

RX21A Group Using the Temperature Sensor to Calculate the Ambient Temperature

R01AN1923EJ0100 Rev. 1.00 Sep. 1, 2014

Abstract

This document describes a method of using the RX21A Group temperature sensor to calculate the ambient temperature.

Products

RX21A Group, 64-Pin Package, ROM Capacity: 256 Kbytes to 512 Kbytes RX21A Group, 80-Pin Package, ROM Capacity: 256 Kbytes to 512 Kbytes RX21A Group, 100-Pin Package, ROM Capacity: 256 Kbytes to 512 Kbytes

Note: Only the G version (operating temperature: -40° C to $+105^{\circ}$ C) of the products are the target products.

Contents

1.	1. Specifications			
2.	Operatio	on Confirmation Conditions	. 5	
3.	Referen	ce Application Notes	5	
4.	Hardwa	re	6	
4	.1 Har	dware Configuration	6	
4	.2 Pins	s Used	. 6	
5.	Softwar	e	7	
5	.1 Ope	eration Overview	. 7	
	5.1.1	Formula for the Temperature Characteristic	. 9	
5	.2 File	Composition	11	
5	.3 Opt	ion-Setting Memory	12	
5	.4 Cor	istants	12	
5	.5 Var	ables	15	
5	.6 Fun	ctions	16	
5	.7 Fun	ction Specifications	17	
5	.8 Flov	vcharts	21	
	5.8.1	Main Processing	21	
	5.8.2	Port Initialization	22	
	5.8.3	Peripheral Function Initialization		
	5.8.4	CMT Initialization	23	
	5.8.5	IRQ Initialization	24	
	5.8.6	Processing to Update the 7SEG Display Data	25	
	5.8.7	Processing to Switch the 7SEG Select Output	25	
	5.8.8	Processing to Display a Dash on the 7SEG	26	
	5.8.9	Compare Match Interrupt Handling	26	
	5.8.10	AD and Temperature Sensor Initialization	27	
	5.8.11	Obtain the A/D Conversion Status	28	
	5.8.12	Obtain the Temperature Sensor Measurement Result		
	5.8.13	·		
	5.8.14	Processing for Temperature Sensor Calibration		
	5.8.15	Processing for Temperature Sensor Measurement	29	
	5.8.16	Processing to Calculate the Current Temperature	29	
	5.8.17	A/D Conversion Complete Interrupt Handling	30	
6.	Sample	Code	31	
7.	Referen	ce Documents	31	

1. Specifications

This document describes using the temperature sensor to measure the ambient temperature of the MCU. The ambient temperature is measured and the result is displayed on a 7-segment LED (hereinafter referred to as 7SEG).

In order to measure the ambient temperature of the MCU, the temperature sensor is calibrated beforehand. The calibration performed in this application note calculates the temperature slope necessary for the formula for the temperature characteristic.

In the G version of the RX21A Group MCU, the calibration data for the temperature sensor that is measured for every chip is stored when shipped. The temperature slope can be calculated using the data stored on the chip and a temperature obtained by the user in the trial measurement.

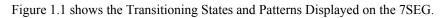

In the accompanying sample code, an ambient temperature of 25°C (hereinafter referred to as normal reference temperature) is assumed as the temperature obtained in the user trial measurement and used to calculate the ambient temperature. Refer to section 5.1.1 for details on calibration.

Table 1.1 lists the Peripheral Functions and Their Applications.

Table 1.1	Peripheral Functions	and Their Applications

Peripheral Function	Application	
10-bit A/D converter (hereinafter referred to as AD)	The AD measures temperature sensor output.	
Temperature sensor	The temperature sensor measures the ambient temperature of the MCU.	
Compare match timer (CMT0) (hereinafter referred to as CMT)	The CMT is used as a timer for the temperature measurement cycle.	
External pin interrupt (IRQ2) (hereinafter referred to as IRQ)	Switch input for calibrating with the normal reference temperature.	
I/O ports	I/O ports are used to display the result of the temperature measurement on the 7SEG.	

	Status	7SEG display
	Reset state	All segments are off
	Release from the reset state	
	Waiting for calibration to start	Dash displayed
	Switch is pushed	
	Displayed temperature is updated in 600 ms cycles	Temperature measurement result displayed as a decimal number to Display when the temperature measurement result is less than 0°C Display when the temperature measurement result is 100°C or higher Display when the temperature
L		i

Figure 1.1 Transitioning States and Patterns Displayed on the 7SEG

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions	Table 2.1	Operation	Confirmation	Conditions
---	-----------	-----------	--------------	------------

ltem	Contents	
MCU used	R5F521A8BDFP (RX21A Group)	
Operating frequencies	Main clock: 20 MHz System clock (ICLK): 20 MHz Peripheral module clock B (PCLKB): 20 MHz Peripheral module clock D (PCLKD): 2.5 MHz	
Operating voltage	3.3 V	
Integrated development environmentRenesas Electronics Corporation High-performance Embedded Workshop Version 4.09.01		
	Renesas Electronics Corporation C/C++ Compiler Package for RX Family V.1.02 Release 01	
C compiler	Compile options -cpu=rx200 –output=obj="\$(CONFIGDIR)\\$(FILELEAF).obj" –debug –nologo The integrated development environment default settings are used.	
iodefine.h version	Version 1.1	
Endian	Little endian	
Operating mode	Single-chip mode	
Processor mode	Supervisor mode	
Sample code version	Version 1.00	

3. Reference Application Notes

For additional information associated with this document, refer to the following application notes.

- RX21A Group Initial Setting Rev. 1.00 (R01AN1486EJ)
- RX Family Coding Example of Wait Processing by Software Rev. 1.00 (R01AN1852EJ)

The initial setting functions and wait processing by software in the reference application notes are used in the sample code in this application note. The revision numbers of the reference application notes are current as of the issue date of this application note. However, the latest versions are always recommended. Visit the Renesas Electronics Corporation website to check and download the latest versions.

4. Hardware

4.1 Hardware Configuration

Figure 4.1 shows the Connection Example.

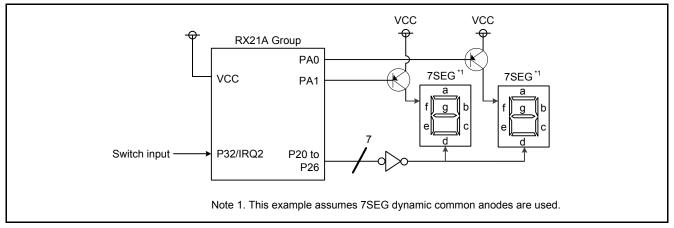


Figure 4.1 Connection Example

4.2 Pins Used

Table 4.1 lists the Pins Used and Their Functions. The pins used assume that the target product is a 100-pin MCU. When using products with less than 100 pins, select pins appropriate to the product used.

Pin Name	I/O	Function	
P32/IRQ2	Input	Switch input for executing calibration	
P20	Output	Outputs segment a of the 7SEG	
P21	Output	Outputs segment b of the 7SEG	
P22	Output	Outputs segment c of the 7SEG	
P23	Output	Outputs segment d of the 7SEG	
P24	Output	Outputs segment e of the 7SEG	
P25	Output	Outputs segment f of the 7SEG	
P26	Output	Outputs segment g of the 7SEG	
PA0	Output	Outputs the first digit of the 7SEG	
PA1	Output	Outputs the second digit of the 7SEG	

5. Software

5.1 Operation Overview

After the MCU is released from the reset state, the I/O ports and peripheral functions are initialized, and the MCU enters the waiting for calibration state. If the IRQ2 interrupt request is generated in this state, calibration is performed. The normal reference temperature is A/D converted in the calibration. The A/D converted value and the temperature sensor calibration data are used to calculate the temperature slope.

When calibration is complete, A/D conversion continues. The A/D converted value and temperate slope are used to calculate the ambient temperature, and the calculated value is displayed on the 7SEG.

In this application note, A/D conversion is performed every 100 ms. Also, in order to calculate the average A/D converted value, six A/D converted values are stored to the RAM, the highest and lowest values are eliminated, and the average of the remaining four values is calculated as the ambient temperature.

The CMT CMI0 interrupt is used to start A/D conversion every 100 ms. The CMT is set to generate a compare match interrupt request in 1 ms cycles, and for each compare match interrupt request generated, the A/D converter cycle counter variable (cnt_cycle) is incremented up to 100 ms.

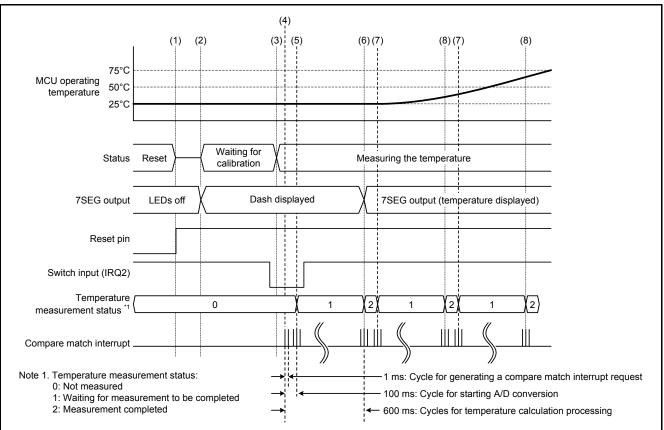
Settings for the CMT, AD, and temperature sensor are listed below.

<u>CMT0</u>

- Count clock: PCLKB divided by 8
- Compare match interrupt cycle: 1 ms

<u>AD</u>

- Operating mode: Single scan mode
- A/D conversion start condition: Synchronous trigger (trigger from the temperature sensor)
- Number of sampling states: 180 states (sampling time is 72 µs)
- Analog input disconnection detection assist: Not used
- A/D-converted value addition mode: Not used
- Self-diagnosis of 10-bit A/D converter: Not used


Temperature sensor

• PGA gain ^{*1}: $2.7 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}^{*2}$

Note 1. PGA: Programmable gain amplifier

Note 2. Change the constant settings as needed for the user system.

Figure 5.1 Temperature Measurement Timing Diagram

- (1) After the MCU is released from the reset state, the AD and temperature sensor are initialized.
- (2) After the AD is released from the module stop state, the MCU waits 1 μ s^{*1}, and then enters the calibration wait state. At this time, a dash is displayed on the 7SEG.
- (3) When a falling edge is detected on the switch (IRQ2), the CMT count starts.
- (4) The CMT is set to generate a compare match interrupt request in 1 ms cycles, and for each compare match interrupt request generated, the A/D converter cycle counter variable (cnt_cycle) is incremented.
- (5) When the A/D converter cycle counter variable reaches 100 (100 ms), the TSCR.PGAEN bit is set to 1 (starts PGA), and A/D conversion starts.
- (6) A/D conversion is performed six times. Their average becomes the A/D converted value of the normal reference temperature, the temperature slope is calculated, and calibration is done.
- (7) When the A/D converter cycle counter variable reaches 100 (100 ms), the TSCR.PGAEN bit is set to 1, and A/D conversion starts.
- (8) After performing A/D conversion six times, the current temperature is calculated using the average and the temperature slope, and then displayed on the 7SEG.

Note 1. After the AD is released from the module stop state, wait at least 1 µs before starting A/D conversion.

5.1.1 Formula for the Temperature Characteristic

In this application note, the slope necessary for the temperature characteristic formula is calculated using the following items:

- An ambient temperature of 125°C (hereinafter referred to as high reference temperature) stored in the temperature sensor calibration data registers (TSCDRn (n=0,1,3))
- The A/D converted value of the normal reference temperature measured after the MCU is released from the reset state.

Refer to the *RX21A User's Manual: Hardware* (hereinafter referred to as UMH) for details on the TSCDRn register (n=0,1,3).

Table 5.1 lists the Conditions for Measuring the A/D Converted Values of the Temperature Sensor Output Values Stored in the TSCDRn Register (n=0,1,3).

Table 5.1 Conditions for Measuring the A/D Converted Values of the Temperature Sensor Output Values Stored in the TSCDRn Register (n=0,1,3)

	Conditions for Measuring A/D Converted Values			
Register Symbol	Voltage applied to AVCC0 and VREFH0	TSCR.PGAGAIN[1:0] bits	Temperature for measurement	
TSCDR0	1.8 V	00b		
TSCDR1	2.7 V	01b	125°C	
TSCDR3	3.3 V	01b		

When applying voltage not listed in Table 5.1 to AVCC0 and VREFH, the A/D converted value must be calculated according to the applied voltage. The A/D conversion value to be calculated is defined as CAL_{125} here.

When AVCC0 is $1.8 \text{ V} \le \text{AVCC0} \le 2.7 \text{ V}$, then formula [1] below is used to calculate CAL₁₂₅; when AVCC0 is $2.7 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}$, then formula [2] below is used to calculate CAL₁₂₅.

[1] $CAL_{125} = 1.8 \div VREFH0 \times TSCDR(0)$

 $[2] CAL_{125} = 2.7 \div VREFH0 \times TSCDR(1) + \{3.3 \div VREFH0 \times TSCDR(3) - 2.7 \div VREFH0 \times TSCDR(1)\} \times (AVCC0 - 2.7) \div 0.6$

TSCDR(n): TSCDRn.TSCD[9:0] bit value (n = 0, 1, 3)

To calculate the ambient temperature, the temperature slope must be calculated first. Here, the temperature slope become is defined as the increment value of the A/D converted value to the temperature. Note that the UMH describes the method to calculate the temperature slope and temperature after converting the A/D converted value to voltage, but this application note calculates the temperature slope and temperature using the A/D converted value with no conversion to voltage.

The formula for calculating the temperature slope is below.

Temperature slope: Slope

High reference temperature (125°C): T1

Normal reference temperature (25°C): T2

A/D converted value of the high reference temperature (125°C): CAL₁₂₅

A/D converted value of the normal reference temperature (25°C): CAL_{25} (value measured using the normal reference temperature after the MCU is released from the reset state)

Temperature slope: Slope = $(CAL_{125} - CAL_{25}) \div (T1 - T2)$

Since $T1 = 125(^{\circ}C)$ and $T2 = 25(^{\circ}C)$, the slope becomes the following:

Slope = $(CAL_{125} - CAL_{25}) \div (125 - 25) = (CAL_{125} - CAL_{25}) \div 100$

The formula for calculating the ambient temperature is below.

Measured temperature: T (°C)

A/D converted value of the temperature sensor when the temperature was measured: CAL_S

 $T = T2 + (CAL_{s} - CAL_{25}) \div Slope$ = T2 + (CAL_{s} - CAL_{25}) ÷ ((CAL_{125} - CAL_{25}) \div (T1 - T2)) = T2 + (T1 - T2) ((CAL_{s} - CAL_{25}) \div (CAL_{125} - CAL_{25})) = 25 + 100((CAL_{s} - CAL_{25}) \div (CAL_{125} - CAL_{25}))

When measuring the temperature to the tenths place, temperature data (T1, T2) is multiplied by 10.

Measured temperature: Ts (°C)

$$T_{S} = T \times 10 = (25 + 100((CAL_{S} - CAL_{25}) \div (CAL_{125} - CAL_{25}))) \times 10$$
$$= (25 \times 10) + (100((CAL_{S} - CAL_{25}) \div (CAL_{125} - CAL_{25})) \times 10)$$

 $= 250 + 1000((CAL_{s} - CAL_{25}) \div (CAL_{125} - CAL_{25}))$

Refer to the UMH for basic information.

5.2 File Composition

Table 5.2 lists the Files Used in the Sample Code, Table 5.3 lists the Standard Include Files, and Table 5.4 lists Functions and Setting Values for the Reference Application Notes. Files generated by the integrated development environment are not included in this table.

Table 5.2 Files Used in the Sample Code

File Name	Outline	
main.c	Main processing	
temps.c	Temperature sensor processing	
temps.h	Header file for temps.c	

Table 5.3 Standard Include Files

File Name	Outline
stdbool.h	This file defines the macros associated with the Boolean and its value.
stdint.h	This file defines the macros declaring the integer type with the specified width.
machine.h	This file defines the types of intrinsic functions for the RX Family.

Table 5.4 Functions and Setting Values for the Reference Application Notes (RX21A Group Initial Setting, RX Family Coding Example of Wait Processing by Software)

File Name	Function	Setting Value
r_init_stop_module.c	R_INIT_StopModule()	—
r_init_stop_module.h	—	—
r_init_non_existent_port.c	R_INIT_NonExistentPort()	—
r_init_non_existent_port.h	—	Set to 100-pin package
r_init_clock.c	R_INIT_Clock()	—
r_init_clock.h		Example of clock selection: No.5 selected. Change PCLKD division ratio to divided by 8.
r_delay.c	R_DELAY_Us(unsigned long us, unsigned long khz)	Set the wait time.
r_delay.h		_

5.3 Option-Setting Memory

Table 5.5 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the user system.

Symbol	Address	Setting Value	Contents
OFS0	FFFF FF8Fh to FFFF FF8Ch	FFFF FFFFh	The IWDT is stopped after a reset. The WDT is stopped after a reset.
OFS1	FFFF FF8Bh to FFFF FF88h	FFFF FFFFh	The voltage monitor 0 reset is disabled after a reset. HOCO oscillation is disabled after a reset.
MDES	FFFF FF83h to FFFF FF80h	FFFF FFFFh	Little endian

 Table 5.5 Option-Setting Memory Configured in the Sample Code

5.4 Constants

Table 5.6 to Table 5.9 list the constants used in the sample code.

Table 5.6 Constants Used in the Sample Code (main.c)

Constant Name	Setting Value	Contents
CMT_CYCLE_MS	100	A/D conversion cycle (ms)
SEG_CYCLE_MS	8	7SEG select output switch cycles (ms)
ONES_DIGIT	0	7SEG output flag value
SEG_TBL_DASH	10	7SEG display table index: ""
SEG_TBL_H	11	7SEG display table index: "H"
SEG_TBL_i	12	7SEG display table index: "i"
SEG_TBL_L	13	7SEG display table index: "L"
SEG_TBL_0	14	7SEG display table index: "o"
SEG_TBL_BLANK	15	7SEG display table index: Blank

Table 5.7 Constants Used in the Sample Code (temps.c)

Constant Name	Setting Value	Contents
HIGH_REF_TEMP	125	High reference temperature (°C)
ADCONV_IN_OPERATION	0xFFFF	A/D converted value during A/D conversion (invalid value)
SLOPE_COEFFICIENT_TEMP	(HIGH_REF_TEMP — ORDINARY_REF_TEMP) * TEMP_ACCURACY	Temperature slope
ORDINARY_REF_TEMP_IN_ACC	ORDINARY_REF_TEMP * TEMP_ACCURACY	Value of the normal reference temperature multiplied by the temperature calculation accuracy

Constant Name	Setting Value	Contents
SEL_PGAGAIN	GAIN_RANGE1	Select PGA gain ^{*1} GAIN_RANGE0: 1.8 V \leq AVCC0 < 2.7 V GAIN_RANGE1: 2.7 V \leq AVCC0 \leq 3.6 V
AVCC_VOLTAGE	3.3	Voltage applied to the AVCC0 pin (in units of V) ^{*1}
VREF_VOLTAGE	3.3	Voltage applied to the VREFH0 pin (in units of V)
ORDINARY_REF_TEMP	25	Normal reference temperature (°C): If the value set is 25, then the normal reference temperature is assumed to be 25°C.
TEMP_ACCURACY	10	Temperature calculation accuracy: The multiplication rate is set. When the value set is "10", the value is calculated to the tenths place. When the value set is "100", the value is calculated to the hundreds place. Do not set a multiplier other than a multiple of 10, and do not set a negative value.
CNV_CNT_MAX	6	Number of average value samplings: If the set value is 6, when six A/D converted values have been accumulated, the highest and lowest values are excluded, and the average of the remaining four becomes the A/D converted value.

Table 5.8 Constants Used in the Sample Code (temps.h) (Changeable by the User)

Note 1. Specify the value according to the voltage applied. If the value specified is inappropriate, the calculated result will be incorrect.

Constant Name	Setting Value	Contents
GAIN_RANGE0	00h	PGA gain: 1.8 V ≤ AVCC0 < 2.7 V
GAIN_RANGE1	01h	PGA gain: 2.7 V \leq AVCC0 \leq 3.6 V
STA_AD_IDLE	0	A/D conversion status: Not performed
STA_AD_WAIT	1	A/D conversion status: Waiting for A/D conversion to be completed
STA_AD_FINISH	2	A/D conversion status: A/D conversion completed
TSCDR0_VALUE	(TEMPSCONST.TSCDR0.BI T.TSCD)	TSCDR0 register value
TSCDR1_VALUE	(TEMPSCONST.TSCDR1.BI T.TSCD)	TSCDR1 register value
TSCDR3_VALUE	(TEMPSCONST.TSCDR3.BI T.TSCD)	TSCDR3 register value
HIGH_REF_POTENTIAL_VAL	See Note 1	A/D converted value of the high reference temperature

Table 5.9 Constants Used in the Sample Code (temps.h) (Not Changeable by the User)

Note 1. The setting value varies according to the PGA gain selected. The following shows the setting value for each PGA gain.

When GAIN_RANGE0 is selected:

(uint16_t)(1.8 ÷ VREF_VOLTAGE × TSCDR0_VALUE)

When GAIN_RANGE1 is selected:

(uint16_t)((2.7 ÷ VREF_VOLTAGE × TSCDR1_VALUE) + ((3.3 ÷ VREF_VOLTAGE × TSCDR3_VALUE) – (2.7 ÷ VREF_VOLTAGE × TSCDR1_VALUE)) × (AVCC_VOLTAGE – 2.7) ÷ 0.6)

5.5 Variables

Table 5.10 and Table 5.11 list the static variables, and Table 5.12 lists the const Variable.

Туре	Variable Name	Contents	Function Used	
static volatile uint16_t	cnt_cycle	A/D conversion cycle counter	Excep_CMT0_CMI0	
static volatile uint16_t	cnt_led_cycle	7SEG select output switch cycle counter	Excep_CMT0_CMI0	
static uint8_t	digit_10	7SEG second digit display data	disp_7seg disp_comswitch_7seg disp_bar_7seg	
static uint8_t	digit_1	7SEG first digit display data	disp_7seg disp_comswitch_7seg disp_bar_7seg	

Table 5.10 static Variables (main.c)

Table 5.11 static Variables (temps.c)

Туре	Variable Name	Contents	Function Used
static int16_t	high_ref_potential	A/D converted value of the high reference temperature (= CAL ₁₂₅)	temps_init temps_calibration
static volatile int16_t	slope_potential	Slope of the A/D converted value	temps_calibration temps_calc
static volatile int16_t	ordinary_potential	A/D converted value of the normal reference temperature (= CAL ₂₅)	temps_calibration temps_calc
static volatile int8_t	ad_status	A/D conversion status	main temps_get_ad_status temps_calibration temps_measurement Excep_AD_ADI
static volatile int16_t	now_temp	Calculated current temperature	temps_get_now_temp Excep_AD_ADI
static volatile uint16_t	now_potential	Current A/D converted value	temps_calibration Excep_AD_ADI
static volatile uint16_t	buf_ad_value[CNT_ CNT_MAX]	A/D converted value buffer	Excep_AD_ADI
static volatile uint16_t	ad_max_value	Highest A/D converted value	Excep_AD_ADI
static volatile uint16_t	ad_min_value	Lowest A/D conversion value	Excep_AD_ADI
static volatile uint8_t	ad_smp_cnt	Write pointer for the A/D converted value buffer	Excep_AD_ADI

Table 5.12 const Variable

Туре	Variable Name	Contents	Function Used
static const uint8_t	seg_pattern_table	7SEG display table	disp_comswitch_7seg

5.6 Functions

Table 5.13 lists the Functions.

Table 5.13 Functions

Function Name	Outline	Location
main	Main processing	main.c
port_init	Port initialization	main.c
peripheral_init	Peripheral function initialization	main.c
cmt_init	CMT initialization	main.c
irq_init	IRQ initialization	main.c
disp_7seg	Processing to update the 7SEG display data	main.c
disp_comswitch_7seg	Processing to switch the 7SEG select output	main.c
disp_bar_7seg	Processing to display a dash on the 7SEG	main.c
Excep_CMT0_CMI0	Compare match interrupt handling	main.c
temps_init	AD and temperature sensor initialization	temps.c
temps_get_ad_status	Obtain the A/D conversion status	temps.c
temps_get_potential	Obtain the temperature sensor measurement result	temps.c
temps_get_now_temp	Obtain the current temperature	temps.c
temps_calibration	Processing for temperature sensor calibration	temps.c
temps_measurement	Processing for temperature sensor measurement	temps.c
temps_calc	Processing to calculate the current temperature	temps.c
Excep_AD_ADI	A/D conversion complete interrupt handling	temps.c

5.7 Function Specifications

The following tables list the sample code function specifications.

main	
Outline	Main processing
Header	None
Declaration	void main(void)
Description	After initialization, this function A/D converts the temperature sensor output every 100 ms, and the calculated temperature is displayed on the 7SEG.
Arguments	None
Return value	None

port_init	
Outline	Port initialization
Header	None
Declaration	static void port_init(void)
Description	This function initializes the ports.
Arguments	None
Return value	None

_peripheral_init		
Outline	Peripheral function initialization	
Header	None	
Declaration	static void peripheral_init(void)	
Description	This function initializes the peripheral functions.	
Arguments	None	
Return value	None	

cmt_init	
Outline	CMT initialization
Header	None
Declaration	static void cmt_init(void)
Description	This function initializes CMT0.
Arguments	None
Return value	None

RX21A Group

irq_init	
Outline	IRQ initialization
Header	None
Declaration	static void irq_init(void)
Description	This function initializes IRQ2.
Arguments	None
Return value	None

disp_7seg	
Outline	Processing to update the 7SEG display data
Header	None
Declaration	static void disp_7seg(int16_t disp_data)
Description	This function sets the value specified in the argument as the data to be displayed in the 7SEG.
Arguments	int16_t disp_data :7SEG display
	Less than 0 (negative value): "Lo" is displayed
	100 or higher: "Hi" is displayed
	Other than above: Temperature is displayed
Return value	None

disp_comswitch_7seg		
Outline	Processing to switch the 7SEG select output	
Header	None	
Declaration	static void disp_comswitch_7seg(void)	
Description	This function switches the 7SEG select signal to be output.	
Arguments	None	
Return value	None	

disp_bar_7seg		
Outline	Processing to display a dash on the 7SEG	
Header	None	
Declaration	static void disp_bar_7seg(void)	
Description	This function displays a dash on the 7SEG.	
Arguments	None	
Return value	None	

Excep_CMT0	_CMI0
Outline	Compare match interrupt handling
Header	None
Declaration	static void Excep_CMT0_CMI0(void)
Description	This function performs interrupt handling in 1 ms cycles. The counter is incremented each time an interrupt request is generated. When the counter reaches 100 (100 ms), temperature measurement is started. Also, after the counter reaches 8 (8 ms), the 7SEG select signal to be output is switched.
Arguments	None
Return value	None

temps_init	
Outline	AD and temperature sensor initialization
Header	temps.h
Declaration	void temps_init(void)
Description	This function initializes the AD and the temperature sensor.
Arguments	None
Return value	None

temps_get_ac	emps_get_ad_status	
Outline	Obtain the A/D conversion status	
Header	temps.h	
Declaration	uint8_t temps_get_ad_status(void)	
Description	This function obtains the current status of the A/D conversion.	
Arguments	None	
Return value	uint8_t: A/D conversion status STA_AD_IDLE: Not performed STA_AD_WAIT: Waiting for A/D conversion to be completed STA_AD_FINISH: A/D conversion completed	

temps_get_po	temps_get_potential		
Outline	Obtain the temperature sensor measurement result		
Header	None		
Declaration	static uint16_t temps_get_potential(void)		
Description	This function obtains the measured A/D converted value.		
Arguments	None		
Return value	uint16_t: A/D converted value of the temperature sensor: : ADCONV_IN_OPERATION: A/D conversion in process : Other than ADCONV_IN_OPERATION: A/D converted value		

temps_get_now_temp		
	Outline	Obtain the current temperature
	Header	temps.h
	Declaration	int16_t temps_get_now_temp (void)
	Description	This function obtains the current temperature.
	Arguments	None
	Return value	int16_t: Current temperature

temps_calibration

· -	
Outline	Processing for temperature sensor calibration
Header	temps.h
Declaration	void temps_calibration(void)
Description	This function obtains the A/D converted value of the normal reference temperature, and saves it to the RAM.
Arguments	None
Return value	None

temps_measurement

<u> </u>	
Outline	Processing for temperature sensor measurement
Header	temps.h
Declaration	void temps_measurement(void)
Description	This function starts measuring the current temperature.
Arguments	None
Return value	None

temps_calc		
Outline	Processing to calculate the current temperature	
Header	None	
Declaration	static uint16_t temps_calc(uint16_t w_now_potential)	
Description	This function calculates the temperature from the A/D converted value in the argument.	
Arguments	uint16_t w_now_potential : A/D converted value	
Return value	int16_t: Current temperature (°C)	

Excep_AD_ADI				
Outline	A/D conversion complete interrupt handling			
Header	None			
Declaration	static void Excep_AD_ADI(void)			
Description	When A/D conversion is completed, the A/D converted values are saved in the RAM. After the sixth A/D conversion is completed, the highest and lowest A/D converted values are excluded, and the average of the remaining four A/D converted values is calculated.			
Arguments	None			
Return value	None			

5.8 Flowcharts

5.8.1 Main Processing

Figure 5.2 shows the Main Processing.

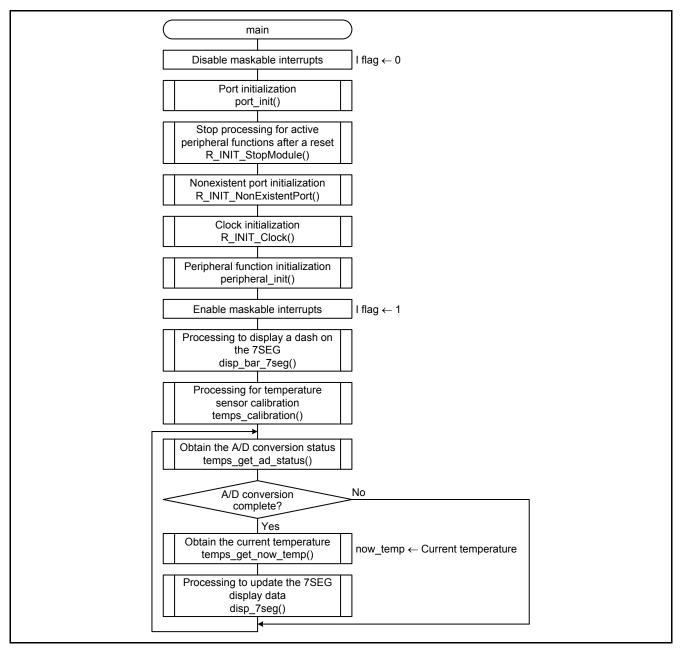


Figure 5.2 Main Processing

5.8.2 Port Initialization

Figure 5.3 shows Port Initialization.

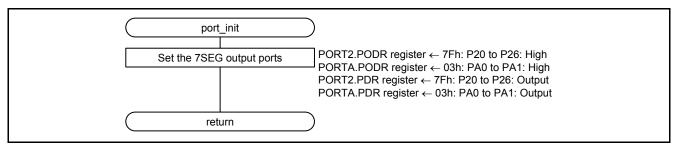


Figure 5.3 Port Initialization

5.8.3 Peripheral Function Initialization

Figure 5.4 shows Peripheral Function Initialization.

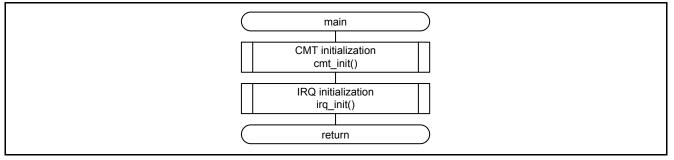


Figure 5.4 Peripheral Function Initialization

5.8.4 CMT Initialization

Figure 5.5 shows CMT Initialization.

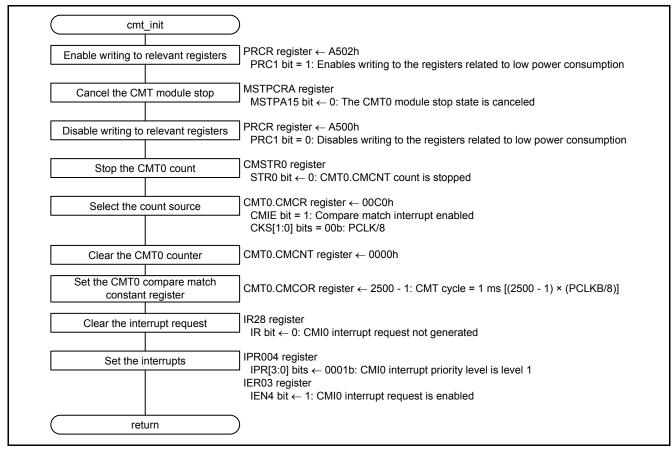


Figure 5.5 CMT Initialization

5.8.5 IRQ Initialization

Figure 5.6 shows IRQ Initialization.

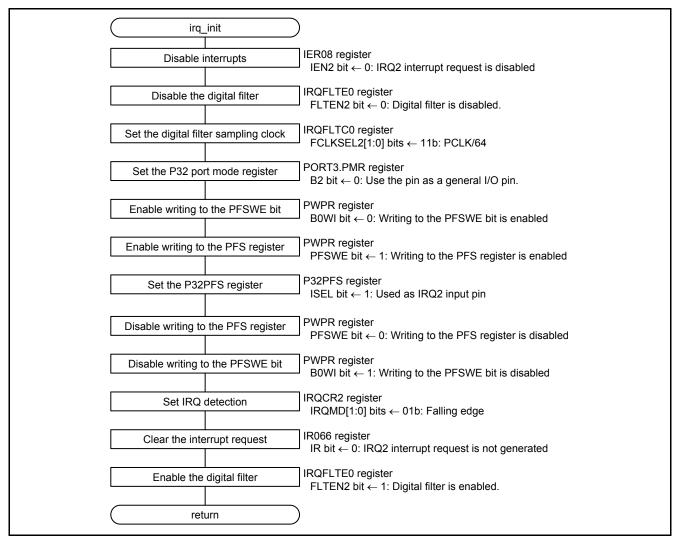


Figure 5.6 IRQ Initialization

5.8.6 Processing to Update the 7SEG Display Data

Figure 5.7 shows the Processing to Update the 7SEG Display Data.

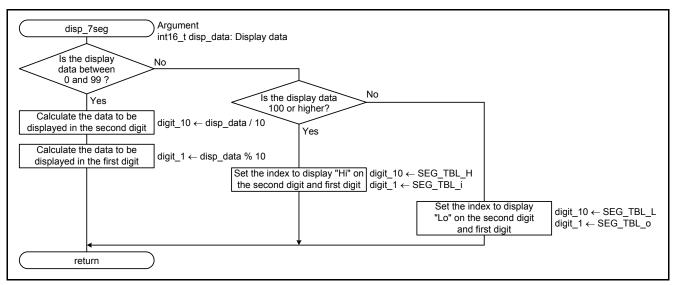


Figure 5.7 Processing to Update the 7SEG Display Data

5.8.7 Processing to Switch the 7SEG Select Output

Figure 5.8 shows the Processing to Switch the 7SEG Select Output.

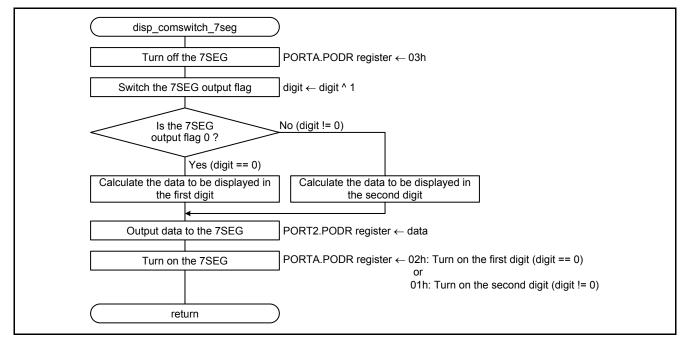


Figure 5.8 Processing to Switch the 7SEG Select Output

5.8.8 Processing to Display a Dash on the 7SEG

Figure 5.9 shows the Processing to Display a Dash on the 7SEG.

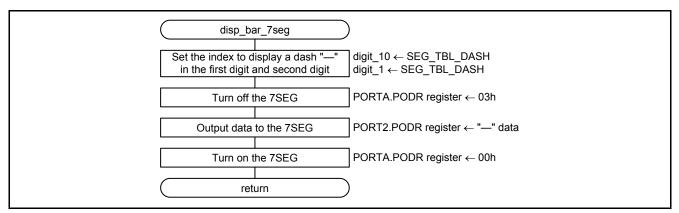


Figure 5.9 Processing to Display a Dash on the 7SEG

5.8.9 Compare Match Interrupt Handling

Figure 5.10 shows the Compare Match Interrupt Handling.

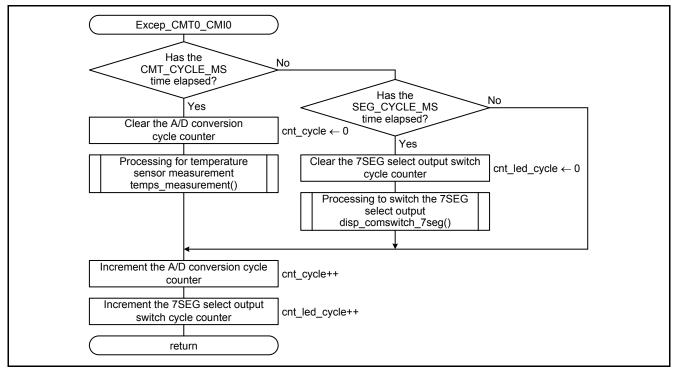


Figure 5.10 Compare Match Interrupt Handling

5.8.10 AD and Temperature Sensor Initialization

Figure 5.11 shows the AD and Temperature Sensor Initialization.

temps_init)
Disable the A/D conversion complete interrupt	IER0C register IEN2 bit \leftarrow 0: ADI interrupt request is disabled
	PRCR register ← A502h
Enable writing to relevant registers	PRC1 bit = 1: Enables writing to the registers related to low power consumption
Release the AD and temperature sensor from the module stop state	MSTPCRA register MSTPA23 bit ← 0: The AD module stop state is canceled MSTPCRB register
	MSTPB8 bit \leftarrow 0: The temperature sensor module stop state is canceled
Disable writing to relevant registers	PRCR register ← A500h PRC1 bit = 0: Disables writing to the registers related to low power consumption
Wait 1 µs R_DELAY_Us()	After releasing the module from the module stop state, wait 1 μs before starting A/D conversion.
Select the scan mode	ADCSR register ← 0000h ADCS bit = 0: Single scan mode
Select the A/D conversion pins	ADANSA register ← 00h ANSA[6:0] bits = 0: AN0 to AN6 are not subjected to conversion.
Select A/D conversion for the temperature sensor output	ADEXICR register ← 0100h TSS bit = 1: A/D conversion of temperature sensor output is performed
Set the number of sampling states	ADSSTRT register ← 180: 180 states (approx. 72 μs)
Select the A/D conversion start trigger	ADSTRGR register \leftarrow 0A00h TRSA[4:0] bits = 01010b: Trigger from the temperature sensor
Select the A/D converter start trigger from the temperature sensor	ADCSR register TRGE bit ← 1: Enables A/D conversion to be started by the synchronous or asynchronous trigger EXTRG bit ← 0: A/D conversion is started by the synchronous trigger (temperature sensor).
Select the PGA gain	TSCR register \leftarrow 01h ^{*1} PGAGAIN[1:0] bits = 01b: 2.7 V \leq AVCC0 \leq 3.6 V
Start the temperature sensor	TSCR register
	TSEN bit \leftarrow 1: Starts the temperature sensor.
Wait the temperature sensor startup time (80 μs) R_DELAY_Us()	
Enable the scan complete interrupt	ADCSR register ADIE bit \leftarrow 1: Enables the ADI interrupt generation upon scan completion.
Clear the interrupt request	IR098 register IR flag \leftarrow 0: ADI interrupt request is not generated
Enable the ADI interrupt	IPR98 register IPR[3:0] bits ← 0001b: Priority level of the ADI interrupt is level 1 IER0C register IEN2 bit ← 1: ADI interrupt request is enabled
Obtain the high reference temperature	high_ref_potential \leftarrow HIGH_REF_POTENTIAL_VAL $^{\circ 2}$
return	
Note 1. Change the constants to accommodate Note 2. The setting value will differ according to	

Figure 5.11 AD and Temperature Sensor Initialization

5.8.11 Obtain the A/D Conversion Status

Figure 5.12 shows Obtain the A/D Conversion Status.

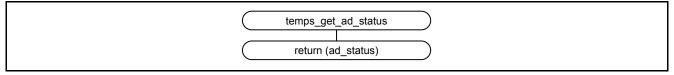


Figure 5.12 Obtain the A/D Conversion Status

5.8.12 Obtain the Temperature Sensor Measurement Result

Figure 5.13 shows Obtain the Temperature Sensor Measurement Result.

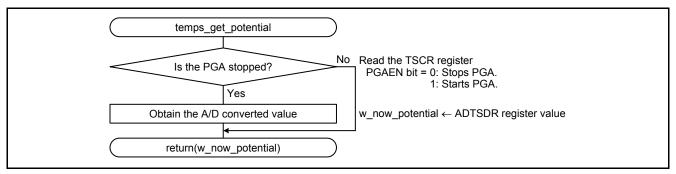


Figure 5.13 Obtain the Temperature Sensor Measurement Result

5.8.13 Obtain the Current Temperature

Figure 5.14 shows Obtain the Current Temperature.

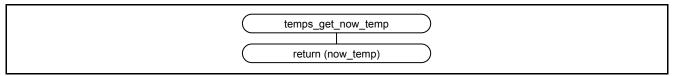


Figure 5.14 Obtain the Current Temperature

5.8.14 Processing for Temperature Sensor Calibration

Figure 5.15 shows the Processing for Temperature Sensor Calibration.

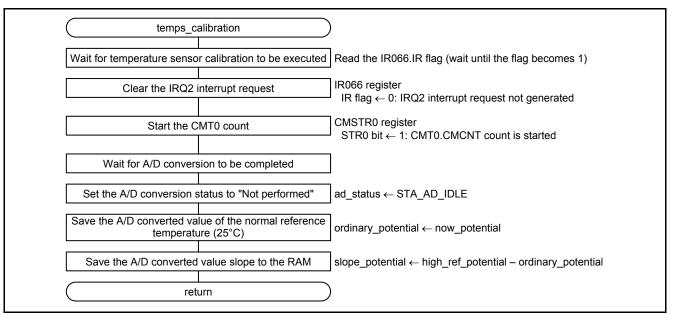


Figure 5.15 Processing for Temperature Sensor Calibration

5.8.15 Processing for Temperature Sensor Measurement

Figure 5.16 shows the Processing for Temperature Sensor Measurement.

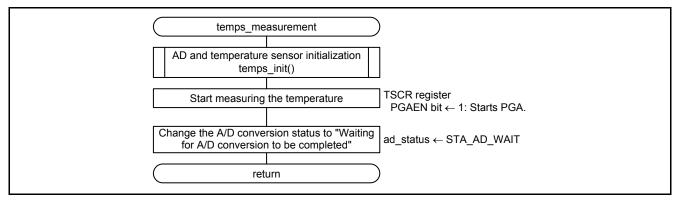


Figure 5.16 Processing for Temperature Sensor Measurement

5.8.16 Processing to Calculate the Current Temperature

Figure 5.17 shows the Processing to Calculate the Current Temperature.

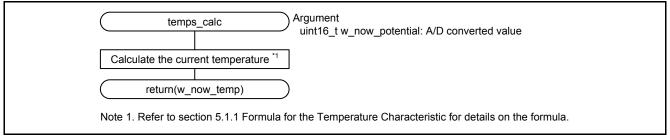


Figure 5.17 Processing to Calculate the Current Temperature

5.8.17 A/D Conversion Complete Interrupt Handling

Figure 5.18 shows the A/D Conversion Complete Interrupt Handling.

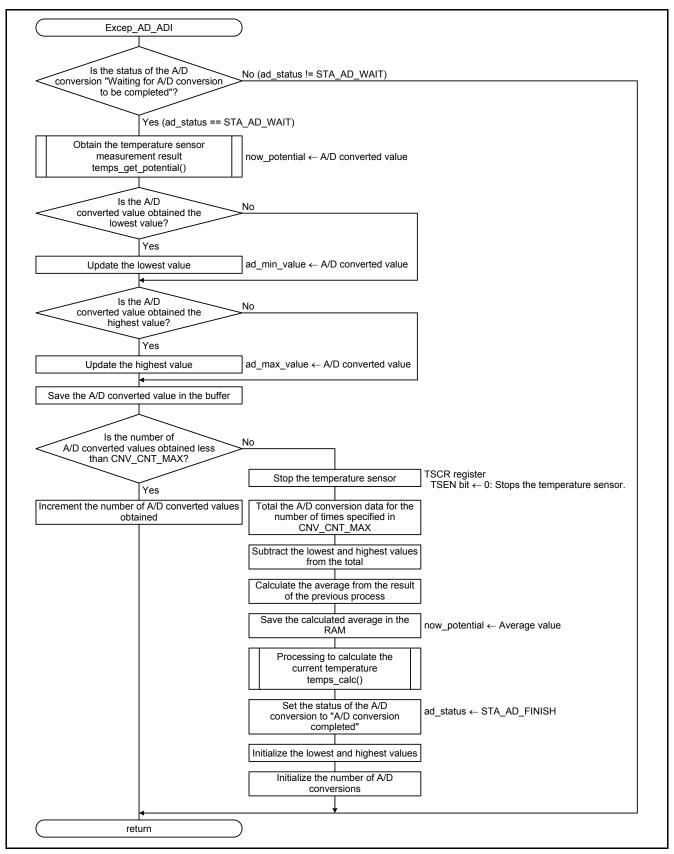


Figure 5.18 A/D Conversion Complete Interrupt Handling

6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

User's Manual: Hardware

RX21A Group User's Manual: Hardware Rev.1.00 (R01UH0025EJ) The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User's Manual Rev.1.00 (R20UT0570EJ) The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com

Inquiries http://www.renesas.com/contact/

	RX21A Group Application Note
REVISION HISTORY	Using the Temperature Sensor to
	Calculate the Ambient Temperature

Rev.	Date		Description
		Page	Summary
1.00	Sep. 1, 2014		First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

- contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2001 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited Tot1 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-888-5441, Fax: +1-905-888-3220 Renesas Electronics Curope Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-128-585-100, Fax: +44-128-585-900 Renesas Electronics Curope Cimited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-11-5603-0, Fax: +44-128-585-900 Renesas Electronics Curope Cimited Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-11-6503-0, Fax: +44-128-585-900 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +49-11-6503-0, Dax: +49-211-6503-0, TaX Renesas Electronics (Shanghai) Co., Ltd. Nom 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Shanghai, P. R. China 200333 Tel: +86-10-8235-1155, Fax: +86-10-8235-7879 Renesas Electronics Hong Kong Limited Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0998 Renesas Electronics Taiwan Co., Ltd. 103F, No, 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +880-2-8175-9600, Fax: +865 2-8175-9670 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit #06-20 Hyflux linovation Centre, Singapore 339949 Tel: +65-213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3795-9390, Fax: +60-3795-9301 Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3795-9390, Fax: +60-3795-9510