
 Application Note

R01AN2184EJ0522 Rev.5.22 Page 1 of 116
Mar.20.25

RX Family
Flash Module Using Firmware Integration Technology
Introduction
This application note describes a flash module which uses Firmware Integration Technology (FIT)*1.
This module has been developed to allow users of supported devices to easily integrate reprogramming of
internal flash memory into their applications using self-programming*2.
This application note focuses on using this module and integrating it with your application program.

*1 This module is different from the “Simple Flash API for RX (R01AN0544)”.
*2 Self-programming is a method of reprogramming flash memory using user applications.

Target Devices
• RX110 Group
• RX111 Group
• RX113 Group
• RX130 Group
• RX13T Group
• RX140 Group
• RX230, RX231 Groups
• RX23E-A Group
• RX23E-B Group
• RX23T Group
• RX23W Group
• RX24T Group
• RX24U Group
• RX260, RX261 Group
• RX26T Group
• RX64M Group
• RX65N, RX651 Groups
• RX660 Group
• RX66N Group
• RX66T Group
• RX671 Group
• RX71M Group
• RX72M Group
• RX72N Group
• RX72T Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 2 of 117
Mar.20.25

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “5.1 Confirmed Operation
Environment”.

Related Documents
• Firmware Integration Technology User’s Manual (R01AN1833)
• Board Support Package Firmware Integration Technology Module (R01AN1685)

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 3 of 117
Mar.20.25

Contents

1. Overview .. 5
1.1 Flash Module Overview ... 5
1.1.1 Flash Types Overview ... 5
1.1.2 Supported Features ... 6
1.2 API Overview ... 7
1.3 Limitations ... 8
1.3.1 Flash Memory Access Restrictions ... 8
1.3.2 RAM Allocation Restrictions .. 8
1.3.3 Emulator Debug Configuration Restrictions .. 9

2. API Information .. 10
2.1 Hardware Requirements ... 10
2.2 Software Requirements ... 10
2.3 Supported Toolchains ... 10
2.4 Interrupt Vector .. 10
2.5 Header Files .. 10
2.6 Integer Types ... 10
2.7 Configuration Overview ... 11
2.8 Code Size .. 12
2.9 Parameters .. 19
2.9.1 Definitions of Common Arguments ... 19
2.9.2 Definitions of Arguments that Vary Depending on Flash Memory Functionality and Capacity 22
2.10 Return Values .. 26
2.11 Callback Function .. 27
2.12 Adding the FIT Module to Your Project ... 31
2.13 “for”, “while” and “do while” statements ... 32
2.14 Blocking Mode and Non-blocking Mode .. 33
2.14.1 Using in Blocking Mode ... 33
2.14.2 Using in Non-blocking Mode ... 33
2.15 Region Protection via Access Windows and Lockbits .. 34
2.15.1 Access Window-based Region Protection .. 34
2.15.2 Lockbit-based Region Protection .. 34
2.16 Usage Combined with Existing User Projects ... 35
2.17 Reprogramming Flash Memory ... 36
2.17.1 Reprogramming Code Flash Memory by Running Code on the RAM .. 37
2.17.2 Reprogramming Code Flash Memory by Running Code on the Code Flash Memory 38
2.17.3 Reprogramming Code Flash Memory by Utilizing the Dual Bank Function .. 39
2.17.3.1 Reprogramming the other Bank different from the Startup Bank by Running Code on the Startup

Bank .. 40
2.17.3.2 Reprogramming the Startup Bank and the other Bank by Running Code on the RAM 41

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 4 of 117
Mar.20.25

3. API Functions .. 42
3.1 R_FLASH_Open() ... 42
3.2 R_FLASH_Close() ... 45
3.3 R_FLASH_Erase() .. 46
3.4 R_FLASH_BlankCheck() ... 49
3.5 R_FLASH_Write() ... 52
3.6 R_FLASH_Control() .. 55
3.7 R_FLASH_GetVersion() .. 75

4. Demo Projects ... 76
4.1 flash_demo_rskrx113 .. 76
4.2 flash_demo_rskrx231 .. 76
4.3 flash_demo_rskrx23t ... 77
4.4 flash_demo_rskrx130 .. 77
4.5 flash_demo_rskrx24t ... 77
4.6 flash_demo_rskrx65n .. 78
4.7 flash_demo_rskrx24u .. 78
4.8 flash_demo_rskrx64m ... 78
4.9 flash_demo_rskrx64m_runrom .. 79
4.10 flash_demo_rskrx66t ... 79
4.11 flash_demo_rskrx72t ... 79
4.12 flash_demo_mckrx26t ... 80
4.13 Adding a Demo to a Workspace .. 80
4.14 Downloading Demo Projects ... 80

5. Appendices .. 81
5.1 Confirmed Operation Environment .. 81
5.2 Troubleshooting ... 87
5.3 Compiler-Dependent Settings ... 90
5.3.1 Using Renesas Electronics C/C++ Compiler Package for RX Family .. 90
5.3.1.1 Programming Code Flash from RAM .. 91
5.3.1.2 Programming Code Flash Using the Dual Bank Function .. 94
5.3.2 Using GCC for Renesas RX .. 97
5.3.2.1 Programming Code Flash from RAM .. 97
5.3.2.2 Programming Code Flash Using the Dual Bank Function .. 99
5.3.3 Using IAR C/C++ Compiler for Renesas RX ... 101
5.3.3.1 Programming Code Flash from RAM .. 101
5.3.3.2 Programming Code Flash Using the Dual Bank Function .. 106

6. Reference Documents ... 108

Revision History .. 109

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 5 of 117
Mar.20.25

1. Overview

1.1 Flash Module Overview
This module was designed so that the flash memory (code flash memory and data flash memory) embedded
in the MCU can be reprogrammed.

An API function used to reprogram flash memory is provided with this module.

1.1.1 Flash Types Overview
Flash memory is categorized by the features supported by MCU. Table 1.1 summarizes the categories
relevant to this module.

Table 1.1 Supported MCU Groups by Flash Type

Flash Type Supported MCU Groups
1 RX110*1, RX111, RX113, RX130, RX13T, RX140

RX230, RX231, RX23E-A, RX23E-B, RX23T*1, RX23W, RX24T, RX24U
RX260, RX261

3 RX64M, RX660, RX66T, RX71M, RX72T
4 RX651*2, RX65N*2, RX66N, RX671, RX72M, RX72N
5 RX26T

*1 No data flash memory.
*2 No data flash memory in products 1 Mbyte or less of code flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 6 of 117
Mar.20.25

1.1.2 Supported Features
Table 1.2 describes the flash types that are required for the features supported by this module.

Table 1.2 Supported Features by Flash Type

Functionality Overview Flash Type

1 3 4 5

Program Programs the specified region.
✔

✔ ✔ ✔

Erase Erases the specified region.
✔

✔ ✔ ✔

Blank check Checks that a specified region is not
programmed.

✔

*1

✔

*1

✔

*1

✔

*1

Access window Sets only specified regions as
reprogrammable so as to protect other
regions.

✔

*2

－ ✔

*2

✔

*2

Startup program protection Swaps the region containing the startup
program after a reset to protect the startup
region.

✔

*3

－ ✔ ✔

Lockbit Enables/disables a specified region as
reprogrammable to protect the specified
regions.

－

✔*4 － －

ROM cache Enables/disables the code flash memory
cache.

✔

*5

✔

*6

✔ －

Disable cache Sets regions for which cache is disabled.
－

✔

*6

✔

*7

－

Dual bank Swaps the startup bank.
－

－ ✔

*8

✔

*9

Flash sequencer reset Resets the flash sequencer.
✔ ✔ ✔ ✔

Flash sequencer usage frequency
notification

Provides notification of the frequency used
by the flash sequencer.

－ ✔ ✔ ✔

*1 Only Flash Type 1 supports blank checks on code flash memory.
*2 Access window can only be used on code flash memory.
*3 Only supported on products with at least 32 Kbytes of code flash memory.
*4 Lockbit can only be used on code flash memory.
*5 Supported by RX24T and RX24U only.
*6 Supported by RX66T and RX72T only.
*7 Supported by RX66N, RX671, RX72M, and RX72N only.
*8 Only supported on products with at least 1 Mbytes of code flash memory.
*9 Only supported on products with at least 512 Kbytes of code flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 7 of 117
Mar.20.25

1.2 API Overview
Table 1.3 describes information on the API information embedded in this module.

Table 1.3 API Functions

Function Description of Function
R_FLASH_Open() Initializes this module.
R_FLASH_Close() Closes this module.
R_FLASH_Erase() Erases specified blocks in data flash memory or code flash memory.
R_FLASH_BlankCheck() Checks that specified regions in data flash memory or code flash memory have

not been programmed.
R_FLASH_Write() Programs specific data into specified regions in data flash memory or code flash

memory.
R_FLASH_Control() Performs functionality other than programming, erasing, and blank check.
R_FLASH_GetVersion() Returns the current version of this module.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 8 of 117
Mar.20.25

1.3 Limitations
1.3.1 Flash Memory Access Restrictions
The flash sequencer has a read mode for reading the flash memory and a P/E mode for reprogramming the
flash memory.

Table 1.4 describes the regions that can and cannot be read during P/E mode.

Table 1.4 Regions With/Without Read Access During P/E Mode

Region Accessed During P/E
Mode

Regions Without Read Access Regions With Read Access*1

Code flash memory Code flash memory Data flash memory
RAM
External memory
Other code flash memory*2

Data flash memory Data flash memory Code flash memory
RAM
External memory

*1 Excluding data flash memory, reprogramming code and interrupt vector tables should be allocated in
regions with read access.

*2 Products with multiple regions of code flash memory.

Refer to section 2.16.1 for more information on running reprogramming code from RAM.

Refer to section 2.16.2 for more information on reprogramming code flash memory with data in other code
flash memory.

It is necessary to reallocate interrupt vector tables and interrupt handlers to the RAM for interrupts that may
occur while the code flash memory is being reprogrammed. Refer to Example 1 in section 3.6 for a usage
example.

1.3.2 RAM Allocation Restrictions
With FIT, configuring pointer arguments of API functions with values equivalent to NULL values results in
parameter checks sometimes producing return errors. As such, do not set values of pointer arguments
passed to API functions to values equivalent to NULL values.

The NULL value is defined in standard library specifications as zero (0). As such, the issue above will occur if
variables and functions passed to API function pointer arguments are stored in starting addresses (0x0
addresses) in RAM. In this case, change the configuration of sections or create dummy variables to be
stored at the beginning of RAM to prevent variables and functions passed to API function pointer arguments
from being stored at 0x0 addresses.

CCRX projects (e2 studio V7.5.0) are configured so that 0x4 is the starting RAM address to prevent variables
from being stored at the 0x0 address. This issue must be prevented in case of GCC projects (e2 studio
V7.5.0) and IAR projects (EWRX V4.12.1) because the starting RAM address is set to 0x0.

Default section settings may need to be changed whenever the IDE is upgraded. Make sure to always check
section settings before using the latest version of your IDE.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 9 of 117
Mar.20.25

1.3.3 Emulator Debug Configuration Restrictions
To confirm the data written to code flash memory and data flash memory during debug, change the Debug
Tool Settings of the debug configuration as follows.

1. In Project Explorer, click the project you want to debug.
2. Click Execute -> Debug Configuration to open the Debug Configuration window.
3. On the Debug Configuration window, expand the display of the “Renesas GDB Hardware

Debugging” debug configuration and click the debug configuration you want to debug.
4. Switch to the “Debugger” tab, click the “Debug Tool Settings” in the “Debugger” tab and make the

following settings.
• System

- Debug the program re-writing the on-chip PROGRAM ROM = “Yes”
- Debug the program re-writing the on-chip DATA FLASH = “Yes”

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 10 of 117
Mar.20.25

2. API Information
This module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
This driver requires that your MCU supports the following peripheral(s):

• Flash memory (code flash memory and data flash memory)

2.2 Software Requirements
The driver is dependent on the following FIT module.

• Board Support Package (r_bsp) v5.20 or later

2.3 Supported Toolchains
This module has been confirmed to work with the toolchain listed in 5.1 Confirmed Operation Environment.

2.4 Interrupt Vector
When the FLASH_CFG_DATA_FLASH_BGO or FLASH_CFG_CODE_FLASH_BGO configuration option
(see section 2.7) is 1, the interrupts shown in Table 2.1 below are enabled.

Table 2.1 Interrupt Vectors Used in this Module

Flash Type Interrupt Vector
1 FRDYI interrupt (vector no.: 23)
3, 4, 5 FRDYI interrupt (vector no.: 23), FIFERR interrupt (vector no.: 21)

2.5 Header Files
All API calls and their supporting interface definitions are located in “r_flash_rx_if.h”. This file should be
included by all files which utilize the Flash Module.

The configuration options that can be set at build time are defined in the “r_flash_rx_config.h” file.

2.6 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable.
These types are defined in stdint.h.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 11 of 117
Mar.20.25

2.7 Configuration Overview
Configuring this module is done through the supplied r_flash_rx_config.h header file. Each configuration item
is represented by a macro definition in this file. Each configurable item is detailed in the table below.

Configuration options in r_flash_rx_config.h

FLASH_CFG_PARAM_CHECKING_ENABLE
*Default value is “1”.

Enables/disables the inclusion of parameter check
processing into the code.
A value of “0” omits parameter check processing from the
code.
A value of “1” includes parameter check processing in the
code.

FLASH_CFG_CODE_FLASH_ENABLE
*Default value is “0”.

Enables/disables the inclusion of code used to program
code flash memory regions.
A value of “0” includes code used to program data flash
memory regions only (no code flash memory regions).
A value of “1” includes code used to program both code
flash memory regions and data flash memory regions.

FLASH_CFG_DATA_FLASH_BGO
*Default value is “0”.

Specifies the processing method for data flash memory.
A value of “0” processes data flash memory in blocking
mode.
A value of “1” processes data flash memory in non-blocking
mode.
When FLASH_CFG_CODE_FLASH_ENABLE is set to “1”,
make the same setting as
FLASH_CFG_CODE_FLASH_BGO.
Refer to 2.13 for details on blocking mode and non-blocking
mode.

FLASH_CFG_CODE_FLASH_BGO
*Default value is “0”.

Specifies the processing method for code flash memory.
A value of “0” processes code flash memory in blocking
mode.
A value of “1” processes code flash memory in non-
blocking mode.
When FLASH_CFG_CODE_FLASH_ENABLE is set to “1”,
make the same setting as
FLASH_CFG_DATA_FLASH_BGO.
Refer to 2.13 for details on blocking mode and non-blocking
mode.

FLASH_CFG_CODE_FLASH_RUN_FROM_R
OM*1
*Default value is “0”.

Specifies the code location for running the program and
erase features on flash memory.
This option is enabled only when
FLASH_CFG_CODE_FLASH_ENABLE is set to “1”.
If set to “0”, the code for running the program and erase
features on flash memory is stored and ran in RAM. Refer
to section 2.16.1 for details.
If set to “1”, the code for running the program and erase
features on flash memory is allocated and ran in code flash
memory. Refer to section 2.16.2 for details.

*1 Supported only in products with multiple regions of code flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 12 of 117
Mar.20.25

2.8 Code Size
The ROM size, RAM size, and the maximum stack size of this module are described in the following table.
Separate examples are given for each type of product: Flash Type 1 with data flash memory, Flash Type 1
without data flash memory, Flash Type 3, 4, and Flash Type 5.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options set in the module configuration header file.

The values in the table below are confirmed under the following conditions.

Module Revision: r_flash_rx Rev.5.00
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)
GCC for Renesas RX 8.03.00.202204
(The option of “-std = gnu99” is added to the default settings of the integrated
development environment.)
IAR C/C++ Compiler for Renesas RX version 4.20.3
(The default settings of the integrated development environment.)

Configuration Options: The setting of configuration options that are different is described in each table.
Other configuration options are default settings.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 13 of 117
Mar.20.25

Flash Type 1: ROM, RAM and Stack Code Sizes (Maximum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX130 ROM 3510 bytes 3148 bytes 5092 bytes 4516 bytes 5416 bytes 4912 bytes
RAM 3026 bytes 4480 bytes 4785 bytes
STACK 112 bytes - 100 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 1
FLASH_CFG_DATA_FLASH_BGO 1
FLASH_CFG_CODE_FLASH_BGO 1

Flash Type 1: ROM, RAM and Stack Code Sizes (Minimum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX130 ROM 1843 bytes 1681 bytes 2544 bytes 2320 bytes 2583 bytes 2368 bytes
RAM 61 bytes 60 bytes 41 bytes
STACK 52 bytes - 44 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 0
FLASH_CFG_DATA_FLASH_BGO 0
FLASH_CFG_CODE_FLASH_BGO 0

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 14 of 117
Mar.20.25

Flash Type 1: ROM, RAM and Stack Code Sizes (Maximum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX140 ROM 3442 bytes 3067 bytes 4996 bytes 4404 bytes 5392 bytes 4878 bytes
RAM 2939 bytes 4352 bytes 4728 bytes
STACK 108 bytes - 100 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 1
FLASH_CFG_DATA_FLASH_BGO 1
FLASH_CFG_CODE_FLASH_BGO 1

Flash Type 1: ROM, RAM and Stack Code Sizes (Minimum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX140 ROM 1861 bytes 1686 bytes 2544 bytes 2304 bytes 2615 bytes 2391 bytes
RAM 61 bytes 0 bytes 41 bytes
STACK 52 bytes - 44 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 0
FLASH_CFG_DATA_FLASH_BGO 0
FLASH_CFG_CODE_FLASH_BGO 0

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 15 of 117
Mar.20.25

Flash Type 1: ROM, RAM and Stack Code Sizes (Maximum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX23T* ROM 2994 bytes 2687 bytes 4208 bytes 3704 bytes 4472 bytes 4048 bytes
RAM 2740 bytes 3840 bytes 4185 bytes
STACK 112 bytes - 100 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 1
FLASH_CFG_DATA_FLASH_BGO 1
FLASH_CFG_CODE_FLASH_BGO 1

*Device without data flash

Flash Type 1: ROM, RAM and Stack Code Sizes (Minimum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX23T* ROM 2654 bytes 2360 bytes 3624 bytes 3176 bytes 3808 bytes 3392 bytes
RAM 2405 bytes 3328 bytes 3520 bytes
STACK 52 bytes - 44 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 1
FLASH_CFG_DATA_FLASH_BGO 0
FLASH_CFG_CODE_FLASH_BGO 0

*Device without data flash

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 16 of 117
Mar.20.25

Flash Type 3: ROM, RAM and Stack Code Sizes (Maximum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX64M ROM 3626 bytes 3154 bytes 5240 bytes 4600 bytes 5680 bytes 5076 bytes
RAM 3181 bytes 4608 bytes 5053 bytes
STACK 220 bytes - 176 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 1
FLASH_CFG_DATA_FLASH_BGO 1
FLASH_CFG_CODE_FLASH_BGO 1

Flash Type 3: ROM, RAM and Stack Code Sizes (Minimum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX64M ROM 2237 bytes 2048 bytes 3128 bytes 2864 bytes 3279 bytes 3030 bytes
RAM 65 bytes 0 bytes 48 bytes
STACK 76 bytes - 56 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 0
FLASH_CFG_DATA_FLASH_BGO 0
FLASH_CFG_CODE_FLASH_BGO 0

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 17 of 117
Mar.20.25

Flash Type 4: ROM, RAM and Stack Code Sizes (Maximum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX65N ROM 3674 bytes 3190 bytes 5160 bytes 4464 bytes 5636 bytes 5004 bytes
RAM 3053 bytes 4480 bytes 4815 bytes
STACK 204 bytes - 172 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 1
FLASH_CFG_DATA_FLASH_BGO 1
FLASH_CFG_CODE_FLASH_BGO 1

Flash Type 4: ROM, RAM and Stack Code Sizes (Minimum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX65N ROM 2085 bytes 1896 bytes 2896 bytes 2616 bytes 3080 bytes 2831 bytes
RAM 61 bytes 128 bytes 47 bytes
STACK 80 bytes - 56 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 0
FLASH_CFG_DATA_FLASH_BGO 0
FLASH_CFG_CODE_FLASH_BGO 0

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 18 of 117
Mar.20.25

Flash Type 5: ROM, RAM and Stack Code Sizes (Maximum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX26T ROM 3583 bytes 3099 bytes 5032 bytes 4328 bytes 5464 bytes 4824 bytes
RAM 2973 bytes 4352 bytes 4653 bytes
STACK 240 bytes - 184 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 1
FLASH_CFG_DATA_FLASH_BGO 1
FLASH_CFG_CODE_FLASH_BGO 1

Flash Type 5: ROM, RAM and Stack Code Sizes (Minimum Size)

Device Category

Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX26T ROM 2068 bytes 1879 bytes 2860 bytes 2588 bytes 3049 bytes 2800 bytes
RAM 61 bytes 128 bytes 47 bytes
STACK 76 bytes - 56 bytes

Configuration options:
FLASH_CFG_PARAM_CHECKING_ENABLE 0: Without parameter check, 1: With parameter check
FLASH_CFG_CODE_FLASH_ENABLE 0
FLASH_CFG_DATA_FLASH_BGO 0
FLASH_CFG_CODE_FLASH_BGO 0

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 19 of 117
Mar.20.25

2.9 Parameters
This section defines the structure and enumeration used for API function arguments. This section provides
common module definitions and definitions that vary depending on flash memory functionality and capacity.

2.9.1 Definitions of Common Arguments
Structures and enumerations commonly used as module arguments are defined in “r_flash_rx_if.h”.

/* Callback function event type */
typedef enum _flash_interrupt_event
{
 FLASH_INT_EVENT_INITIALIZED, // No value is returned
 FLASH_INT_EVENT_ERASE_COMPLETE, // Completion of erase process
 FLASH_INT_EVENT_WRITE_COMPLETE, // Completion of program process
 FLASH_INT_EVENT_BLANK, // Blank check result - blank
 FLASH_INT_EVENT_NOT_BLANK, // Blank check result - not blank
 FLASH_INT_EVENT_TOGGLE_STARTUPAREA, // Swapping of the startup region
 FLASH_INT_EVENT_SET_ACCESSWINDOW, // Configuration of access window
 FLASH_INT_EVENT_LOCKBIT_WRITTEN, // Setting of lockbit
 FLASH_INT_EVENT_LOCKBIT_PROTECTED, // Enabling of lockbit protection
 FLASH_INT_EVENT_LOCKBIT_NON_PROTECTED, // Disabling of lockbit protection
 FLASH_INT_EVENT_ERR_DF_ACCESS, // Data flash memory access violation
 FLASH_INT_EVENT_ERR_CF_ACCESS, // Code flash memory access violation
 FLASH_INT_EVENT_ERR_SECURITY, // Access window write protection violation
 FLASH_INT_EVENT_ERR_CMD_LOCKED, // Command is locked
 FLASH_INT_EVENT_ERR_LOCKBIT_SET, // Error due in region protected by lockbit
 FLASH_INT_EVENT_ERR_FAILURE, // Error during program or erase process
 FLASH_INT_EVENT_TOGGLE_BANK, // Swapping of startup bank
 FLASH_INT_EVENT_END_ENUM // No value is returned
} flash_interrupt_event_t;

/* Definitions used for registration of callback function */
typedef struct _flash_interrupt_config
{
 void (*pcallback)(void *); // Callback function pointer
 uint8_t int_priority; // Interrupt priority
} flash_interrupt_config_t;

/* Definitions used as the callback function arguments */
typedef struct
{
 flash_interrupt_event_t event; // Interrupt-causing event
} flash_int_cb_args_t;

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 20 of 117
Mar.20.25

/* R_FLASH_Control Function command definitions */
typedef enum _flash_cmd
{
 FLASH_CMD_RESET, // Resets the flash sequencer
 FLASH_CMD_STATUS_GET, // Retrieves the status of the FLASH FIT module API
 FLASH_CMD_SET_BGO_CALLBACK, // Registers the callback function
 FLASH_CMD_SWAPFLAG_GET, // Retrieves configuration of the current startup region
 FLASH_CMD_SWAPFLAG_TOGGLE, // Swaps the startup region
 FLASH_CMD_SWAPSTATE_GET, // Retrieves setting of the startup region selection bit
 FLASH_CMD_SWAPSTATE_SET, // Sets the startup region selection bit
 FLASH_CMD_ACCESSWINDOW_SET, // Sets the access window boundary
 FLASH_CMD_ACCESSWINDOW_GET, // Retrieves the access window boundary
 FLASH_CMD_LOCKBIT_READ, // Retrieves lockbit information for the specified block
 FLASH_CMD_LOCKBIT_WRITE, // Sets the lockbit for the specified block
 FLASH_CMD_LOCKBIT_ENABLE, // Enables lockbit protection
 FLASH_CMD_LOCKBIT_DISABLE, // Disables lockbit protection
 FLASH_CMD_CONFIG_CLOCK, // Provides notification of operating frequency to the
flash sequencer
 FLASH_CMD_ROM_CACHE_ENABLE, // Enables ROM cache
 FLASH_CMD_ROM_CACHE_DISABLE, // Disables ROM cache
 FLASH_CMD_ROM_CACHE_STATUS, // Retrieves ROM cache status (enabled/disabled)
 FLASH_CMD_SET_NON_CACHED_RANGE0, // Sets the range of RANGE0 where cache is disabled
 FLASH_CMD_SET_NON_CACHED_RANGE1, // Sets the range of RANGE1 where cache is disabled
 FLASH_CMD_GET_NON_CACHED_RANGE0, // Retrieves the setting of RANGE0 where cache is
disabled
 FLASH_CMD_GET_NON_CACHED_RANGE1, // Retrieves the setting of RANGE1 where cache is
disabled
 FLASH_CMD_BANK_TOGGLE, // Swaps the startup bank
 FLASH_CMD_BANK_GET, // Retrieves settings of the current bank selection register
 FLASH_CMD_END_ENUM // This definition is not used
} flash_cmd_t;

/* Definitions of R_FLASH_Control and R_FLASH_BlankCheck function results
typedef enum _flash_res
{
 FLASH_RES_LOCKBIT_STATE_PROTECTED, // FLASH_CMD_LOCKBIT_READ result - protected
 FLASH_RES_LOCKBIT_STATE_NON_PROTECTED, // FLASH_CMD_LOCKBIT_READ result - not
protected
 FLASH_RES_BLANK, // R_FLASH_BlankCheck result - blank
 FLASH_RES_NOT_BLANK // R_FLASH_BlankCheck result - not blank
} flash_res_t;

/* Definitions used with FLASH_CMD_BANK_GET command in R_FLASH_Control function */
typedef enum _flash_bank
{
 FLASH_BANK1 = 0, // BANKSEL.BANKSWP is 000
 FLASH_BANK0 = 1, // BANKSEL.BANKSWP is 111
 FLASH_BANK0_FFE00000 = 0, // BANKSEL.BANKSWP is 000
 FLASH_BANK1_FFF00000 = 0, // BANKSEL.BANKSWP is 000
 FLASH_BANK0_FFF00000 = 1, // BANKSEL.BANKSWP is 111
 FLASH_BANK1_FFE00000 = 1 // BANKSEL.BANKSWP is 111
} flash_bank_t;

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 21 of 117
Mar.20.25

/* Definitions used with FLASH_CMD_ACCESSWINDOW_SET/GET commands in R_FLASH_Control
function */
typedef struct _flash_access_window_config
{
 uint32_t start_addr; // Start address of access window
 uint32_t end_addr; // End address of access window
} flash_access_window_config_t;

/* Definitions used with FLASH_CMD_LOCKBIT_READ/WRITE commands in R_FLASH_Control
function */
typedef struct _flash_lockbit_config
{
 flash_block_address_t block_start_address; // Start address*1
 flash_res_t result; // Retrieval result of lockbit information*2
 uint32_t num_blocks; // Number of blocks to have lockbit set*3
} flash_lockbit_config_t;
*1. The actual definition of flash_block_address_t varies depending on the MCU.
*2 Used when using the FLASH_CMD_LOCKBIT_READ command.
*3 Used when using the FLASH_CMD_LOCKBIT_WRITE command.

/* Definitions used for specifying sizes of caches being disabled */
typedef enum _flash_no_cache_size
{
 FLASH_NON_CACHED_16_BYTES = 0x10, // 16 bytes
 FLASH_NON_CACHED_32_BYTES = 0x20, // 32 bytes
 FLASH_NON_CACHED_64_BYTES = 0x40, // 64 bytes
 FLASH_NON_CACHED_128_BYTES = 0x80, // 128 bytes
 FLASH_NON_CACHED_256_BYTES = 0x100, // 256 bytes
 FLASH_NON_CACHED_512_BYTES = 0x200, // 512 bytes
 FLASH_NON_CACHED_1_KBYTE = 0x400, // 1 Kbyte
 FLASH_NON_CACHED_2_KBYTES = 0x800, // 2 Kbytes
 FLASH_NON_CACHED_4_KBYTES = 0x1000, // 4 Kbytes
 FLASH_NON_CACHED_8_KBYTES = 0x2000, // 8 Kbytes
 FLASH_NON_CACHED_16_KBYTES = 0x4000, // 16 Kbytes
 FLASH_NON_CACHED_32_KBYTES = 0x8000, // 32 Kbytes
 FLASH_NON_CACHED_64_KBYTES = 0x10000, // 64 Kbytes
 FLASH_NON_CACHED_128_KBYTES = 0x20000, // 128 Kbytes
 FLASH_NON_CACHED_256_KBYTES = 0x40000, // 256 Kbytes
 FLASH_NON_CACHED_512_KBYTES = 0x80000, // 512 Kbytes
 FLASH_NON_CACHED_1_MBYTE = 0x100000, // 1 Mbyte
 FLASH_NON_CACHED_2_MBYTE = 0x200000 // 2 Mbytes
} flash_non_cached_size_t;

/* Definitions used with FLASH_CMD_SET_NON_CACHED_RANGE0/RANGE1 and
FLASH_CMD_GET_NON_CACHED_RANGE0/RANGE1 commands in R_FLASH_Control function */

typedef struct _flash_non_cached
{
 uint32_t type_mask; // Type of cache being disabled
 uint32_t start_addr; // Start address of cache being disabled
 flash_non_cached_size_t size; // Size of cache being disabled
} flash_non_cached_t;

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 22 of 117
Mar.20.25

2.9.2 Definitions of Arguments that Vary Depending on Flash Memory Functionality and
Capacity

The actual definitions of some arguments vary depending on flash memory functionality and capacity.

Argument definitions that are applicable to the RX231, RX64M, and RX72M MCUs are presented here as
examples.

File name: r_flash_rx\src\targets\rx231\r_flash_rx231.h

/* Definitions related to flash memory block counts, block sizes, minimum programming
sizes, block numbers, and addresses */

- omitted -

#define FLASH_NUM_BLOCKS_DF (8)
#define FLASH_DF_MIN_PGM_SIZE (1)
#define FLASH_CF_MIN_PGM_SIZE (8)

#define FLASH_CF_BLOCK_SIZE (2048)
#define FLASH_DF_BLOCK_SIZE (1024)
#define FLASH_DF_FULL_SIZE (FLASH_NUM_BLOCKS_DF*FLASH_DF_BLOCK_SIZE)
#define FLASH_DF_FULL_PGM_SIZE (FLASH_DF_FULL_SIZE-FLASH_DF_MIN_PGM_SIZE)
#define FLASH_DF_LAST_VALID_ADDR (FLASH_DF_BLOCK_INVALID-1)
#define FLASH_DF_HIGHEST_VALID_BLOCK (FLASH_DF_BLOCK_INVALID-FLASH_DF_BLOCK_SIZE)

#define FLASH_NUM_BLOCKS_CF (MCU_ROM_SIZE_BYTES / FLASH_CF_BLOCK_SIZE)
#define FLASH_CF_FULL_SIZE (FLASH_NUM_BLOCKS_CF*FLASH_CF_BLOCK_SIZE)
#define FLASH_CF_LOWEST_VALID_BLOCK (FLASH_CF_BLOCK_INVALID + 1)
#define FLASH_CF_LAST_VALID_ADDR (FLASH_CF_LOWEST_VALID_BLOCK)

- omitted -

typedef enum _flash_block_address
{
 FLASH_CF_BLOCK_END = 0xFFFFFFFF, /* Top of the CS */
 FLASH_CF_BLOCK_0 = 0xFFFFF800, /* 2KB: 0xFFFFF800 - 0xFFFFFFFF */

- omitted -

 FLASH_CF_BLOCK_255 = 0xFFF80000, /* 2KB: 0xFFF80000 - 0xFFF807FF */
 FLASH_CF_BLOCK_INVALID = (FLASH_CF_BLOCK_255 - 1),
#endif

- omitted -

 FLASH_DF_BLOCK_0 = 0x00100000, /* 1KB: 0x00100000 - 0x001003ff */

- omitted -

 FLASH_DF_BLOCK_7 = 0x00101C00, /* 1KB: 0x00101C00 - 0x00101fff */
 FLASH_DF_BLOCK_INVALID = 0x00102000 /* 1KB: Can’t write beyond 0x00101fff */
} flash_block_address_t;

- omitted -

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 23 of 117
Mar.20.25

File name: r_flash_rx\src\targets\rx64m\r_flash_rx64m.h

/* Definitions related to flash memory block counts, block sizes, minimum programming
sizes, block numbers, and addresses */

- omitted -

#if (MCU_CFG_PART_MEMORY_SIZE == 0x15)
 #define FLASH_NUM_BLOCKS_CF (134)
#elif (MCU_CFG_PART_MEMORY_SIZE == 0x13)
 #define FLASH_NUM_BLOCKS_CF (102)
#elif (MCU_CFG_PART_MEMORY_SIZE == 0x10)
 #define FLASH_NUM_BLOCKS_CF (86)
#elif (MCU_CFG_PART_MEMORY_SIZE == 0xF)
 #define FLASH_NUM_BLOCKS_CF (70)
#endif

#define FLASH_NUM_BLOCKS_DF (1024)
#define FLASH_DF_MIN_PGM_SIZE (4)
#define FLASH_CF_MIN_PGM_SIZE (256)

#define FLASH_CF_SMALL_BLOCK_SIZE (8192)
#define FLASH_CF_MEDIUM_BLOCK_SIZE (32768)
#define FLASH_DF_BLOCK_SIZE (64)
#define FLASH_DF_HIGHEST_VALID_BLOCK (FLASH_DF_BLOCK_INVALID - FLASH_DF_BLOCK_SIZE)

- omitted -

typedef enum _flash_block_address
{
 FLASH_CF_BLOCK_END = 0xFFFFFFFF, /* End of Code Flash Area */
 FLASH_CF_BLOCK_0 = 0xFFFFE000, /* 8KB: 0xFFFFE000 - 0xFFFFFFFF */

- omitted -

 FLASH_CF_BLOCK_133 = 0xFFC00000, /* 32KB: 0xFFC00000 - 0xFFC07FFF */
 FLASH_CF_BLOCK_INVALID = (FLASH_CF_BLOCK_133 - 1), // 0x15 parts 4M ROM
#endif

- omitted -

 FLASH_DF_BLOCK_0 = 0x00100000, /* 64B: 0x00100000 - 0x0010003F */

- omitted -

 FLASH_DF_BLOCK_1023 = 0x0010FFC0, /* 64B: 0x0010FFC0 - 0x0010FFFF */
 FLASH_DF_BLOCK_INVALID = 0x00110000 /* Block 1023 + 64 bytes */}
flash_block_address_t;

- omitted -

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 24 of 117
Mar.20.25

File name: r_flash_rx\src\targets\rx72m\r_flash_rx72m.h

/* Definitions related to flash memory block counts, block sizes, minimum programming
sizes, block numbers, and addresses */

- omitted -

#if (MCU_CFG_PART_MEMORY_SIZE == 0xD)
 #if FLASH_IN_DUAL_BANK_MODE
 #define FLASH_NUM_BLOCKS_CF (30+8) // 1 Mb per bank dual mode
 #else
 #define FLASH_NUM_BLOCKS_CF (62+8) // 2 Mb linear mode
 #endif
#elif (MCU_CFG_PART_MEMORY_SIZE == 0x17)
 #if FLASH_IN_DUAL_BANK_MODE
 #define FLASH_NUM_BLOCKS_CF (62+8) // 2 Mb per bank dual mode
 #else
 #define FLASH_NUM_BLOCKS_CF (126+8) // 4 Mb linear mode
 #endif
#endif

#define FLASH_NUM_BLOCKS_DF (512)
#define FLASH_DF_MIN_PGM_SIZE (4)
#define FLASH_CF_MIN_PGM_SIZE (128)

#define FLASH_CF_SMALL_BLOCK_SIZE (8192)
#define FLASH_CF_MEDIUM_BLOCK_SIZE (32768)
#define FLASH_CF_LO_BANK_SMALL_BLOCK_ADDR (FLASH_CF_BLOCK_77)
#define FLASH_CF_LOWEST_VALID_BLOCK (FLASH_CF_BLOCK_INVALID + 1)
#define FLASH_DF_BLOCK_SIZE (64)
#define FLASH_DF_HIGHEST_VALID_BLOCK (FLASH_DF_BLOCK_INVALID - FLASH_DF_BLOCK_SIZE)

- omitted -

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 25 of 117
Mar.20.25

- omitted -

typedef enum _flash_block_address
{
#ifndef FLASH_IN_DUAL_BANK_MODE /* LINEAR MODE */
 FLASH_CF_BLOCK_END = 0xFFFFFFFF, /* End of Code Flash Area */
 FLASH_CF_BLOCK_0 = 0xFFFFE000, /* 8KB: 0xFFFFE000 - 0xFFFFFFFF */

- omitted -

 FLASH_CF_BLOCK_69 = 0xFFE00000, /* 32KB: 0xFFE00000 - 0xFFE07FFF */
#if MCU_CFG_PART_MEMORY_SIZE == 0x0D /* 'D' parts 2 Mb ROM */
 FLASH_CF_BLOCK_INVALID = (FLASH_CF_BLOCK_69 - 1),
#else
 FLASH_CF_BLOCK_70 = 0xFFDF8000, /* 32KB: 0xFFDF8000 - 0xFFDFFFFF */

- omitted -

 FLASH_CF_BLOCK_133 = 0xFFC00000, /* 32KB: 0xFFC00000 - 0xFFC07FFF */
 FLASH_CF_BLOCK_INVALID = (FLASH_CF_BLOCK_133 - 1), /* 'N' parts 4 Mb ROM */
#endif // > 2M

#else /* DUAL MODE */
 FLASH_CF_BLOCK_END = 0xFFFFFFFF, /* End of Code Flash Area */
 FLASH_CF_HI_BANK_HI_ADDR = FLASH_CF_BLOCK_END,
 FLASH_CF_BLOCK_0 = 0xFFFFE000, /* 8KB: 0xFFFFE000 - 0xFFFFFFFF */

- omitted -

 FLASH_CF_BLOCK_69 = 0xFFE00000, /* 32KB: 0xFFE00000 - 0xFFE07FFF */
 FLASH_CF_HI_BANK_LO_ADDR = FLASH_CF_BLOCK_69,
#endif
 FLASH_CF_LO_BANK_HI_ADDR = 0xFFDFFFFF, /* START OF NEXT BANK */

 FLASH_CF_BLOCK_70 = 0xFFDFE000, /* 8KB: 0xFFDFE000 - 0xFFDFFFFF */

- omitted -

 FLASH_CF_BLOCK_139 = 0xFFC00000, /* 32KB: 0xFFC00000 - 0xFFC07FFF */
 FLASH_CF_LO_BANK_LO_ADDR = FLASH_CF_BLOCK_139,
 FLASH_CF_BLOCK_INVALID = (FLASH_CF_BLOCK_139 - 1),
#endif // 32 blocks for 4M only
#endif // DUAL MODE

 FLASH_DF_BLOCK_0 = 0x00100000, /* 64B: 0x00100000 - 0x0010003F */

- omitted -

 FLASH_DF_BLOCK_511 = 0x00107FC0, /* 64B: 0x00107FC0 - 0x00107FFF */
 FLASH_DF_BLOCK_INVALID = 0x00108000 /* Block 511 + 64 bytes */
} flash_block_address_t;

- omitted -

These definitions are used as the arguments of module API functions. Refer to the descriptions and
examples of API functions in section 3 for details on actual usage.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 26 of 117
Mar.20.25

2.10 Return Values
This shows the different values API functions can return. This enumeration is described in the API function
prototype declarations as well as in “r_flash_rx_if.h”.

/* FLASH FIT module return value definitions */
typedef enum _flash_err
{
 FLASH_SUCCESS = 0,
 FLASH_ERR_BUSY, // Flash module is in busy state
 FLASH_ERR_ACCESSW, // Access window error
 FLASH_ERR_FAILURE, // Flash operation, program, erase process, or other error
 FLASH_ERR_CMD_LOCKED, // Flash module is in command lock state
 FLASH_ERR_LOCKBIT_SET, // Error during program or erase process due to lockbit
 FLASH_ERR_FREQUENCY, // Illegal frequency specified
 FLASH_ERR_BYTES, // Invalid number of bytes specified
 FLASH_ERR_ADDRESS, // Invalid address or non-program boundary address specified
 FLASH_ERR_BLOCKS, // The “number of blocks” argument is invalid
 FLASH_ERR_PARAM, // Illegal parameter specified
 FLASH_ERR_NULL_PTR, // NULL specified
 FLASH_ERR_UNSUPPORTED, // Unsupported command specified
 FLASH_ERR_SECURITY, // Error caused by access window protection
 FLASH_ERR_TIMEOUT, // Timeout occurred
 FLASH_ERR_ALREADY_OPEN, // Open() called twice without calling Close().
 FLASH_ERR_HOCO // The HOCO is not running.
} flash_err_t;

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 27 of 117
Mar.20.25

2.11 Callback Function
This module calls the callback function specified by the user at timings of FRDYI and FIFERR interrupt
generations.

The callback function is configured by storing the address of the user’s function in the “pcallback” structure
member as described in “2.9 Parameters”. When the callback function is called, variables storing the
constants described in Table 2.2 through Table 2.5 are passed as arguments.

Use a void pointer variable as the argument of the callback function as arguments are passed as void
pointers.

Use values inside the callback function by casting them.

Refer to Example 1 in section 3.6 for example implementations of the callback function.

Table 2.2 Flash Type 1 Callback Function Arguments (enum flash_interrupt_event_t)

Constant Definitions Description
FLASH_INT_EVENT_ERASE_COMPLETE Called by the FRDYI interrupt processing and

indicates completion of the erase process.
FLASH_INT_EVENT_WRITE_COMPLETE Called by the FRDYI interrupt processing and

indicates completion of the program process.
FLASH_INT_EVENT_BLANK

Called by the FRDYI interrupt processing and
indicates that the blank check resulted in a blank
state.

FLASH_INT_EVENT_NOT_BLANK Called by the FRDYI interrupt processing and
indicates that the blank check resulted in a non-
blank state.

FLASH_INT_EVENT_TOGGLE_STARTUPAREA

Called by the FRDYI interrupt processing and
indicates completion of swapping the startup
region.

FLASH_INT_EVENT_SET_ACCESSWINDOW

Called by the FRDYI interrupt processing and
indicates completion of configuring the access
window.

FLASH_INT_EVENT_ERR_FAILURE Called by the FRDYI interrupt processing and
indicates an error occurred during the program or
erase process.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 28 of 117
Mar.20.25

Table 2.3 Flash Type 3 Callback Function Arguments (enum flash_interrupt_event_t)

Constant Definitions Description
FLASH_INT_EVENT_ERASE_COMPLETE Called by the FRDYI interrupt processing and

indicates completion of the erase process.
FLASH_INT_EVENT_WRITE_COMPLETE Called by the FRDYI interrupt processing and

indicates completion of the program process.
FLASH_INT_EVENT_BLANK*1

Called by the FRDYI interrupt processing and
indicates that the blank check resulted in a blank
state.

FLASH_INT_EVENT_NOT_BLANK*1 Called by the FRDYI interrupt processing and
indicates that the blank check resulted in a non-
blank state.

FLASH_INT_EVENT_LOCKBIT_WRITTEN Called by the FRDYI interrupt processing and
indicates the setting of lockbit.

FLASH_INT_EVENT_LOCKBIT_PROTECTED Called by the FRDYI interrupt processing and
indicates that lockbit protection is enabled.

FLASH_INT_EVENT_LOCKBIT_NON_PROTECTED Called by the FRDYI interrupt processing and
indicates that lockbit protection is disabled.

FLASH_INT_EVENT_ERR_DF_ACCESS Called by the FIFERR interrupt processing and
indicates an access violation of data flash
memory.

FLASH_INT_EVENT_ERR_CF_ACCESS Called by the FIFERR interrupt processing and
indicates an access violation of code flash
memory.

FLASH_INT_EVENT_ERR_CMD_LOCKED Called by the FIFERR interrupt processing and
indicates that commands are locked.

FLASH_INT_EVENT_ERR_LOCKBIT_SET Called by the FIFERR interrupt processing and
indicates an error in a region with lockbit
protection.

FLASH_INT_EVENT_ERR_FAILURE Called by the FIFERR interrupt processing and
indicates an error occurred during the program or
erase process.

*1 The blank check process is only performed on data flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 29 of 117
Mar.20.25

Table 2.4 Flash Type 4 Callback Function Arguments (enum flash_interrupt_event_t)

Constant Definitions Description
FLASH_INT_EVENT_ERASE_COMPLETE Called by the FRDYI interrupt processing and

indicates completion of the erase process.
FLASH_INT_EVENT_WRITE_COMPLETE Called by the FRDYI interrupt processing and

indicates completion of the program process.
FLASH_INT_EVENT_BLANK*1

Called by the FRDYI interrupt processing and
indicates that the blank check resulted in a blank
state.

FLASH_INT_EVENT_NOT_BLANK*1 Called by the FRDYI interrupt processing and
indicates that the blank check resulted in a non-
blank state.

FLASH_INT_EVENT_TOGGLE_STARTUPAREA Called by the FRDYI interrupt processing and
indicates completion of swapping the startup
region.

FLASH_INT_EVENT_SET_ACCESSWINDOW Called by the FRDYI interrupt processing and
indicates completion of configuring the access
window.

FLASH_INT_EVENT_TOGGLE_BANK Called by the FRDYI interrupt processing and
indicates completion of swapping of the startup
bank.

FLASH_INT_EVENT_ERR_DF_ACCESS Called by the FIFERR interrupt processing and
indicates an access violation of data flash
memory.

FLASH_INT_EVENT_ERR_CF_ACCESS

Called by the FIFERR interrupt processing and
indicates an access violation of code flash
memory.

FLASH_INT_EVENT_ERR_SECURITY Called by the FIFERR interrupt processing and
indicates a reprogramming of a write-protected
region of an access window.

FLASH_INT_EVENT_ERR_CMD_LOCKED Called by the FIFERR interrupt processing and
indicates that commands are locked.

FLASH_INT_EVENT_ERR_FAILURE Called by the FIFERR interrupt processing and
indicates an error occurred during the program or
erase process.

*1 The blank check process is only performed on data flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 30 of 117
Mar.20.25

Table 2.5 Flash Type 5 Callback Function Arguments (enum flash_interrupt_event_t)

Constant Definitions Description
FLASH_INT_EVENT_ERASE_COMPLETE Called by the FRDYI interrupt processing and

indicates completion of the erase process.
FLASH_INT_EVENT_WRITE_COMPLETE Called by the FRDYI interrupt processing and

indicates completion of the program process.
FLASH_INT_EVENT_BLANK*1

Called by the FRDYI interrupt processing and
indicates that the blank check resulted in a blank
state.

FLASH_INT_EVENT_NOT_BLANK*1 Called by the FRDYI interrupt processing and
indicates that the blank check resulted in a non-
blank state.

FLASH_INT_EVENT_TOGGLE_STARTUPAREA Called by the FRDYI interrupt processing and
indicates completion of swapping the startup
region.

FLASH_INT_EVENT_SET_ACCESSWINDOW Called by the FRDYI interrupt processing and
indicates completion of configuring the access
window.

FLASH_INT_EVENT_TOGGLE_BANK Called by the FRDYI interrupt processing and
indicates completion of swapping of the startup
bank.

FLASH_INT_EVENT_ERR_DF_ACCESS Called by the FIFERR interrupt processing and
indicates an access violation of data flash
memory.

FLASH_INT_EVENT_ERR_CF_ACCESS

Called by the FIFERR interrupt processing and
indicates an access violation of code flash
memory.

FLASH_INT_EVENT_ERR_CMD_LOCKED Called by the FIFERR interrupt processing and
indicates that commands are locked.

FLASH_INT_EVENT_ERR_FAILURE Called by the FIFERR interrupt processing and
indicates an error occurred during the program or
erase process.

*1 The blank check process is only performed on data flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 31 of 117
Mar.20.25

2.12 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1), (3) or (5) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

(1) Adding the FIT module to your project using Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module can be automatically added to your
project. Refer to “Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for
details.

(3) Adding the FIT module to your project using Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(4) Adding the FIT module to your project in CS+

In CS+, manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

(5) Adding the FIT module to your project using Smart Configurator in IAREW

By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User Guide: IAREW (R20AN0535)” for details.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 32 of 117
Mar.20.25

2.13 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.
while statement example :

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

 /* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

 g_protect_counters[i] = 0;

}

do while statement example :

/* Reset completion waiting */

do

{

 reg = phy_read(ether_channel, PHY_REG_CONTROL);

 count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 33 of 117
Mar.20.25

2.14 Blocking Mode and Non-blocking Mode
API functions in this module operate in blocking and non-blocking modes.

Blocking mode does not return until the API function has finished processing the flash memory.

Non-blocking mode returns without waiting for the API function to finish processing the flash memory.

2.14.1 Using in Blocking Mode
When using this module in blocking mode, set configuration options as shown below. Set
FLASH_CFG_DATA_FLASH_BGO and FLASH_CFG_CODE_FLASH_BGO to the same value.

• FLASH_CFG_DATA_FLASH_BGO: 0
• FLASH_CFG_CODE_FLASH_BGO: 0

2.14.2 Using in Non-blocking Mode
When using this module in non-blocking mode, set configuration options as shown below. Set
FLASH_CFG_DATA_FLASH_BGO and FLASH_CFG_CODE_FLASH_BGO to the same value.

• FLASH_CFG_DATA_FLASH_BGO: 1
• FLASH_CFG_CODE_FLASH_BGO: 1
Users should not access flash memory regions until flash memory process is complete. If accessed, the flash
sequencer generates an error preventing processing from completing properly.

Notification of the result of flash memory processing is sent via the callback function. Register the callback
function in advance by executing R_FLASH_Open() and specifying the
FLASH_CMD_SET_BGO_CALLBACK command for the argument of R_FLASH_Control(). (Refer to section
3.6 for details.)
Table 2.6 describes the API functions that send notification of processing results via the callback function.

Table 2.6 API Functions that Send Notifications of Processing Results via the Callback Function

API Function Processing Result Notification via the Callback
Function

R_FLASH_Open(), R_FLASH_Close(),
R_FLASH_GetVersion()

Does not send notifications

R_FLASH_Erase(), R_FLASH_BLankCheck(),
R_FLASH_Write()

Sends notifications

R_FLASH_Control() Sends notifications for the following commands:
• FLASH_CMD_SWAPFLAG_TOGGLE
• FLASH_CMD_ACCESSWINDOW_SET
• FLASH_CMD_LOCKBIT_READ
• FLASH_CMD_LOCKBIT_WRITE
• FLASH_CMD_BANK_TOGGLE

A FRDYI or FIFERR interrupt occurs when flash memory processing completes. The callback functions
registered by each interrupt are called. Events indicating the completion status are passed to the callback
function. Refer to section 2.11 for details on callback functions.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 34 of 117
Mar.20.25

2.15 Region Protection via Access Windows and Lockbits
Regions of each MCU flash memory can be protected by using the access window or lockbit to prevent
regions of code flash memory from being unintentionally rewritten. API functions in this module support the
following features.

2.15.1 Access Window-based Region Protection
Regions can be protected by using access windows in Flash Type 1, 4 and 5 products.

Access window configurations include specification of the start and end addresses of the blocks defining the
region to which the access window is applied.

The region defined by the start and end addresses of the blocks configuring the region to which an access
window is applied can be reprogrammed. Make sure to note that it is the other regions that will be write-
protected.

All regions are reprogrammable at the time of shipment as access windows are not set by default.

Use R_FLASH_Control() to configure access windows. Refer to section 3.6 for details.

2.15.2 Lockbit-based Region Protection
Regions can be protected by using lockbits in Flash Type 3 products.

Lockbit configurations include the start address of the blocks defining the region to which lockbit is applied,
the number of blocks, and specification of whether lockbit protection is enabled or disabled.

The region defined by the number of specified blocks starting from the specified address configuring the
region to which lockbit is applied will be write-protected. Make sure to note that other regions will not be
write-protected.

All regions are reprogrammable at the time of shipment as lockbit is not configured by default.

Use R_FLASH_Control() to configure lockbits. Refer to section 3.6 for details.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 35 of 117
Mar.20.25

2.16 Usage Combined with Existing User Projects
Using the BSP startup disable function, this module can be used in combination with existing user projects.

The BSP startup disable function is a function to add and use this module and other peripheral FIT modules
to an existing user project without creating a new project.

BSP and this module (if necessary, other peripheral FIT modules) are incorporated into the existing user
project. Even though it is necessary to incorporate BSP, since all startup processing performed by the BSP
become disabled, this module and other peripheral FIT modules can be used in combination with startup
processing of the existing user project.

There are some settings and notes for using the BSP startup disable function. Refer to “RX Family Board
Support Package Module Using Firmware Integration Technology (R01AN1685)” for details.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 36 of 117
Mar.20.25

2.17 Reprogramming Flash Memory
Code required to perform flash memory reprogramming is allocated in code flash memory as shown in
Figure 2.1 (left figure). As shown in Figure 2.1 (right figure), running this code in code flash memory enables
reprogramming of the target regions in flash memory.

Figure 2.1 Location of Code Required to Perform Flash Memory Reprogramming and
Reprogramming Process

Note that, as shown in Figure 2.2, the region containing the code required to perform flash memory
reprogramming cannot be reprogrammed.

Figure 2.2 Reprogramming of Region Containing Code Required to Perform Flash Memory
Reprogramming

2.16.1 through 2.16.3 describe the available methods of reprogramming code flash memory.

Data flash memory

Code flash memory

Code flash memory

Code flash memory

RAM

Data flash memory

Reprogramming code

RAM

Reprogramming
code Run

Reprogram

RAM

Data flash memory

Run
Reprogramming

code Reprogram

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 37 of 117
Mar.20.25

2.17.1 Reprogramming Code Flash Memory by Running Code on the RAM
As shown in Figure 2.3, copying to and then running the code required to reprogram flash memory in RAM
enables reprogramming of regions in code flash memory.*1*2

Figure 2.3 Reprogramming Code Flash Memory by Running Code on the RAM

Configure the configuration options of this module as follows.

• FLASH_CFG_CODE_FLASH_ENABLE: 1
• FLASH_CFG_CODE_FLASH_RUN_FROM_ROM: 0

This module of Rev. 4.00 or later supports multiple compilers. To use this module, different settings are
required for each compiler. For details of the settings appropriate for the compiler to be used, refer to section
5.3.

*1 The code required to perform flash memory reprogramming is copied to RAM using the

R_FLASH_Open() function of this module.
It is necessary to reallocate interrupt vector tables and interrupt handlers to the RAM for interrupts that
may occur while the code flash memory is being reprogrammed. For details, refer to Example 1 in section
3.6.

*2 Products with multiple regions of code flash memory can reprogram code flash memory without using
RAM. Refer to section 2.16.2 for details.

Code flash memory

RAM

Data flash memory

Copy

Run Reprogramming
code

Reprogram
Reprogramming code

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 38 of 117
Mar.20.25

2.17.2 Reprogramming Code Flash Memory by Running Code on the Code Flash Memory
Table 2.7 shows the products that support reprogramming of code flash memory by running code on the
code flash memory. These products support this capability by having multiple regions of code flash memory.

Table 2.7 Products with Multiple Regions of Code Flash Memory

Flash Type Products with Multiple Regions of Code Flash Memory
3 RX64M*1, RX71M*1
4 RX651*2, RX65N*2, RX66N, RX671, RX72M, RX72N
5 RX26T*3

*1 Products with at least 2.5 Mbytes of code flash memory
*2 Products with at least 1.5 Mbytes of code flash memory
*3 Products with at least 512 Kbytes of code flash memory

The capacity of code flash memory regions varies depending on the MCU. As such, the size and boundaries
of code flash memory regions are dependent on the MCU. Refer to the hardware section of the applicable
user’s manual for details.

As shown in Figure 2.4, code flash memory can be reprogrammed in products with multiple regions of code
flash memory as long as the region is not the region containing the code required to perform flash memory
reprogramming.

Figure 2.4 Reprogramming Code Flash Memory by Running Code on the Code Flash Memory

Configure the configuration options of this module as follows.

• FLASH_CFG_CODE_FLASH_ENABLE: 1
• FLASH_CFG_CODE_FLASH_RUN_FROM_ROM: 1

Second half of code flash memory Second half of code flash memory

RAM

Data flash memory

First half of code flash memory

Reprogramming
code Run

Reprogram

RAM

Data flash memory

First half of code flash memory

Reprogramming
code Run Reprogram

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 39 of 117
Mar.20.25

2.17.3 Reprogramming Code Flash Memory by Utilizing the Dual Bank Function
Flash Type 4 products with at least 1.5 Mbytes of code flash memory and Flash Type 5 products with at least
512 Kbytes of code flash memory have the dual bank function.

The dual bank function includes bank mode swapping and the startup bank selection function so that
programs can be updated while user programs are still running.

Bank mode swapping features a linear mode where the user region in code flash memory is handled as one
and a dual mode where it is handled as two bank regions.

To use dual banks, it is necessary to change the constant defined in the configuration file (r_bsp_config.h) of
BSP as follows.

• BSP_CFG_CODE_FLASH_BANK_MODE: 1 → 0
The default setting is “1”. To operate in dual bank mode, set this constant to “0”.

The startup bank selection function is a function to select the bank region used to start program when
operating in dual mode.

It is defined in the configuration file (r_bsp_config.h) of BSP as follows.

• BSP_CFG_CODE_FLASH_START_BANK: 0
The default setting is “0”. The bank 0 is selected as the startup bank.

You can change the startup bank in dual mode by specifying the FLASH_CMD_BANK_TOGGLE command
as the first argument of the R_FLASH_Control() function. Note that the swap of the startup bank does not
take effect until the next MCU reset.

Sections 2.16.3.1 to 2.16.3.2 show how to reprogramming the code flash memory the configuration option of
this module in combination with the dual bank function.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 40 of 117
Mar.20.25

2.17.3.1 Reprogramming the other Bank different from the Startup Bank by Running Code
on the Startup Bank

As shown in Figure 2.5 (left figure), the startup bank (bank 0) region containing the code required to perform
flash memory reprogramming cannot be reprogrammed, but the other bank (bank 1) region can. By
swapping banks, the other bank (bank 0) region can now be reprogrammed as the startup bank (bank 1)
region now contains the code required to perform flash memory reprogramming as shown in Figure 2.5 (right
figure).

Figure 2.5 Reprogramming the other Bank different from the Startup Bank
by Running Code on the Startup Bank

Configure the configuration options of this module as follows.

• FLASH_CFG_CODE_FLASH_ENABLE: 1
• FLASH_CFG_CODE_FLASH_RUN_FROM_ROM: 1

This module of Rev. 4.00 or later supports multiple compilers. To use this module, different settings are
required for each compiler. For details of the settings appropriate for the compiler to be used, refer to section
5.3.

Data flash memory

Code flash memory (bank 1)

Code flash memory (bank 1)

Code flash memory (bank 0)

RAM

Data flash memory

Code flash memory (bank 0)

Reprogramming
code Run Reprogram

RAM

Run Reprogramming
code

Reprogram

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 41 of 117
Mar.20.25

2.17.3.2 Reprogramming the Startup Bank and the other Bank by Running Code on the RAM

As shown in Figure 2.6 (left figure), copying to and then running the code required to reprogram flash
memory in RAM enables reprogramming of regions in startup bank (bank 0) and the other bank (bank 1). By
swapping banks, copying to and then running the code required to reprogram flash memory in RAM enables
reprogramming of regions in startup bank (bank 1) and the other bank (bank 0) as shown in Figure 2.6 (right
figure).

Figure 2.6 Reprogramming the Startup Bank and the other Bank by Running Code on the RAM

Configure the configuration options of this module as follows.

• FLASH_CFG_CODE_FLASH_ENABLE: 1
• FLASH_CFG_CODE_FLASH_RUN_FROM_ROM: 0

This module of Rev. 4.00 or later supports multiple compilers. To use this module, different settings are
required for each compiler. For details of the settings appropriate for the compiler to be used, refer to section
5.3.

Data flash memory

Code flash memory (bank 1)

Code flash memory (bank 1)

Code flash memory (bank 0)

RAM

Data flash memory

Code flash memory (bank 0)

Reprogramming
code

RAM

Reprogramming
code

Reprogram

Run Reprogramming
code

Reprogramming
code Run

Copy

Reprogram

Copy

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 42 of 117
Mar.20.25

3. API Functions

3.1 R_FLASH_Open()
This API function initializes flash modules. Note that this function must be called before any other API
function.

Format
flash_err_t R_FLASH_Open(void)

Parameters
None

Return Values
FLASH_SUCCESS /* Successfully initialized. */
FLASH_ERR_BUSY /* A different flash memory process is being executed, try again later. */
FLASH_ERR_ALREADY_OPEN /* Already open. Run R_FLASH_Close(). */
FLASH_ERR_FREQUENCY /* The frequency setting of the Flash clock (FCLK) is invalid. */
FLASH_ERR_HOCO /* The HOCO is not running. */

Properties
Prototyped in file “r_flash_rx_if.h”.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 43 of 117
Mar.20.25

Description
This API function performs the following processing.

1. Preparing the code required to perform flash memory reprogramming

The code required to perform flash memory reprogramming is allocated depending on the
configuration of configuration options as described in Table 3.1.

Table 3.1 Code Allocations in Relation to Configuration of Configuration Options

Configuration Option Setting Code Allocation
FLASH_CFG_CODE_FLASH_ENABLE 0 Code that processes flash memory is

allocated in code flash memory. However,
this code does not include code that
processes code flash memory.

FLASH_CFG_CODE_FLASH_ENABLE 1 Code that processes flash memory is
copied into RAM. *1

FLASH_CFG_CODE_FLASH_RUN_FROM_ROM 0
BSP_CFG_CODE_FLASH_BANK_MODE 1
FLASH_CFG_CODE_FLASH_ENABLE 1 Code that processes flash memory is

allocated in code flash memory. FLASH_CFG_CODE_FLASH_RUN_FROM_ROM 1
BSP_CFG_CODE_FLASH_BANK_MODE 1
FLASH_CFG_CODE_FLASH_ENABLE 1 Code that processes flash memory is

copied into RAM. *1
Code that provides the dual bank and
access window is copied into RAM. *1

FLASH_CFG_CODE_FLASH_RUN_FROM_ROM 0
BSP_CFG_CODE_FLASH_BANK_MODE 0

FLASH_CFG_CODE_FLASH_ENABLE 1 Code that processes flash memory is
allocated in code flash memory.
Code that provides the dual bank and
access window is copied into RAM. *1

FLASH_CFG_CODE_FLASH_RUN_FROM_ROM 1
BSP_CFG_CODE_FLASH_BANK_MODE 0

*1 The functionality to reallocate interrupt vector tables or interrupt processing is not included in this API
function.

2. Default flash sequencer configuration
For Flash Type 3, 4 and 5 products, the flash sequencer processing clock notification register
(FPCKAR) is set with the value of the BSP configuration option (BSP_FCLK_HZ) as the flash
sequencer configuration.
The data flash memory access frequency setting register (EEPFCLK) is also configured in the same
manner for Flash Type 4 products with at least 1.5 Mbytes of code flash memory.
For the RX64M and RX71M, FCU firmware required to use the flash sequencer is also copied to
dedicated RAM (FCURAM).

3. Default interrupt configuration
The interrupts described in section 2.4 are prohibited.

Reentrant
• Not allowed

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 44 of 117
Mar.20.25

Example
flash_err_t err;

/* Initialize the API. */
err = R_FLASH_Open();

/* Check for errors. */
if (FLASH_SUCCESS != err)
{
 . . .
}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 45 of 117
Mar.20.25

3.2 R_FLASH_Close()
This API function terminates flash module processing.

Format
flash_err_t R_FLASH_Close(void)

Parameters
None

Return Values
FLASH_SUCCESS /* Successful termination of flash module processing. */
FLASH_ERR_BUSY /* A different flash memory process is being executed,

 try again later. */

Properties
Prototyped in file “r_flash_rx_if.h”.

Description
This API function terminates flash module processing by prohibiting the interrupt described in section 2.4 and
setting the module to an uninitialized state.

Reentrant
• Not allowed

Example
flash_err_t err;

/* Close the driver */
err = R_FLASH_Close();

/* Check for errors. */
if (FLASH_SUCCESS != err)
{
 . . .
}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 46 of 117
Mar.20.25

3.3 R_FLASH_Erase()
This API function erases specified blocks in code flash memory or data flash memory.

Format
flash_err_t R_FLASH_Erase(
 flash_block_address_t block_start_address,
 uint32_t num_blocks
)

Parameters
block_start_address

Specifies the start address of the blocks to be erased.

“flash_block_address_t” defines the starting block address and block number.

“flash_block_address_t” is defined in “r_flash_rx\src\targets\<mcu>\r_flash_<mcu>.h”.

num_blocks
Specifies the number of blocks to be erased.

With RX111, RX113, and RX130 products, make sure that regions specified by “block_start_address” and
“num_blocks” are not larger than 256 Kbytes.

Return Values
FLASH_SUCCESS /* Successful completion of erase processing. In non-blocking mode,

 this indicates that erase processing has started. */
FLASH_ERR_BLOCKS /* Specified number of blocks is invalid. */
FLASH_ERR_ADDRESS /* Specified address is invalid. */
FLASH_ERR_BUSY /* A different flash memory process is being executed, or the module

is not initialized. */
FLASH_ERR_FAILURE /* Erase processing failure. In non-blocking mode,

 the callback function is not registered. */

Properties
Prototyped in file “r_flash_rx_if.h”.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 47 of 117
Mar.20.25

Description
Code flash memory and data flash memory is erased in blocks.

Table 3.2 describes the difference in block sizes by MCU group.

Table 3.2 Block Sizes by MCU Group

MCU Group Code Flash Memory Data Flash Memory*4
RX110 1 Kbyte*1 －*5
RX111 1 Kbyte*1 1 Kbyte
RX113 1 Kbyte*1 1 Kbyte
RX130 1 Kbyte*1 1 Kbyte
RX13T 1 Kbyte*1 1 Kbyte
RX140 2 Kbytes 256 bytes
RX230, RX231 2 Kbytes*1 1 Kbyte
RX23E-A, RX23E-B 2 Kbytes*1 1 Kbyte
RX23T 2 Kbytes*1 －*4
RX23W 2 Kbytes*1 1 Kbyte
RX24T 2 Kbytes*1 1 Kbyte
RX24U 2 Kbytes*1 1 Kbyte
RX260, RX261 2 Kbytes 256 bytes
RX26T 4 Kbytes, 16 Kbytes*2 64 bytes
RX64M 8 Kbytes, 32 Kbytes*3 64 bytes
RX65N, RX651 8 Kbytes, 32 Kbytes*3 64 bytes*6
RX660 8 Kbytes, 32 Kbytes*3 64 bytes
RX66N 8 Kbytes, 32 Kbytes*3 64 bytes
RX66T 8 Kbytes, 32 Kbytes*3 64 bytes
RX671 8 Kbytes, 32 Kbytes*3 64 bytes
RX71M 8 Kbytes, 32 Kbytes*3 64 bytes
RX72M 8 Kbytes, 32 Kbytes*3 64 bytes
RX72N 8 Kbytes, 32 Kbytes*3 64 bytes
RX72T 8 Kbytes, 32 Kbytes*3 64 bytes

*1 Defined as FLASH_CF_BLOCK_SIZE in the specific MCU definitions file
(“r_flash_rx\src\targets\<mcu>\r_flash_<mcu>.h”).

*2 Contains both 4-Kb and 16-Kb blocks.
4-Kbytes blocks are defined as FLASH_CF_SMALL_BLOCK_SIZE while 16-Kbytes blocks are defined as
FLASH_CF_MEDIUM_BLOCK_SIZE in the specific MCU definitions file
(“r_flash_rx\src\targets\<mcu>\r_flash_<mcu>.h”).

*3 Contains both 8-Kb and 32-Kb blocks.
8-Kbytes blocks are defined as FLASH_CF_SMALL_BLOCK_SIZE while 32-Kbytes blocks are defined as
FLASH_CF_MEDIUM_BLOCK_SIZE in the specific MCU definitions file
(“r_flash_rx\src\targets\<mcu>\r_flash_<mcu>.h”).

*4 Defined as FLASH_DF_BLOCK_SIZE in the specific MCU definitions file
(“r_flash_rx\src\targets\<mcu>\r_flash_<mcu>.h”).

*5 Does not contain any data flash memory.
*6 Products with no more than 1 Mbyte of code flash memory do not have data flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 48 of 117
Mar.20.25

When this API function is used in non-blocking mode, FRDYI interrupt occurs after blocks for the specified
number are erased, and then the callback function is called.

Reentrant
• Not allowed

Example
The first argument specifies the starting block address for the erase process.

The second argument specifies the number of blocks to be erased starting from the starting block address
for the erase process.

The following code examples shows erase processing for flash memory with multiple blocks specified.

Note that the direction in which blocks are erased varies depending on whether erasing data flash memory or
code flash memory and on differences in flash types.

flash_err_t err;

/* Common for Flash Type 1, 3, 4, and 5 products. */
/* Erases data flash memory blocks in order from smaller to larger block numbers starting
from block 5. */
/* The following code causes blocks 5 and 6 in data flash memory to be erased. */
err = R_FLASH_Erase(FLASH_DF_BLOCK_5, 2);

/* Check for errors. */
if (FLASH_SUCCESS != err)
{
 . . .
}

/* For Flash Type 1 products */
/* Erases code flash memory blocks in order from larger to smaller block numbers starting
from block 5. */
/* The following code causes blocks 4 and 5 in code flash memory to be erased. */
err = R_FLASH_Erase(FLASH_CF_BLOCK_5, 2);

/* Check for errors. */
if (FLASH_SUCCESS != err)
{
 . . .
}

/* For Flash Type 3, 4 and 5 products */
/* Erases code flash memory blocks in order from smaller to larger block numbers starting
from block 5. */
/* The following code causes blocks 5 and 6 in code flash memory to be erased. */
err = R_FLASH_Erase(FLASH_CF_BLOCK_5, 2);

/* Check for errors. */
if (FLASH_SUCCESS != err)
{
 . . .
}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 49 of 117
Mar.20.25

3.4 R_FLASH_BlankCheck()
This API function determines if specified code flash memory or data flash memory blocks are blank.

Format
flash_err_t R_FLASH_BlankCheck(
 uint32_t address,
 uint32_t num_bytes,
 flash_res_t *blank_check_result
)

Parameters
address

Specifies the start address of the region to be processed by the blank check feature.
This parameter must specify a multiple of the minimum programming size of the target flash memory
region.

num_bytes
Specifies the number of bytes subject to the blank check.
This parameter must specify a multiple of the minimum programming size of the target flash memory
region. For RX111, RX113, and RX130 products, make sure that regions specified by “address” and
“num_bytes” are not larger than 256 Kbytes.

*blank_check_result
Specifies the memory address storing the blank check result when using blocking mode.
The following are stored as the blank check results.

• FLASH_RES_BLANK: Blank
• FLASH_RES_NOT_BLANK: Not blank
In non-blocking mode, specify any value since this parameter is not used.

Return Values
FLASH_SUCCESS /* Successful completion of blank check processing. In non-blocking

mode, this indicates that blank check processing has started. */
FLASH_ERR_FAILURE /* Blank check processing failure. In non-blocking mode, the callback

function is not registered.
FLASH_ERR_BUSY /* A different flash memory process is being executed, or the module is not

initialized. */
FLASH_ERR_BYTES /* “num_bytes” was either too large, not a multiple of the minimum

programming size, or exceeded the maximum range. */
FLASH_ERR_ADDRESS /* Invalid address was specified. */

/* Address is not a multiple of the minimum programming size or a flash
type not supported for blank check was specified. */

FLASH_ERR_NULL_PTR /* “blank_check_result” for storing blank check results was NULL.*/

Properties
Prototyped in file “r_flash_rx_if.h”.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 50 of 117
Mar.20.25

Description
Table 3.3 describes the MCU groups that support blank check.

Table 3.3 MCU Groups Supporting Blank Check

MCU Group Code Flash Memory Data Flash Memory
RX110 ● －*1
RX111 ● ●
RX113 ● ●
RX130 ● ●
RX13T ● ●
RX140 ● ●
RX230, RX231 ● ●
RX23E-A, RX23E-B ● ●
RX23T ● －*1
RX23W ● ●
RX24T ● ●
RX24U ● ●
RX260, RX261 ● ●
RX26T － ●
RX64M － ●
RX65N, RX651 － ●*2
RX660 － ●
RX66N － ●
RX66T － ●
RX671 － ●
RX71M － ●
RX72M － ●
RX72N － ●
RX72T － ●

●: Supported, －: Unsupported

*1 Does not contain any data flash memory.
*2 Products with no more than 1 Mbyte of code flash memory do not have data flash memory.

The address specified by the first argument and the number of bytes specified by the second argument of
this API function must be in multiples of the minimum programming size. The minimum programming size
varies depending on the type of both the MCU and flash memory. Refer to Table 3.4 in section 3.5 for
details.

If this API function is used in non-blocking mode, the result of the blank check is passed as the argument of
the callback function after the blank check is complete.

Reentrant
• Not allowed

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 51 of 117
Mar.20.25

Example
The first argument specifies the start address to be processed by the blank check feature.
The second argument specifies the number of bytes subject to the blank check.
Both of these arguments must be expressed in multiples of the minimum programming size.

flash_err_t err;
flash_res_t result;

/* Run the blank check on the first 64 bytes in block 0 of data flash memory. */
err = R_FLASH_BlankCheck((uint32_t)FLASH_DF_BLOCK_0, 64, &result);
if (FLASH_SUCCESS != err)
{
 /* Error processing */
}
else
{
 /* Check result */
 if (FLASH_RES_NOT_BLANK == result)
 {
 /* Processing when block is not blank */
 ・・・
 }
 else if (FLASH_RES_BLANK == ret)
 {
 /* Processing when block is blank */
 ・・・
 }
}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 52 of 117
Mar.20.25

3.5 R_FLASH_Write()
This API function reprograms code flash memory or data flash memory.

Format
flash_err_t R_FLASH_Write(
 uint32_t src_address,
 uint32_t dest_address,
 uint32_t num_bytes
)

Parameters
src_address

Specifies the start address of the buffer storing the data to be written in flash memory.

dest_address
Specifies the start address of the region in flash memory to be reprogrammed.

This parameter must specify a multiple of the minimum programming size of the target flash memory
region.

num_bytes
Specifies the number of bytes in flash memory to be written.

This parameter must specify a multiple of the minimum programming size of the target flash memory
region.

Return Values
FLASH_SUCCESS /* Successful completion of programming. In non-blocking mode, this

indicates that programming has started. */
FLASH_ERR_FAILURE /* Programming failed due to flash sequencer error. In non-blocking

mode, the callback function is not registered. */
FLASH_ERR_BUSY /* A different flash memory process is being executed, or the module

is not initialized. */
FLASH_ERR_BYTES /* Number of bytes provided was not a multiple of the minimum

programming size or exceeds the maximum range. */
FLASH_ERR_ADDRESS /* Specified address is invalid. */

Properties
Prototyped in file “r_flash_rx_if.h”.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 53 of 117
Mar.20.25

Description
Flash memory regions must be erased before being reprogrammed.

The address specified by the second argument and the number of bytes specified by the third argument of
this API function must be in multiples of the minimum programming size. The minimum programming size
varies depending on the MCU and flash memory as described in Table 3.4.

Table 3.4 Minimum Programming Sizes by MCU Group

MCU Group Code Flash Memory*1 Data Flash Memory*2
RX110 4 bytes －*3
RX111 4 bytes 1 byte
RX113 4 bytes 1 byte
RX130 4 bytes 1 byte
RX13T 4 bytes 1 byte
RX140 8 bytes 1 byte
RX230, RX231 8 bytes 1 byte
RX23E-A, RX23E-B 8 bytes 1 byte
RX23T 8 bytes －*3
RX23W 8 bytes 1 byte
RX24T 8 bytes 1 byte
RX24U 8 bytes 1 byte
RX260, RX261 8 bytes 1 byte
RX26T 128 bytes 4 bytes
RX64M 256 bytes 4 bytes
RX65N, RX651 128 bytes 4 bytes*4
RX660 256 bytes 4 bytes
RX66N 128 bytes 4 bytes
RX66T 256 bytes 4 bytes
RX671 128 bytes 4 bytes
RX71M 256 bytes 4 bytes
RX72M 128 bytes 4 bytes
RX72N 128 bytes 4 bytes
RX72T 256 bytes 4 bytes

*1 Defined as FLASH_CF_MIN_PGM_SIZE in the specific MCU definitions file
(“r_flash_rx\src\targets\<mcu>\r_flash_<mcu>.h”).

*2 Defined as FLASH_DF_MIN_PGM_SIZE in the specific MCU definitions file
(“r_flash_rx\src\targets\<mcu>\r_flash_<mcu>.h”).

*3 Does not contain any data flash memory.
*4 Products with no more than 1 Mbyte of code flash memory do not have data flash memory.

When this API function is used in non-blocking mode, the callback function is called when all write operations
are complete.

Reentrant
• Not allowed

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 54 of 117
Mar.20.25

Example
The second argument specifies the addresses in flash memory to be reprogrammed.

The third argument specifies the number of bytes to be written in flash memory.

Both of these arguments must be expressed in multiples of the minimum programming size.

flash_err_t err;
uint8_t write_buffer[16] = “Hello World...”;

/* Write data to internal memory.*/
err = R_FLASH_Write((uint32_t)write_buffer, dst_addr, sizeof(write_buffer));

if (FLASH_SUCCESS != err)
{
 ・・・
}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 55 of 117
Mar.20.25

3.6 R_FLASH_Control()
This API function perform processing other than programming, erasing, and blank check.

Format
flash_err_t R_FLASH_Control(
 flash_cmd_t cmd,
 void *pcfg
)

Parameters
cmd

Specifies the command to execute.

*pcfg
Specifies the required arguments depending on the command specified by argument 1. Set this to NULL
if no arguments are required for the particular command.

Return Values
FLASH_SUCCESS /* Successful completion. In non-blocking mode, this indicates that

processing has started successfully. */
FLASH_ERR_ADDRESS /* Specified address is invalid. */
FLASH_ERR_NULL_PTR /* NULL was specified even though the second argument was

required. */
FLASH_ERR_BUSY /* A different flash module process is being executed, or the module

is not initialized. */
FLASH_ERR_CMD_LOCKED /* Flash sequencer is in command lock state. */

/* The forced stop command was issued, and the return processing
was performed. */

FLASH_ERR_ACCESSW /* An access window error occurred. Incorrect region specified. */
FLASH_ERR_PARAM /* Invalid parameter was passed. */

Properties
Prototyped in file “r_flash_rx_if.h”.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 56 of 117
Mar.20.25

Description
This API function performs processing according to the command specified as an argument. Table 3.5
describes the supported commands by flash type.

Table 3.5 Supported Commands by Flash Type

Type of Command Command Flash Type
1 3 4 5

Common among all flash types

Retrieve flash module API function running status FLASH_CMD_STATUS_GET ✔ ✔ ✔ ✔

Register callback function FLASH_CMD_SET_BGO_CALLBACK ✔ ✔ ✔ ✔

Flash sequencer reset FLASH_CMD_RESET ✔ ✔ ✔ ✔

Flash sequencer usage frequency notification

Notify flash sequencer usage frequency FLASH_CMD_CONFIG_CLOCK － ✔ ✔ ✔

Access window

Retrieve access window configuration FLASH_CMD_ACCESSWINDOW_GET ✔

*1

－ ✔

*1

✔

*1 Configure access window FLASH_CMD_ACCESSWINDOW_SET

Startup program protection

Retrieve startup region setting FLASH_CMD_SWAPFLAG_GET ✔

*2

－ ✔ ✔

Swap startup region FLASH_CMD_SWAPFLAG_TOGGLE

Retrieve startup region selection bit setting FLASH_CMD_SWAPSTATE_GET

Set startup region selection bit FLASH_CMD_SWAPSTATE_SET

Lockbit

Retrieve lockbit configuration FLASH_CMD_LOCKBIT_READ － ✔

*3

－ －

Set lockbit FLASH_CMD_LOCKBIT_WRITE

Enable lockbit configuration FLASH_CMD_LOCKBIT_ENABLE

Disable lockbit configuration FLASH_CMD_LOCKBIT_DISABLE

ROM cache

Enable ROM cache configuration FLASH_CMD_ROM_CACHE_ENABLE ✔

*4

✔

*5

✔ －

Disable ROM cache configuration FLASH_CMD_ROM_CACHE_DISABLE

Retrieve ROM cache configuration FLASH_CMD_ROM_CACHE_STATUS

Disable cache

Set non-cached RANGE0 FLASH_CMD_SET_NON_CACHED_RANGE0 － ✔

*5

✔

*6

－

Set non-cached RANGE1 FLASH_CMD_SET_NON_CACHED_RANGE1

Retrieve configuration of non-cached RANGE0 FLASH_CMD_GET_NON_CACHED_RANGE0

Retrieve configuration of non-cached RANGE1 FLASH_CMD_GET_NON_CACHED_RANGE1

Dual bank

Swap banks FLASH_CMD_BANK_TOGGLE － － ✔

*7

✔

*8 Retrieve bank configuration FLASH_CMD_BANK_GET
*1 Access window can only be used on code flash memory.
*2 Only supported on products with at least 32 Kbytes of code flash memory.
*3 Lockbit can only be used on code flash memory.
*4 Supported by RX24T and RX24U only.
*5 Supported by RX66T and RX72T only.
*6 Supported by RX66N, RX671, RX72M, and RX72N only.
*7 Only supported on products with at least 1 Mbytes of code flash memory.
*8 Only supported on products with at least 512 Kbytes of code flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 57 of 117
Mar.20.25

Table 3.6 through Table 3.9 describe details of supported commands organized by flash type.

Table 3.6 Details of Commands Supported by Flash Type 1

Command Contents
FLASH_CMD_STATUS_GET
(Set the argument value to NULL.)
*Refer to Example 3 for usage examples.

Retrieves the running state of the flash sequencer for
flash memory.
This command can be used even while flash memory
processing is running.
FLASH_SUCCESS:
Flash sequencer is not running.
FLASH_ERR_BUSY:
Flash sequencer is running.

FLASH_CMD_SET_BGO_CALLBACK
(Argument: flash_interrupt_config_t *)
*Refer to Example 1 and Example 2 for
usage examples.

Registers the callback function. This command requires
operation in non-blocking mode.

FLASH_CMD_RESET
(Set the argument value to NULL.)

Resets the flash sequencer.
This command can be used even while flash memory
processing is running.

FLASH_CMD_ACCESSWINDOW_GET
(Argument: flash_access_window_config_t *)
*Refer to Example 4 for usage examples.

Retrieves the start and end addresses of the blocks
defining the region to which the access window is applied
in code flash memory.

FLASH_CMD_ACCESSWINDOW_SET
(Argument: flash_access_window_config_t *)
*Refer to Example 5 for usage examples.

Specifies the start and end addresses of the blocks
defining the region to which the access window is applied
in code flash memory.
The start address must be a smaller number than the end
address in access window configurations.
Programming and erase processes cannot be performed
on blocks outside the range specified with the start and
end addresses.
Multiple ranges defined by start and end addresses
cannot be specified.
Specify the same start and end addresses to delete an
access window configuration.
When using in non-blocking mode, FRDYI interrupt
occurs after setting the access window, and then callback
function is called.

FLASH_CMD_SWAPFLAG_GET
(Argument: uint32_t *)
*Refer to Example 6 for usage examples.

Retrieves the startup region setting.
0: Startup from the alternate region
1: Startup from the default region

FLASH_CMD_SWAPFLAG_TOGGLE
(Set the argument value to NULL.)
*Refer to Example 7 for usage examples.

Swaps the startup region.
The swapped startup region takes effect after the next
reset. When using in non-blocking mode, FRDYI interrupt
occurs after the startup region is swapped, and then the
callback function is called.
Make sure that the
FLASH_CFG_CODE_FLASH_ENABLE configuration
option is set to “1” when using this command.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 58 of 117
Mar.20.25

Command Contents
FLASH_CMD_SWAPSTATE_GET
(Argument: uint8_t *)
*Refer to Example 8 for usage examples.

Retrieves the value of the startup region selection bit
(FISR.SAS).
FLASH_SAS_EXTRA:
The startup region selection bit follows the startup region
configuration.
FLASH_SAS_DEFAULT:
Sets the startup region selection bit to the default region.
FLASH_SAS_ALTERNATE:
Sets the startup region selection bit to the alternate
region.

FLASH_CMD_SWAPSTATE_SET
(Argument: uint8_t *)
*Refer to Example 9 for usage examples.

Sets the value of the startup region selection bit
(FISR.SAS).
The set startup region takes effect immediately.
The default value after a reset is FLASH_SAS_EXTRA.
FLASH_SAS_EXTRA:
Follows the configuration of the startup region in extra
area.
FLASH_SAS_DEFAULT:
Temporarily changes the startup region to the default
region.
FLASH_SAS_ALTERNATE:
Temporarily changes the startup region to the alternate
region.
FLASH_SAS_SWITCH_AREA:
Swaps the startup region.

FLASH_CMD_ROM_CACHE_ENABLE
(Set the argument value to NULL.)
*Refer to Example 10 for usage examples.

Enables the code flash memory cache.

FLASH_CMD_ROM_CACHE_DISABLE
(Set the argument value to NULL.)
*Refer to Example 10 for usage examples.

Disables the code flash memory cache.
Call before reprogramming code flash memory.

FLASH_CMD_ROM_CACHE_STATUS
(Argument: uint8_t *)
*Refer to Example 10 for usage examples.

Retrieves the status of code flash memory cache.
0: Code flash memory cache is disabled
1: Code flash memory cache is enabled

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 59 of 117
Mar.20.25

Table 3.7 Details of Commands Supported by Flash Type 3

Command Contents
FLASH_CMD_STATUS_GET
(Set the argument value to NULL.)
*Refer to Example 3 for usage examples.

Retrieves the running state of the flash sequencer for
flash memory.
This command can be used even while flash memory
processing is running.
FLASH_SUCCESS:
Flash sequencer is not running.
FLASH_ERR_BUSY:
Flash sequencer is running.

FLASH_CMD_SET_BGO_CALLBACK
(Argument: flash_interrupt_config_t *)
*Refer to Example 1 and Example 2 for usage
examples.

Registers the callback function. This command requires
operation in non-blocking mode.

FLASH_CMD_RESET
(Set the argument value to NULL.)

Resets the flash sequencer.
This command can be used even while flash memory
processing is running.

FLASH_CMD_LOCKBIT_READ
(Argument: flash_lockbit_config_t *)
*Refer to Example 12 for usage examples.

Retrieves the status of the lockbit configuration for the
specified block in code flash memory.
When using in non-blocking mode, FRDYI interrupt
occurs after the status of the lockbit configuration is
retrieved, and then the callback function is called. *1
FLASH_RES_LOCKBIT_STATE_PROTECTED:
Protected
FLASH_RES_LOCKBIT_STATE_NON_PROTECTED:
Not protected

FLASH_CMD_LOCKBIT_WRITE
(Argument: flash_lockbit_config_t *)
*Refer to Example 12 for usage examples.

Sets the starting block address and the number of
blocks defining the region to which the lockbit is applied
in code flash memory.
For the lockbit configuration, multiple regions specified
by the starting block address and the number of blocks
can be set.
When using in non-blocking mode, FRDYI interrupt
occurs after setting the lockbit, and then the callback
function is called. *1

FLASH_CMD_LOCKBIT_ENABLE
(Set the argument value to NULL.)
*Refer to Example 12 for usage examples.

Prohibits the program and erase processes from being
performed on the blocks in code flash memory set as
the lockbit region.

FLASH_CMD_LOCKBIT_DISABLE
(Set the argument value to NULL.)
*Refer to Example 12 for usage examples.

Allows the program and erase processes from being
performed on the blocks in code flash memory set as
the lockbit region.
The blocks with lockbit set can be erased after using this
command.
Note that erasing the blocks with lockbit set also clears
the lockbit configuration for the erased blocks.

FLASH_CMD_ROM_CACHE_ENABLE
(Set the argument value to NULL.)
*Refer to Example 10 for usage examples.

Enables the code flash memory cache.

FLASH_CMD_ROM_CACHE_DISABLE
(Set the argument value to NULL.)
*Refer to Example 10 for usage examples.

Disables the code flash memory cache.
Call before reprogramming code flash memory.

FLASH_CMD_ROM_CACHE_STATUS
(Argument: uint8_t *)
*Refer to Example 10 for usage examples.

Retrieves the status of code flash memory cache.
0: Code flash memory cache is disabled
1: Code flash memory cache is enabled

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 60 of 117
Mar.20.25

Command Contents
FLASH_CMD_SET_NON_CACHED_RANGE0
(Argument: flash_non_cached_t *)
*Refer to Example 11 for usage examples.

Sets the area specified in code flash memory as non-
cacheable RANGE0. Caching will be disabled for the
specified area.
Note that running this command while cache is enabled
causes the cache to be temporarily disabled.

FLASH_CMD_SET_NON_CACHED_RANGE1
(Argument: flash_non_cached_t *)
*Refer to Example 11 for usage examples.

Sets the area specified in code flash memory as non-
cacheable RANGE1. Caching will be disabled for the
specified area.
Note that running this command while cache is enabled
causes the cache to be temporarily disabled.

FLASH_CMD_GET_NON_CACHED_RANGE0
(Argument: flash_non_cached_t *)
*Refer to Example 11 for usage examples.

Retrieves the configuration of non-cacheable RANGE0.

FLASH_CMD_GET_NON_CACHED_RANGE1
(Argument: flash_non_cached_t *)
*Refer to Example 11 for usage examples.

Retrieves the configuration of non-cacheable RANGE1.

FLASH_CMD_CONFIG_CLOCK
(Argument: uint32_t *)

Provides notification of the frequency used by the flash
sequencer.
This command is used to change the flash clock (FLCK)
speed from the frequency as set by BSP while a
program is running. This command is not needed if not
changing the flash clock (FCLK).

*1 Blocks until completion even when operating in non-blocking mode.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 61 of 117
Mar.20.25

Table 3.8 Details of Commands Supported by Flash Type 4

Command Contents
FLASH_CMD_STATUS_GET
(Set the argument value to NULL.)
*Refer to Example 3 for usage examples.

Retrieves the running state of the flash sequencer for
flash memory.
This command can be used even while flash memory
processing is running.
FLASH_SUCCESS:
Flash sequencer is not running.
FLASH_ERR_BUSY:
Flash sequencer is running.

FLASH_CMD_SET_BGO_CALLBACK
(Argument: flash_interrupt_config_t *)
*Refer to Example 1 and Example 2 for usage
examples.

Registers the callback function. This command requires
operation in non-blocking mode.

FLASH_CMD_RESET
(Set the argument value to NULL.)

Resets the flash sequencer.
This command can be used even while flash memory
processing is running.

FLASH_CMD_ACCESSWINDOW_GET
(Argument: flash_access_window_config_t *)
*Refer to Example 4 for usage examples.

Retrieves the start and end addresses of the blocks
defining the region to which the access window is
applied in code flash memory.

FLASH_CMD_ACCESSWINDOW_SET
(Argument: flash_access_window_config_t *)
*Refer to Example 5 for usage examples.

Specifies the start and end addresses of the blocks
defining the region to which the access window is
applied in code flash memory.
The start address must be a smaller number than the
end address in access window configurations.
Programming and erase processes cannot be performed
on blocks outside the range specified with the start and
end addresses.
Multiple ranges defined by start and end addresses
cannot be specified.
Specify the same start and end addresses to delete an
access window configuration.
When using in non-blocking mode, FRDYI interrupt
occurs after setting the access window, and then
callback function is called. *1

FLASH_CMD_SWAPFLAG_GET
(Argument: uint32_t *)
*Refer to Example 6 for usage examples.

Retrieves the startup region setting.
0: Swaps the configuration of startup regions 0 and 1.
1: Keeps the configuration of startup regions 0 and 1 to
the defaults.

FLASH_CMD_SWAPFLAG_TOGGLE
(Set the argument value to NULL.)
*Refer to Example 7 for usage examples.

Swaps the startup region.
The swapped startup region takes effect after the next
reset. When using in non-blocking mode, FRDYI
interrupt occurs after the startup region is swapped, and
then the callback function is called. *1

FLASH_CMD_SWAPSTATE_GET
(Argument: uint8_t *)
*Refer to Example 8 for usage examples.

Retrieves the value of the startup region selection bit
(FSUACR.SAS) when operating in linear mode.
This command cannot be used in dual mode.
FLASH_SAS_SWAPFLG:
The startup region selection bit follows the startup region
configuration.
FLASH_SAS_DEFAULT:
Sets the startup region selection bit to startup region 0.
FLASH_SAS_ALTERNATE:
Sets the startup region selection bit to startup region 1.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 62 of 117
Mar.20.25

Command Contents
FLASH_CMD_SWAPSTATE_SET
(Argument: uint8_t *)
*Refer to Example 9 for usage examples.

Sets the value of the startup region selection bit
(FSUACR.SAS) when operating in linear mode.
The set startup region takes effect immediately.
The default value after a reset is
FLASH_SAS_SWAPFLG.
This command cannot be used in dual mode.
FLASH_SAS_SWAPFLG:
Follows the configuration of the startup region in option
settings memory.
FLASH_SAS_DEFAULT:
Temporarily changes the startup region to startup region
0.
FLASH_SAS_ALTERNATE:
Temporarily changes the startup region to startup region
1.
FLASH_SAS_SWITCH_AREA:
Swaps the startup region.

FLASH_CMD_ROM_CACHE_ENABLE
(Set the argument value to NULL.)
*Refer to Example 10 for usage examples.

Enables the code flash memory cache.

FLASH_CMD_ROM_CACHE_DISABLE
(Set the argument value to NULL.)
*Refer to Example 10 for usage examples.

Disables the code flash memory cache.
Call before reprogramming code flash memory.

FLASH_CMD_ROM_CACHE_STATUS
(Argument: uint8_t *)
*Refer to Example 10 for usage examples.

Retrieves the status of code flash memory cache.
0: Code flash memory cache is disabled
1: Code flash memory cache is enabled

FLASH_CMD_SET_NON_CACHED_RANGE0
(Argument: flash_non_cached_t *)
*Refer to Example 11 for usage examples.

Sets the area specified in code flash memory as non-
cacheable RANGE0. Caching will be disabled for the
specified area.
Note that running this command while cache is enabled
causes the cache to be temporarily disabled.

FLASH_CMD_SET_NON_CACHED_RANGE1
(Argument: flash_non_cached_t *)
*Refer to Example 11 for usage examples.

Sets the area specified in code flash memory as non-
cacheable RANGE1. Caching will be disabled for the
specified area.
Note that running this command while cache is enabled
causes the cache to be temporarily disabled.

FLASH_CMD_GET_NON_CACHED_RANGE0
(Argument: flash_non_cached_t *)
*Refer to Example 11 for usage examples.

Retrieves the configuration of non-cacheable RANGE0.

FLASH_CMD_GET_NON_CACHED_RANGE1
(Argument: flash_non_cached_t *)
*Refer to Example 11 for usage examples.

Retrieves the configuration of non-cacheable RANGE1.

FLASH_CMD_BANK_TOGGLE*2
(Set the argument value to NULL.)
*Refer to Example 13 for usage examples.

This command cannot be used in linear mode.
Swaps the startup bank when operating in dual mode.
The swap of the startup bank takes effect after the next
reset.
When using in non-blocking mode, FRDYI interrupt
occurs after setting the bank selection register
(BANKSEL), and then the callback function is called. *1

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 63 of 117
Mar.20.25

Command Contents
FLASH_CMD_BANK_GET*2
(Argument: flash_bank_t *)
*Refer to Example 13 for usage examples.

This command cannot be used in linear mode.
Retrieves the current startup bank setting from the bank
selection register (BANKSEL) when operating in dual
mode.
FLASH_BANK0: 1
FLASH_BANK1: 0

FLASH_CMD_CONFIG_CLOCK
(Argument: uint32_t *)

Provides notification of the frequency used by the flash
sequencer.
Also sets the read speed for data flash memory. *2
This command is used to change the flash clock (FLCK)
speed from the frequency as set by BSP while a
program is running. This command is not needed if not
changing the flash clock (FCLK).

*1 Blocks until completion even when operating in non-blocking mode.
*2 Only supported on products with at least 1.5 Mbyte of code flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 64 of 117
Mar.20.25

Table 3.9 Details of Commands Supported by Flash Type 5

Command Contents
FLASH_CMD_STATUS_GET
(Set the argument value to NULL.)
*Refer to Example 3 for usage examples.

Retrieves the running state of the flash sequencer for
flash memory.
This command can be used even while flash memory
processing is running.
FLASH_SUCCESS:
Flash sequencer is not running.
FLASH_ERR_BUSY:
Flash sequencer is running.

FLASH_CMD_SET_BGO_CALLBACK
(Argument: flash_interrupt_config_t *)
*Refer to Example 1 and Example 2 for usage
examples.

Registers the callback function. This command requires
operation in non-blocking mode.

FLASH_CMD_RESET
(Set the argument value to NULL.)

Resets the flash sequencer.
This command can be used even while flash memory
processing is running.

FLASH_CMD_ACCESSWINDOW_GET
(Argument: flash_access_window_config_t *)
*Refer to Example 4 for usage examples.

Retrieves the start and end addresses of the blocks
defining the region to which the access window is
applied in code flash memory.

FLASH_CMD_ACCESSWINDOW_SET
(Argument: flash_access_window_config_t *)
*Refer to Example 5 for usage examples.

Specifies the start and end addresses of the blocks
defining the region to which the access window is
applied in code flash memory.
The start address must be a smaller number than the
end address in access window configurations.
Programming and erase processes cannot be performed
on blocks outside the range specified with the start and
end addresses.
Multiple ranges defined by start and end addresses
cannot be specified.
Specify the same start and end addresses to delete an
access window configuration.
When using in non-blocking mode, FRDYI interrupt
occurs after setting the access window, and then
callback function is called. *1

FLASH_CMD_SWAPFLAG_GET
(Argument: uint32_t *)
*Refer to Example 6 for usage examples.

Retrieves the startup region setting.
0: Swaps the configuration of startup regions 0 and 1.
1: Keeps the configuration of startup regions 0 and 1 to
the defaults.

FLASH_CMD_SWAPFLAG_TOGGLE
(Set the argument value to NULL.)
*Refer to Example 7 for usage examples.

Swaps the startup region.
The swapped startup region takes effect after the next
reset. When using in non-blocking mode, FRDYI
interrupt occurs after the startup region is swapped, and
then the callback function is called. *1

FLASH_CMD_SWAPSTATE_GET
(Argument: uint8_t *)
*Refer to Example 8 for usage examples.

Retrieves the value of the startup region selection bit
(FSUACR.SAS) when operating in linear mode.
This command cannot be used in dual mode.
FLASH_SAS_SWAPFLG:
The startup region selection bit follows the startup region
configuration.
FLASH_SAS_DEFAULT:
Sets the startup region selection bit to startup region 0.
FLASH_SAS_ALTERNATE:
Sets the startup region selection bit to startup region 1.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 65 of 117
Mar.20.25

Command Contents
FLASH_CMD_SWAPSTATE_SET
(Argument: uint8_t *)
*Refer to Example 9 for usage examples.

Sets the value of the startup region selection bit
(FSUACR.SAS) when operating in linear mode.
The set startup region takes effect immediately.
The default value after a reset is
FLASH_SAS_SWAPFLG.
This command cannot be used in dual mode.
FLASH_SAS_SWAPFLG:
Follows the configuration of the startup region in option
settings memory.
FLASH_SAS_DEFAULT:
Temporarily changes the startup region to startup region
0.
FLASH_SAS_ALTERNATE:
Temporarily changes the startup region to startup region
1.
FLASH_SAS_SWITCH_AREA:
Swaps the startup region.

FLASH_CMD_BANK_TOGGLE*2
(Set the argument value to NULL.)
*Refer to Example 13 for usage examples.

This command cannot be used in linear mode.
Swaps the startup bank when operating in dual mode.
The swap of the startup bank takes effect after the next
reset.
When using in non-blocking mode, FRDYI interrupt
occurs after setting the bank selection register
(BANKSEL), and then the callback function is called. *1

FLASH_CMD_BANK_GET*2
(Argument: flash_bank_t *)
*Refer to Example 13 for usage examples.

This command cannot be used in linear mode.
Retrieves the current startup bank setting from the bank
selection register (BANKSEL) when operating in dual
mode.
FLASH_BANK0: 1
FLASH_BANK1: 0

FLASH_CMD_CONFIG_CLOCK
(Argument: uint32_t *)

Provides notification of the frequency used by the flash
sequencer.
This command is used to change the flash clock (FLCK)
speed from the frequency as set by BSP while a
program is running. This command is not needed if not
changing the flash clock (FCLK).

*1 Blocks until completion even when operating in non-blocking mode.
*2 Only supported on products with at least 512 Kbyte of code flash memory.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 66 of 117
Mar.20.25

Example 1: Writing to code flash memory in non-blocking mode
To use flash module API functions in non-blocking mode, set both configuration options
FLASH_CFG_DATA_FLASH_BGO and FLASH_CFG_CODE_FLASH_BGO to “1”.

To program code flash memory by running code from RAM, set the configuration option
FLASH_CFG_CODE_FLASH_ENABLE to “1”. Also vector tables of possible interrupts must be relocated to
RAM.

The registered callback function can be used by running R_FLASH_Open (), using R_FLASH_Control () to
register the callback function, and then running a flash module API function (R_FLASH_Write (),
R_FLASH_Erase (), or R_FLASH_BlankCheck ()).

/* Region in RAM storing vector tables */
static uint32_t ram_vect_table[256];

void func(void)
{
 flash_err_t err;
 flash_interrupt_config_t cb_func_info;
 uint32_t *pvect_table;

 /* Relocate interrupt vector tables in RAM */
 /* Directly set the FRDYI interrupt function address into
ram_vect_table[23]. */
 /* Please consider the method according to the user’s system. */
 pvect_table = (uint32_t *)__sectop(“C$VECT”);
 ram_vect_table[23] = pvect_table[23]; /* FRDYI Interrupt function copy */
 set_intb((void *)ram_vect_table);

 /* Initialize the API. */
 err = R_FLASH_Open();
 /* Check for errors. */
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Set callback function and interrupt priority */
 cb_func_info.pcallback = u_cb_function;
 cb_func_info.int_priority = 1;
 err = R_FLASH_Control(FLASH_CMD_SET_BGO_CALLBACK,(void *)&cb_func_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Perform operations on code flash memory */
 do_rom_operations();

 ... (omission)
}

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 67 of 117
Mar.20.25

#pragma section FRAM
void u_cb_function(void *event) /* Callback function */
{
 flash_int_cb_args_t *ready_event = event;

 /* Perform ISR callback functionality here */
 ... (omission)
}

void do_rom_operations(void)
{
 /* Set code flash memory access window, toggle startup area flag */
 /* Swap boot blocks, erase, blank check, or programming processing here */
 ... (omission)
}
#pragma section

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 68 of 117
Mar.20.25

Example 2: Writing to data flash memory in non-blocking mode
To use flash module API functions in non-blocking mode, set both configuration options
FLASH_CFG_DATA_FLASH_BGO and FLASH_CFG_CODE_FLASH_BGO to “1”.

To program data flash memory, the code for reprogramming to flash memory can be ran in code flash
memory.

The registered callback function can be used by running R_FLASH_Open (), using R_FLASH_Control () to
register the callback function, and then running a flash module API function (R_FLASH_Write (),
R_FLASH_Erase (), or R_FLASH_BlankCheck ()).

void func(void)
{
 flash_err_t err;
 flash_interrupt_config_t cb_func_info;

 /* Initialize the API. */
 err = R_FLASH_Open();
 /* Check for errors. */
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Set callback function and interrupt priority */
 cb_func_info.pcallback = u_cb_function;
 cb_func_info.int_priority = 1;
 err = R_FLASH_Control(FLASH_CMD_SET_BGO_CALLBACK,(void *)&cb_func_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Set erase, blank check, or programming processing of data flash memory
here */
 ... (omission)
}

void u_cb_function(void *event) /* Callback function */
{
 flash_int_cb_args_t *ready_event = event;

 /* Perform ISR callback functionality here */
 ... (omission)
}

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 69 of 117
Mar.20.25

Example 3: Checking running status of flash module API functions
The following example shows the use of R_FLASH_Erase() in non-blocking mode.
 flash_err_t err;

 /* Erase all of data flash */
 err = R_FLASH_Erase(FLASH_DF_BLOCK_0, FLASH_NUM_BLOCKS_DF);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Check flash module API function running status */
 while (FLASH_ERR_BUSY == R_FLASH_Control(FLASH_CMD_STATUS_GET, NULL))
 {
 /* Execute any process */
 }

Example 4: Retrieving the access window configuration area for code flash memory
 flash_err_t err;
 flash_access_window_config_t access_info;

 err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_GET, (void *)&access_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Example 5: Configuring the access window area for code flash memory
Access window-based region protection is used to prevent configured areas in the code flash memory from
being accidentally programmed or erased.
 flash_err_t err;
 flash_access_window_config_t access_info;

 /* Allow programming and erasing of block 3 in code flash memory. */
 access_info.start_addr = (uint32_t) FLASH_CF_BLOCK_3;
 access_info.end_addr = (uint32_t) FLASH_CF_BLOCK_2;
 err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_SET, (void *)&access_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Allow programming and erasing of block 2, block 1,and block 0 in code
flash memory. */
 /* Use FLASH_CF_BLOCK_END to specify end address if block 0 is included in
setting range. */
 access_info.start_addr = (uint32_t) FLASH_CF_BLOCK_2;
 access_info.end_addr = (uint32_t) FLASH_CF_BLOCK_END;
 err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_SET, (void *)&access_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 70 of 117
Mar.20.25

Example 6: Retrieving the startup region setting
 flash_err_t err;
 uint32_t swap_flag;

 err = R_FLASH_Control(FLASH_CMD_SWAPFLAG_GET, (void *)&swap_flag);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Example 7: Swapping the startup region setting
The following example shows how to toggle the active start-up program area.
 flash_err_t err;

 /* Swap the active area from Default to Alternate or vice versa. */

 err = R_FLASH_Control(FLASH_CMD_SWAPFLAG_TOGGLE, FIT_NO_PTR);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Example 8: Retrieving the value of the startup region selection bit
 flash_err_t err;
 uint8_t swap_area;

 err = R_FLASH_Control(FLASH_CMD_SWAPSTATE_GET, (void *)&swap_area);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

Example 9: Setting the value of the startup region selection bit
The following example shows how to set the startup region selection bit. The region specified by the startup
region selection bit will be used after a reset.
 flash_err_t err;
 uint8_t swap_area;

 swap_area = FLASH_SAS_SWITCH_AREA;
 err = R_FLASH_Control(FLASH_CMD_SWAPSTATE_SET, (void *)&swap_area);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 71 of 117
Mar.20.25

Example 10: Enabling/disabling caching of code flash memory
The following example shows a process of enabling code flash memory caching, then disabling caching to
perform erase or programming processes, and then re-enabling caching.
 flash_err_t err;
 uint8_t status;

 /* Enable caching */
 err = R_FLASH_Control(FLASH_CMD_ROM_CACHE_ENABLE, NULL);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Confirm that caching is enabled */
 err = R_FLASH_Control(FLASH_CMD_ROM_CACHE_STATUS, &status);
 if ((FLASH_SUCCESS != err) || (1 != status))
 {
 /* Handle error */
 }

 ... (omission)

 /* Disable caching in preparation for programming */
 err = R_FLASH_Control(FLASH_CMD_ROM_CACHE_DISABLE, NULL);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Erase, program, and verify new code here */

 /* Re-enable caching */
 err = R_FLASH_Control(FLASH_CMD_ROM_CACHE_ENABLE, NULL);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 72 of 117
Mar.20.25

Example 11: Disabling caching in a specific area of code flash memory
The following shows how to disable caching of a specific area of code flash memory. Up to two areas of
disabled caching can be configured, and these areas can overlap.
 flash_err_t err;
 flash_non_cached_t range;

 /* Do not cache fast-instruction fetching or operand access by the CPU */
 /* for the first 1 Kbyte of code flash in FLASH_CF_BLOCK_10. */
 range.start_addr = (uint32_t)FLASH_CF_BLOCK_10;
 range.size = FLASH_NON_CACHED_1_KBYTE;
 range.type_mask = FLASH_NON_CACHED_MASK_IF | FLASH_NON_CACHED_MASK_OA;

 err = R_FLASH_Control(FLASH_CMD_SET_NON_CACHED_RANGE0, &range);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Enable caching */
 /* This command is eliminated if caching is already enabled. */
 err = R_FLASH_Control(FLASH_CMD_ROM_CACHE_ENABLE, NULL);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Retrieve non-cached settings for RANGE0 */
 err = R_FLASH_Control(FLASH_CMD_GET_NON_CACHED_RANGE0, &range);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 73 of 117
Mar.20.25

Example 12: Configuring lockbit-based protection on code flash memory
The following example shows a process of setting lockbit on specific blocks in code flash memory, retrieving
lockbit information, disabling lockbit-based protection, and then enabling protection.
 flash_err_t err;
 flash_lockbit_config_t lockbit_info;

 /* Set lockbit on block 3 in code flash memory */
 lockbit_info.block_start_address = FLASH_CF_BLOCK_3;
 lockbit_info.num_blocks = 1;
 err = R_FLASH_Control(FLASH_CMD_LOCKBIT_WRITE, (void *)&lockbit_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Retrieve lockbit information on block 3 in code flash memory */
 err = R_FLASH_Control(FLASH_CMD_LOCKBIT_READ, (void *)&lockbit_info);
 if ((FLASH_SUCCESS != err) ||
 (lockbit_info.result != FLASH_RES_LOCKBIT_STATE_PROTECTED))
 {
 /* Handle error */
 }

 /* Disable lockbit-based protection, */
 /* which enables erasing or programming of the block with lockbit set. */
 err = R_FLASH_Control(FLASH_CMD_LOCKBIT_DISABLE, NULL);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Erasing or programming of the block with lockbit set is now enabled */

 /* Enables lockbit-based protection, */
 /* which disables erasing or programming of the block with lockbit set. */
 err = R_FLASH_Control(FLASH_CMD_LOCKBIT_ENABLE, NULL);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Erasing or programming of the block with lockbit set is now disabled */

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 74 of 117
Mar.20.25

Example 13: Swapping startup banks
Performs swapping startup banks. The swap of the startup bank takes effect after the next reset.

The startup bank that will take effect after the next reset can be retrieved by the second argument by
specifying the FLASH_CMD_BANK_GET command in the first argument of R_FLASH_Control().

If the value of the second argument is FLASH_BANK0, bank 0 will be the startup bank after the next reset. If
the value is FLASH_BANK1, bank 1 will be the startup bank after the next reset.
 flash_err_t err;
 flash_bank_t bank_info;

 /* Swap the bank selected as the startup bank */
 err = R_FLASH_Control(FLASH_CMD_BANK_TOGGLE, NULL);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* Retrieve the bank selected as the startup bank */
 err = R_FLASH_Control(FLASH_CMD_BANK_GET, (void *)&bank_info);
 if (FLASH_SUCCESS != err)
 {
 /* Handle error */
 }

 /* The swap of the startup bank takes effect after the next reset */

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 75 of 117
Mar.20.25

3.7 R_FLASH_GetVersion()
This API function retrieves the version number of the flash module.

Format
uint32_t R_FLASH_GetVersion(void)

Parameters
None

Return Values
Version Number

Properties
Prototyped in file “r_flash_rx_if.h”.

Description
This API function returns the version number of the flash module. The version number is encoded where the
top 2 bytes are the major version number and the bottom 2 bytes are the minor version number. For
example, Version 4.25 would be returned as 0x00040019.

Example
uint32_t cur_version;

/* Retrieve the version of the installed flash modules */
cur_version = R_FLASH_GetVersion();

/* Version determination processing */
if (0x00040019 > cur_version)
{
 /* Version-specific processing */
}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 76 of 117
Mar.20.25

4. Demo Projects
Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g. r_bsp). The standard naming convention for the demo project is
<module>_demo_<board> where <module> is the peripheral acronym (e.g. s12ad, cmt, sci) and the
<board> is the standard RSK (e.g. rskrx113). For example, s12ad FIT module demo project for RSKRX113
will be named as s12ad_demo_rskrx113. Similarly the exported .zip file will be
<module>_demo_<board>.zip. For the same example, the zipped export/import file will be named as
s12ad_demo_rskrx113.zip

Note that demo projects do not support a compiler other than Renesas Electronics C/C++ Compiler Package
for RX Family.

4.1 flash_demo_rskrx113
This is a simple demo for the RSKRX113 starter kit. The demo uses blocking mode to execute flash erasing,
blank check, and programming. Each write function is verified with a read-back of data. Note the “pragma
section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project
Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX113

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

4.2 flash_demo_rskrx231
This is a simple demo for the RSKRX231 starter kit. The demo uses blocking mode to execute flash erasing,
blank check, and programming. Each write function is verified with a read-back of data. Note the “pragma
section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project
Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX231

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 77 of 117
Mar.20.25

4.3 flash_demo_rskrx23t
This is a simple demo for the RSKRX23T starter kit. The demo uses blocking mode to execute flash erasing,
blank check, and programming. Each write function is verified with a read-back of data. Note the “pragma
section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project
Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX23T

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

4.4 flash_demo_rskrx130
This is a simple demo for the RSKRX130 starter kit. The demo uses blocking mode to execute flash erasing,
blank check, and programming. Each write function is verified with a read-back of data. Note the “pragma
section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project
Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX130

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

4.5 flash_demo_rskrx24t
This is a simple demo for the RSKRX24Tstarter kit. The demo uses blocking mode to execute flash erasing,
blank check, and programming. Each write function is verified with a read-back of data. Note the “pragma
section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project
Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX24T

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 78 of 117
Mar.20.25

4.6 flash_demo_rskrx65n
This is a simple demo for the RSKRX65N starter kit. The demo uses blocking mode to execute flash erasing,
blank check, and programming. Each write function is verified with a read-back of data. Note the “pragma
section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project
Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX65N-1

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

4.7 flash_demo_rskrx24u
This is a simple demo for the RSKRX24U starter kit. The demo uses blocking mode to execute flash erasing
and programming. Each write function is verified with a read-back of data. Note the “pragma section FRAM”
for writing to code flash and the corresponding section definitions in the linker (see project Properties-
>C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX24U

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

4.8 flash_demo_rskrx64m
This is a simple demo for the RSKRX64M starter kit. The demo uses blocking mode to execute flash erasing
and programming. Each write function is verified with a read-back of data. Note the “pragma section FRAM”
for writing to code flash and the corresponding section definitions in the linker (see project Properties-
>C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX64M

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 79 of 117
Mar.20.25

4.9 flash_demo_rskrx64m_runrom
This is a simple demo for the RSKRX64M starter kit. What sets this apart from other demos is that this
makes use of the RX64M feature which allows an application to run from one region of code flash while
erasing/writing to another. (Most other MCUs require code that could execute during a code flash erase/write
to be located in RAM.) The demo uses blocking mode to execute flash erasing and programming. Each write
function is verified with a read-back of data. Notice that the typical Linker set up for supporting code flash
erase/write (RAM locating) is not necessary in this demo, and that
FLASH_CFG_CODE_FLASH_RUN_FROM_ROM is set to 1 in “r_flash_rx_config.h”.

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX64M

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

4.10 flash_demo_rskrx66t
This is a simple demo for the RSKRX66T starter kit. The demo uses blocking mode to execute flash erasing
and programming. Each write function is verified with a read-back of data. Note the “pragma section FRAM”
for writing to code flash and the corresponding section definitions in the linker (see project Properties-
>C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Symbol file).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX66T

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

4.11 flash_demo_rskrx72t
This is a simple demo for the RSKRX72T starter kit. The demo uses blocking mode to execute flash erasing
and programming. Each write function is verified with a read-back of data. Note the “pragma section FRAM”
for writing to code flash and the corresponding section definitions in the linker (see project Properties-
>C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Symbol file).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
RSKRX72T

Evaluation Environment
Version used: BSP Rev. 5.30, FLASH FIT Rev. 4.30

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 80 of 117
Mar.20.25

4.12 flash_demo_mckrx26t
This is a simple demo for the MCKRX26T flexible motor control kit. The demo uses blocking mode to
execute flash erasing and programming. Each write function is verified with a read-back of data. Note the
“pragma section FRAM” for writing to code flash and the corresponding section definitions in the linker (see
project Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Symbol file).

Setup and Execution
1. Compile and download the sample code.
2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported
MCKRX26T

Evaluation Environment
Version used: BSP Rev. 7.30, FLASH FIT Rev. 5.00

4.13 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

4.14 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Brower >> Application Notes tab.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 81 of 117
Mar.20.25

5. Appendices

5.1 Confirmed Operation Environment
This section describes confirmed operation environment for this module.

Table 5.1 Confirmed Operation Environment (Rev. 4.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.00
Board used Renesas Starter Kit for RX113 (product No.: R0K505113xxxxxx)

Renesas Starter Kit for RX130 (product No.: RTK5005130xxxxxxxx)
Renesas Starter Kit for RX231 (product No.: R0K505231xxxxxx)
Renesas Starter Kit for RX23T (product No.: RTK500523Txxxxxxxx)
Renesas Starter Kit for RX24T (product No.: RTK500524Txxxxxxxx)
Renesas Starter Kit for RX24U (product No.: RTK500524Uxxxxxxxx)
Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx)
Renesas Starter Kit for RX66T (product No.: RTK50566Txxxxxxxxx)
Renesas Starter Kit for RX72T (product No.: RTK5572Txxxxxxxxxx)
Renesas Starter Kit+ for RX65N (product No.: RTK500565Nxxxxxxxx)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxx)

Table 5.2 Confirmed Operation Environment (Rev. 4.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.4.10
Board used Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 82 of 117
Mar.20.25

Table 5.3 Confirmed Operation Environment (Rev. 4.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.20
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 5.4 Confirmed Operation Environment (Rev. 4.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.30
Board used RX13T CPU Card (product No.: RTK0EMXA10xxxxxxxx)

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 83 of 117
Mar.20.25

Table 5.5 Confirmed Operation Environment (Rev. 4.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.40
Board used Renesas Solution Starter Kit for RX23E-A (product No.: RTK0ESXB10xxxxxxxx)

Table 5.6 Confirmed Operation Environment (Rev. 4.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.50
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 84 of 117
Mar.20.25

Table 5.7 Confirmed Operation Environment (Rev. 4.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2021-01
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202002
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.14.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.70
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 5.8 Confirmed Operation Environment (Rev. 4.80)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202102
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.80
Board used Target Board for RX140 (product No.: RTK5RX140xxxxxxxxx)

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 85 of 117
Mar.20.25

Table 5.9 Confirmed Operation Environment (Rev. 4.90)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2022-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.90
Board used Renesas Starter Kit for RX660 (product No.: RTK55660xxxxxxxxxx)

Table 5.10 Confirmed Operation Environment (Rev. 5.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.00
Board used Renesas Flexible Motor Control Kit for RX26T MCU Group

(product No.: RTK0EMXE70xxxxxxxx)

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 86 of 117
Mar.20.25

Table 5.11 Confirmed Operation Environment (Rev. 5.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.10
Board used Renesas Solution Starter Kit for RX23E-B (product No.: RTK0ES1001xxxxxxxx)

Table 5.12 Confirmed Operation Environment (Rev. 5.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202405
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.20
Board used EK Board for RX261 (product No.: RTK5RX261xxxxxxxxx)

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 87 of 117
Mar.20.25

5.2 Troubleshooting

(1) Q: I have added this module to the project and built it. Then I got the error: Could not open source
file “platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT
modules is correct with the following documents:

• Using CS+:
Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”

• Using e2 studio:
Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this module, the board support package FIT module (BSP module) must also be
added to the project. Refer to the application note “Board Support Package Module Using
Firmware Integration Technology (R01AN1685)”.

(2) Q: I have added this module to the project and built it. Then I got the error:

“No data flash on this MCU. Set FLASH_CFG_CODE_FLASH_ENABLE to 1 in r_flash_rx_config.h.”

A: The setting values in the “r_flash_rx_config.h” file could be incorrect. Review the
“r_flash_rx_config.h” file and correct any incorrect values. Refer to “2.7 Configuration Overview” for
details.

(3) Q: I have added this module to the project, changed the compiler option and built it. Then a ROM

access violation is detected.

A: To use this module to run codes from RAM to reprogram the code flash memory, all codes used
need to be loaded to the RAM.
Depending on the compiler option setting, the loaded destination may be ROM or RAM.
If the compiler option needs to be changed, confirm by outputting to a list file the fact that the codes
may not be loaded to the ROM as a result of the change of the compiler option.
The following shows an example of a ROM access violation due to a change in the compiler option.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 88 of 117
Mar.20.25

A-1: Default compiler option settings

Output result of the list file of the default compiler option settings

A-2: Compiler option change

Output result of the list file after the change in the compiler option

A-1 shows a list file of the default compiler option settings, and A-2 shows a list file after the
change in the compiler option.

The difference between the A-1 and A-2 compiler option results in the difference between list file
output results.

The red frame parts shown in the list file of A-2 indicate that they have been replaced with runtime
library functions.

These runtime library functions are positioned in the “P” section by default and are not loaded to
RAM.

For that reason, a ROM access violation will occur during program execution.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 89 of 117
Mar.20.25

(4) Q: It is necessary to register a callback function when using non-blocking mode?

A: It is necessary to register a callback function. If no callback function is registered,
FLASH_ERR_FAILURE will result when R_FLASH_Erase(), R_FLASH_BlankCheck(), or
R_FLASH_Write() is run.

(5) Q: Return does not occur from R_FLASH_Erase() or R_FLASH_Write().

An undefined interrupt (excep_undefined_inst_isr()) is generated.

A: It is possible that another peripheral interrupt was generated and an interrupt handler allocated to
an access-prohibited area in the code flash memory was run while R_FLASH_Erase() or
R_FLASH_Write() were running. To prevent this, it is necessary to either disable interrupts while
reprogramming the code flash memory or reallocate interrupt vector tables and interrupt handlers to
the RAM for interrupts that may occur while the code flash memory is being reprogrammed. Refer to
Example 1 in section 3.6, R_FLASH_Control(), for a usage example.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 90 of 117
Mar.20.25

5.3 Compiler-Dependent Settings
This module of Rev. 4.00 or later supports multiple compilers. To use this module, different settings are
required for each compiler as shown below.

5.3.1 Using Renesas Electronics C/C++ Compiler Package for RX Family
This section describes how to use Renesas Electronics C/C++ Compiler Package for RX Family as the
compiler.

The process of setting up the linker sections and mapping from code flash to RAM need to be done in e2
studio.

When Rev.5.00 or later of this module is used in combination with “e2 studio 2022-07 or later”, the following
settings are automatically performed.

 Sections 1 and 2 of "5.3.1.1 Programming Code Flash from RAM"

 Sections 1 and 2 of "5.3.1.2 Programming Code Flash Using the Dual Bank Function"

When Rev.5.00 or later of this module is used in combination with "e2 studio 2022-04", a warning will occur,
but the above settings will be performed automatically.

When Rev.5.00 or later of this module is used in combination with "e2 studio 2022-01 or earlier", settings are
not automatically performed.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 91 of 117
Mar.20.25

5.3.1.1 Programming Code Flash from RAM
This section describes addition of sections, mapping from code flash to RAM, and placement of programs
that operate during code flash re-writing.

1. Add a ‘RPFRAM’ section in a RAM area.

 e2 studio 2022-04 or earlier

(1) In Project Explorer, click the project you want to debug.

(2) Click File > Properties to open the Properties window.

(3) On the Properties window, click C/C++ Build > Settings.

(4) Select the “Tool Settings” tab, click Linker > Section, and click the […] button to display the Section
Viewer window.

(5) On the Section Viewer window, click the [Add Section] button to add a ‘RPFRAM’ section in a RAM
area, and then click the [OK] button.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 92 of 117
Mar.20.25

 e2 studio 2022-07 or later

(1) In Project Explorer, click the project you want to debug.

(2) Click File > Properties to open the Properties window.

(3) On the Properties window, click C/C++ Build > Settings.

(4) Select the “Tool Settings” tab, click Linker > Section, and click the […] button to display the Section
Viewer window.

(5) On the Section Viewer window, click the [Add Section] button to add a ‘RPFRAM’ section in a RAM
area.

(6) On the Section Viewer window, click the [Add Section] button to add a ‘PFRAM’ section in a ROM
area, and then click the [OK] button.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 93 of 117
Mar.20.25

2. Map the code flash section (PFRAM) address to the RAM section (RPFRAM) address.

(1) After clicking “Symbol file”, click the “Add” icon of the section to be mapped from ROM to RAM.

(2) On the Enter Value window, enter ‘PFRAM=RPFRAM’ and then click the [OK] button.

(3) Click the [Apply and Close] button.

3. Programs that operate during code flash re-writing such as interrupt callback function, etc. need to be

placed in the FRAM section.
#pragma section FRAM
/* Function that operates during code flash re-writing */
void func(void){…}

/* Callback function that operates during code flash re-writing */
void cb_func(void){…}
#pragma section

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 94 of 117
Mar.20.25

5.3.1.2 Programming Code Flash Using the Dual Bank Function
This section describes addition of sections, mapping from code flash to RAM.

1. Add a ‘RPFRAM2’ section in a RAM area.

 e2 studio 2022-04 or earlier

(1) In Project Explorer, click the project you want to debug.

(2) Click File > Properties to open the Properties window.

(3) On the Properties window, click C/C++ Build > Settings.

(4) Select the “Tool Settings” tab, click Linker > Section, and click the […] button to display the Section
Viewer window.

(5) On the Section Viewer window, click the [Add Section] button to add a ‘RPFRAM2’ section in a RAM
area, and then click the [OK] button.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 95 of 117
Mar.20.25

 e2 studio 2022-07 or later

(1) In Project Explorer, click the project you want to debug.

(2) Click File > Properties to open the Properties window.

(3) On the Properties window, click C/C++ Build > Settings.

(4) Select the “Tool Settings” tab, click Linker > Section, and click the […] button to display the Section
Viewer window.

(5) On the Section Viewer window, click the [Add Section] button to add a ‘RPFRAM2’ section in a RAM
area.

(6) On the Section Viewer window, click the [Add Section] button to add a ‘PFRAM’ section in a ROM
area.

(7) On the Section Viewer window, click the [Add Section] button to add a ‘PFRAM2’ section in a ROM
area, and then click the [OK] button.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 96 of 117
Mar.20.25

2. Map the code flash section (PFRAM2) address to the RAM section (RPFRAM2) address.

(1) After clicking “Symbol file”, click the “Add” icon of the section to be mapped from ROM to RAM.

(2) On the Enter Value window, enter ‘PFRAM2=RPFRAM2’ and then click the [OK] button.

(3) Click the [Apply and Close] button.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 97 of 117
Mar.20.25

5.3.2 Using GCC for Renesas RX
This section describes how to use GCC for Renesas RX as the compiler.

For the linker setting, it is necessary to edit the linker settings file generated by e2 studio.

5.3.2.1 Programming Code Flash from RAM
This section describes addition of linker settings and placement of programs that operate during code flash
re-writing.

1. Add a setting in the linker settings file (linker_script.ld).

(1) From Project Explorer, right-click the linker settings file (linker_script.ld), and select “Open”.

(2) On the linker_script.id window, click the “linker_script_id” tab.

(3) Add the following (a) to (c) in the linker settings file (linker_script.ld).

(a) . += _edata - _data;

(b) .pfram ALIGN(4):
 {
 _PFRAM_start = .;
 . += _RPFRAM_end - _RPFRAM_start;
 _PFRAM_end = .;
 } > ROM

(c) .rpfram ALIGN(4): AT(_PFRAM_start)
 {
 _RPFRAM_start = .;
 *(PFRAM)
 . = ALIGN(4);
 _RPFRAM_end = .;
 } > RAM

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 98 of 117
Mar.20.25

2. Programs that operate during code flash re-writing such as interrupt callback function, etc. need to be

placed in a FRAM section by specifying the FRAM section for each function.
__attribute__((section(“PFRAM”)))
/* Function that operates during code flash re-writing */
void func(void){…}

__attribute__((section(“PFRAM”)))
/* Callback function that operates during code flash re-writing */
void cb_func(void){…}

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 99 of 117
Mar.20.25

5.3.2.2 Programming Code Flash Using the Dual Bank Function
This section describes addition of linker settings and debugging with the dual bank function.

1. Add a setting in the linker settings file (linker_script.ld).

(1) From Project Explorer, right-click the linker settings file (linker_script.ld), and select “Open”.

(2) On the linker_script.id window, click the “linker_script_id” tab.

(3) Add the following (a) to (c) in the linker settings file (linker_script.ld).

(a) . += _edata - _data;

(b) .pfram2 ALIGN(4):
 {
 _PFRAM2_start = .;
 . += _RPFRAM2_end - _RPFRAM2_start;
 _PFRAM2_end = .;
 } > ROM

(c) .rpfram2 ALIGN(4): AT(_PFRAM2_start)
 {
 _RPFRAM2_start = .;
 *(PFRAM2)
 . = ALIGN(4);
 _RPFRAM2_end = .;
 } > RAM

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 100 of 117
Mar.20.25

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 101 of 117
Mar.20.25

5.3.3 Using IAR C/C++ Compiler for Renesas RX
This section describes how to use IAR C/C++ Compiler for Renesas RX as the compiler.

 Using the Smart Configurator Standalone version

The Smart Configurator Standalone version is used to generate and use a project for IAR to which
this module or BSP is added. Details of Smart Configurator Standalone version are described in the
application note “RX Smart Configurator User Guide: IAREW (R20AN0535)”.

 Using the FIT Module Importer of IAR Embedded Workbench
FIT Module Importer of IAR Embedded Workbench is used to generate and use a project for IAR to
which this module or BSP is added. For details of FIT Module Importer, refer to the latest information
on the IAR website.

To use this module for a project for IAR, the following settings are required.

5.3.3.1 Programming Code Flash from RAM
This section describes addition of linker settings and placement of programs that operate during code flash
re-writing.

1. Open the Options window of the project for IAR, select “Linker” under “Category:”, and select the
“Config” tab. Then, after confirming that the “Override default” check box has been selected, click the […]
button.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 102 of 117
Mar.20.25

2. On the Open window, copy the .icf file of the target device (the double underlined part of the text box of
the linker settings file in the Options window of step 1.), and click the [Cancel] button.

3. Re-write the path to the linker settings file on the Options window to the desired location. (In this

example, ”$PROJ_DIR$” is used as the path variable to place the file directly under the project folder.)
After re-writing, click the […] button again.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 103 of 117
Mar.20.25

4. On the Open window, paste the .icf file of the target device copied in 2 above. (In this example, it is
pasted directly under the project folder)

Click the [Open] button.

Now, the default linker settings file was copied and it is ready to edit the copied linker settings file.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 104 of 117
Mar.20.25

5. Copy the following (a) to (d) to add to the replaced linker settings file.

(a) initialize manually { rw section .textrw, section PFRAM };

(b) define block PFRAM with alignment = 4 { section PFRAM };
define block PFRAM_init with alignment = 4 { section PFRAM_init };

(c) “ROM32”:place in ROM_region32 { ro,
 block PFRAM_init };

(d) “RAM32”:place in RAM_region32 { rw,
 ro section D,
 ro section D_1,
 ro section D_2,
 block PFRAM,
 block HEAP };

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 105 of 117
Mar.20.25

6. Programs that operate during code flash re-writing such as interrupt callback function, etc. need to be
placed in a FRAM section by specifying the FRAM section for each function.
#pragma location=”PFRAM”
/* Function that operates during code flash re-writing */
void func(void){…}

#pragma location=”PFRAM”
/* Callback function that operates during code flash re-writing
void cb_func(void){…}

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 106 of 117
Mar.20.25

5.3.3.2 Programming Code Flash Using the Dual Bank Function
This section describes addition of linker settings.

After performing items 1. to 4. in section 5.3.3.1, perform the following settings.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 107 of 117
Mar.20.25

1. Copy the following (a) to (e) to change and add to the replaced linker settings file.

(a) Changes to the first address of bank 0 of dual mode.
define region ROM_region24 = mem:[from 0xFFF00000 to 0xFFFFFFFF];
define region ROM_region32 = mem:[from 0xFFF00000 to 0xFFFFFFFF];

(b) initialize manually { rw section .textrw, section PFRAM2 };
(c) define block PFRAM2 with alignment = 4 { section PFRAM2 };

define block PFRAM2_init with alignment = 4 { section PFRAM2_init };
(d) “ROM32”:place in ROM_region32 { ro,

 block PFRAM2_init };
(e) “RAM32”:place in RAM_region32 { rw,

 ro section D,
 ro section D_1,
 ro section D_2,
 block PFRAM2,
 block HEAP };

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 108 of 117
Mar.20.25

6. Reference Documents
User’s Manual: Hardware
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family C/C++ Compiler CC-RX User’s Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 109 of 117
Mar.20.25

Revision History

Rev. Date
Description
Page Summary

1.00 July.24.14 — First edition issued
1.10 Nov.13.14 1, 4

7
Added RX113 support.
Updated “ROM to RAM” image.

1.11 Dec.11.14 — Added RX64M to xml support file.
1.20 Dec.22.14 1, 4 Added RX71M support.
1.30 Aug.28.15 All

5, 10
Updated template. Added RX231 support
Added flash type 3 code flash run-from-rom info.
Fixed RX64M/71M erase boundary issue.

1.40 Sep.03.15 1, 4 Added RX23T support
Fixed Big Endian bug in R_DF_Write_Operation() for Flash
Type 1.
Fixed FLASH_xF_BLOCK_INVALID values for Flash Type 3.

1.50 Nov.11.15 1, 4 Added RX130 support
1.51 Nov.11.15 — Repackaged demo with BSP v3.10
1.60 Nov.17.15 1, 5

22, 25
Added RX24T support
Added ROM cache support
Fixed incorrect FLASH_CF_BLOCK_INVALID for
RX210/21A/62N/630/63N/63T in code (Flash Type 2).

1.61 May.20.16 10, 11 Added erase/write/blankcheck BGO support for RX64M/71M
Fixed lockbit enable/disable commands.

1.62 May.25.16 — Added lockbit write/read BGO support for RX64M/71M
1.63 Jun.13.16 — Fixed bug where large flash writes returned success when

actually failed (improper timeout handling) on RX64M/71M
1.64 Aug.11.16 — Fixed RX64M/71M bug where R_FLASH_Control

(FLASH_CMD_STATUS_GET, NULL) always returned
BUSY.
Added #if to exclude ISR code when not in BGO mode.

1.70 Aug.11.16 1, 4-6, 8
—

Added RX651/RX65N support (Flash Type 4)
Fixed bug in Flash Type 2 that caused erroneous blankcheck
results.

2.00 Aug.17.16 1, 3, 4, 6-
9

Added RX230 and RX24T support (Flash Type 1)
Added configuration option for operation without FIT BSP.
Inserted document sections 2.12.2 thru 2.12.4.
Modified values for FLASH_CF_LOWEST_VALID_BLOCK
and
FLASH_CF_BLOCK_INVALID for Flash TYPE 1.

2.10 Dec.20.16 1, 5-7,
11, 13,
17, 19,
21, 23-26,
31-32

Added RX24U and RX24T-512 support (Flash Type 1)
Fixed several minor bugs in all flash types and added more
parameter checking. See History in r_flash_rx_if.h for
complete list of changes.

3.00 Dec.21.16 8, 9 Merged code common to types 1, 3, and 4 and restructured
high level code for cleaner operation.
Modified ROM/RAM size tables.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 110 of 117
Mar.20.25

Rev. Date
Description
Page Summary

3.10 Feb.17.17 5-7, 13-
17, 26-28,
35

Added RX65N-2M support. Added sections 2.16 and 2.17.4.
Added commands FLASH_CMD_BANK_xxx.
Fixed potential “BUSY” return from Flash Type 1 API calls
(potential bug with very slow flash).
Added clearing of ECC flag during initialization of Flash Type
3.

3.20 Aug.11.17 1, 5,
10-14, 16,
36

Added RX130-512KB support.
Added e2studio v6.0.0 differences.
Modified driver so mcu_config.h only necessary when not
using BSP.
Fixed bug in RX65N-2M dual mode operation where
sometimes when running in bank 0, performing a bank swap
caused application execution to fail.

3.30 Nov.1.17 10, 20
19, 21
32
25

Added FLASH_ERR_ALREADY_OPEN.
Added R_FLASH_Close().
Added Flash Type 2 set access window example
Added Flash Type 2 blankcheck example.

3.40 Mar.8.18 1, 5, 6

14
14-15
39-40

Added support for RX66T.
Added support for new 256K and 384K RX111 and RX24T
variants.
Updated table numbers in Section 2.14.
Added interrupt event enumeration in Section 2.15
Added demos for RDKRX63N, RSKRX66T, and two for
RSKRX64M.

3.41 Nov.8.18 6, 31, 36 Added NON_CACHED Control() commands.
Added document number of the application note
accompanying the sample program of the FIT module to
xml file.

3.42 Feb.12.19 38-41 Modified typos in sections 4.1 to 4.12.
3.50 Feb.26.19 1, 5, 6, 31

41
Added support for RX72T.
Added demo for RX72T.
Fixed write failure bug in RX210 768K and 1M variants.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 111 of 117
Mar.20.25

Rev. Date
Description
Page Summary

4.00 Apr.19.19 —
1, 6

1

6

7-10
11

12

13

22

Added support for GCC/IAR compiler.
Deleted the following flash type 2 devices from the target
device.
RX210, RX21A, RX220, RX610, RX621, RX62N, RX62T,
RX62G, RX630, RX631, RX63N, RX63T
Deleted the following documents from Related Documents
Adding Firmware Integration Technology Modules to e2 studio
Adding Firmware Integration Technology Modules to CS+
Projects
Renesas e2 studio Smart Configurator User Guide
Deleted FLASH_CFG_USE_FIT_BSP.
Deleted FLASH_CFG_FLASH_READY_IPL.
Deleted FLASH_CFG_IGNORE_LOCK_BITS.
Added the explanation of FLASH_CFG_DATA_FLASH_BGO.
Added the explanation of
FLASH_CFG_CODE_FLASH_BGO.
Updated “2.9 Code Size” section.
Deleted the following return values, which are no longer
necessary, from “2.11 Return Values” section.
FLASH_ERR_ALIGNED
FLASH_ERR_BOUNDARY
FLASH_ERR_OVERFLOW
Updated “2.12 Adding the FIT FLASH Module to Your
Project” section.
Added “2.13 Usage Combined with Existing User Projects”
section.
Revised and updated as follows the structure of “2.14
Programming Code Flash from RAM” section.
“2.14.1 Using Renesas Electronics C/C++ Compiler Package
for RX Family”,
“2.14.2 Using GCC for Renesas RX”,
“2.14.3 Using IAR C/C++ Compiler for Renesas RX”
Added “2.18.4 Emulator Debug Configuration” section.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 112 of 117
Mar.20.25

Rev. Date
Description
Page Summary

4.00 Apr.19.19 Program Changed as a result of supporting the GCC/IAR compiler.
Changed as a result of deletion of
FLASH_CFG_USE_FIT_BSP.
Changed as a result of deletion of
FLASH_CFG_FLASH_READY_IPL.
Changed as a result of deletion of
FLASH_CFG_IGNORE_LOCK_BITS.
Deleted flash type 2 device from target device.
Deleted FLASH_ERR_ALIGNED.
Deleted FLASH_ERR_BOUNDARY.
Deleted FLASH_ERR_OVERFLOW.
Added the process to output error when BSP is earlier than
Rev.5.00.

4.10 Jun.07.19 1, 5
7-11
17-18
48

49-50

Added support for RX23W.
Updated “2.9 Code Size” section.
Updated “2.14.2 Using GCC for Renesas” section.
Added “5. Appendices” section.
Added “5.1 Confirmed Operation Environment” section.
Added “5.2 Troubleshooting” section.

 Program Added support for RX23W.
Modified FEARL and FSARL register settings.
Updated the demo project environment.

4.20 Jul.19.19 1, 5
47

50

Added support for RX72M.
Added “4.13 flash_demo_rskrx72m_bank0_bootapp /
_bank1_otherapp” section.
Updated “5.1 Confirmed Operation Environment” section.

 Program Added support for RX72M.
Added the RX72M demo project.
Updated the demo project environment.
Deleted the warning.
Deleted definitions and include, which are no longer used.
Granted the volatile declaration to global variables.
Modified the section related to dual mode and linear mode.
Modified part of Flash Type 4 timeout processing.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 113 of 117
Mar.20.25

Rev. Date
Description
Page Summary

4.30 Sep.09.19 1, 6
5
7-11
14

15

42
45-62

Added support for RX13T.
Added “2.5 Interrupt Vectors” section.
Updated “2.10 Code Size” section.
Modified the following descriptions and moved to “5.3
Compiler-Dependent Settings”.
“2.14.1 Using Renesas Electronics C/C++ Compiler Package
for RX Family”
“2.14.2 Using GCC for Renesas RX”
“2.14.3 Using IAR C/C++ Compiler for Renesas RX”
Modified “2.18 Dual Bank Operation” section and moved the
content that depends on the compiler to “5.3 Compiler-
Dependent Settings”.
Updated “5.1 Confirmed Operation Environment” section.
Added “5.3 Compiler-Dependent Settings” section.

 Program Added support for RX13T.
Modified part of the flash type 1 error processing.
Modified the copy method of R_FlashCodeCopy() when using
IAR.
Modified the implementation of r_flash_control() to the if_then
method.

4.40 Sep.27.19 1, 5, 6
23

42

Added support for RX23E-A.
Added FLASH_ERR_NULL_PTR to Return Values in “3.5
R_FLASH_BlankCheck()” section.
Updated “5.1 Confirmed Operation Environment” section.

 Program Added support for RX23E-A.
Added the NULL check of the 3rd argument of
r_flash_blankcheck().

4.50 Nov.18.19 1, 5, 6
5
15
16
21-37

29-32

45

Added support for RX66N and RX72N.
Added limitations to “2.3 Limitations” section.
Added “2.13 Blocking Mode and Non-blocking Mode” section.
Deleted “2.17 Operations in BGO Mode” section.
Deleted description of Reentrant from
“3.2 R_FLASH_Open()”, “3.3 R_FLASH_Close()”,
“3.4 R_FLASH_Erase()”, “3.5 R_FLASH_BlankCheck()”,
“3.6 R_FLASH_Write()”, “3.7 R_FLASH_Control()”,
and “3.8 R_FLASH_GetVersion()” sections.
Modified the content of Description in “3.7
R_FLASH_Control()” section.
Updated “5.1 Confirmed Operation Environment” section.

 Program Added support for RX66N and RX72N.
Supported Doxygen.
Modified enabling and disabling IEN to use
R_BSP_InterruptRequestEnable() and
R_BSP_InterruptRequestDisable().

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 114 of 117
Mar.20.25

Rev. Date
Description
Page Summary

4.60 Jun.24.20 5-9
11

17-23

25-27
29

30

32-36
37-68

77
90

Modified the structure and content of “1. Overview” section.
Modified the content of “2.7 Configuration Overview”.
Modified the structure and content of section “2.9
Parameters”.
Added “2.11 Callback Function” section.
Modified the content of “2.13 Blocking Mode and Non-
blocking Mode” section.
Added “2.14 Region Protection via Access Windows and
Lockbits” section.
Modified the structure and content of “2.16 Reprogramming
Flash Memory” section.
Modified the structure and content of “3. API Functions”
section.
Updated “5.2 Troubleshooting” section.
Updated “5.3.3 Using IAR C/C++ Compiler for Renesas RX”
section.

 Program Added processing to determine if R_FLASH_Open() has run.
Modified the access window processing, including block 0.
Modified the processing so that the enabling/disabling of IEN
is performed in the flash module.
Modified minor content, such as the deletion of unnecessary
definitions.

4.70 Oct.23.20 1, 5, 6,
34, 42,

45, 48, 51
76

Added support for RX671.

Updated “5.1 Confirmed Operation Environment” section.

 Program Added support for RX671.
4.80 Apr.23.21 1, 5, 43,

46, 49
12-17

25

38
78

Added support for RX140.

Updated “2.8 Code Size” section.
Added the following return values to “2.10 Return Values”
section.
FLASH_ERR_HOCO
Added “Return Values” to “3.1 R_Flash_Open()” section.
Updated “5.1 Confirmed Operation Environment” section.

 Program Added support for RX140.
4.81 Dec.10.21 8 Modified content of “1.3.1 Flash Memory Access Restrictions”

section.
 34 Modified content of “2.16.1 Reprogramming Code Flash

Memory by Running Code from RAM” section.
 46 Modified content of “Table 3.3 MCU Groups Supporting Blank

Check.”
 81 Updated “5.2 Troubleshooting” section.
 Program Added countermeasures as described in Tool News

(R20TS0765 and R20TS0772).

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 115 of 117
Mar.20.25

Rev. Date
Description
Page Summary

4.90 May.13.22 1, 5, 43,
46, 49,

72

74

79
88

92

Added support for RX660.

Deleted “4.8 flash_demo_rskrx65n2mb_bank0_bootapp /
_bank1_otherapp” section.
Deleted “4.13 flash_demo_rskrx72m_bank0_bootapp /
_bank1_otherapp” section.
Updated “5.1 Confirmed Operation Environment” section.
Modified content of “5.3.1.2 Programming Code Flash Using
the Dual Bank Function” section.
Modified content of “5.3.2.2 Programming Code Flash Using
the Dual Bank Function” section.

 Program Added support for RX660.
Added countermeasures as described in Tool News
(R20TS0818).
Added countermeasures as described in Technical Update
(TN-RX*-A0261A).
Deleted “flash_demo_rskrx65n2mb_bank0_bootapp /
_bank1_otherapp”.
Deleted “flash_demo_rskrx72m_bank0_bootapp /
_bank1_otherapp”.

4.91 Dec.23.22 84, 85

87, 88

Modified content of “5.3.1.1 Programming Code Flash from
RAM” section.
Modified content of “5.3.1.2 Programming Code Flash Using
the Dual Bank Function” section.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 116 of 117
Mar.20.25

Rev. Date
Description
Page Summary

5.00 Apr.21.23 1
5

6

10

12-18
30

33

37

38

39

40

42

46

49

52

55

63-64

84

88

Added support for RX26T.
Added "Flash Type 5/RX26T" to "Table 1.1 Supported MCU
Groups by Flash Type" in "1.1.1 Flash Types Overview"
section.
Added "Flash Type 5" to "Table 1.2 Supported Features by
Flash Type" in "1.1.2 Supported Features" section.
Added "Flash Type 5" to "Table 2.1 Interrupt Vectors Used in
this Module" in "2.4 Interrupt Vector" section.
Updated "2.8 Code Size" section.
Added "Table 2.5 Flash Type 5 Callback Function
Arguments" in "2.11 Callback Function" section.
Added "Flash Type 5" in "2.14.1 Access Window-based
Region Protection" section.
Added "Flash Type 5/RX26T" in "2.16.2 Reprogramming
Code Flash Memory by Running Code from Code Flash
Memory" section.
Added "Flash Type 5" and modfied content in
"2.16.3 Reprogramming Code Flash Memory by Utilizing the
Dual Bank Function" section.
Added "2.16.3.1 Reprogramming the other Bank different
from the Startup Bank by Running Code from the Startup
Bank" section.
Added "2.16.3.2 Reprogramming the Startup Bank and the
other Bank by Running Code from RAM" section.
Updated "Table 3.1 Code Allocations in Relation to
Configuration of Configuration Options" in "3.1
R_FLASH_Open()".
Added "RX26T" to "Table 3.2 Block Sizes by MCU Group" in
“3.3 R_FLASH_Erase()” section.
Added "RX26T" to "Table 6.1 MCU Groups Supporting Blank
Check" in "3.4 R_FLASH_BlankCheck()" section.
Added "RX26T" to "Table 6.2 Minimum Programming Sizes
by MCU Group" in "3.5 R_FLASH_Write()" section.
Added "Flash Type 5" to "Table 3.5 Supported Commands by
Flash Type" in "3.6 R_FLASH_Control()" section.
Added "Table 3.9 Details of Commands Supported by Flash
Type 5" in "3.6 R_FLASH_Control()" section.
Added "Table 5.10 Confirmed Operation Environment (Rev.
5.00)" in "5.1 Confirmed Operation Environment" section.
Updated "5.3.1 Using Renesas Electronics C/C++ Compiler
Package for RX Family" section.

 Program Added support for RX26T.
Added countermeasures as described in Tool News
(R20TS0872).

5.10 May.19.23 1, 5, 46,
49, 52

85

Added support for RX23E-B.

Updated “5.1 Confirmed Operation Environment” section.

 Program Added support for RX23E-B.
5.11 Oct.01.23 Program Added countermeasures as described in Tool News

(R20TS0963).
5.12 Jan.17.24 Program Modified the dual mode definition of RX671 code flash

memory 1 Mbyte.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EJ0522 Rev.5.22 Page 117 of 117
Mar.20.25

Rev. Date
Description
Page Summary

5.20 Jul.30.24 1, 5, 46,
49, 52

85

Added support for RX260 and RX261.

Updated “5.1 Confirmed Operation Environment” section.

 Program Added support for RX260 and RX261.
Added countermeasures as described in Technical Update
(TN-RX*-A0274A).
Removed the DFLWAITR register settings.
Modified FISR register settings.
When using the GCC or IAR compiler in non-blocking mode,
ROM access occurs during P/E mode, so the following
functions have been modified.
flash_InterruptRequestDisable()
flash_InterruptRequestEnable()

5.21 Nov.15.24 32 Added "2.13 for, while and do while statements"
 Program Added WAIT_LOOP comments.
5.22 Mar.20.25 Program Changed the disclaimer in program sources

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Flash Module Overview
	1.1.1 Flash Types Overview
	1.1.2 Supported Features

	1.2 API Overview
	1.3 Limitations
	1.3.1 Flash Memory Access Restrictions
	1.3.2 RAM Allocation Restrictions
	1.3.3 Emulator Debug Configuration Restrictions

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	2.9.1 Definitions of Common Arguments
	2.9.2 Definitions of Arguments that Vary Depending on Flash Memory Functionality and Capacity

	2.10 Return Values
	2.11 Callback Function
	2.12 Adding the FIT Module to Your Project
	2.13 “for”, “while” and “do while” statements
	2.14 Blocking Mode and Non-blocking Mode
	2.14.1 Using in Blocking Mode
	2.14.2 Using in Non-blocking Mode

	2.15 Region Protection via Access Windows and Lockbits
	2.15.1 Access Window-based Region Protection
	2.15.2 Lockbit-based Region Protection

	2.16 Usage Combined with Existing User Projects
	2.17 Reprogramming Flash Memory
	2.17.1 Reprogramming Code Flash Memory by Running Code on the RAM
	2.17.2 Reprogramming Code Flash Memory by Running Code on the Code Flash Memory
	2.17.3 Reprogramming Code Flash Memory by Utilizing the Dual Bank Function
	2.17.3.1 Reprogramming the other Bank different from the Startup Bank by Running Code on the Startup Bank
	2.17.3.2 Reprogramming the Startup Bank and the other Bank by Running Code on the RAM

	3. API Functions
	3.1 R_FLASH_Open()
	3.2 R_FLASH_Close()
	3.3 R_FLASH_Erase()
	3.4 R_FLASH_BlankCheck()
	3.5 R_FLASH_Write()
	3.6 R_FLASH_Control()
	3.7 R_FLASH_GetVersion()

	4. Demo Projects
	4.1 flash_demo_rskrx113
	4.2 flash_demo_rskrx231
	4.3 flash_demo_rskrx23t
	4.4 flash_demo_rskrx130
	4.5 flash_demo_rskrx24t
	4.6 flash_demo_rskrx65n
	4.7 flash_demo_rskrx24u
	4.8 flash_demo_rskrx64m
	4.9 flash_demo_rskrx64m_runrom
	4.10 flash_demo_rskrx66t
	4.11 flash_demo_rskrx72t
	4.12 flash_demo_mckrx26t
	4.13 Adding a Demo to a Workspace
	4.14 Downloading Demo Projects

	5. Appendices
	5.1 Confirmed Operation Environment
	5.2 Troubleshooting
	5.3 Compiler-Dependent Settings
	5.3.1 Using Renesas Electronics C/C++ Compiler Package for RX Family
	5.3.1.1 Programming Code Flash from RAM
	5.3.1.2 Programming Code Flash Using the Dual Bank Function

	5.3.2 Using GCC for Renesas RX
	5.3.2.1 Programming Code Flash from RAM
	5.3.2.2 Programming Code Flash Using the Dual Bank Function

	5.3.3 Using IAR C/C++ Compiler for Renesas RX
	5.3.3.1 Programming Code Flash from RAM
	5.3.3.2 Programming Code Flash Using the Dual Bank Function

	6. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

