

RXv3 CPU 搭載 RX ファミリ

数値計算用ライブラリ関数ベンチマークデータ

要旨

本アプリケーションノートでは、RXv3 CPU 搭載 RX ファミリの三角関数演算器(以下、TFU と略します) や倍精度浮動小数点コプロセッサ(以下、DPFPU と略します)を使用し、RX ファミリ用 C/C++コンパイラ (CC-RX) V3.01.00 による数値計算用ライブラリ関数の実行サイクル数を掲載します。

対象デバイス

RXv3 CPU 搭載 RX ファミリ

目次

1.	測定条件	2
2	実行サイクル数	•
۷.	天1] サイブル数	C
3.	関連アプリケーションノート	∠
4.	参考ドキュメント	∠
⊒A7 ≣⁻	다. 다 글 구 紀	F

1. 測定条件

使用マイコン : RX72M グループ

コード配置:コードフラッシュメモリ("0"ウェイトアクセス設定)

データ配置: 内蔵 RAM

ROM キャッシュ : 動作許可

コンパイラ: RX ファミリ用 C/C++コンパイラ(CC-RX) V3.01.00

コンパイラオプション : コンパイラオプションの設定は、表 1 のコンパイラオプション設定に示しま

す。

表 1 に記載されていないオプションはデフォルト設定です。

また、ライブラリジェネレータオプションはコンパイラオプションと同じ設 定です。ただし、ライブラリジェネレータオプションでは tfu オプションは無

効となります。

オプション設定の詳細は「CC-RX コンパイラ ユーザーズマニュアル

(R20UT3248)」をご参照ください。

表 1 コンパイラオプション設定

	コンパイラオプション						
条件項目	endian	round	isa	fpu /nofpu	dpfpu /nodpfpu (注 1)	dbl_size	tfu (注 2)
単精度演算(TFU 不使用)	little zero		ma /2	four	nodpfpu	4	_
単精度演算(TFU 使用)		70.00					tfu=intrinsic,mathlib
倍精度演算(DPFPU 不使用)		rxv3	fpu		0	_	
倍精度演算(DPFPU 使用)					dpfpu	8	(注 3)

(注 1)

DPFPU を搭載しているデバイスと搭載していないデバイスがあります。

各デバイスに関する詳細は「ユーザーズマニュアル ハードウェア編」をご参照ください。

(注 2)

TFU を搭載しているデバイスと搭載していないデバイスがあります。

各デバイスに関する詳細は「ユーザーズマニュアル ハードウェア編」をご参照ください。

(注3)

TFU は単精度浮動小数点のみに対応しています。

2. 実行サイクル数

表 2に数値計算用ライブラリ関数の実行サイクル数(幾何平均値)を示します。

また、TFU は数値計算用ライブラリ関数以外に組み込み関数でも実行できます。表 3 に TFU を利用する組み込み関数の実行サイクル数(幾何平均値)を示します。

なお、実行サイクル数は、コード配置、デバイス設定、引数設定、コンパイラオプションやライブラリジェネレータオプションの設定、今後のコンパイラの改善などにより変化します。

表 2 数値計算用ライブラリ関数の実行サイクル数(幾何平均値)

単精度演算					
関数	サイクル数				
月奴	TFU 不使用	TFU 使用(注 1)			
acosf	71	-			
asinf	63	-			
atanf	71	-			
atan2f	286	23			
cosf	66	21			
sinf	66	21			
tanf	93	-			
coshf	72	-			
sinhf	76	-			
tanhf	80	-			
expf	63	-			
frexpf	13	-			
ldexpf	29	-			
logf	80	-			
log10f	91	-			
modff	29	-			
powf	356	-			
sqrtf	18	-			
ceilf	26	-			
fabsf	1	-			
floorf	26	-			
fmodf	88	-			
hypotf	268	26			

倍精度演算					
関数	サイクル数				
因奴	DPFPU 不使用	DPFPU 使用			
acos	1969	264			
asin	2428	309			
atan	2032	247			
atan2	3484	592			
cos	1522	173			
sin	1556	182			
tan	2212	252			
cosh	1989	282			
sinh	2011	298			
tanh	1610	263			
exp	1542	233			
frexp	39	31			
ldexp	31	35			
log	2105	261			
log10	2105	261			
modf	149	74			
pow	4065	596			
sqrt	209	43			
ceil	98	54			
fabs	5	4			
floor	98	59			
fmod	574	204			
hypot	1816	413			

(注 1)

サイクル数の欄が"-"の関数には TFU は対応していません。

表 3 TFU を利用する組み込み関数の実行サイクル数(幾何平均値)

組み込み関数	サイクル数	備考		
sincosf	26	TFU を用い、正弦と余弦を同時に計算します(単精度)		
atan2hypotf	30	TFU を用い、逆正接と 2 乗の和の平方根を同時に計算します(単精度)		

3. 関連アプリケーションノート

本資料に関連するアプリケーションノートを以下に示します。

RX ファミリ C/C++ コンパイラパッケージ アプリケーションノート: <リファレンス>ライブラリ関数 ベンチマークデータ (RJJ06J0083)

RXv2 CPU 搭載 RX ファミリ数値計算用ライブラリ関数ベンチマークデータ(R01AN3808JJ)

4. 参考ドキュメント

CC-RX コンパイラ ユーザーズマニュアル (R20UT3248)

(最新版をルネサスエレクトロニクスホームページから入手してください)

改訂記録

		改訂内容		
Rev.	発行日	ページ	ポイント	
1.00	Apr.26.19	_	初版発行	

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5 クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、 V_{IL} (Max.) から V_{IH} (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、 V_{IL} (Max.) から V_{IH} (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス (予約領域) のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品、本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではあいません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 6. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 9. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 10. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 12. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的 に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.4.0-1 2017.11)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/