callback function (completion of RSPI transmission to/reception from slave 0)
Header None
Declaration static void cb_rspi_slave0_end(void)
Description This function is called when RSPI transmission and reception have been completed

between the master and slave 0.
Arguments None
Return Value None

cb_rspi_slave1_end
Outline Callback function (completion of RSPI transmission to/reception from slave 1)
Header None
Declaration static void cb_rspi_slave1_end(void)

Description This function is called when RSPI transmission and reception have been completed
between the master and slave 1.

Arguments None
Return Value None

cb_rspi_rx_error
Outline Callback function (RSPI transmit/receive error)
Header None
Declaration static void cb_rspi_rx_error(void)
Description This function is called when an RSPI transmit/receive error occurs.
Arguments None
Return Value None
Remarks Error processing is not performed in the sample code. Add a program as required.

RSPI_Init
Outline User interface function (RSPI initialization)
Header rspi.h
Declaration void RSPI_Init(void)
Description Initializes the RSPI.
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 17 of 56
Dec 16, 2013

RSPI_PreTrans

Outline User interface function (RSPI transmit/receive start)
Header rspi.h
Declaration uint8_t RSPI_PreTrans(uint16_t ssl,

const uint8_t * pbuf_t,
uint8_t * pbuf_r,
uint8_t num,
CallBackFunc pcb_end,
CallBackFunc pcb_rx_error)

Description Verifies that the RSPI is in idle state. Sets the SSL pin specified by the argument.
Enables the RSPI function, RSPI transmit interrupt, RSPI receive interrupt, and RSPI
error interrupt, then starts RSPI transmission and reception.

Arguments uint16_t ssl: SSL pin selection
const uint8_t * pbuf_t: Pointer to the transmit data store buffer
uint8_t * pbuf_r: Pointer to the receive data store buffer
uint8_t num: Number of bytes to be transmitted/received
CallBackFunc pcb_end: Pointer to the callback function (completion of RSPI

transmission/reception)
CallBackFunc pcb_rx_error: Pointer to the callback function (RSPI transmit/receive

error)
Return Value RSPI_NG: Argument error (number of bytes to be transmitted/received is 0)

RSPI_NOT_IDLE: RSPI transmission/reception being processed
RSPI_OK: RSPI transmission/reception started

RSPI_GetState
Outline User interface function (obtain RSPI state)
Header rspi.h
Declaration rspi_state_t RSPI_GetState(void)
Description Returns the RSPI state.
Arguments None
Return Value rspi_state_t.bit.b_rspi_busy: Transmit/receive busy flag

0: Transmission/reception ready
1: Transmission/reception busy

rspi_state_t.bit.b_rx_orer: Overrun error flag
0: Overrun error not occurred
1: Overrun error occurred

rspi_spti_isr
Outline RSPI transmit interrupt
Header None
Declaration static void rspi_spti_isr(void)
Description This function is called in the RSPI0.SPTI0 interrupt handling. Writes the transmit data

to the SPDR register. After transmitting the last data, disables generating the RSPI
transmit interrupt request and enables generating the RSPI idle interrupt request.

Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 18 of 56
Dec 16, 2013

rspi_spii_isr
Outline RSPI idle interrupt
Header None
Declaration static void rspi_spii_isr(void)
Description This function is called in the RSPI0.SPII0 interrupt handling. Disables the RSPI

function. Calls the callback function (completion of RSPI transmission to/reception
from slave 0) or callback function (completion of RSPI transmission to/reception from
slave 1).

Arguments None
Return Value None

rspi_spri_isr
Outline RSPI receive interrupt
Header None
Declaration static void rspi_spri_isr(void)
Description This function is called in the RSPI0.SPRI0 interrupt handling. Reads the receive data

from the SPDR register. After receiving the last data, disables generating the RSPI
receive interrupt request.

Arguments None
Return Value None

rspi_spei_isr
Outline RSPI error interrupt
Header None
Declaration static void rspi_spei_isr(void)
Description This function is called in the RSPI0.SPEI0 interrupt handling. Disables the RSPI

function and calls the callback function (RSPI transmit/receive error).
Arguments None
Return Value None

Excep_RSPI0_SPEI0
Outline RSPI0.SPEI0 interrupt handling
Header None
Declaration static void Excep_RSPI0_SPEI0(void)
Description Performs processing for the RSPI error interrupt.
Arguments None
Return Value None

Excep_RSPI0_SPRI0
Outline RSPI0.SPRI0 interrupt handling
Header None
Declaration static void Excep_RSPI0_SPRI0(void)
Description Performs processing for the RSPI receive interrupt.
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 19 of 56
Dec 16, 2013

Excep_RSPI0_SPTI0
Outline RSPI0.SPTI0 interrupt handling
Header None
Declaration static void Excep_RSPI0_SPTI0(void)
Description Performs processing for the RSPI transmit interrupt.
Arguments None
Return Value None

Excep_RSPI0_SPII0
Outline RSPI0.SPII0 interrupt handling
Header None
Declaration static void Excep_RSPI0_SPII0(void)
Description Performs processing for the RSPI idle interrupt.
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 20 of 56
Dec 16, 2013

5.9 Flowcharts
5.9.1 Main Processing
Figure 5.5 shows the Main Processing.

Starts transmitting to/receiving from slave 0

main

Has the RSPI
transmission/reception

started?

RSPI transmission/reception state is ready

Initialize the RAM Sets 00h to the receive buffer

I flag ← 0Disable maskable interrupts

Enable maskable interrupts I flag ← 1

Stop processing for active
peripheral functions after a reset

R_INIT_StopModule()

Port initialization
port_init()

Peripheral function initialization
peripheral_init()

Clock initialization
R_INIT_Clock()

Nonexistent port initialization
R_INIT_NonExistentPort()

User interface function
(RSPI transmit/receive start)

RSPI_PreTrans()

RSPI transmission/reception being processed

RSPI transmission/reception started or an argument error occurred

User interface function
(obtain RSPI state)
RSPI_GetState()

Is the RSPI
transmission/reception being

processed?

RSPI transmission/reception state is busy

User interface function
(RSPI transmit/receive start)

RSPI_PreTrans()

Starts transmitting to/receiving from slave 1

Has the RSPI
transmission/reception

started?

RSPI transmission/reception being processed

RSPI transmission/reception started or an argument error occurred

Figure 5.5 Main Processing

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 21 of 56
Dec 16, 2013

5.9.2 Port Initialization
Figure 5.6 shows the Port Initialization.

port_init

return

Set port output data PORT1.PODR register
 B4 bit ← 1: LED0: Turned off
 B5 bit ← 1: LED1: Turned off
 B6 bit ← 1: LED2: Turned off

Set port directions

Set port modes

PORT1.PDR register
 B4 bit ← 1: LED0: Output
 B5 bit ← 1: LED1: Output
 B6 bit ← 1: LED2: Output

PORT1.PMR register
 B4 bit ← 0: LED0: Uses pin as general I/O port.
 B5 bit ← 0: LED1: Uses pin as general I/O port.
 B6 bit ← 0: LED2: Uses pin as general I/O port.

Figure 5.6 Port Initialization

5.9.3 Peripheral Function Initialization
Figure 5.7 shows the Peripheral Function Initialization.

peripheral_init

User interface function
(RSPI initialization)

RSPI_Init()

return

Figure 5.7 Peripheral Function Initialization

5.9.4 Callback Function (Completion of RSPI Transmission to/Reception from Slave 0)
Figure 5.8 shows the Callback Function (Completion of RSPI Transmission to/Reception from Slave 0).

cb_rspi_slave0_end

return

Turn on LED0 PORT1.PODR register
 B4 bit ← 0

Figure 5.8 Callback Function (Completion of RSPI Transmission to/Reception from Slave 0)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 22 of 56
Dec 16, 2013

5.9.5 Callback Function (Completion of RSPI Transmission to/Reception from Slave 1)
Figure 5.9 shows the Callback Function (Completion of RSPI Transmission to/Reception from Slave 1).

cb_rspi_slave1_end

return

Turn on LED1 PORT1.PODR register
 B5 bit ← 0

Figure 5.9 Callback Function (Completion of RSPI Transmission to/Reception from Slave 1)

5.9.6 Callback Function (RSPI Transmit/Receive Error)
Figure 5.10 shows the Callback Function (RSPI Transmit/Receive Error).

cb_rspi_rx_error

User interface function
(obtain RSPI state)
RSPI_GetState()

return

Turn on LED2 PORT1.PODR register
 B6 bit ← 0

Has an overrun
error occurred?

Yes

No Processing when an overrun
error occurs (1)

Note:
1. Error processing is not performed in the sample code. Add a program as required.

Figure 5.10 Callback Function (RSPI Transmit/Receive Error)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 23 of 56
Dec 16, 2013

5.9.7 User Interface Function (RSPI Initialization)
Figure 5.11 and Figure 5.12 show the User Interface Function (RSPI Initialization).

RSPI_Init

Cancel the module stop state PRCR register ← A502h
 PRC1 bit = 1: Enables writing to registers related to the operation.
MSTPCRB register
 MSTPB17 bit ← 0: The module stop state is canceled for the RSPI0 module.
PRCR register ← A500h
 PRC1 bit = 0: Disables writing to registers related to the operation.

IER05 register
 IEN4 bit ← 0: RSPI0.SPEI0 interrupt request is disabled.
 IEN5 bit ← 0: RSPI0.SPRI0 interrupt request is disabled.
 IEN6 bit ← 0: RSPI0.SPTI0 interrupt request is disabled.
 IEN7 bit ← 0: RSPI0.SPII0 interrupt request is disabled.

A

Set the SSL0 and SSL1
signal polarities

RSPI0.SSLP register ← 00h
 SSL0P bit = 0: SSL0 signal is active low.
 SSL1P bit = 0: SSL1 signal is active low.

Set the RSPI pin RSPI0.SPPCR register ← 30h
 SPLP bit = 0: Normal mode
 SPLP2 bit = 0: Normal mode
 MOIFV bit = 1: The level output on the MOSIA pin during MOSI idling corresponds to high.
 MOIFE bit = 1: MOSI output value equals the value set in the MOIFV bit.

Set the bit rate RSPI0.SPBR register ← 200 - 1: 6250 bps = 20 MHz ÷ (2 × (200 - 1 + 1) × 23)

Set the number of frames RSPI0.SPDCR register ← 20h
 SPFC[1:0] bits = 00b: 1 frame
 SPRDTD bit = 0: SPDR values are read from the receive buffer
 SPLW bit = 1: SPDR is accessed in longwords

Set the sequence length RSPI0.SPSCR register ← 00h
 SPSLN[2:0] bits = 000b: Sequence length is 1.

Set the clock delay RSPI0.SPCKD register ← 00h
 SCKDL[2:0] bits = 000b: 1 RSPCK

Set the SSL negate delay RSPI0.SSLND register ← 00h
 SLNDL[2:0] bits = 000b: 1 RSPCK

Set the next-access delay RSPI0.SPND register ← 00h
 SPNDL[2:0] bits = 000b: 1 RSPCK + 2 PCLK

Specify the parity settings RSPI0.SPCR2 register ← 00h
 SPPE bit = 0: Does not add the parity bit to transmit data and does not check
 the parity bit of receive data.
 SPIIE bit = 0: Disables the generation of idle interrupt requests.
 PTE bit = 0: Disables the self-diagnosis function of the parity circuit.

Specify transmit/receive format
settings

RSPI0.SPCMD0 register ← 070Dh
 CPHA bit = 1: Data variation on odd edge, data sampling on even edge
 CPOL bit = 0: RSPCK is low when idle.
 BRDV[1:0] bits = 11b: These bits select the base bit rate divided by 8
 SSLA[2:0] bits = 000b: SSL0
 SSLKP bit = 0: Negates all SSL signals upon completion of transfer
 SPB[3:0] bits = 0111b: 8 bits
 LSBF bit = 0: MSB first
 SPNDEN bit = 0: A next-access delay of 1 RSPCK + 2 PCLK
 SLNDEN bit = 0: An SSL negation delay of 1 RSPCK
 SCKDEN bit = 0: An RSPCK delay of 1 RSPCK

Disable the RSPI interrupt requests

Figure 5.11 User Interface Function (RSPI Initialization) (1/2)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 24 of 56
Dec 16, 2013

return

Clear the RSPI interrupt requests IR045 register
 IR flag ← 0: No RSPI0.SPRI0 interrupt request is generated.
IR046 register
 IR flag ← 0: No RSPI0.SPTI0 interrupt request is generated.

IPR044 register
 IPR[3:0] bits ← 0001b: Level 1

A

Set port modes PORTA.PMR register
 B0 bit ← 0: Uses the SSLA1 pin as general I/O port.
 B4 bit ← 0: Uses the SSLA0 pin as general I/O port.
PORTC.PMR register
 B5 bit ← 0: Uses the RSPCKA pin as general I/O port.
 B6 bit ← 0: Uses the MOSIA pin as general I/O port.
 B7 bit ← 0: Uses the MISOA pin as general I/O port.

Enable writing to the PFSWE bit MPC.PWPR register
 B0WI bit ← 0

Enable writing to the PFS register MPC.PWPR register
 PFSWE bit ← 1

Select pin functions MPC.PA0PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: SSLA1
MPC.PA4PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: SSLA0
MPC.PC5PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: RSPCKA
MPC.PC6PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: MOSIA
MPC.PC7PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: MISOA

Disable writing to the PFS register MPC.PWPR register
 PFSWE bit ← 0

Disable writing to the PFSWE bit MPC.PWPR register
 B0WI bit ← 1

Set the port modes PORTA.PMR register
 B0 bit ← 1: Uses the SSLA1 pin as I/O port for peripheral function.
 B4 bit ← 1: Uses the SSLA0 pin as I/O port for peripheral function.
PORTC.PMR register
 B5 bit ← 1: Uses the RSPCKA pin as I/O port for peripheral function.
 B6 bit ← 1: Uses the MOSIA pin as I/O port for peripheral function.
 B7 bit ← 1: Uses the MISOA pin as I/O port for peripheral function.

Specify RSPI settings RSPI0.SPCR register ← 08h
 SPMS bit = 0: SPI operation (four-wire method)
 TXMD bit = 0: Full-duplex synchronous serial communications
 MODFEN bit = 0: Disables the detection of mode fault error.
 MSTR bit = 1: Master mode
 SPEIE bit = 0: Disables the generation of RSPI error interrupt requests.
 SPTIE bit = 0: Disables the generation of RSPI transmit interrupt requests.
 SPE bit = 0: Disables the RSPI function.
 SPRIE bit = 0: Disables the generation of RSPI receive interrupt requests.

Read the SPCR register

Set N-channel open-drain as the
output type

PORTC.ODR1 register
 B4 bit ← 1: MOSIA: N-channel open-drain
 B2 bit ← 1: RSPCKA: N-channel open-drain

dummy ← RSPI0.SPCR register

Set the RSPI interrupt priority level

Figure 5.12 User Interface Function (RSPI Initialization) (2/2)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 25 of 56
Dec 16, 2013

5.9.8 User Interface Function (RSPI Transmit/Receive Start)
Figure 5.13 and Figure 5.14 show the RSPI Transmit/Receive Start.

RSPI_PreTrans

Arguments
 uint16_t ssl: SSL pin selection
 const uint8_t * pbuf_t: Pointer to the transmit data store buffer
 uint8_t * pbuf_r: Pointer to the receive data store buffer
 uint8_t num: Number of bytes to be transmitted/received
 CallBackFunc pcb_end: Pointer to the callback function (completion of RSPI transmission/reception)
 CallBackFunc pcb_rx_error: Pointer to the callback function (RSPI transmit/receive error)

Set arguments to the RAM pbuf_tx ← pbuf_t
pbuf_rx ← pbuf_r
tx_cnt ← num
rx_cnt ← num
pcb_rspi_end ← pcb_end
pcb_rspi_rx_error ← pcb_rx_error

Is the number
 of bytes to be transmitted/

received 0?

Is the RSPI transfer
being processed?

return (return_value)

Yes

No

Yes

No

Set the return value
(argument error)

return_value ← RSPI_NG

Set the transmit/receive busy flag B_RSPI_BUSY ← 1

Clear the overrun error flag B_RX_ORER ← 0

return_value ← RSPI_NOT_IDLE

Reads the RSPI0.SPSR register
 IDLNF bit: 0: RSPI is in the idle state.
 1: RSPI is in the transfer state

Specify SSL signal
assertion settings

A B

Set the return value
(RSPI transmission/reception

being processed)

RSPI0.SPCMD0 register ← 070Dh | ssl

Figure 5.13 User Interface Function (RSPI Transmit/Receive Start) (1/2)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 26 of 56
Dec 16, 2013

return (return_value)

return_value ← RSPI_OK

Disable the RSPI function RSPI0.SPCR register
 SPE bit ← 0

Is the RSPI0.
SPTI0 interrupt request

generated?

Yes

No

Confirm the RSPI0.SPCR.SPE
 bit setting

IR045 register
 IR flag ← 0

IR046 register
 IR flag ← 0

Is the RSPI0.
SPRI0 interrupt request

generated?

Yes

No

A B

Set the return value
(RSPI transmit/receive start)

Clear error flags (2) RSPI0.SPSR register ← A0h
 OVRF bit = 0: No overrun error occurs
 MODF bit = 0: No mode fault error occurs
 PERF bit = 0: No parity error occurs

Disable the RSPI idle interrupt RSPI0.SPCR2 register
 SPIIE bit ← 0: Disables the generation of idle interrupt requests.

Enable the RSPI function.
Enable the SPEI, SPTI, and SPRI

interrupts

RSPI0.SPCR register
 SPEIE bit ← 1: Enables the generation of RSPI error interrupt requests.
 SPTIE bit ← 1: Enables the generation of RSPI transmit interrupt requests.
 SPE bit ← 1: Enables the RSPI function.
 SPRIE bit ← 1: Enables the generation of RSPI receive interrupt requests.

Enable the RSPI0.SPEI0
interrupt request

IER05 register
 IEN4 bit ← 1

Clear the RSPI transmit
interrupt request

Clear the RSPI receive
interrupt request

Disable generating the RSPI
transmit interrupt requests (1)

RSPI0.SPCR register
 SPTIE bit ← 0

Disable generating the RSPI
receive interrupt request (1)

RSPI0.SPCR register
 SPRIE bit ← 0

IER05 register
 IEN5 bit ← 1

IER05 register
 IEN6 bit ← 1

Enable the RSPI0.SPRI0
interrupt request

Enable the RSPI0.SPTI0
interrupt request

Notes:
1. After writing a value to the SPTIE or SPRIE bit, confirm that the written value can be read.
2. After confirming that the value in the flag is 1, write 0 to clear the flag.

Figure 5.14 User Interface Function (RSPI Transmit/Receive Start) (2/2)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 27 of 56
Dec 16, 2013

5.9.9 User Interface Function (Obtain RSPI State)
Figure 5.15 shows the User Interface Function (Obtain RSPI State).

RSPI_GetState

return (state)

Set the RSPI state as the return value

Figure 5.15 User Interface Function (Obtain RSPI State)

5.9.10 RSPI Transmit Interrupt
Figure 5.16 shows the RSPI Transmit Interrupt.

rspi_spti_isr

return

Is the data transmitted
the last data?

Yes

No

Set the transmit data RSPI0.SPDR register ← *pbuf_tx

Dummy read the IDLNF bit
in the SPSR register

Pointer to the transmit buffer + 1 pbuf_tx ← pbuf_tx + 1

Transmit counter - 1 tx_cnt ← tx_cnt - 1

Disable the RSPI transmit
interrupt request

IER05 register
 IEN6 bit ← 0

Disable generating the RSPI
transmit interrupt request (1)

Clear the RSPI transmit
interrupt request

IER05 register
 IEN7 bit ← 1

Enable generating the RSPI
Idle interrupt request

Reads tx_cnt.

RSPI0.SPCR register
 SPTIE bit ← 0

IR046 register
 IR flag ← 0

RSPI0.SPCR2 register
 SPIIE bit ← 1

Enable the RSPI idle
interrupt request

Reads the RSPI0.SPSR register
 IDLNF bit: 0: RSPI is in the idle state.
 1: RSPI is in the transfer state.

Note:
1. After writing a value to the SPTIE bit, confirm that the written value can be read.

Figure 5.16 RSPI Transmit Interrupt

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 28 of 56
Dec 16, 2013

5.9.11 RSPI Idle Interrupt
Figure 5.17 shows the RSPI Idle Interrupt.

rspi_spii_isr

return

Clear the transmit/receive
busy flag

B_RSPI_BUSY ← 0

Callback function
(RSPI transmit/receive end)

pcb_rspi_end()

Disable the RSPI function RSPI0.SPCR register
 SPE bit ← 0

IER05 register
 IEN7 bit ← 0

Disable the RSPI idle
interrupt request

Disable generating the RSPI
idle interrupt request (1)

RSPI0.SPCR2 register
 SPIIE bit ← 0

Note:
1. After writing a value to the SPIIE bit, confirm that the written value can be read.

Figure 5.17 RSPI Idle Interrupt

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 29 of 56
Dec 16, 2013

5.9.12 RSPI Receive Interrupt
Figure 5.18 shows the RSPI Receive Interrupt.

rspi_spri_isr

return

Has the last data
been received?

Yes

No

Store the receive data *pbuf_rx ← RSPI0.SPDR register

Pointer to the receive buffer + 1 pbuf_rx ← pbuf_rx + 1

Receive counter - 1 rx_cnt ← rx_cnt - 1

Reads rx_cnt.

Disable the RSPI receive
interrupt request

IER05 register
 IEN5 bit ← 0

Disable generating the RSPI
receive interrupt request (1)

RSPI0.SPCR register
 SPRIE bit ← 0

Disable the RSPI error
interrupt request

IER05 register
 IEN4 bit ← 0

Disable generating the RSPI
error interrupt request (1)

Clear the RSPI receive
interrupt request

RSPI0.SPCR register
 SPEIE bit ← 0

IR045 register
 IR flag ← 0

Note:
1. After writing a value to the SPRIE bit or SPEIE bit, confirm that the written value can be read.

Figure 5.18 RSPI Receive Interrupt

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 30 of 56
Dec 16, 2013

5.9.13 RSPI Error Interrupt
Figure 5.19 shows the RSPI Error Interrupt.

rspi_spei_isr

return

Has an overrun
error occurred?

Yes

No

Clear the transmit/receive
busy flag

B_RSPI_BUSY ← 0

Callback function
(RSPI transmit/receive error)

pcb_rspi_rx_error()

Reads the RSPI0.SPSR register
 OVRF flag: 0: No overrun error occurs
 1: An overrun error occurs

Set the overrun error flag B_RX_ORER ← 1

Dummy read the SPDR register Reads the RSPI0.SPDR register.

Disable the RSPI function RSPI0.SPCR register
 SPE bit ← 0

Disable the RSPI transmit
interrupt request

IER05 register
 IEN6 bit ← 0

Disable generating the RSPI
transmit interrupt request (1)

RSPI0.SPCR register
 SPTIE bit ← 0

Disable the RSPI receive
interrupt request

IER05 register
 IEN5 bit ← 0

Disable generating the RSPI
receive interrupt request (1)

RSPI0.SPCR register
 SPRIE bit ← 0

Disable the RSPI error
interrupt request

IER05 register
 IEN4 bit ← 0

Disable generating the RSPI error
interrupt request (1)

RSPI0.SPCR register
 SPEIE bit ← 0

Clear RSPI transmit and receive
interrupt requests

IR045 register
 IR flag ← 0
IR046 register
 IR flag ← 0

Clear error flags (2) RSPI0.SPSR register ← A0h
 OVRF bit = 0: No overrun error occurs.
 MODF bit = 0: No mode fault error occurs.
 PERF bit = 0: No parity error occurs.

Notes:
1. After writing a value to the SPTIE, SPRIE, SPEIE, or SPIIE bit, confirm that the written value can be read.
2. After confirming the value in the flag is 1, write 0 to clear the flag.

Clear the RSPI idle interrupt
request

IER05 register
 IEN7 bit ← 0

Disable generating the RSPI idle
interrupt request (1)

RSPI0.SPCR2 register
 SPIIE bit ← 0

Figure 5.19 RSPI Error Interrupt

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 31 of 56
Dec 16, 2013

5.9.14 RSPI0.SPEI0 Interrupt Handling
Figure 5.20 shows the RSPI0.SPEI0 Interrupt Handling.

Excep_RSPI0_SPEI0

return

Determine
an interrupt request

source

RSPI transmit/receive error
interrupt

rspi_spei_isr()

Verify the IR flag

IR = 0

IR = 1 Reads the IR044 register
 IR flag: 0: No interrupt request is generated.
 1: Interrupt request is generated.

Interrupt not
requested

Interrupt
requested

Reads the RSPI0.SPCR register
 SPEIE bit: 0: Disables the generation of RSPI error interrupt requests
 1: Enables the generation of RSPI error interrupt requests
Reads the RSPI0.SPSR register
 OVRF flag: 0: No overrun error occurs
 1: An overrun error occurs
 MODF flag: 0: No mode fault error occurs
 1: A mode fault error occurs
 PERF flag: 0: No parity error occurs
 1: A parity error occurs

Figure 5.20 RSPI0.SPEI0 Interrupt Handling

5.9.15 RSPI0.SPRI0 Interrupt Handling
Figure 5.21 shows the RSPI0.SPRI0 Interrupt Handling.

Excep_RSPI0_SPRI0

return

RSPI receive interrupt
rspi_spri_isr()

Figure 5.21 RSPI0.SPRI0 Interrupt Handling

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 32 of 56
Dec 16, 2013

5.9.16 RSPI0.SPTI0 Interrupt Handling
Figure 5.22 shows the RSPI0.SPTI0 Interrupt Handling.

Excep_RSPI0_SPTI0

return

RSPI transmit interrupt
rspi_spti_isr()

Figure 5.22 RSPI0.SPTI0 Interrupt Handling

5.9.17 RSPI0.SPII0 Interrupt Handling
Figure 5.23 shows the RSPI0.SPII0 Interrupt Handling.

Excep_RSPI0_SPII0

return

Determine
an interrupt request

source

RSPI idle interrupt
rspi_spii_isr()

Verify the IR flag

IR = 0

IR = 1

Reads the IR047 register
 IR flag: 0: No interrupt request is generated.
 1: Interrupt request is generated.

Interrupt not
requested

Interrupt
requested

Reads the RSPI0.SPCR2 register
 SPIIE bit: 0: Disables the generation of idle interrupt requests
 1: Enables the generation of idle interrupt requests
Reads the RSPI0.SPSR register
 IDLNF flag: 0: RSPI is in the idle state
 1: RSPI is in the transfer state

Figure 5.23 RSPI0.SPII0 Interrupt Handling

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 33 of 56
Dec 16, 2013

6. Hardware (Slave)

6.1 Pins Used
Table 6.1 lists the Pins Used and Their Functions.

The number of pins in the sample code is set for the 100-pin package. When using products with less than 100 pins,
select pins appropriate to the product used.

Table 6.1 Pins Used and Their Functions

Pin Name I/O Function
P15 Output Outputs a signal for LED1

(completion of RSPI transmission to/reception from the master)
P16 Output Outputs a signal for LED2 (RSPI transmit/receive error)
PA4/SSLA0 Input Inputs a signal for slave selection
PC5/RSPCKA Input Clock input pin
PC6/MOSIA Input Data input pin
PC7/MISOA Output Data output pin

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 34 of 56
Dec 16, 2013

7. Software (Slave)
After a reset, the user interface function (RSPI initialization) is called to initialize the RSPI.

After the initialization, the user interface function (RSPI transmit/receive start) is called and transmission and reception
are enabled. When the 3-byte transmission and reception have been completed, RSPI transmission and reception are
disabled, and the callback function (completion of RSPI transmission to/reception from the master) is called. LED1 is
turned on with the callback function.

If a transmit/receive error occurs, RSPI transmission and reception are disabled, the callback function (RSPI
transmit/receive error) is called, and LED2 is turned on.

Settings for the peripheral function are as follows and Figure 7.1 shows the Software Configuration.

RSPI

- RSPI mode: SPI operation (four-wire method)
- Communication mode: Full-duplex synchronous serial communications
- Clock source: PCLKB (20 MHz)
- Transfer bit length: 8 bits
- Parity: None
- Sequence length: 1 sequence
- Number of frames: 1 frame
- Error detection: Overrun error

Mode fault error
- Interrupt source: RSPI error interrupt (SPEI) enabled

 RSPI receive interrupt (SPRI) enabled
 RSPI transmit interrupt (SPTI) enabled
 RSPI idle interrupt (SPII) disabled

Main processing (main.c)

Main processing

Callback function
(Completion of RSPI transmission

to/reception from the master)

Callback function
(RSPI transmit/receive error)

SPI operation (four-wire method)
serial communication (rspi.c)

User interface function (RSPI initialization)

User interface function
(RSPI transmit/receive start)

User interface function (Obtain RSPI state)

RSPI transmission interrupt function

RSPI receive interrupt function

RSPI transmit/receive error
interrupt function

Calls functions
Internal function (static)External function (global)

Figure 7.1 Software Configuration

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 35 of 56
Dec 16, 2013

7.1 Operation Overview
Figure 7.2 shows the Timing of Serial Communication with SPI Operation (Four-Wire Method) and (1) to (6) in the
figures correspond to numbers in the operation descriptions below.
(1) Initialization

Initializes the RSPI using the user interface function (RSPI initialization).

(2) Starting transmission to/reception from the master
With the user interface function (RSPI transmit/receive start), verifies the SPSR.IDLNF bit. When the bit is 1
(RSPI is in the transfer state), returns RSPI_BUSY (RSPI transmission/reception being processed). When the bit is
0 (RSPI is in the idle state), sets the transmit/receive busy flag to 1. Sets the SPCR.SPEIE bit to 1 (enables the
generation of RSPI error interrupt requests), the SPCR.SPTIE bit to 1 (enables the generation of RSPI transmit
interrupt requests), the SPCR.SPE bit to 1 (enables the RSPI function), and SPCR.SPRIE bit to 1 (enables the
generation of RSPI receive interrupt requests). Sets the IEN bits for the RSPI error interrupt, RSPI receive interrupt,
and RSPI transmit interrupt to 1. Then waits for an input on the SSLA0 pin and an edge input on the RSPCKA pin
from the master.

(3) Setting transmit data
In the RSPI transmit interrupt handling, writes the value in the transmit buffer to the SPDR register. When the last
data has been written, sets the SPTIE bit to 0 (disables the generation of RSPI transmit interrupt requests).

(4) Transmitting to and receiving from the master
When an input on the SSLA0 pin and an edge input on the RSPCKA pin from the master are confirmed, performs
data transmission and reception.

(5) Receiving data from the master
In the RSPI receive interrupt handling, writes the value in the SPDR register to the receive buffer.

(6) Completing the transmission to/reception from the master
When the reception for the last data has been completed, sets the SPE bit to 0 (disables the RSPI function), the
SPRIE bit to 0 (disables the generation of RSPI receive interrupt requests), the SPEIE bit to 0 (disables the
generation of RSPI error interrupt requests), the transmit/receive busy flag to 0, and calls the callback function
(completion of RSPI transmission to/reception from the master). Then LED1 is turned on.

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 36 of 56
Dec 16, 2013

0

1

0

1

(2)

0

1

0

1

0

1

A (41h)

Set to 1 by a program

Set to 0 by a program

(1)

Becomes 0 by an interrupt
acceptance

0

1

0

1

0

1

0

1

Set to 1 by a program Set to 0 by a program

1 (31h)

B (42h)

2 (32h)

C (43h)

3 (33h)

(3) (3) (4) (5) (6)

Becomes 0 by an interrupt
acceptance

(3)

Becomes 0 by an interrupt
acceptance

Transmit data in the slave

Transmit data in the master

0

1
Set to 1 by a program Set to 0 by a program

Transmit/receive
busy flag

SPCR.SPE bit

SPCR.SPTIE bit

SPCR.SPRIE bit

SPCR.SPEIE bit

IEN bit for the RSPI
transmit interrupt

IR flag for the RSPI
transmit interrupt

IEN bit for the RSPI
receive interrupt

IR flag for the RSPI
receive interrupt

IEN bit for the RSPI
error interrupt

SSLA0 pin (1)

RSPCKA pin (1)

MOSIA pin (1)

MISOA pin (1)

P15 pin (LED1)

High

Low

High

Low

High

Low

High

Low

High

Low

Note:
1. Pull-up resistor is connected externally.

Figure 7.2 Timing of Serial Communication with SPI Operation (Four-Wire Method)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 37 of 56
Dec 16, 2013

7.2 File Composition
Table 7.1 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 7.1 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing

r_init_stop_module.c Stop processing for active peripheral functions after a
reset

r_init_stop_module.h Header file for r_init_stop_module.c
r_init_non_existent_port.c Nonexistent port initialization
r_init_non_existent_port.h Header file for r_init_non_existent_port.c
r_init_clock.c Clock initialization
r_init_clock.h Header file for r_init_clock.c

rspi.c Serial communication with SPI operation (four-wire
method)

rspi.h Header file for rspi.c

7.3 Option-Setting Memory
Table 7.2 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 7.2 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents
OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh The IWDT is stopped after a reset.

OFS1 FFFF FF8Bh to FFFF FF88h FFFF FFFFh
The voltage monitor 0 reset is disabled
after a reset.
HOCO oscillation is disabled after a reset.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 38 of 56
Dec 16, 2013

7.4 Constants
Table 7.3 to Table 7.5 list the Constants Used in the Sample Code.

Table 7.3 Constants Used in the Sample Code (main.c)

Constant Name Setting Value Contents
LED1_REG_PODR PORT1.PODR.BIT.B5 LED1 output data store bit
LED1_REG_PDR PORT1.PDR.BIT.B5 LED1 I/O select bit
LED1_REG_PMR PORT1.PMR.BIT.B5 LED1 pin mode control bit
LED2_REG_PODR PORT1.PODR.BIT.B6 LED2 output data store bit
LED2_REG_PDR PORT1.PDR.BIT.B6 LED2 I/O select bit
LED2_REG_PMR PORT1.PMR.BIT.B6 LED2 pin mode control bit
LED_ON 0 LED output data: Turned on
LED_OFF 1 LED output data: Turned off
TR_SIZE 3 Transmission/reception size
BUF_SIZE TR_SIZE Buffer size

Table 7.4 Constants Used in the Sample Code (rspi.c)

Constant Name Setting Value Contents
SPSR_ERROR_FLAGS 0Dh Bit pattern of an error flag in the RSPI.SPSR register

B_RSPI_BUSY state.bit.b_rspi_busy
Transmit/receive busy flag

0: Transmission/reception ready
1: Transmission/reception busy

B_RX_ORER state.bit.b_rx_orer
Overrun error flag

0: Overrun error not occurred
1: Overrun error occurred

B_RX_MODF state.bit.b_rx_modf
Mode fault error flag

0: Mode fault error not occurred
1: Mode fault error occurred

Table 7.5 Constants Used in the Sample Code (rspi.h)

Constant Name Setting Value Contents

RSPI_OK 00h Return value of the RSPI_PreTrans function:
RSPI transmit/receive start

RSPI_NOT_IDLE 01h Return value of the RSPI_PreTrans function:
RSPI transmission/reception being processed

RSPI_NG 02h Return value of the RSPI_PreTrans function:
Argument error

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 39 of 56
Dec 16, 2013

7.5 Structure/Union List
Figure 7.3 shows the Structure/Union Used in the Sample Code.

#pragma bit_order left /* Bit field order: The bit field members are allocated from upper bits */
#pragma unpack /* The boundary alignment value for structure members: Alignment by member type */
typedef union
{

uint8_t byte;
struct
{

uint8_t b_rspi_busy :1; /* Transmit/receive busy flag 0: Transmission/reception ready 1: Transmission/reception busy */
uint8_t b_rx_orer :1; /* Overrun error flag 0: Overrun error not occurred 1: Overrun error occurred */
uint8_t b_rx_modf :1; /* Mode fault error flag 0: Mode fault error not occurred 1: Mode fault error occurred */
uint8_t :5; /* Not used */

} bit;
} rspi_state_t;
#pragma packoption /* End of specification for the boundary alignment value for structure members */
#pragma bit_order /* End of specification for the bit field order */

Figure 7.3 Structure/Union Used in the Sample Code

7.6 Variables
Table 7.6 lists the static Variables.

Table 7.6 static Variables

Type Variable Name Contents Function Used
static uint8_t tx_buf[] Transmit buffer main
static uint8_t rx_buf[BUF_SIZE] Receive buffer main
static const uint8_t * pbuf_tx Pointer to the transmit buffer RSPI_PreTrans

rspi_spti_isr static uint8_t tx_cnt Transmit counter
static uint8_t * pbuf_rx Pointer to the receive buffer RSPI_PreTrans

rspi_spri_isr static uint8_t rx_cnt Receive counter

static rspi_state_t state RSPI state

RSPI_PreTrans
RSPI_GetState
rspi_spri_isr
rspi_spei_isr

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 40 of 56
Dec 16, 2013

7.7 Functions
Table 7.7 lists the Functions.

Table 7.7 Functions

Function Name Outline
main Main processing
port_init Port initialization
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_NonExistentPort Nonexistent port initialization
R_INIT_Clock Clock initialization
peripheral_init Peripheral function initialization

cb_rspi_end Callback function (completion of RSPI transmission to/reception from the
master)

cb_rspi_rx_error Callback function (RSPI transmit/receive error)
RSPI_Init User interface function (RSPI initialization)
RSPI_PreTrans User interface function (RSPI transmit/receive start)
RSPI_GetState User interface function (obtain RSPI state)
rspi_spti_isr RSPI transmit interrupt
rspi_spri_isr RSPI receive interrupt
rspi_spei_isr RSPI error interrupt
Excep_RSPI0_SPEI0 RSPI0_SPEI0 interrupt handling
Excep_RSPI0_SPRI0 RSPI0_SPRI0 interrupt handling
Excep_RSPI0_SPTI0 RSPI0_SPTI0 interrupt handling

7.8 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header None
Declaration void main(void)
Description After initialization, waits for an input signal on the SSLA0 pin from the master. When

a signal is input through the SSLA0 pin and an edge input is detected on the
RSPCKA pin, starts RSPI transmission and reception.

Arguments None
Return Value None

port_init
Outline Port initialization
Header None
Declaration static void port_init(void)
Description Initializes the ports.
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 41 of 56
Dec 16, 2013

R_INIT_StopModule
Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h
Declaration void R_INIT_StopModule(void)
Description Configures the setting to enter the module stop state.
Arguments None
Return Value None
Remarks Transition to the module stop state is not performed in the sample code. Refer to the

RX220 Group Initial Setting Rev. 1.00 application note for details on this function.

R_INIT_NonExistentPort
Outline Nonexistent port initialization
Header r_init_non_existent_port.h
Declaration void R_INIT_NonExistentPort(void)
Description Initializes port direction registers for ports that do not exist in products with less than

100 pins.
Arguments None
Return Value None
Remarks The number of pins in the sample code is set for the 100-pin package

(PIN_SIZE=100). After this function is called, when writing in byte units to the PDR
registers or PODR registers which have nonexistent ports, set the corresponding bits
for nonexistent ports as follows: set the I/O select bits in the PDR registers to 1 and
set the output data store bits in the PODR registers to 0.
Refer to the RX220 Group Initial Setting Rev. 1.00 application note for details on this
function.

R_INIT_Clock
Outline Clock initialization
Header r_init_clock.h
Declaration void R_INIT_Clock(void)
Description Initializes the clock.
Arguments None
Return Value None
Remarks The sample code selects processing which uses PLL as the system clock without

using the sub-clock.
Refer to the RX220 Group Initial Setting Rev. 1.00 application note for details on this
function.

peripheral_init
Outline Peripheral function initialization
Header None
Declaration static void peripheral_init(void)
Description Initializes peripheral functions used.
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 42 of 56
Dec 16, 2013

cb_rspi_end
Outline Callback function (completion of RSPI transmission to/reception from the master)
Header None
Declaration static void cb_rspi_end(void)

Description This function is called when an RSPI transmission and reception have been
completed between the slave and master.

Arguments None
Return Value None

cb_rspi_rx_error
Outline Callback function (RSPI transmit/receive error)
Header None
Declaration static void cb_rspi_rx_error(void)
Description This function is called when an RSPI transmit/receive error occurs.
Arguments None
Return Value None
Remarks Error processing is not performed in the sample code. Add a program as required.

RSPI_Init
Outline User interface function (RSPI initialization)
Header rspi.h
Declaration void RSPI_Init(void)
Description Initializes the RSPI.
Arguments None
Return Value None

RSPI_PreTrans

Outline User interface function (RSPI transmit/receive start)
Header rspi.h
Declaration uint8_t RSPI_PreTrans(const uint8_t * pbuf_t,

uint8_t * pbuf_r,
uint8_t num,
CallBackFunc pcb_end,
CallBackFunc pcb_rx_error)

Description Verifies that the RSPI is in idle state. Enables the RSPI functions, RSPI transmit
interrupt, RSPI receive interrupt, and RSPI error interrupt, waits for an input on the
SSLA0 pin and an edge input on the RSPCKA pin from the master.

Arguments const uint8_t * pbuf_t: Pointer to the transmit data store buffer
uint8_t * pbuf_r: Pointer to the receive data store buffer
uint8_t num: Number of bytes to be transmitted/received
CallBackFunc pcb_end: Pointer to the callback function (completion of RSPI

transmission/reception)
CallBackFunc pcb_rx_error: Pointer to the callback function (RSPI transmit/receive

error)
Return Value RSPI_NG: Argument error (number of bytes to be transmitted/received is 0)

RSPI_NOT_IDLE: RSPI transmission/reception being processed
RSPI_OK: RSPI transmission/reception started

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 43 of 56
Dec 16, 2013

RSPI_GetState
Outline User interface function (obtain RSPI state)
Header rspi.h
Declaration rspi_state_t RSPI_GetState(void)
Description Returns the RSPI state.
Arguments None
Return Value rspi_state_t.bit.b_rspi_busy: Transmit/receive busy flag

0: Transmission/reception ready
1: Transmission/reception busy

rspi_state_t.bit.b_rx_orer: Overrun error flag
0: Overrun error not occurred
1: Overrun error occurred

rspi_state_t.bit.b_rx_modf: Mode fault error flag
0: Mode fault error not occurred
1: Mode fault error occurred

rspi_spti_isr
Outline RSPI transmit interrupt
Header None
Declaration static void rspi_spti_isr(void)
Description This function is called in the RSPI0.SPTI0 interrupt handling. Writes the transmit

data. After transmitting the last data, disables generating the RSPI transmit interrupt
request.

Arguments None
Return Value None

rspi_spri_isr
Outline RSPI receive interrupt
Header None
Declaration static void rspi_spri_isr(void)
Description This function is called in the RSPI0.SPRI0 interrupt handling. Stores the receive

data. After receiving the last data, disables the RSPI functions and calls the callback
function (completion of RSPI transmission to/reception from the master).

Arguments None
Return Value None

rspi_spei_isr
Outline RSPI error interrupt
Header None
Declaration static void rspi_spei_isr(void)
Description This function is called in the RSPI0.SPEI0 interrupt handling. Disables the RSPI

function and calls the callback function (RSPI transmit/receive error).
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 44 of 56
Dec 16, 2013

Excep_RSPI0_SPEI0
Outline RSPI0.SPEI0 interrupt handling
Header None
Declaration static void Excep_RSPI0_SPEI0(void)
Description Performs processing for the RSPI error interrupt.
Arguments None
Return Value None

Excep_RSPI0_SPRI0
Outline RSPI0.SPRI0 interrupt handling
Header None
Declaration static void Excep_RSPI0_SPRI0(void)
Description Performs processing for the RSPI receive interrupt.
Arguments None
Return Value None

Excep_RSPI0_SPTI0
Outline RSPI0.SPTI0 interrupt handling
Header None
Declaration static void Excep_RSPI0_SPTI0(void)
Description Performs processing for the RSPI transmit interrupt.
Arguments None
Return Value None

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 45 of 56
Dec 16, 2013

7.9 Flowcharts
7.9.1 Main Processing
Figure 7.4 shows the Main Processing.

User interface function
(RSPI transmit/receive start)

RSPI_PreTrans()

Starts transmitting to/receiving from the master

main

Initialize the RAM

Disable maskable interrupts

Enable maskable interrupts

Stop processing for active
peripheral functions after a reset

R_INIT_StopModule()

Port initialization
port_init()

Peripheral function initialization
peripheral_init()

Clock initialization
R_INIT_Clock()

Nonexistent port initialization
R_INIT_NonExistentPort()

I flag ← 0

I flag ← 1

Sets 00h to the receive buffer

Has the RSPI
transmission/reception

started?

RSPI transmission/reception being processed

RSPI transmission/reception started or an argument error occurred

Figure 7.4 Main Processing

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 46 of 56
Dec 16, 2013

7.9.2 Port Initialization
Figure 7.5 shows the Port Initialization.

port_init

return

Set port output data

Set port directions

Set port modes

PORT1.PODR register
 B5 bit ← 1: LED1: Turned off
 B6 bit ← 1: LED2: Turned off

PORT1.PDR register
 B5 bit ← 1: LED1: Output
 B6 bit ← 1: LED2: Output

PORT1.PMR register
 B5 bit ← 0: LED1: Uses pin as general I/O port.
 B6 bit ← 0: LED2: Uses pin as general I/O port.

Figure 7.5 Port Initialization

7.9.3 Peripheral Function Initialization
Figure 7.6 shows the Peripheral Function Initialization.

peripheral_init

User interface function
(RSPI initialization)

RSPI_Init()

return

Figure 7.6 Peripheral Function Initialization

7.9.4 Callback Function (Completion of RSPI Transmission to/Reception from the
Master)

Figure 7.7 shows the Callback Function (Completion of RSPI Transmission to/Reception from the Master).

cb_rspi_end

return

Turn on LED1 PORT1.PODR register
 B5 bit ← 0

Figure 7.7 Callback Function (Completion of RSPI Transmission to/Reception from the Master)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 47 of 56
Dec 16, 2013

7.9.5 Callback Function (RSPI Transmit/Receive Error)
Figure 7.8 shows the Callback Function (RSPI Transmit/Receive Error).

cb_rspi_rx_error

User interface function
(obtain RSPI state)
RSPI_GetState()

return

Turn on LED2 PORT1.PODR register
 B6 bit ← 0

Has an overrun
error occurred?

Yes

No Processing when an overrun
error occurs (1)

Has a mode fault
error occurred?

Yes

No Processing when a mode fault
error occurs (1)

Note:
1. Error processing is not performed in the sample code. Add a program as required.

Figure 7.8 Callback Function (RSPI Transmit/Receive Error)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 48 of 56
Dec 16, 2013

7.9.6 User Interface Function (RSPI Initialization)
Figure 7.9 and Figure 7.10 show the User Interface Function (RSPI Initialization).

A

Disable the RSPI interrupt requests

RSPI_Init

IER05 register
 IEN4 bit ← 0: RSPI0.SPEI0 interrupt request is disabled.
 IEN5 bit ← 0: RSPI0.SPRI0 interrupt request is disabled.
 IEN6 bit ← 0: RSPI0.SPTI0 interrupt request is disabled.

Cancel the module stop state PRCR register ← A502h
 PRC1 bit = 1: Enables writing to registers related to the operation.
MSTPCRB register
 MSTPB17 bit ← 0: The module stop state is canceled for the RSPI0 module.
PRCR register ← A500h
 PRC1 bit = 0: Disables writing to registers related to the operation.

Set the SSL0 signal polarities RSPI0.SSLP register ← 00h
 SSL0P bit = 0: SSL0 signal is active low.

Set the number of frames RSPI0.SPDCR register ← 20h
 SPFC[1:0] bits = 00b: 1 frame
 SPRDTD bit = 0: SPDR values are read from the receive buffer
 SPLW bit = 1: SPDR is accessed in longwords

Specify the parity settings RSPI0.SPCR2 register ← 00h
 SPPE bit = 0: Does not add the parity bit to transmit data and does not check
 the parity bit of receive data.
 SPIIE bit = 0: Disables the generation of idle interrupt requests.
 PTE bit = 0: Disables the self-diagnosis function of the parity circuit.

Specify transmit/receive format
settings

RSPI0.SPCMD0 register ← 070Dh
 CPHA bit = 1: Data variation on odd edge, data sampling on even edge
 CPOL bit = 0: RSPCK is low when idle
 BRDV[1:0] bits = 11b: These bits select the base bit rate divided by 8
 SSLA[2:0] bits = 000b: SSL0
 SSLKP bit = 0: Negates all SSL signals upon completion of transfer
 SPB[3:0] bits = 0111b: 8 bits
 LSBF bit = 0: MSB first
 SPNDEN bit = 0: A next-access delay of 1 RSPCK + 2 PCLK
 SLNDEN bit = 0: An SSL negation delay of 1 RSPCK
 SCKDEN bit = 0: An RSPCK delay of 1 RSPCK

Figure 7.9 User Interface Function (RSPI Initialization) (1/2)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 49 of 56
Dec 16, 2013

return

A

Set the RSPI interrupt priority level IPR044 register
 IPR[3:0] bits ← 0001b: Level 1

Clear the RSPI interrupt requests IR045 register
 IR flag ← 0: No RSPI0.SPRI0 interrupt request is generated.
IR046 register
 IR flag ← 0: No RSPI0.SPTI0 interrupt request is generated.

Set port modes PORTA.PMR register
 B4 bit ← 0: Uses the SSLA0 pin as general I/O port.
PORTC.PMR register
 B5 bit ← 0: Uses the RSPCKA pin as general I/O port.
 B6 bit ← 0: Uses the MOSIA pin as general I/O port.
 B7 bit ← 0: Uses the MISOA pin as general I/O port.

Set N-channel open-drain as the
output type

PORTC.ODR1 register
 B6 bit ← 1: MISOA: N-channel open-drain

Enable writing to the PFSWE bit MPC.PWPR register
 B0WI bit ← 0

MPC.PWPR register
 PFSWE bit ← 1

MPC.PA4PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: SSLA0
MPC.PC5PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: RSPCKA
MPC.PC6PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: MOSIA
MPC.PC7PFS register ← 0Dh
 PSEL[3:0] bits = 1101b: MISOA

Enable writing to the PFS register

Select pin functions

Disable writing to the PFS register

Disable writing to the PFSWE bit

MPC.PWPR register
 PFSWE bit ← 0

MPC.PWPR register
 B0WI bit ← 1

Set the port modes PORTA.PMR register
 B4 bit ← 1: Uses the SSLA0 pin as I/O port for peripheral function.
PORTC.PMR register
 B5 bit ← 1: Uses the RSPCKA pin as I/O port for peripheral function.
 B6 bit ← 1: Uses the MOSIA pin as I/O port for peripheral function.
 B7 bit ← 1: Uses the MISOA pin as I/O port for peripheral function.

Specify RSPI settings RSPI0.SPCR register ← 04h
 SPMS bit = 0: SPI operation (four-wire method)
 TXMD bit = 0: Full-duplex synchronous serial communications
 MODFEN bit = 1: Enables the detection of mode fault error.
 MSTR bit = 0: Slave mode
 SPEIE bit = 0: Disables the generation of RSPI error interrupt requests.
 SPTIE bit = 0: Disables the generation of RSPI transmit interrupt requests.
 SPE bit = 0: Disables the RSPI function.
 SPRIE bit = 0: Disables the generation of RSPI receive interrupt requests.

Read the SPCR register dummy ← RSPI0.SPCR register

Figure 7.10 User Interface Function (RSPI Initialization) (2/2)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 50 of 56
Dec 16, 2013

7.9.7 User Interface Function (RSPI Transmit/Receive Start)
Figure 7.11 and Figure 7.12 show the RSPI Transmit/Receive Start.

RSPI_PreTrans

Arguments
 const uint8_t * pbuf_t: Pointer to the transmit data store buffer
 uint8_t * pbuf_r: Pointer to the receive data store buffer
 uint8_t num: Number of bytes to be transmitted/received
 CallBackFunc pcb_end: Pointer to the callback function (completion of RSPI transmission/reception)
 CallBackFunc pcb_rx_error: Pointer to the callback function (RSPI transmit/receive error)

Set arguments to the RAM pbuf_tx ← pbuf_t
pbuf_rx ← pbuf_r
tx_cnt ← num
rx_cnt ← num
pcb_rspi_end ← pcb_end
pcb_rspi_rx_error ← pcb_rx_error

Is the number of
bytes to be transmitted/

received 0?

Is the RSPI transfer
being processed?

return (return_value)

Yes

No

Yes

No

Set the return value
(argument error)

return_value ← RSPI_NG

Set the transmit/receive busy flag B_RSPI_BUSY ← 1

Clear the overrun error flag B_RX_ORER ← 0
return_value ←
RSPI_NOT_IDLE

Reads the RSPI0.SPSR register
 IDLNF bit: 0: RSPI is in the idle state.
 : 1: RSPI is in the transfer state

A B

Set the return value
(RSPI transmission/reception

being processed)

Clear the mode fault error flag B_RX_MODF ← 0

Figure 7.11 User Interface Function (RSPI Transmit/Receive Start) (1/2)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 51 of 56
Dec 16, 2013

return (return_value)

return_value ← RSPI_OK

Disable the RSPI function RSPI0.SPCR register
 SPE bit ← 0

Is the RSPI0.
SPTI0 interrupt request

generated?

Yes

No

Confirm the RSPI0.SPCR.SPE
 bit setting

IR045 register
 IR flag ← 0

IR046 register
 IR flag ← 0

Is the RSPI0.
SPRI0 interrupt request

generated?

Yes

No

A B

Set the return value
(RSPI transmit/receive start)

Clear error flags (2) RSPI0.SPSR register ← A0h
 OVRF bit = 0: No overrun error occurs
 MODF bit = 0: No mode fault error occurs
 PERF bit = 0: No parity error occurs

Disable the RSPI idle interrupt RSPI0.SPCR2 register
 SPIIE bit ← 0: Disables the generation of idle interrupt requests.

Enable the RSPI function.
Enable the SPEI, SPTI, and SPRI

interrupts

RSPI0.SPCR register
 SPEIE bit ← 1: Enables the generation of RSPI error interrupt requests.
 SPTIE bit ← 1: Enables the generation of RSPI transmit interrupt requests.
 SPE bit ← 1: Enables the RSPI function.
 SPRIE bit ← 1: Enables the generation of RSPI receive interrupt requests.

Enable the RSPI0.SPEI0
interrupt request

IER05 register
 IEN4 bit ← 1

Clear the RSPI transmit
interrupt request

Clear the RSPI receive
interrupt request

Disable generating the RSPI
transmit interrupt requests (1)

RSPI0.SPCR register
 SPTIE bit ← 0

Disable generating the RSPI
receive interrupt request (1)

RSPI0.SPCR register
 SPRIE bit ← 0

IER05 register
 IEN5 bit ← 1

IER05 register
 IEN6 bit ← 1

Enable the RSPI0.SPRI0
interrupt request

Enable the RSPI0.SPTI0
interrupt request

Notes:
1. After writing a value to the SPTIE or SPRIE bit, confirm that the written value can be read.
2. After confirming the value in the flag is 1, write 0 to clear the flag.

Figure 7.12 User Interface Function (RSPI Transmit/Receive Start) (2/2)

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 52 of 56
Dec 16, 2013

7.9.8 User Interface Function (Obtain RSPI State)
Figure 7.13 shows the User Interface Function (Obtain RSPI State).

RSPI_GetState

return (state)

Set the RSPI state as the return value

Figure 7.13 User Interface Function (Obtain RSPI State)

7.9.9 RSPI Transmit Interrupt
Figure 7.14 shows the RSPI Transmit Interrupt.

rspi_spti_isr

return

Is the data transmitted
 last data?

Yes

No

RSPI0.SPDR register ← *pbuf_tx

Pointer to the transmit buffer + 1 pbuf_tx ← pbuf_tx + 1

Transmit counter - 1 tx_cnt ← tx_cnt - 1

IER05 register
 IEN6 bit ← 0

Reads tx_cnt.

RSPI0.SPCR register
 SPTIE bit ← 0

IR046 register
 IR flag ← 0

Set the transmit data

Disable the RSPI transmit
interrupt request

Disable generating the RSPI
transmit interrupt request (1)

Clear the RSPI transmit
interrupt request

Note:
1. After writing a value to the SPTIE bit, confirm that the written value can be read.

Figure 7.14 RSPI Transmit Interrupt

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 53 of 56
Dec 16, 2013

7.9.10 RSPI Receive Interrupt
Figure 7.15 shows the RSPI Receive Interrupt.

rspi_spri_isr

return

Has the last data
been received?

Yes

No

Store the receive data *pbuf_rx ← RSPI0.SPDR register

Pointer to the receive buffer + 1 pbuf_rx ← pbuf_rx + 1

Receive counter - 1 rx_cnt ← rx_cnt - 1

Reads rx_cnt.

IER05 register
 IEN5 bit ← 0

RSPI0.SPCR register
 SPRIE bit ← 0

IER05 register
 IEN4 bit ← 0

RSPI0.SPCR register
 SPEIE bit ← 0

IR045 register
 IR flag ← 0

Disables the RSPI function RSPI0.SPCR register
 SPE bit ← 0

Clear the transmit/receive
busy flag

B_RSPI_BUSY ← 0

Callback function
(RSPI transmit/receive end)

pcb_rspi_end()

Disable the RSPI receive
interrupt request

Disable generating the RSPI
receive interrupt request (1)

Disable the RSPI error
interrupt request

Disable generating the RSPI
error interrupt request (1)

Clear the RSPI receive
interrupt request

Note:
1. After writing a value to the SPRIE bit or SPEIE bit, confirm that the written value can be read.

Figure 7.15 RSPI Receive Interrupt

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 54 of 56
Dec 16, 2013

7.9.11 RSPI Error Interrupt
Figure 7.16 shows the RSPI Error Interrupt.

rspi_spei_isr

return

Has an overrun
error occurred?

Yes

No

B_RSPI_BUSY ← 0

Callback function
(RSPI transmit/receive error)

pcb_rspi_rx_error()

Reads the RSPI0.SPSR register
 OVRF flag: 0: No overrun error occurs.
 1: An overrun error occurs.

Set the overrun error flag B_RX_ORER ← 1

Dummy read the SPDR register Reads the RSPI0.SPDR register.

Disable the RSPI function RSPI0.SPCR register
 SPE bit ← 0

IER05 register
 IEN6 bit ← 0

RSPI0.SPCR register
 SPTIE bit ← 0

IER05 register
 IEN5 bit ← 0

RSPI0.SPCR register
 SPRIE bit ← 0

IER05 register
 IEN4 bit ← 0

RSPI0.SPCR register
 SPEIE bit ← 0

Clear the RSPI transmit and
receive interrupt requests

IR045 register
 IR flag ← 0
IR046 register
 IR flag ← 0

Clear error flags (2) RSPI0.SPSR register ← A0h
 OVRF bit = 0: No overrun error occurs.
 MODF bit = 0: No mode fault error occurs.
 PERF bit = 0: No parity error occurs.

Has a mode fault
error occurred?

Yes

No Reads the RSPI0.SPSR register
 MODF flag: 0: No mode fault error occurs.
 1: A mode fault error occurs.

Set the mode fault error flag B_RX_MODF ← 1

Yes

No

Has a mode fault
error occurred?

Disable the RSPI transmit
interrupt request

Disable generating the RSPI
transmit interrupt request (1)

Disable the RSPI receive
interrupt request

Disable generating the RSPI
receive interrupt request (1)

Disable the RSPI error
interrupt request

Disable generating the RSPI error
interrupt request (1)

Clear the transmit/receive
busy flag

Notes:
1. After writing a value to the SPTIE, SPRIE, or SPEIE bit, confirm that the written value can be read.
2. After confirming the value in the flag is 1, write 0 to clear the flag.

Figure 7.16 RSPI Error Interrupt

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 55 of 56
Dec 16, 2013

7.9.12 RSPI0.SPEI0 Interrupt Handling
Figure 7.17 shows the RSPI0.SPEI0 Interrupt Handling.

Excep_RSPI0_SPEI0

return

Determine
the interrupt request

source

RSPI transmit/receive error
interrupt

rspi_spei_isr()

Verify the IR flag

IR = 0

IR = 1 Reads the IR044 register
 IR flag: 0: No interrupt request is generated.
 1: Interrupt request is generated.

Interrupt not
requested

Interrupt
requested

Reads the RSPI0.SPCR register
 SPEIE bit: 0: Disables the generation of RSPI error interrupt requests
 1: Enables the generation of RSPI error interrupt requests
Reads the RSPI0.SPSR register
 OVRF flag: 0: No overrun error occurs
 1: An overrun error occurs
 MODF flag: 0: No mode fault error occurs
 1: A mode fault error occurs
 PERF flag: 0: No parity error occurs
 1: A parity error occurs

Figure 7.17 RSPI0.SPEI0 Interrupt Handling

7.9.13 RSPI0.SPRI0 Interrupt Handling
Figure 7.18 shows the RSPI0.SPRI0 Interrupt Handling.

Excep_RSPI0_SPRI0

return

RSPI receive interrupt
rspi_spri_isr()

Figure 7.18 RSPI0.SPRI0 Interrupt Handling

7.9.14 RSPI0.SPTI0 Interrupt Handling
Figure 7.19 shows the RSPI0.SPTI0 Interrupt Handling.

Excep_RSPI0_SPTI0

return

RSPI transmit interrupt
rspi_spti_isr()

Figure 7.19 RSPI0.SPTI0 Interrupt Handling

RX220 Group Communication Example Using the RSPI

R01AN1807EJ0100 Rev. 1.00 Page 56 of 56
Dec 16, 2013

8. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

9. Reference Documents
User’s Manual: Hardware

RX220 Group User's Manual: Hardware Rev.1.00 (R01UH0292EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User’s Manual Rev.1.00 (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY RX220 Group Application Note
Communication Example Using the RSPI

Rev. Date
Description

Page Summary
1.00 Dec. 16, 2013 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 3.0

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Note
	4. Hardware (Master)
	4.1 Pins Used

	5. Software (Master)
	5.1 Operation Overview
	5.2 File Composition
	5.3 Option-Setting Memory
	5.4 Constants
	5.5 Structure/Union List
	5.6 Variables
	5.7 Functions
	5.8 Function Specifications
	5.9 Flowcharts
	5.9.1 Main Processing
	5.9.2 Port Initialization
	5.9.3 Peripheral Function Initialization
	5.9.4 Callback Function (Completion of RSPI Transmission to/Reception from Slave 0)
	5.9.5 Callback Function (Completion of RSPI Transmission to/Reception from Slave 1)
	5.9.6 Callback Function (RSPI Transmit/Receive Error)
	5.9.7 User Interface Function (RSPI Initialization)
	5.9.8 User Interface Function (RSPI Transmit/Receive Start)
	5.9.9 User Interface Function (Obtain RSPI State)
	5.9.10 RSPI Transmit Interrupt
	5.9.11 RSPI Idle Interrupt
	5.9.12 RSPI Receive Interrupt
	5.9.13 RSPI Error Interrupt
	5.9.14 RSPI0.SPEI0 Interrupt Handling
	5.9.15 RSPI0.SPRI0 Interrupt Handling
	5.9.16 RSPI0.SPTI0 Interrupt Handling
	5.9.17 RSPI0.SPII0 Interrupt Handling

	6. Hardware (Slave)
	6.1 Pins Used

	7. Software (Slave)
	7.1 Operation Overview
	7.2 File Composition
	7.3 Option-Setting Memory
	7.4 Constants
	7.5 Structure/Union List
	7.6 Variables
	7.7 Functions
	7.8 Function Specifications
	7.9 Flowcharts
	7.9.1 Main Processing
	7.9.2 Port Initialization
	7.9.3 Peripheral Function Initialization
	7.9.4 Callback Function (Completion of RSPI Transmission to/Reception from the Master)
	7.9.5 Callback Function (RSPI Transmit/Receive Error)
	7.9.6 User Interface Function (RSPI Initialization)
	7.9.7 User Interface Function (RSPI Transmit/Receive Start)
	7.9.8 User Interface Function (Obtain RSPI State)
	7.9.9 RSPI Transmit Interrupt
	7.9.10 RSPI Receive Interrupt
	7.9.11 RSPI Error Interrupt
	7.9.12 RSPI0.SPEI0 Interrupt Handling
	7.9.13 RSPI0.SPRI0 Interrupt Handling
	7.9.14 RSPI0.SPTI0 Interrupt Handling

	8. Sample Code
	9. Reference Documents

