LENESANS APPLICATION NOTE

RX Family C/C++ Compiler Package
CC-RX V3 R20AN064%IZ\\J/911.81

Programming Techniques

Jan.16.24

Introduction

This application note describes methods of programming for efficiency in terms of code size, speed of
execution, and ROM data size.

Compiler Revision for which Correct Operation has been Confirmed
CC-RX V3.03 for the RX family

Contents

S © Y=Y 1= SRR 4
B © o) (o] SRR 5
2 B O7o 1 ¢ o 11T A @] o] 170 1 1= 3PSO PRPRPPPRUPRP 5
211 -inStaligNA/-INSTalIGNS......coo e e e e e e e e e e e 9
2.1.2 2NOUSE_dIV_INST . o e e e e e e et ——— e aaaaeteerrr—————— 11
2.1.3 -stack_protector/-stack _protector_all ... 12
2.1.4 -avoid_cross_boundary prefetCh ... ———————————— 14
D IS T o o) 11111 4 T RSP RRTPI 15
208 mSPEEA/-SIZE ...t e e et e e e et et e e s e et e e e e e e nnaaeaae s 16
20t A o To] o 2SS 17
Dt T 11 TSRS 18
D TR T o= 1 TP UPPPPTPPP 20
20000 mVOIALIE ...t e e e et et a e s s 21
bt I B oo o) oo T o)V RO SP 22
b I 7 oo o £ o 1Y/ g o Lo o] £=1 A o [V 2 USRI 23
b I G T 11 o = PP P PRSPPI 24
2.1, 14 ~SCOPE/-NMOSCOPEuuuuuuutiettetteeeeeeeeeeeeeeeeeeeeeeeeeeteeeaaeeeeiaatbattesaaeeeeseeeeeaaaaaaaaaaeaasssesaaaaassssssssssssrnnnnnseeees 25
2.1.15 -SChedUIE/-NOSCREAUIE ..ottt e e ettt e e e st e e e e e s st st e e e e s annnnnaeeaens 27
D W LT 4 = o]] 4= T o TSP 28
D I I A= Yo o o (o |V 2P 29
2118 -SIMPIE_FlOBL_CONV ...t e e et e e e st e e e s s nnneeeee s 30
20 P e T o T o T USRS 31
D B e o) o1V BRSO UOR 32
2.1.21 -tfusIintrinSic, MAathliDoooo e e e e e e e ee e 33
20,22 m8IIS. et h e bt e h e e b et e e b et e a e e e n et a e e e n e s 34
2.1.23 -branch_chaining/-nobranch_Chainingcc.eoiiiiiiii e 35
b B [o I o] o {1011 4= S PSPPSRI 36
R20AN0643EJ0101 Rev.1.01 Page 1 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2125 —MEIGE_TIlES. ...t e e e s ee e 37
b W I o T L= o] oo =T o o PR 38
D I Ao | o I T PSR 39
D B T | | A (o T =] e) o OO UP P 40
D I - W) (o T =Y o U o RSP RRPI 41
B TG 10 o =T QRPN 42
b I N I 11 | A (= Te] 1= PP P PRSPPI 44
D T v o - T o PP 47
D TG X T o = 1T S TS POP PP 48
D I v g To U YR oo [(=T |15 (= OO UO PP 49
D I 1S = 1Y Y- oo RSP SPI 50
2.1.36 -CONrOI_fIOW _INTEGIILYoeiiiiiieiiee et e e e e e e e s s e eeee s 51
DA =1 T=T 1] o] 1= G o) 4 o) o PSP 52
D T I {01 1¢=To =N @ o] 1) o PRSI 53
2.3.1 -0optimize=SYmMDbDOl_dEIEtE........coooeeiee e a e e e ———— 54
2.3.2 -OPUMIZE=SAME _COUEottt e e e e e e e e et et ee et e e e e e e eeeeeeeeeaestnsnaneeeeaeeeeeeeesnnnnnnnns 55
2.3.3 -0ptiMIZE=ShOrt_fOrMAt... ...t e e e s e e e s e nereee e s 56
P I oo 11091 74= T o] = 1 Led o T PRSI 57
3. Language EXIENSIONSooo i 58
K T < o = To [0 b= T B (=Y 1Y SRR PUPPRPR 58
Tt I B = o T To [4 T= I 1 0] (Y5 (] o SO PP P PPUPTPTRT 59
SO0 To [19T I IF=Tor o1 a1 o [U =T3S PRSP 61
4.1 USING STTUCIUIESeeiiiiiieeeiee ettt e ettt e e e ettt e e e e ettt e e e e e e nn b b e e e e e e e snnbteeaeeeeannneeas 62
4.2 Variables and the const QUAIITIEN............ e e e e e e e e e e 63
4.3 Local Variables and Global Variables..............ooo e 64
4.4 Offsets for SIrUCIUrE MEMDEISoiiiiiiiiee e e e e e e e e et a e e e e st aee e e e e e ensees 65
I | [o Yoz aTe TN = 1 4 1= (o U 67
4.6 LoOp CoNMrol Vari@bIe. ...ttt e aaanaan 68
S A U] (o 10T g T [0] (=Y =Tt SR 69
4.8 Reducing the NUMDET Of LOOPS.uiiiiiiiiiiiiiii ettt e e et e e e e e e nbae e e e e e nneeas 70
4.9 USING TADIES ...t e e e e e e b e e e e anees 71
o O = = g o 1 PP PUUUURPR 72
T I [11 T YN = d o = 11 o] o OO 73
4,12 Using if-else Statements Instead of switch Statements...........cccccoiiiiiiiiiiii, 75
4.13 Using Temporary Variables to Consolidate Access to External Variables............cccccceeviiiiiiinnnee. 77
4.14 Moving Identical Expressions in More than One Conditional Branch Destination before the Conditional

=T = o o O PP PUPPPPPRP PPN 79
4,15 Replacing a Sequence of Complicated if Statement with a Simple Statement Having the Same Logical

o= oo Vo PP PPUURPPPN 81
4.16 Converting short- or char-Type Variables into the int Type ..., 82
R20AN0643EJ0101 Rev.1.01 Page 2 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.17 Unifying Common case Processing in switch Statements............ccoii e, 83
4.18 Replacing for Loops With dO-Whil€ LOOPSccciiiiiiiiiieiiiiiiie et erree e e e 85
4.19 Replacing Division by Powers of Two with Shift Operationscccuveeiiiiiiiiiiii, 86
4,20 Changing Bit Fields with Two or More Bits to the char TYPecccuviiiiiiiiiiiiiiiieeeeeeee e, 87
4.21 Assigning Small Absolute Values when Referring to Constants............cccccoviiiiiin e 88
R20AN0643EJ0101 Rev.1.01 Page 3 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

1. Overview

The methods of programming which lead to efficiency in terms of code size, speed of execution, and ROM
data size are classified under the following three headings.

e Options
e Language extensions
e Coding techniques

The results of measurement and assembly code given in this application note were obtained by using V3.03
of the CC-RX compiler. The value of the -isa/-cpu option can be assumed to have been -isa=rxv2, unless
stated otherwise. The default values for optimization options are as follows.

Emphasize efficiency in the generation of code -size
Optimization level -optimize=2
Unrolling loops -loop=2
Inline expansion -noinline
Converting division by constants into multiplication -noconst_div
Scheduling instructions -schedule
Propagation of const-qualified variables as constants | -const_copy
Division of optimizing ranges -scope
Optimization of access to external variables -nomap
Optimization in consideration of the types of data L .
indicated by pointers -alias=noansi

Note that the degrees of the effects depend on the details of the source code and may also change due to
upgrading of the CC-RX compiler.

R20AN0643EJ0101 Rev.1.01 Page 4 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2. Options

This chapter describes the effects on code size, ROM data size, and speed of execution when options for

CC-RX are specified.

The degrees of the effects depend on the details of the source code.

2.1 Compiler Options

\: Improved, x: Worsened, A: Depends on the situation, —: No effect, (): Default
Required
Option C.o <L R.o i Number Remarks
Size Size
of Cycles

-instalign4

Instructions at branch destinations
are aligned with 4-byte
boundaries for CPUs with 32-bit
unit instruction queues (mainly
intended for RX200-series
MCUs).

-instalign8

Instructions at branch destinations
are aligned with 8-byte
boundaries for CPUs with 64-bit
unit instruction queues (mainly
intended for RX600-series
MCUs).

-nouse_div_inst

Generation of division operations
is suppressed to shorten
response times in the execution of
interrupt functions. Specifying this
option may lower efficiency in
terms of code size and speed of
execution.

-stack_protector
-stack_protector_all

This option generates code to
detect stack smashing at the entry
and exit points of functions.

The code for the detection of
stack smashing may lower
efficiency in terms of code size
and speed of execution.

-avoid_cross_boundary_prefetch

This option is used to prevent the
reading of data across 4-byte
boundaries in prefetching for
string manipulation instructions.
Specifying this option may lower
efficiency in terms of code size
and speed of execution.

-optimize

This option specifies the
optimization level. The default
value is -optimize=2.

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 5 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

At the time of linkage, inter-
module optimization is applied to
files compiled with this option
specified.

-goptimize o o o For optimization at the time of
linkage, refer to section — 5 —!
ZRITBRROND ER A, ,
Linkage Options.

-speed X — N

-size () — (x)

-loop A L A The effect of.specifying this option
depends on its parameter.

-inline A L A The effect of.specifying this option
depends on its parameter.
The more case labels the

-case=ifthen X \ A statements have, the larger the
code size will become.
The more case labels the
statements have, the larger the

—case=table N « A ROM data size will become. _
However, the speed of execution
remains the same regardless of
the number of labels.

-volatile X — X
Propagation as constants
proceeds even for const-qualified
external variables. Specifying this

-const_copy ™) o ™) option will improve e?ficiezcygin
terms of code size and speed of
execution.

-noconst_copy . . fgﬁgltfyl:ngpt;ls option disables -

-const_div X — N

-noconst_div () — ()

-library=intrinsic \ — N
Specifying this option may lower

-noscope N . N the performance of objec’F code_if
the number of usable registers is
not sufficient for optimization.
Instructions are scheduled to
facilitate pipeline processing.

-schedule o o ™ Specifyinz Ft)his oth)ion will irﬁprove
the speed of execution.

-noschedule L L « _Ssri:ehc;g/mg this option disables

-map \ — N

-smap N — N

_approxdiv L L N The pr_ecision and order of
operations may be changed.

_simple_float_conv N L N \?vrk)lzcrz]if_);isn;;:trr;i‘s’ 1option is effective

-nofpu X — X

R20AN0643EJ0101 Rev.1.01 Page 6 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Specifying this option generates
an error unless -ias=rxv3.

-dpfpu \ — \ Specifying this option generates
an error if -nofpu is also
specified.
Specifying this option generates
code that takes advantage of the

tfu=intrinsic, mathlib N L N trigonometric fun_ction unit._Use or
non-use of the trigonometric
function unit affects the precision
of operations.

-alias=ansi N — N
This option allows the use of
smaller branch instructions. When

-branch_chaining \ — X -size and -optimize=2 | max are
specified, this option is effective
by default.

-nobranch_chaining « L N Specifying thi.s (?ption disables
-branch_chaining.

-ip_optimize N A N

-merge_files N A N

-whole_program N A N
Specifying this option leads to the

-dbl_size=8 X X X double type being handled as 8
bytes by the compiler.

int_to_short A A The int type is replacedlwi’Fh the
short type before compilation.

-auto_enum A N A

-pack X N X
This option specifies general
registers as being only for use in
fast interrupt functions. Specifying

-fint_regqister A — A this option will improve the
performance of such interrupt
functions but may lower the
performance of normal functions.

-branch=16 N — —

-branch=32 X — X

-base A — A
Since the generated code does
not use the PID register,

-nouse_pid_register X — X specifying this option may lower
efficiency in terms of code size
and speed of execution.

This option generates code for the
saving and restoring of the
accumulators in the case of
interrupt functions.

-save_acc A — A Although specifying this option

may lower the performance of
interrupt functions, it allows the
generation of instructions that use
the accumulator.

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 7 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

This option leads to the checking
of indirect function calls. The code
-control_flow_integrity X X X for checking may lower efficiency
in terms of code size, speed of
execution, and ROM data size.

R20AN0643EJ0101 Rev.1.01 Page 8 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.1 -instalignd/-instalign8

These options are used to align instructions at branch destinations with 4- or 8-byte boundaries. While these
options facilitate efficient use of the CPU’s instruction queues and accelerate program execution, they may
also increase the code size.

Specifying -instalign4 aligns the addresses of instructions to suit the specifications of CPUs with 4-byte unit
instruction queues. This option is mainly intended for RX100-series MCUs (RX110, RX111, RX113, RX130,
RX13T group) and RX200-series(RX210, RX21A, RX220 group).

Specifying -instalign8 aligns the addresses of instructions to suit the specifications of CPUs with 8-byte unit
instruction queues. This option is mainly intended for RX600-series MCUs and is suitable for increasing the
speed of products equipped with RXv2 or later as the CPU.

The specifications of instruction queues are covered in the user’s manuals (hardware manuals) for the
individual MCUs.

C source code

long a;

int funcl (int num)

{

return (num + 1);

}

void func?2 (void)
{

a += 1;

a += a;

}

void main (void)
{
unsigned int 1i;
for (1 = 0; 1 < 10; ++1i) {
if (funcl (i) < 10) {
func2 () ;
}

}
a += 1;
}

-cpu=rx200 (CPUs with 32-bit instruction queues)

With -instalign4 Without -instalign4
Code size (bytes) 57 55
Number of cycles (cycles) | 278 296

-cpu=rx600 (CPUs with 64-bit instruction queues)

With -instalign8 Without -instalign8

Code size (bytes) 61 55
Number of cycles (cycles) | 269 278
R20AN0643EJ0101 Rev.1.01 Page 9 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

The same effects can also be obtained by #pragma directives. When -instalign4 or -instalign8 and a
#pragma directive are specified at the same time, the #pragma directive will take priority.

Example: With —instalign4

void funcl (void) /* Aligned with a 4-byte boundary (by -instalign4d) */
{
}

#pragma instalign8 func?2

void func?2 (void) /* Aligned with an 8-byte boundary */
{

}

#pragma noinstalign func3

void func3 (void) /* Not aligned */
{

}

Example: With —instalign8

void funcl (void) /* Aligned with an 8-byte boundary (by -instalign8) */
{
}

fpragma instalign4d func?2

void func?2 (void) /* Aligned with a 4-byte boundary */
{

}

#pragma noinstalign func3

void func3 (void) /* Not aligned */
{

}

R20AN0643EJ0101 Rev.1.01 Page 10 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

21.2 -nouse_div_inst
This option leads to the generation of code in which DIV, DIVU, or FDIV instructions are never used for
division and modular division operations in the program.

This option calls the equivalent runtime functions instead of DIV, DIVU, or FDIV instructions. This may
shorten response times in the execution of interrupt functions by 1 to 20 cycles but lower efficiency in terms
of code size and speed of execution.

C source code

long a, b;

unsigned long c, d;
float e, £;

const float cf= 11.0;

void main (void)
{

=a /b
c=c¢/ d

~.

With -nouse_div_inst Without -nouse_div_inst
Code size (bytes) 85 69

Number of cycles (cycles) | 703 59

Note: Using this option may also increase the required ROM size.

R20AN0643EJ0101 Rev.1.01 Page 11 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.3 -stack_protector/-stack_protector_all
This option generates code to detect stack smashing at the entry and exit points of functions.

The code to detect stack smashing may lower efficiency in terms of code size and speed of execution.

C source code

#include <stdio.h>
#include <stdlib.h>

void func(void)

{

volatile char str[10];

int 1i;
for (1 = 0; 1 <= 9; 1i++) {
str[i] = 1i;

}
}

void _ stack chk fail (void)
{
/* stack is broken! */
__brk();
}

void main (void)

{

func () ;
}
With With Without
-stack_protector -stack_protector_all -stack_protector/
-stack_protector_all
Code size (bytes) 44 65 24
Number of cycles (cycles) 75 82 68

The same effects can also be obtained by #pragma directives. When -stack_protector or -
stack_protector_all and a #pragma directive are specified at the same time, the #pragma directive will
take priority.

R20ANO0643EJ0101 Rev.1.01 Page 12 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Example: With -stack_protector/-stack_protector_all

struct DATA
{
int a, b, ¢, d;

b

struct DATA funcl (void) /* Generates code to detect stack smashing */
{

struct DATA data = {0, 1, 2, 3};

return data;

#pragma no_ stack protector (func2)
struct DATA func2 (void) /* Prevents the generation of code to detect
stack smashing */
{
struct DATA data = {0, 1, 2, 3};
return data;

Example: Without -stack_protector/-stack_protector_all

struct DATA
{
int a, b, ¢, d;

}s

struct DATA funcl (void) /* Prevents the generation of code to detect
stack smashing */
{

struct DATA data = {0, 1, 2, 3};

return data;

#pragma stack protector (func2)
struct DATA func?2 (void) /* Generates code to detect stack smashing */
{

struct DATA data = {0, 1, 2, 3};

return data;

R20AN0643EJ0101 Rev.1.01 Page 13 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.4 -avoid_cross_boundary_prefetch

This option is used to prevent the reading of data across 4-byte boundaries in prefetching for string

manipulation instructions.

Specifying this option may lower efficiency in terms of code size and speed of execution when source code
includes calls of library functions for string handling, i.e. memchr(), strlen(), strcpy(), strncpy(), strcmp(),
strncmp(), strcat(), or strncat(), and -library=intrinsic has been specified for compilation.

C source code

#include <string.h>
unsigned long len;

void main (void)

{

char str[] = "abcdefghijklmnopgrstuvwxyz";
len = strlen(str);
}
With Without
-avoid_cross_boundary_prefetch | -avoid_cross_boundary_prefetch
Code size (bytes) 50 43
Number of cycles (cycles) | 79 73

R20AN0643EJ0101 Rev.1.01
Jan.16.24 RENESAS

Page 14 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

21.5 -optimize

This option specifies the optimization level. The default is -optimize=2.

The default values of the options listed below vary with the combination of whether the size or speed option
has been selected, the optimization level, and whether the input source code is C or C++.

Item

Option

Unrolling loops

-loop

Inline expansion

-inline / -noinline

Converting division by constants into multiplication

-const_div / -noconst_div

Scheduling instructions

-schedule / -noschedule

Propagation of const-qualified variables as constants

-const_copy / -noconst_copy

Division of optimizing ranges

-scope / -noscope

Optimization of access to external variables

-map / -smap / -nomap

Optimization in consideration of the types of data
indicated by pointers

-alias=ansi / -alias=noansi

C source code

int 1 = 0;
int x[10], y[10]1;
static void sub (int* a, int* b,
{

int temp;

temp = ali];

alil = b[i];

bl[i] temp;
}

void main (void)
{
sub(x, vy, 1);

}

int 1)

-optimize=0

-optimize=1

-optimize=2 -optimize=max

Code size (bytes) 63 37

35 24

Number of cycles (cycles) | 36 20

14 10

Note: Using this option may also increase the required ROM size.

R20ANO0643EJ0101 Rev.1.01

Jan.16.24

Page 15 of 89

RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

21.6 -speed/-size
This option is used to select whether speed or size should be emphasized in optimization.

When -speed is specified, emphasis in optimization will be on execution performance.

When -size is specified, emphasis in optimization will be on code size (default).

C source code

long a;
volid main (void)
{
unsigned long i = 0;
unsigned long j = 0;
for (i = 0; i < 5; ++1i) {
for (3 = 0; J < 5; ++3) |
a += (1 + 3);
a *= (i + 3J);
}
}
}
-speed -size
Code size (bytes) 66 47
Number of cycles (cycles) | 165 245

R20AN0643EJ0101 Rev.1.01
Jan.16.24 RENESAS

Page 16 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

21.7

-loop

This option specifies whether to optimize speed by unrolling loops.
Unrolling loop statements accelerates execution while increasing the code size.

C source code

long val;

void main (void)

{
unsigned long i, Jj, k, 1;
for (1 = 1; i < 7; ++1) {
for (J = 1; J < 6; ++j) {
for (k = 1; k < 5; ++k) {
for (1 =1; 1 < 4; ++41) {
val += (1 + j + k),
val *= (1 + j + k);
}
}
}
val += (i * 10);
}
}
-loop=1 -loop=2 -loop=8
Code size (bytes) 154 204 307
Number of cycles (cycles) | 4391 3424 3069

Note: -loop=8 is the default value when -optimize=max/-speed

Page 17 of 89

R20AN0643EJ0101 Rev.1.01
RENESAS

Jan.16.24

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.8 -inline

This option specifies whether functions are to be automatically inline expanded.

When -inline is specified, the compiler automatically performs inline expansion.

When -noinline is specified, the compiler does not automatically perform inline expansion.

You can also use a parameter with the -inline option to specify the allowed increase in the function's size
due to the use of inline expansion. For example, when inline=100, functions will be inline-expanded if their
size is increased by up to 100% (size is doubled). When inline=0, functions will only be inline-expanded if
the size remains the same or decreases.

C source code

long val;
long x[1000];

{
++val;

}

void func2 (int a)

void main (void)
{
signed int 1i;
func?2 (val) ;

func?2 (
funcl (
func?2 (val) ;
}

func?2 (val) ;

i)
) ;

static void funcl (void)

for (i = 0; 1 < 10; ++1i) {

-inline=200 -inline=0 -noinline
Code size (bytes) 93 58 70
Number of cycles (cycles) | 153 364 474

R20ANO0643EJ0101 Rev.1.01

Jan.16.24

RENESAS

Page 18 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

You can also use #pragma directives to enable or disable inline expansion for particular functions. When -

inline or -noinline and a #pragma directive are specified at the same time, the #pragma directive will take
priority.

Example: With -inline

void funcl (void)
{
}

/* Inline expansion is enabled (by -inline). */

#pragma noinline (func?2)
void func?2 (void)

{

}

/* Inline expansion is disabled. */

Example: With -noinline

void funcl (void)
*/

{

}

/* Inline expansion is disabled (by -noinline).

#pragma inline (func?2)
void func?2 (void)

{

}

/* Inline expansion is enabled. */

R20ANO0643EJ0101 Rev.1.01

Page 19 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

21.9 -case
This option specifies how switch statements will be expanded.
When -case=ifthen is specified, switch statements will be expanded by using the if then method. The more

case labels the statements have, the larger the code size will become. The speed of execution will also
depend on the number of case labels.

When -case=table is specified, switch statements will be expanded by using the table method. The more
case labels the statements have, the larger the ROM data size will become. However, the speed of
execution remains the same regardless of the number of labels.

When -case=auto (default) is specified, the compiler automatically selects between the if _then and table
methods.

C source code

long val = 10;

void main (void)
{
switch (val) {
case 1:
val += 10;
break;
case 2:
val *= 10;
break;
case 3:
val /= 10;
break;
default:
val -= 10;
break;
}
}

-case=ifthen -case=table
Code size (bytes) 37 43
ROM size (bytes) 4 7
Number of cycles (cycles) 15 13

Note: For the above example of C source code, the compiler selects if_then when -case=auto.

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 20 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.10 -volatile

This option is used to select whether all external variables should be handled as if they were volatile-

qualified.

When -volatile is specified, all external variables are handled as if they were volatile-qualified. Accordingly,
the number of times and order of access to external variables are exactly the same as is written in the C/C++
source file. However, this prevents the optimization of external variables and thus may lower efficiency in
terms of code size and speed of execution.

C source code

{

val += 1;
val -= 2;
val *= 3;
val /= 4;

long val = 0;

void main (void)

With -volatile Without -volatile
Code size (bytes) 33 19
Number of cycles (cycles) 22 12

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 21 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.11 -const_copy

This option is used to enable or disable propagation by the compiler of const-qualified external variables as
constants. Enabling constant propagation accelerates program execution.

When -const_copy (default) is specified, the compiler propagates const-qualified external variables as

constants.

When -noconst_copy is specified, const-qualified external variables are not propagated as constants.

C source code

const long val = 0;
long result;

void main (void)
{

result = val + 10;
}

-const_copy

-noconst_copy

Code size (bytes) 10

19

Number of cycles (cycles) 5

8

R20ANO0643EJ0101 Rev.1.01

Jan.16.24 RENESAS

Page 22 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.12 -const_div/-noconst_div

These options are used to enable or disable converting calculations for division and modulo operations
(obtaining the remainders of division) of integer constants into sequences of multiplication and bitwise
operation (shift or bitwise AND operation) instructions. Enabling this conversion accelerates the speed of
execution, while increasing the code size.

When -const_div is specified, calculations for division and modulo operations of integer constants in the
source file are converted into sequences of multiplication and bitwise operation (shift or bitwise AND
operation) instructions. Using this option in conjunction with the -size option increases the speed of
execution compared to cases where -noconst_div is specified.

When -noconst_div is specified, the corresponding division and modulo instructions are used for calculating
the results of division and modulo operations of integer constants in the source file (except in the case of
unsigned integers that are powers of two). Using this option in conjunction with the -speed option reduces
the code size compared to cases where -const_div is specified.

C source code

long a = OxX7FFFFFFF;

void main (void)
{

a=a / 1000;
}

-const_div (-size) -const_div (- -noconst_div
- speed) (-size/-speed)
Code size (bytes) 26 27 16
Number of cycles (cycles) | 13 12 23
R20AN0643EJ0101 Rev.1.01 Page 23 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.13 Alibrary

This option is used to specify the extent to which library functions will be expanded.

When -library=function is specified, all library functions will be called. This may lower efficiency in terms of

code size and speed of execution.

When -library=intrinsic (default) is specified, only abs(), fabsf(), and library functions which can use string
manipulation instructions will be expanded. When -library=intrinsic and -isa=rxv2 are selected at the same
time, calls of the sqrtf() function or of the sqrt() function when -dbl_size=4 are expanded as FSQRT
instructions. Note, however, that no value is set for errno in such cases.

C source code

#include <stdlib.h>
int a;

void main (void)

{

a = abs(a);
}
-library=function -library=intrinsic
Code size (bytes) 19 13
Number of cycles (cycles) 15 8

R20ANO0643EJ0101 Rev.1.01

Jan.16.24 RENESAS

Page 24 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.14 -scope/-noscope
This option is used to select whether to divide the target range for optimization before compilation.

When -noscope is specified, the target range for optimization is not divided before compilation. A larger
target range generally improves the performance of the object code, although compilation will take longer.
However, if the number of usable registers is not sufficient for optimization, the performance of the object

code may be lowered.

When -scope is specified, the target range for optimization of large functions is divided into multiple sections

before compilation.

C source code

long arrayl[40];
long val = 10;
void main (void)
{
int 1i;
for (i = 0; i < 40; ++1)
array[i] = val * 1i;
}
for (i = 0; 1 < 40; ++1)
if (array[i] > 1) {
array[i] += val + i;
}
else if (arrayl[i] > (i
array[i] += val + (i
}
else if (arrayl[i] > (i
array[i] += val + (i
}
else if (arrayl[i] > (i
array[i] += val + (i
}
else if (arrayl[i] > (i
array[i] += val + (i
}
else if (arrayl[i] > (i
array[i] += val + (i
}
else if (arrayl[i] > (i
array[i] += val + (i
}
else if (arrayl[i] > (i
array[i] += val + (i
}
else if (arrayl[i] > (i
array[i] += val + (i
}
else {
array[i] += val + (i
}
}
}

*2)) |
* 2);
* 3)) |
* 3);
* 4)) |
* 4);
* 5)) |
* 5);
* 6)) |
* 6);
* 7)) A
* 7))
* 8)) |
* 8);
* 9)) |
* 9);
* 10);

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 25 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

-scope -noscope
Code size (bytes) 318 312
Number of cycles (cycles) 1089 1046

Note: -loop=2 is assumed for the above results.

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 26 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.15 -schedule/-noschedule

This option is used to select whether to schedule instructions to facilitate pipeline processing. Scheduling
instructions improves the speed of execution.

When -schedule is specified, instructions are scheduled to facilitate pipeline processing. -schedule is
assumed when -optimize=2 or -optimize=max is specified.

When -noschedule is specified, instructions are not scheduled so they are handled in the order in which
they are written in the C/C++ source file. -noschedule is assumed when -optimize=1 or -optimize=0 is

specified.

C source code

long a, b;

float e, £f;

{

Q
I

o Qe

+ 4+ o+

Des

unsigned long c,

void main (void)

d;

-schedule

-noschedule

Code size (bytes)

58

58

Number of cycles

(cycles)

24

25

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 27 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.16 -map/-smap

This option is used to select whether to optimize access to external variables. Optimizing access to external

variables will improve efficiency in terms of code size and speed of execution.

When -map is specified, CC-RX optimizes access to external variables, generating code that uses
addresses relative to a base address (selected according to the external-symbol allocation information file
created by the optimizing linkage editor) for access to external or static variables.

When -smap is specified, CC-RX sets a base address for external or static variables defined in the file to be
compiled and generates code that uses addresses relative to that base address for access to those

variables.

C source code [tp1.c]

{

a = d;
b = e;
c = f;

long a, b, c;
extern long d, e, £f;
void main (void)

C source code [tp2.c]

long e

long d = 10;
10;
long £ = 10;

-map -smap Without -map/-smap
Code size (bytes) 18 33 43
Number of cycles (cycles) 13 14 16

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 28 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.17 -approxdiv

This option is used to convert the division of floating-point constants into the multiplication of the reciprocals
of the constants. Specifying this option improves performance in the division of floating-point constants. It

may, however, change the precision and order of operations, so take care on these points.

C source code

float a;

void main (void)

With -approxdiv

Without -approxdiv

Code size (bytes) 18

18

Number of cycles (cycles) 9

23

R20ANO0643EJ0101 Rev.1.01

Jan.16.24 RENESAS

Page 29 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.18 -simple_float_conv

This option omits part of the type-conversion processing for the floating-point types. This option is only
effective when the instruction set architecture for the code to be generated is RXv1.

This option changes the code generated to handle type conversion of floating-point numbers in the following
cases.

(a) Type conversion from 32-bit floating-point type to unsigned integer type

(b) Type conversion from unsigned integer type to 32-bit floating-point type

(c) Type conversion from integer type to 64-bit floating-point type via 32-bit floating-point type (except when
-optimize=0)

Specifying this option will improve efficiency in terms of code size and speed of execution. However, the
results of conversion may differ from those for conversion in accord with the C/C++ language specifications,
so take care on this point.

C source code

unsigned long isrc = 2;
float fsrc = 2.0;
unsigned long idst;
float fdst;

volid main (void)

{
idst = (unsigned long) fsrc;
fdst (float)isrc;

With -simple_float_conv Without -simple_float_conv
Code size (bytes) 36 73

Number of cycles (cycles) 17 23

Note: RXv1 (-isa=rxv1) is assumed in this case.

R20AN0643EJ0101 Rev.1.01 Page 30 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.19 -nofpu

This option is used to select whether to generate code in which FPU instructions are used.
When -nofpu is specified, the generated code does not use FPU instructions.

When -fpu is specified, the generated code uses FPU instructions.

The default for this option is -fpu except when -cpu=rx200 is specified, in which it is -nofpu. It is not
possible to specify -cpu=rx200 and -fpu at the same time.

C source code

float a, b;

void main (void)
{
b;

’

a /=
b /=
}

const float ¢ = 11.

-fpu -nofpu
Code size (bytes) 31 45
Number of cycles (cycles) 40 98

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 31 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.20 -dpfpu

When the -dpfpu option is specified, the generated code uses double-precision floating-point processing

instructions. This option is only effective when the instruction set architecture for the code to be generated is
RXv3.

C source code

double val;

volid main (void)
{
val /= val;
val *= wval;

}

-dpfpu -nodpfpu
Code size (bytes) 29 35
Number of cycles (cycles) 45 83

Note: RXv3 (-isa=rxv3) and -dbl_size=8 are assumed in this case.

R20AN0643EJ0101 Rev.1.01 Page 32 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.21 -tfu=intrinsic, mathlib

When -tfu=intrinsic,mathlib is specified, calls of mathematics library functions are replaced with code that
takes advantage of the trigonometric function unit.

Code for operations that use the trigonometric function unit is not reentrant.

Replacement of the mathematics library functions means that only code from the relevant function calls is
replaced and code in the library is not affected. Accordingly, if an indirect call via a pointer is made, the
trigonometric function unit will not be used.

If calls of mathematics library functions are replaced with code that uses the trigonometric function unit, the
values of variable errno will not be modified.

Use or non-use of the trigonometric function unit affects the precision of operations.

Before using the trigonometric function unit, initialize the unit from the startup program by calling the
__init_tfu() intrinsic function. If you do not do so, correct operation is not guaranteed.

Do not specify this option for a device that does not include a trigonometric function unit.

C source code

float wval;

void main (void)

{

val = sinf (val);
}
-tfu=intrinsic -tfu=intrinsic,
mathlib

Code size (bytes) 19 16
Number of cycles (cycles) 29 22

Note: The runtime of __init_tfu() is not included.

R20AN0643EJ0101 Rev.1.01 Page 33 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.22 -alias

This option selects whether to perform optimization in consideration of the types of data indicated by
pointers. Specifying this option improves code efficiency in terms of code size and speed of execution.
However, the results of conversion may differ from the expected values if the C source code does not comply
with the ANSI standard.

When -alias=ansi is specified, optimization in consideration of the types of data indicated by pointers
proceeds in accord with the ANSI standard. The performance of object code is generally better when
-alias=ansi is specified than when -alias=noansi is specified, but the results of execution may differ
according to whether -alias=ansi or -alias=noansi is specified.

When -alias=noansi is specified, ANSI-based optimization in consideration of the types of data indicated by
pointers is not performed.

C source code

long a, b;
short* ps;

void main (void)

-alias=ansi -alias=noansi
Code size (bytes) 30 36
Number of cycles (cycles) 10 16

R20AN0643EJ0101 Rev.1.01 Page 34 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.23 -branch_chaining/-nobranch_chaining
This option is used to select whether to use smaller branch instructions. When -branch_chaining is

specified, a branch instruction may branch to another branch instruction with the same destination by using a
smaller branch instruction instead of using a direct branch to the final destination.

C source code

int x = 1;
[

void sub ()

{
int 1i;
switch (x)
case 1
case
case
case
case
case
case
case
case
}
sub () ;
}

O 0 J o U b Wi

default :

int data[10007];

volid main (void)

{
for
for
for
for
for
for
for
for
for
for

(1 = 0;

(1
(1
(1
(1
(1 =
(1
(1
(1
(1

#pragma inline asm sub

{}

i<32;++1i) {datal[i] = 1i;} break
(32*1); i<(32*2);++1) {datali] = 1
(32*2); 1i<(32*3);++1) {datali] = 1
(32*3); 1i<(32*4);++1) {datali] = 1
(32*4); i<(32*5);++1) {datali] = 1
(32*5); i<(32*6);++1) {datali] = 1
(32*6); 1i<(32*7);++1) {datali] = 1
(32*7); 1i<(32*8);++1) {datali] = 1
(32*8); 1i<(32*9);++1) {datali] = 1
(32*%9); i< (32*10);++1i) {datali] =

Ne Ne Ne Ne Ne Ne N

~.

[

e e e e e e o

break;
break;
break;
break;
break;
break;
break;
break;

;1 break;

-branch_chaining

-nobranch_chaining

Code size (bytes)

1566

1567

Number of cycles (cycles)

53

50

Note: -loop=32 is assumed in this case.

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 35 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.24 -ip_optimize

This option is used to select whether to apply global optimization such as optimization in which inter-
procedural alias analysis and the propagation of constant parameters and return values are utilized.

C source code

long result;

{

return (x -y + z

}
void main (void)

{

result = func (3,

}

)7

4, 5);

static long func(long x, long y, long z)

With -ip_optimize

Without -ip_optimize

Code size (bytes)

21

23

Number of cycles (cycles)

17

19

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 36 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.25 -merge_files

This option allows the compiler to compile multiple C source files and output the results to a single object file.

Specifying both -merge_files and -ip_optimize can obtain a synergistic effect.

C source code [tp1.c]

long result;

void main (void)

{

}

result = func (3, 4,

5);

C source code [tp2.c]

#pragma inline
{

}

long func(long x,

(func)

return (x - y + 2z);

long vy, long z)

With -merge_files

Without -merge_files

131

Code size (bytes) 122
Number of cycles (cycles) 5 18

Notes: 1. In some cases, ROM size may also be improved.

2. The code size here also includes the size of the startup routine.

R20ANO0643EJ0101 Rev.1.01

Jan.16.24 RENESAS

Page 37 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.26 -whole_program

This option is used to apply global optimization by merging all source files to be compiled on the assumption
that the entire program is to be compiled.

When this option is specified, compilation proceeds on the assumption that the conditions listed below are
satisfied. Correct operation is not guaranteed otherwise.

Condition 1: Files outside the scope of compilation at this time will neither modify nor refer to the values and
addresses of extern variables defined in the target source files.

Condition 2: Files outside the scope of compilation at this time will not call functions within the target source
files, although calls of functions in files outside the scope of compilation by target source files are allowed.

C source code [tp1.c]

extern const int c;
int result;

int func(void);

void main (void)

{
result = c;
result += func();

}

C source code [tp2.c]

const int ¢ = 1;
int x = 10;
int *p;

int func(void)
{
int i;
for (1 = 0; 1 < x;
(*p) += c;
}

return (*p);

++1i) {

With -whole_program

Without -whole_program

Code size (bytes)

160

171

Number of cycles (cycles)

86

162

Notes: 1. In some cases, ROM size may also be improved.

2. The code size here also includes the size of the startup routine.

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 38 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.27 -dbl_size

This option specifies whether or not to change variables of the double and long double types to the float

type.

When -dbl_size=4 is specified, this option changes the given types to the float type (default).

When -dbl_size=8 is specified, this option does not change the types.

C source code

double a, b;

void main (void)
{

b;
o

=a /
b=b/l

const double c = 11.

-dbl_size=4 -dbl_size=8
Code size (bytes) 31 63
ROM size (bytes) 4 8
Number of cycles (cycles) 40 106

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 39 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.28 -int_to_short

Before compilation, variables in the source file are changed to the short type if written as the int type and to
the unsigned short type if written as the unsigned int type.

In the program with no portability and written on the assumption that the sizes of int and unsigned int are 32
bits, this may change the results of execution.

C source code

int x;
long vy;
const int imm = 1;

void main (void)
{

X += imm;

y += x;
}
With -int_to_short | Without -int_to_short
Code size (bytes) 26 24
ROM size (bytes) 2 4
Number of cycles (cycles) 13 12
R20AN0643EJ0101 Rev.1.01 Page 40 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.29 -auto_enum

This option selects the processing of enumerated values, i.e. lists qualified by enum, as the minimum set of
required values, i.e. only those which are actually used in the code.

Although this reduces the ROM data size, expanding the values in enum to the long type, etc., may also
affect the code size and speed of execution.

C source code

enum number {

one =1,
two = 2,
three = 3
b
int x;

enum number num;

void main (void)
{

num += num;

X += num;

}

const enum number DATA = one;

With -auto_enum

Without -auto_enum

Code size (bytes)

26

24

ROM size (bytes)

1

4

Number of cycles (cycles)

13

12

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 41 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.30 -pack

This option specifies the unit for the boundary alignment of structure and class members.

When -pack is specified, the unit of boundary alignment for structure and class members is 1, which reduces
the ROM data size. However, in cases where alignment is required, it will also lead to deterioration in terms

of the code size and speed of execution.

When -unpack (default) is specified, the boundary alignment value for structure and class members equals

the maximum boundary alignment value for the members.

C source code

struct DATA
{

char c;
long 1;
}i

struct DATA data = {1, 2};
long result;

long func (void)

{

return (data.l);

}

void main (void)

{

result = func();
}
-pack -unpack
Code size (bytes) 23 21
ROM size (bytes) 5 8
Number of cycles (cycles) 18 16

The same effects can also be obtained by #pragma directives. When -pack and a #pragma directive are

specified at the same time, the #pragma directive will take priority.

R20AN0643EJ0101 Rev.1.01
Jan.16.24 RENESAS

Page 42 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Example: With -pack

struct DATAlL /* The -pack option applies. */
{
char a; /* Byte offset = 0 */
long b; /* Byte offset =1 */
short c; /* Byte offset = 5 */
} datal; /* The total size is 7 bytes. */
#pragma unpack
struct DATA2 /* The -pack option is not applicable from here. */
{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 4 */
short c; /* Byte offset = 8 */
} data2; /* The total size is 12 bytes. */
#pragma packoption
struct DATA3 /* The -pack option applies. */
{
char a; /* Byte offset = 0 */
long b; /* Byte offset =1 */
short c; /* Byte offset = 5 */
} data3; /* The total size is 7 bytes. */
Example: With -unpack
struct DATAlL /* The -pack option applies. */
{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 4 */
short c; /* Byte offset = 8 */
} datal; /* The total size is 12 bytes. */
#pragma pack
struct DATA2 /* Operation from here is as if the -pack option were
specified. */
{
char a; /* Byte offset = 0 */
long b; /* Byte offset =1 */
short c; /* Byte offset = 5 */
} data2; /* The total size is 7 bytes. */
#pragma packoption
struct DATA3 /* The -pack option applies. */
{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 4 */
short c; /* Byte offset = 8 */
} data3; /* The total size is 12 bytes. */
R20AN0643EJ0101 Rev.1.01 Page 43 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.31 int_register

This option specifies general registers as being only for use in fast interrupt functions (functions that have the
fast interrupt setting (fint) in their interrupt specification as stated with #pragma interrupt). The specified
registers cannot be used in functions other than fast interrupt functions. Since the general registers specified
by this option can be used without being saved or restored in the case of fast interrupt functions, the
execution speed of fast interrupt functions will most likely be improved. Then again, since this reduces the
number of general registers usable by other functions, it degrades the efficiency of register allocation in the

program as a whole.

Option Registers for Use Only with Fast Interrupts
fint_register=0 (default) None

fint_register=1 R13

fint_register=2 R12, R13

fint_register=3 R11, R12, R13

fint_register=4

R10, R11, R12, R13

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 44 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

C source code [normal function]

long vall[40];
long tmp = 10;
void main (void)
{
int i;
for (i = 0; 1 < 40; ++1i) {
if (tmp > i) {
vall[i] = tmp + 1i;
}
else if (tmp > (i * 2)) {
val[i] = tmp + (1 * 2);
}
else if (tmp > (i * 3)) {
val[i] = tmp + (1 * 3);
}
else if (tmp > (i * 4)) {
val[i] = tmp + (1 * 4);
}
else if (tmp > (i * 5)) {
val[i] = tmp + (1 * 5);
}
else if (tmp > (i * 6)) {
val[i] = tmp + (1 * 6);
}
else if (tmp > (i * 7)) {
val[i] = tmp + (1 * 7);
}
else if (tmp > (i * 8)) {
val[i] = tmp + (1 * 8);
}
else if (tmp > (i * 9)) {
val[i] = tmp + (1 * 9);
}
else {
val[i] = tmp + (1 * 10);
}
}
}
fint_register | fint_register | fint_register | fint_register | fint_register
=0 =1 =2 =3 =4
Code size (bytes) 153 153 153 161 170
Number of cycles (cycles) 1654 1654 1654 1734 1873

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 45 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

C source code [interrupt function]

volatile int count;

void int func(void)
{
count++;

}

#pragma interrupt int func (vect=10,

fint)

fint_register
=0

fint_register
=1

fint_register
=2

fint_register
=3

fint_register
=4

Code size (bytes)

18

18

14

14

14

Number of cycles (cycles)

12

10

8

8

8

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 46 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.32 -branch

This option specifies the width of addresses for branches to functions defined in other sections or files.

When -branch=16 is specified, the program is compiled with branch widths within 16 bits.

When -branch=24 is specified, the program is compiled with branch widths within 24 bits (default).

When -branch=32 is specified, no branch width is specified.

C source code

{
sub () ;

}

{
}

void sub (void) ;

void main (void)

#pragma section ResetPRG
void sub (void)

-branch=16 -branch=24 -branch=32
Code size (bytes) 3 4 8
Number of cycles (cycles) 6 6 7

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 47 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.33 -base

This option specifies a fixed general register for use with base addresses throughout the program.

Depending on the code to be compiled, specifying this option may improve efficiency in terms of code size

and speed of execution.

C source code

long val([40];
long tmp = 10;
volid main (void)
{
int 1i;
for (i = 0; i < 40; ++1i) {
if (tmp > i) {
val[i] = tmp + i;
}
else if (tmp > (i * 2)) {
val[i] = tmp + (i * 2);
}
else if (tmp > (1 * 3)) {
val[i] = tmp + (i * 3);
}
else if (tmp > (i * 4)) {
val[i] = tmp + (i * 4);
}
else if (tmp > (1 * 5)) {
val[i] = tmp + (i * 5);
}
else if (tmp > (1 * 6)) {
val[i] = tmp + (i * 6);
}
else if (tmp > (i * 7)) {
val[i] = tmp + (1 * 7);
}
else if (tmp > (1 * 8)) {
val[i] = tmp + (i * 8);
}
else if (tmp > (1 * 9)) {
val[i] = tmp + (i * 9);
}
else {
val[i] = tmp + (i * 10);
}
}
}
With -base .
(-base=ram=RS) Without -base
Code size (bytes) 165 166
ROM size (bytes) 4 4
Number of cycles (cycles) 1533 1540

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 48 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.34 -nouse_pid_register
When this option is specified, the generated code does not use the PID register.

Specifying this option may lower efficiency in terms of code size and speed of execution.

C source code

long val[40];
long tmp = 10;
void main (void)
{
int i;
for (1 = 0; 1 < 40; ++i) {
if (tmp > 1) {
val[i] = tmp + i;
}
else if (tmp > (i * 2)) {
val[i] = tmp + (1 * 2);
}
else if (tmp > (i * 3)) {
val[i] = tmp + (1 * 3);
}
else if (tmp > (i * 4)) {
val[i] = tmp + (1 * 4);
}
else if (tmp > (i * 5)) {
val[i] = tmp + (1 * 5);
}
else if (tmp > (i * 6)) {
val[i] = tmp + (1 * 6);
}
else if (tmp > (i * 7)) {
val[i] = tmp + (1 * 7);
}
else if (tmp > (i * 8)) {
val[i] = tmp + (1 * 8);
}
else if (tmp > (i * 9)) {
val[i] = tmp + (1 * 9);
}
else {
val[i] = tmp + (1 * 10);
}
}
}
With Without
-nouse_pid_register -nouse_pid_register
Code size (bytes) 167 158
Number of cycles (cycles) 1823 1674

Note: Measurement was with -fint_register=3.

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 49 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.35 -save_acc

This option generates code for the saving and restoring of the accumulators (ACC, ACCO, or ACC1) in the
case of interrupt functions.

When this option is specified, the values of the accumulators are retained even if interrupts occur. This
permits the generation of instructions that use an accumulator, such as MACLO, from C/C++ statements.

C source code [normal function]

short srcl[3]
short src2[3]
int result;

= {10,
{20,

11,
21,

12};
22};

int func(const short* srcl, const short* src2)
{

return

}

(srcl[0] * src2[0]) + (srcl[l] * src2[l]) + (srcl[2] * src2[2]);

void main (void)
{

result =

}

func (srcl, src2):

With -save_acc

Without -save_acc

Code size (bytes)

49

49

Number of cycles (cycles)

25

27

Note: The -speed option is specified for the above results.

C source code [interrupt function]

#include <machine.h>

10;
20;

long srcl =
long src2 =
long result;

void func (void)

{

result =

}

void main (void)

{
int exception(10);
nop () ;

}

#pragma interrupt func(vect=10)

srcl * src2;

With -save_acc

Without -save_acc

Code size (bytes)

62

32

Number of cycles (cycles)

32

18

Note: The code size and number of cycles are for the interrupt function alone.

R20AN0643EJ0101
Jan.16.24

Rev.1.01
RENESAS

Page 50 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.1.36 -control_flow_integrity
This option is used to check the calling functions in the case of indirect function calls.

Since this involves the addition of code and data for use in checking, specifying this option may lower
efficiency in terms of code size, ROM data size, and speed of execution.

C source code

void funcl (char a)
void func2 (long b)
void funcB(void){}
void (*pl) (char a)
void (*)(long b)

void func4d (void)
{

func3 () ;
}

void main (void)
{
1(1);
2(1);
4

func

’

()

void control flow chk fail(void) {}

{}
{}

= funcl;
= func?2;

With -control_flow_integrity

Without -control_flow_integrity

Code size (bytes)

192

147

ROM size (bytes)

176

64

Number of cycles (cycles)

82

36

Note: The code size and ROM size include the size of the startup routine.

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 51 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.2 Assembler Option

\: Improved, x: Worsened, A: Depends on the situation, —: No effect
Required
. Code ROM Number
Option Size Size of Remarks
Cycles
At the time of linkage, inter-module
optimization is applied to files for
which this option was specified.
-goptimize — — — For optimization at the time of
linkage, refer to section =7 —! &
BB Ro0 0 8 A, , Linkage
Options.
R20AN0643EJ0101 Rev.1.01 Page 52 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.3 Linkage Options

This section describes the effects on code size, ROM data size, and speed of execution when optimizing
linkage options are specified. Optimization is applied to files for which -goptimize was specified at the time
of compilation or assembly.

Optimization is not applied to sections for which -section_forbid is specified.

Optimization is also not applied to ranges from the address plus the size for which -absolute_forbid is

specified.

\: Improved, x: Worsened, A: Depends on the situation, —: No effect
Required
. Code ROM Number
Option Size Size of Remarks
Cycles
-optimize=symbol_delete N N —
-optimize=same_code N — X
-optimize=short_format N — —
-optimize=branch N — —

Note: When the linkage editor is started from the command line, all optimization options apply by default.

R20AN0643EJ0101

Jan.16.24

Rev.1.01

RENESAS

Page 53 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.3.1 -optimize=symbol_delete
Variables or functions to which nothing refers are deleted. Be sure to specify #pragma entry at the time of

compilation or the entry symbol with -entry in the linkage editor.

With this option specified, the deletion of variables and functions with -symbol_forbid specified is not

allowed.

C source code

int value2

void funcl (

{

valuel++;

}

{

value2++;

}

{
funcl () ;
}

int valuel =

0;
0;

void)

void func?2 (void)

void main (void)

With -optimize=symbol_delete

Without -optimize=symbol_delete

Code size (bytes)

89

135

ROM size (bytes)

60

64

Note: The code size and ROM size include the size of the startup routine.

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 54 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.3.2 -optimize=same_code
Subroutines are created from identical sequences of instructions.

Specifying this option may improve code size but lower the speed of execution.

-samesize specifies the minimum code size to which this form of optimization is to be applied (the default is -
samesize=1E).

C source code

volatile int wvalue = 0;

int v1;
int v2;
int v3;
int v4;
int v5;

void sub (void)
{
value += vl;
value += v2;
value += v3;
value += v4;
value += vb5;

}

void main (void)
{
value += vl;
value += v2;
value += v3;
value += v4;
value += vb5;

sub () ;
}
With -optimize=same_code Without -optimize=same_code
Code size (bytes) 188 253
Number of cycles (cycles) 80 68

Note: The code size includes the size of the startup routine.

R20AN0643EJ0101 Rev.1.01 Page 55 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.3.3 -optimize=short_format
Instructions having a displacement or immediate value are replaced with smaller instructions, reducing the
code size by the amounts taken up by displacements and immediate values.

C source code

volatile int value = 0;

int vl;
int v2;
int v3;
int v4;
int v5;

void main (void)
{
value += vl;
value += v2;
value += v3;
value += v4;
value += v5;

With -optimize=short_format Without -optimize=short_format
Code size (bytes) 162 179
Note: The code size includes the size of the startup routine.

R20AN0643EJ0101 Rev.1.01 Page 56 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

2.3.4 -optimize=branch
The sizes of branch instructions are optimized with the use of program allocation information.

C source code

extern void sub (void);

void main (void)

{

With -optimize=branch Without -optimize=branch
Code size (bytes) 135 143
Note: The code size includes the size of the startup routine.

R20ANO0643EJ0101 Rev.1.01 Page 57 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

3. Language Extensions
This chapter describes the effects on code size, ROM data size, and speed of execution of #pragma

directives among the language extensions.

3.1 #pragma Directives
\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Directive Code ROM Size Required | Remarks
Size Number
of Cycles
Changing interrupt
specifications used with this
#pragma interrupt A — A directive (fint, etc.) can improve
the performance of interrupt
functions.
R20AN0643EJ0101 Rev.1.01 Page 58 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

3.1.1 #pragma interrupt

This directive is used to declare that a function is an interrupt function. Changing interrupt specifications can
improve the performance in terms of the speed of execution and code size of interrupt functions.

Interrupt Specifications Format | Specifications
. , Specifies the function as being for use as the handler for
Fast interrupt fint)
a fast interrupt.
Limits the number of registers used in the interrupt
function to R1 to R5, R14, and R15. The code for saving
Limitation on registers in and restoring the values of these registers is not
; . save N :
interrupt function generated, so they cannot be used in interrupt functions
with this parameter specified. It may thus lower code
efficiency in terms of speed.
Nested interrupt enable enable _Sets the | flag_ln the PSW to 1 at thg beg|r_1n|ng of the
interrupt function to enable the nesting of interrupts.
. Generates instructions for saving and restoring the
Accumulator saving acc

accumulators.

C source code

{

}

long count;
long 11,

count

11 * 12;

#pragma interrupt int func
void int func(void)

The following table shows the result of comparison when no particular interrupt specifications are made and
when fint, save, enable, or acc is specified for the C source code above.

None fint save enable acc
Code size (bytes) 31 31 31 33 57
Number of cycles (cycles) | 18 15 18 19 32

The registers specified by -fint_register can be used in fast interrupt (fint) functions without having to be
saved and restored. Since this reduces the number of registers available to other functions, the performance
of interrupt functions is improved but the performance of the program as a whole is in general lowered.

R20AN0643EJ0101

Jan.16.24

Rev.1.01

RENESAS

Page 59 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

C source code

volatile int count;

#pragma interrupt int func(vect=10, fint)
void int func(void)

{

count++;
}
Without -fint_register -fint_register=2
Code size (bytes) 18 14
Number of cycles (cycles) 12 8

R20ANO0643EJ0101 Rev.1.01

Page 60 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4. Coding Techniques

This chapter describes the effects on code size, ROM data size, and speed of execution through particular

methods for the coding of user programs.

\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Item

Code Size | ROM Size

Required
Number
of Cycles

Remarks

Function Interfaces

Branches

Inline Expansion

D | |2 x| 2> |<|=]] [=

N P P P R pE P s

7 —! BRIEBREOH»Y ¥ A, Using
if-else Statements Instead of switch
Statements

>

Using Temporary Variables to
Consolidate Access to External Variables

77— BRIEPEODY A,

Replacing a Sequence of Complicated if
Statement with a Simple Statement
Having the Same Logical Meaning

Unifying Common case Processing in
switch Statements

Replacing Division by Powers of Two with
Shift Operations

Changing Bit Fields with Two or More Bits
to the char Type

2| <2 |2 <2 |2 2 <] <

Assigning Small Absolute Values when
Referring to Constants

< | 2 2 | 2 |2 <2 =] =<

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 61 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.1 Using Structures

Declaring related data in structures may improve the speed of execution.

In cases of repeated reference to related data in the same function, using a structure makes it easy for the
compiler to generate code using relative access and this can be expected to improve efficiency in terms of
code size and speed of execution. Passing the data as an argument also improves code efficiency. Since
relative access places a limit on the range of access, it is effective when the data which are frequently

accessed are placed at the top of the structure.

Declaring data in structures facilitates tuning through the adjustment of data expressions.

Without a Structure

With a Structure

C source code

int a, b, c;

void func(void)

{

a = 1;
b = 2;
c = 3;

C source code

struct s
{
int a;
int b;
int c;
}osl;

void func (void)

{

struct s *p = &sl;
p->a = 1;
p->b = 2;
p->c = 3;

}

Assembly-language expanded code

__func:
.STACK func=4
MOV.L # a, R14

MOV.L #00000001H, [R14]
MOV.L # b, R14

MOV.L #00000002H, [R14]
MOV.L # c, R14

MOV.L #00000003H, [R14]
RTS

Assembly-language expanded code

_func:
.STACK func=4
MOV.L # sl, Rl
MOV.L #00000001H, [R1]

MOV.L #00000002H, O4H[R1]
MOV.L #00000003H, O8H[RL1]

RTS

Code size: 28 bytes
Number of cycles: 9

Code size: 16 bytes
Number of cycles: 7

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 62 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.2 Variables and the const Qualifier

Declare variables for which the values will not change with the const qualifier.

When program code includes the initialization of a global variable with a declaration, the initial value is
allocated to ROM and the global variable to RAM. The global variable is initialized when the initial value is
transferred from ROM to RAM when the program is started. When a variable with an initial value has been
const-qualified, the variable will not be rewritten and the compiler will not reserve RAM for it. This reduces
the amount of RAM in use and eliminates the need for the transfer from ROM to RAM.

Not const-Qualified

Const-Qualified

C source code

char al[] =
{1, 2, 3, 4, 5};

C source code

const char al]
{1, 2, 3, 4, 5};

ROM size: 5 bytes
RAM size: 5 bytes

ROM size: 5 bytes
RAM size: 0 bytes

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 63 of 89

RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.3 Local Variables and Global Variables

Declaring variables for local use, such as temporary variables and loop counters, as local variables by
declaration within the functions where they are used will improve the speed of execution.

If a variable can be used as a local variable, declare it in that way, rather than as a global variable. Since the
value of a global variable may be changed by a call of a function or operations that affect a pointer,
optimization will be less efficient if a variable that can be declared as local is declared as global.

Before Using a Local Variable

After Using a Local Variable

C source code

int tmp;

void func(int* a, int* Db)
{

tmp = *a;

*a = *b;

*b tmp;
}

C source code

void func (int* a, int* b)

{

int tmp;
tmp = *a;
*a — *b;
*b = tmp;

Assembly-language expanded code

_func:
.STACK func=4
MOV.L #_ tmp, R14
MOV.L [R1], [R14]
MOV.L [R2], [R1]
MOV.IL [R14], [R2]
RTS

Assembly-language expanded code

_func:
.STACK func=4
MOV.L [R1], R14
MOV.L [R2], [R1]
MOV.L R14, [R2]
RTS

Code size: 13 bytes
Number of cycles: 13

Code size: 7 bytes
Number of cycles: 8

R20ANO0643EJ0101 Rev.1.01

Jan.16.24

RENESAS

Page 64 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.4 Offsets for Structure Members
Declaring members which are more often used higher in the code may improve code size.

Before Improvement After Improvement
C source code C source code
struct str { struct str {
long 11[8]; char cl;
char cl; long 111[8];
}i i
struct str strl; struct str strl;
char x; char x;
void func (void) void func (void)
{ {
x = strl.cl; X = strl.cl;
} }
Assembly-language expanded code Assembly-language expanded code
func: func:
~ _STACK func=4 ~ .STACK func=4
MOV.L # x, R14 MOV.L # x, R14
MOV.L # strl, R15S MOV.L # strl, R15
MOV.B 20H[R15], [R14] MOV.B [R15], [R14]
RTS RTS
Code size: 16 bytes Code size: 15 bytes
Number of cycles: 8 Number of cycles: 8

When defining a structure, declare the members in consideration of the boundary alignment value. The
boundary alignment value of a structure is the largest boundary alignment value among the structure
members. The size of a structure thus becomes a multiple of this boundary alignment value. For this reason,
when the end of a structure does not match the boundary alignment value of the structure itself, the size of
the structure also includes an unused area that was created to guarantee the next boundary alignment.

R20AN0643EJ0101 Rev.1.01 Page 65 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Before Alignment

After Alignment

C source code

/* The boundary alignment value is

4 since the member with the
maximum alignment value is of the
long type. */
struct str {

char cl1; /* 1 byte plus 3 bytes
for boundary alignment */

long 11; /* 4 bytes */

char c2; /* 1 byte */

char c3; /* 1 byte plus 1 byte
for boundary alignment */
} strl;

C source code

/* The boundary alignment value is
4 since the member with the

maximum alignment value is of the

long type. */

struct str {

char cl; /* 1 byte */
char c2; /* 1 byte */
char ¢3; /* 1 byte */
char c4; /* 1 byte */
long 11; /* 4 bytes */

} strl;

Assembly-language expanded code

.SECTION B,DATA,ALIGN=4
_strl:
.blkl 3

Assembly-language expanded code

.SECTION B, DATA,ALIGN=4
_strl:
.blkl 2

R20ANO0643EJ0101 Rev.1.01

Page 66 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.5 Allocating Bit Fields

Allocate bit fields to which values are to be consecutively set to the same structure.

To set members of bit fields in different structures, access to each of the structures is required for access to
the members. Such access can be kept down to a single access to the structure itself by collectively

allocating related bit fields to the same structure.

The following shows an example in which the size is improved by allocating related bit fields to the same

structure.

Before Allocating Bit Fields to the Same
Structure

After Allocating Bit Fields to the Same
Structure

C source code

struct str

{
int flagl:1;
} bl, b2, b3;

void func(void)

{

bl.flagl = 1;
b2.flagl = 1;
b3.flagl = 1;

}

C source code

struct str

{
int flagl:1;
int flag2:1;
int flag3:1;

}oal;

void func (void)
{
al.flagl = 1;
al.flag2
al.flag3 = 1;
}

Il
i
~.

Assembly-language expanded code

_func:
.STACK func=4
MOV.L # bl, R14
BSET #00H, [R14].B
MOV.L # b2, R14
BSET #00H, [R14].B
MOV.L # b3, R14
BSET #00H, [R14].B
RTS

Assembly-language expanded code

_func:
.STACK func=4
MOV.L # al, R14
BSET #00H, [R14].B
BSET #01H, [R14].B
BSET #02H, [R14].B
RTS

Code size: 25 bytes
Number of cycles: 13

Code size: 13 bytes
Number of cycles: 13

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 67 of 89

RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.6 Loop Control Variable

Declaring a loop control variable as a signed 4-byte integer type (signed int or signed long) raises the
likelihood of optimization in the form of loop unrolling, which reduces the code size and increases the speed
of execution.

Declaration without signed long

Declaration with signed long

C source code

unsigned long n = 50;
signed short array[100];

void func (void)
{
signed short i;
for (i = 0; 1 < n; i++) {
array[i+5] = 0;
}

C source code

unsigned long n = 50;
signed short array[100];

void func (void)
{
signed long i;
for (i = 0; 1 < n; i++) {
array[i+5] = 0;
}

Assembly-language expanded code

__func:
.STACK func=4
MOV.L #00000000H, R15
MOV.L # n, R14
MOV.L [R14], R14
MOV.L # array, RS
Ll1l: ; bb7
MOV.W R15, R15
CMP R14, R15
BGEU L13
L12: ; bb
SHLL #01H, R15, R1
ADD R5, R1
ADD #01H, R15
MOV.W #0000H, OAH[R1]
BRA L11
L13: ; return
RTS

Assembly-lanquage expanded code

__func:
.STACK func=4
MOV.L #00000000H, R5
MOV.L # n, R15
MOV.L [R15], R15
MOV.L # array, R14
ADD #0AH, R14
ADD #01H, R15

L1l: ; bbo6
SUB #01H, R15
BEQ L13

L12: ; bb
MOV.W R5, [R14+]
BRA L11

L13: ; return
RTS

Code size: 35 bytes
Number of cycles: 511

Code size: 29 bytes
Number of cycles: 312

R20AN0643EJ0101 Rev.1.01 Page 68 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.7 Function Interfaces

Efficient use of the arguments of functions reduces the amount of RAM required and improves the speed of

execution.

The number of arguments should be carefully selected so that all arguments can be allocated to registers (up
to four). If there are too many arguments, turn them into a structure and pass the pointer to it. If the structure

itself is passed instead of a pointer to the structure, the variables may not be allocated to registers. Allocating
arguments to registers simplifies calling and processing at the entry and exit points of functions. This also

saves space in the stack area.

The user’'s manual for the compiler describes the specifications of function interfaces.

No Arguments in a Structure

Arguments in a Structure

C source code

void func(char a, char b, char c,
char d, char e, char f,
char g, char h) ({}

void call func(void)
{

func(1,2,3,4,5,6,7,8);
}

C source code

struct str

{
char a;
char b;
char c;
char d;
char e;
char f;
char g;
char h;

}i
void func(struct str* str arg) {}

void call func(void)

{
struct str arg =
{1,2,3,4,5,6,7,8};
func (&arg) ;

}

Assembly-language expanded code

_call func:
.STACK call func=8
SUB #04H, RO
MOV.L #00000004H, R4

MOV.B #05H, [RO]
MOV.L #00000003H, R3
MOV.L #00000002H, R2
MOV.B #08H, 03H[RO]
MOV.L #00000001H, R1
MOV.B #07H, 02H[RO]
MOV.B #06H, 01H[RO]
BSR func

ADD #04H, RO

RTS

Assembly-language expanded code

_call func:
.STACK call func=12
SUB #08H, RO
MOV.L RO, R1
MOV.L #04030201H, [RO]
MOV.L #08070605H, 04H[RO]
BSR func
RTSD #08H

Code size: 28 bytes
Number of cycles: 22

Code size: 22 bytes
Number of cycles: 15

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 69 of 89

RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.8 Reducing the Number of Loops

Unrolling loops will considerably improve the speed of execution.

Unrolling loops is especially effective for inner loops. Since unrolling loops increases the sizes of programs,
loops should be unrolled when fast execution is to take priority over the code size.

Before Unrolling

After Unrolling

C source code

int a[100];

void func(void)
{
int i;
for (i =

i < 100; i++)

0;
0;

{

C source code

int a[100];

void func (void)
{
int 1i;
for (i =

0; 1 < 100;
ali]l = 0;

i+=2)

0;

{

Assembly-language expanded code

_func:
.STACK func=4
MOV.L #00000064H, R15
MOV.L # a, R14
MOV.L #00000000H, R5
L11l: ; Dbb
SUB #01H, R15
MOV.L R5, [R14+]
BNE L11
L12: ; return
RTS

Assembly-language expanded code

_func:
.STACK func=4
MOV.L #00000032H, R14
MOV.L # a, Rl
L11l: ; Dbb
MOV.L #00000000H,
MOV.L #00000000H,
ADD #08H, R1
SUB #01H, R14
BNE L11
L12: ; return
RTS

[R1]
04H[R1]

Code size: 19 bytes
Number of cycles: 504

Code size: 22 bytes
Number of cycles: 402

Specifying the -loop option selects optimization in the form of unrolling loops. In the source code before
improvement in the example above, when the -loop option is specified for compilation, assembly-language
expanded code which is the same as that in the source code after the improvement is output. When the
entire processing of the loop is unrolled, the loop’s conditional expression is also deleted. For example, when
the number of iterations is 8 and -loop=8 is specified, the conditional expression is deleted.

R20ANO0643EJ0101 Rev.1.01

Jan.16.24

Page 70 of 89

RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.9 Using Tables

Using tables instead of branching for switch statements will improve the speed of execution.

If the processing for each case label of a switch statement is almost the same, consider the use of a table.

In the example below, the character constant to be assigned to variable ch changes with the value of

variable i.

switch Statement

Equivalent Table-Based Code

C source code

char func(int i)
{
char ch;
switch (i) {
case 0:
ch
case
ch
case
ch 'b'; break;
default:
ch = 0; break;
}

return

'a'; break;

'x'"; break;

oo I

(ch);

C source code

const char chbuf[] =
{lal, le, lbl};

char func (int i)
{
if ((unsigned int)i < 3)
return (chbuf[i]);
}

return (0);

{

Assembly-language expanded code

__func:
.STACK func=4
CMP #00H, R1

BEQ L14

L1l: ; entry
CMP #01H, R1
BEQ L15

L12: ; entry
CMP #02H, R1
BEQ L16

L13: ; switch clause bb5
MOV.L #00000000H, R1
RTS

L14: ; switch break bb
MOV.L #00000061H, R1
RTS

L15: ; switch clause bb3
MOV.L #00000078H, R1
RTS

Ll6: ; switch clause bb4

MOV.L #00000062H, R1
RTS

Assembly-language expanded code

__func:
.STACK func=4
CMP #02H, R1
BGTU L12
L11: ; if then bb
MOV.L # chbuf, R14

MOVU.B [R14,R1], R1
RTS

L12: ; bb8
MOV.L #00000000H, R1
RTS

Code size: 27 bytes
Number of cycles: 9

Code size: 17 bytes
Number of cycles: 7

R20ANO0643EJ0101 Rev.1.01

Jan.16.24

RENESAS

Page 71 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.10 Branches

Changing the positions of cases for branching can improve the speed of execution. When comparison is
performed in order beginning from the top, such as in an else if statement, the speed of execution for the
cases at the end becomes slow if there are many preceding conditional branches. Cases to which branching

is frequent should be placed near the beginning of the sequence.

Before Changing the Position of a Case

After Changing the Position of a Case

C source code

int func(int a)
{
if
a
}
else if
a = 4;
}
else if
a = 8;

== 1) {
2;

(a

(a ==

(a ==

return (a);

}

C source code

int func(int a)
{
if
a
}

else if
a = 4;

(a == 3) {
8;

(a

return (a);

}

Assembly-language expanded code

__func:
.STACK func=4
CMP #01H, R1
STZ #02H, R1
BEQ L12

L1l: ; if else bb
CMP #02H, R1
STZ #04H, R1

L12: ; if else bb
BEQ L14
L13: ; if else bbS

CMP #03H, R1
SCEQ.L R1
SHLL #03H, R1

L14: ; if break bbl7
RTS

Assembly-language expanded code

_func:
.STACK func=4
CMP #03H, R1
STz #08H, R1
BEQ L12

L1l: ; if else bb
CMP #02H, R1
STz #04H, R1

L12: ; if else bb
BEQ L14
L13: ; if else bb9

CMP #01H, R1
SCEQ.L R1
SHLL #01H, R1

L14: ; if break bbl7
RTS

Number of cycles: 12

Number of cycles: 9

(for a=3) (for a=3)
R20AN0643EJ0101 Rev.1.01 Page 72 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.11 Inline Expansion

The speed of execution can be improved by applying inline expansion to functions that are frequently called.
The inline expansion of functions is specified by #pragma inline. However, inline expansion generally

increases the sizes of programs.

When other source files do not refer to an inline-expanded function, change the function to a static function.
Some code in the function will be removed and the code size may be reduced.

Before Inline Expansion

After Inline Expansion

C source code

int x[10], y[10];

int 1)
{
int temp;
temp = ali]l;
alil = b[i];
b[i] = temp;

}

void func (void)
{
int i;
for (i = 0; i < 10;
sub(x, vy, 1);
}
}

static void sub (int* a,

i++)

int* b,

{

C source code

int x[10], y[10];

#pragma inline (sub)
static void sub (int* a, int* Db,
int 1)
{
int temp;
temp = ali]l;
alil = blil;
b[i] temp;
}

void func (void)
{
int i;
for (i = 0; 1 < 10; 1i++) {
sub (x, y, 1);
}
}

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 73 of 89

RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Assembly-language expanded code

___Ssub:
.STACK__ Ssub=4
MOV.L [R3,R2], R1l4
MOV.L [R3,R1], R15
MOV.L R14, [R3,R1]
MOV.L R15, [R3,R2]
RTS

_func:

.STACK func=16
PUSHM R6-R8
MOV.L # vy, R7
MOV.L # x, RS
MOV.L #00000000H, R6
L12: ; bb
MOV.L R8, R1
MOV.L R7, R2
MOV.L R6, R3
BSR _ $Ssub
ADD #01H, R6
CMP #0AH, R6
BNE L12
L13: ; return
RTSD #0CH, R6-R8

Assembly-language expanded code

_func:
.STACK func=4
MOV.L #0000000AH, R5
MOV.L # y, R14
MOV.L # x, R15

L1l: ; bb
MOV.L [R14], R4
SUB #01H, R5
MOV.L [R15], R3
MOV.L R4, [R15+]
MOV.L R3, [R14+]
BNE L11

L12: ; return
RTS

Code size: 47 bytes
Number of cycles: 189

Code size: 29 bytes
Number of cycles: 84

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 74 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.12 Using if-else Statements Instead of switch Statements

Branching with the use of switch statements tends to increase the code size. Replacing such statements
with if-else statements may thus reduce the code size. To improve the speed of execution, cases to which
branching will be frequent should be placed near the beginning of the sequence (as stated in section 4.10).

switch Statement

if-else Statement

C source code

int func(int x)
{
switch (x) {
case 0O:
subO0 () ;
break;
case 1:
subl () ;
break;
case 2:
sub2 () ;
break;
case 3:
sub3 (),
break;
}

return (0);

C source code

int func(int x)

{

if (x == 0) {
subO0 () ;

}

else 1if (x == 1) {
subl () ;

}

else 1if (x == 2) {
sub2 () ;

}

else 1if (x == 3) {
sub3();

}

return (0);

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 75 of 89

RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Assembly-language expanded code

_func:
.STACK func=4
CMP #00H, R1
BEQ L19
L15: ; entry
CMP #01H, R1
BEQ L20
Ll16: ; entry
CMP #02H, R1
BEQ L21
L17: ; entry
CMP #03H, R1
BEQ L22
L18: ; switch break bb
MOV.L #00000000H, R1
RTS

BSR _sub0
BRA L18

BSR subl
BRA L18

BSR sub2
BRA L18

BSR sub3
BRA L18

L19: ; switch clause bb

L20: ; switch clause bb2

L21: ; switch clause bb3

L22: ; switch clause bb4

Assembly-language expanded code

_func:
.STACK func=4
CMP #00H, R1
BNE L16

L15: ; if then bb
BSR sub0
BRA L22

Ll6: ; if else bb
CMP #01H, R1
BNE L18

L17: ; if then bb8
BSR subl
BRA L22

L18: ; if else bb9
CMP #02H, R1
BNE L20

L19: ; 1f then bbl4
BSR sub2
BRA L22

L20: ; if else bblb
CMP #03H, R1
BNE L22

L21: ; if then bb20
BSR sub3

L22: ; if break bb23
MOV.L #00000000H, R1
RTS

Code size: 39 bytes
Number of cycles: 25

Code size: 32 bytes
Number of cycles: 23

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 76 of 89
RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.13 Using Temporary Variables to Consolidate Access to External Variables

Compared with access to external variables, code for access to temporary variables is more likely to be
handled as transfers to registers. Using more temporary variables and reducing the amount of access to

external variables may reduce the code size.

Access to an External Variable

Using a Temporary Variable

C source code

extern int s;

int func(int x)
{
switch (x) {
case 0O:
s = 0;
break;
case 1000:
s = 0x5555;
break;
case 2000:
s = 0xAAAA;
break;
case 3000:
s = OxXFFFF;
}

return (0);

C source code

extern int s;

{

int tmp;
if (x == 0)
tmp = 0;

}

}

}

}

else {

}

S = tmp;
label:

return (0);

}

int func(int x)

else 1f (x ==
tmp = 0x5555;

else 1f (x == 2000)
tmp = OxAAAA;

else 1f (x ==
tmp = OxFFFF;

goto label;

R20ANO0643EJ0101 Rev.1.01

Jan.16.24

RENESAS

Page 77 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Assembly-language expanded code

_func:
.STACK func=4
CMP #00H, RI1
MOV.L #_s, R14
BEQ L15

L11: ; entry
CMP #03E8H, R1
BEQ L16

L12: ; entry
CMP #07DOH, R1
BEQ L17

L13: ; entry
CMP #0BB8H, Rl
BEQ L18

L14: ; switch break bb
MOV.L #00000000H, R1
RTS

L15: ; switch clause bb
MOV.L #00000000H, [R14]
BRA L14

Ll16: ; switch clause bb2
MOV.L #00005555H, [R14]
BRA L14

L17: ; switch clause bb3
MOV.L #0000AAAAH, [R14]
BRA L14

L18: ; switch clause bb4
MOV.L #000OFFFFH, [R14]
BRA L14

Assembly-language expanded code

_func:
.STACK func=4
CMP #00H, R1
MOV.L #00000000H, R14
BEQ L15

L1l1l: ; 1f else bb
CMP #03E8H, R1
MOV.L #00005555H, R14
BEQ L15

L12: ; if else bbll
CMP #07D0H, R1
MOV.L #0000AAAAH, R14
BEQ L15

L13: ; if else bbl7
CMP #0BB8H, R1
MOV.L #00OOFFFFH, R14
BEQ L15

L14: ; label
MOV.L #00000000H, R1
RTS

L15: ; if break bb26
MOV.L # s, R15
MOV.L R14, [R15]
BRA L14

Code size: 56 bytes

Code size: 50 bytes

R20AN0643EJ0101 Rev.1.01
Jan.16.24

RENESAS

Page 78 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.14 Moving ldentical Expressions in More than One Conditional Branch Destination

before the Conditional Branch

When there are identical expressions in more than one conditional branch destination, move and unify them

into one section before the conditional branch.

Identical Expressions Following a Branch

Expression before the Branch

C source code
int s;

int func(int a, int b, int c¢)
{
return (a + b + ¢);

}

int call func(int x)
{
if (x >= 0) {
if (x > func (0, 1, 2)) {
S++;
}
}
else {
if (x < -func (0, 1, 2)) {

C source code

int s;

int func(int a, int b, int c¢)
{
return (a + b + ¢);

}

int call func(int x)
{
int tmp = func(0, 1, 2);
if (x >= 0) {
if (x > tmp) {
S++;
}
}
else {
if (x < —-tmp) {
S——;
}
}

return 0;

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 79 of 89

RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Assembly-language expanded code

_call func:
.STACK call func=12
PUSHM R6-R7
ADD #00H, R1l, R6
BN L15

L12: ; if then bb
MOV.L #00000002H, R3
MOV.L #00000001H, R2
MOV.L #00000000H, R1
BSR func
CMP R6, R1
MOV.L # s, R7
BGE Ll6

L13: ; if then bbS
MOV.L [R7], R14
ADD #01H, R14

L14: ; if then bbS
MOV.L R14, [R7]

L15: ; 1f break bb22
MOV.L #00000000H, R1
RTSD #08H, R6-R7

Ll6: ; if else bb
MOV.L #00000002H, R3
MOV.L #00000001H, R2
MOV.L #00000000H, R1
BSR func
NEG R1
CMP R1, R6
BGE L15

L17: ; if then bbls
MOV.L [R7], R14
SUB #01H, R14
BRA L14

Assembly-language expanded code

_call func:
.STACK call func=8
PUSH.L R6
MOV.L R1, R6
MOV.L #00000002H, R3
MOV.L #00000001H, R2
MOV.L #00000000H, R1
BSR func
CMP #00H, R6
BN L15

L12: ; if then bb
CMP R6, R1
MOV.L # s, R14
BGE L16

L13: ; 1f then bbl2
MOV.L [R14], R15
ADD #01H, R15

L14: ; 1f then bbl2
MOV.L R15, [R14]

L15: ; if break bb25
MOV.L #00000000H, R1
RTSD #04H, R6-R6

Ll6: ; if else bb
NEG R1
CMP R1, R6
BGE L15

L17: ; 1f then bb2l
MOV.L [R14], R15
SUB #01H, R15
BRA L14

Code size: 58 bytes
Number of cycles: 43

Code size: 50 bytes
Number of cycles: 31

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 80 of 89
RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.15 Replacing a Sequence of Complicated if Statement with a Simple Statement

Having the Same Logical Meaning

When a sequence of if statements and conditional expressions is complicated, replace them with a simple

expression which has the same meaning.

Complicated Sequence

Single if Statement

C source code

int x;

int func(int s, int t)

{

}

C source code

int x;

int func(int s, int t)

Assembly-language expanded code

_func:
.STACK func=4
AND #01H, R2
BTST #00H, R1
MOV.L # x, R14
BNE L12
L11l: ; 1f then bb
CMP #00H, R2
BNE L13
BRA L14
L12: ; 1f else bb
CMP #00H, R2
BNE L14
L13: ; if then bb28
MOV.L #00000001H,
L14: ; if break bb30
MOV.L #00000000H, R1
RTS

[R14]

Assembly-lanquage expanded code

_func:
.STACK func=4
XOR R1, R2
BTST #00H, R2
BNE L12

L11: ; if then bb
MOV.L # x, R14
MOV.L #00000001H,

L12: ; 1f break bb
MOV.L #00000000H, R1
RTS

[R14]

Code size: 24 bytes
Number of cycles: 12

Code size: 18 bytes
Number of cycles: 8

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 81 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.16 Converting short- or char-Type Variables into the int Type

In accord with the ANSI-C specification, the CC-RX compiler converts short- or char-type operations into the
int type before generating code for the operations. Type conversion is also produced when an int-type value
is substituted for a short- or char-type variable. Defining variables as the int type in the first place can

reduce additional type conversion.

Note: When the type of a variable is converted into the int type, the range of variables or values obtained by
the operation will be changed. If you change the type, take care that this does not affect the operation

of the program.

char-Type Variables int-Type Variables
C source code C source code
char func(char a, char b, char c¢) int func(int a, int b, int c)
{ {
char t = a + b; int t = a + b;
return (t >> c); return (t >> c);
} }
Assembly-language expanded code Assembly-language expanded code
__func: _func:
.STACK func=4 .STACK func=4
ADD R1, R2 ADD R1, R2
MOVU.B R2, R14 MOV.L R2, R1
SHLR R3, R14 SHAR R3, R1
MOVU.B R14, R1 RTS
RTS
Code size: 10 bytes Code size: 8 bytes
Number of cycles: 7 Number of cycles: 6
R20AN0643EJ0101 Rev.1.01 Page 82 of 89
Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.17 Unifying Common case Processing in switch Statements

When the branch destinations of multiple case labels have the same processing, move the case labels and
unify the processing.

Same Processing at Multiple Destinations Unified Processing
C source code C source code
int x; int x;
void func (void) void func (void)
{ {
switch (x) { switch (x) {
case 0: case 0:
dummyl () ; case 1:
break; case 2:
case 1: dummyl () ;
dummyl () ; break;
break; case 3:
case 2: case 4:
dummyl () ; dummy?2 () ;
break; break;
case 3: default:
dummy?2 () ; break;
break; }
case 4: }
dummy?2 () ;
break;
default:
break;
}
}
R20AN0643EJ0101 Rev.1.01 Page 83 of 89

Jan.16.24 RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Assembly-language expanded code

_func:

BEQ L15

BEQ L15

BEQ L20

BEQ L18

BEQ L21

RTS

.STACK func=4
MOV.L # x, R14
MOV.L [R14], R14
CMP #00H, R14

L13: ; entry
CMP #01H, R14

L14: ; entry
CMP #02H, R14
L15: ; entry

Ll16: ; entry
CMP #03H, R14

L17: ; entry
CMP #04H, R14
L18: ; entry

L19: ; return

L20: ; switch clause bb2
BRA dummyl
L21: ; switch clause bb4
BRA dummy?2

Assembly-language expanded code

_func:
.STACK func=4
MOV.L # x, R14
MOV.L [R14], R14
CMP #03H, R14
BLTU L15
L13: ; entry
SUB #03H, R14
CMP #02H, R14
BLTU Ll6
L14: ; return
RTS
L15: ; switch clause bb
BRA dummyl
Ll6: ; switch clause bbl
BRA dummy2

Code size: 28 bytes
Number of cycles: 20

Code size: 23 bytes
Number of cycles: 15

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 84 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.18 Replacing for Loops with do-while Loops

Replacing a for statement with a do-while statement if it is clear that the loop is executed at least once may
reduce the code size. Replacing another kind of conditional expression with an equality or inequality operator

may also reduce the code size.

for Loop

do-while Loop

C source code

int array[10][10];

void func (int nsize, int msize)

{

int i;

int *p;

int s;

p = &array[0][0];

S = nsize * msize;

for (1 = 0; 1 < s; 1i++) {

*p++ = 0;

}

C source code

int array([10][10];

void func (int nsize, int msize)

{
int 1i;
int *p;
int s;
p = &array[0][0];
S = nsize * msize;
i=0;
do {
*p++ = 0;
i++;
} while (i != s);

Assembly-language expanded code

_func:
.STACK func=4
MUL R1, R2

MOV.L # array, R15
MOV.L #00000000H, R14
MOV.L #00000000H, R5
L11l: ; Dbbl3
CMP R2, R14
BGE L13
L12: ; Dbb
MOV.L R5, [R15+]
ADD #01H, R14
BRA L11
L13: ; return
RTS

Assembly-language expanded code

_func:
.STACK func=4
MUL R1, R2

MOV.L # array, R15
MOV.L #00000000H, R14
MOV.L #00000000H, R5
L11l: ; Dbb
ADD #01H, R14
CMP R2, R14
MOV.L R5, [R15+]
BLT L11
L12: ; return
RTS

Code size: 24 bytes
Number of cycles: 458

Code size: 22 bytes
Number of cycles: 389

R20AN0643EJ0101
Jan.16.24

Rev.1.01

RENESAS

Page 85 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.19 Replacing Division by Powers of Two with Shift Operations

If it is clear that the divisor in division is a power of two and the dividend is a positive value, replace the

division with a shift operation.

Division by a Power of Two

Shift Operation

C source code
int s;

void func(void)
{

s =s / 2;
}

C source code

int s;

void func (void)

{

s = s >> 1;

}

Assembly-language expanded code

__func:
.STACK func=4
MOV.L # s, R14
MOV.L [R14], R15
DIV #02H, R15
MOV.L R15, [R14]
RTS

Assembly-language expanded code

_func:
.STACK func=4
MOV.L # s, R14
MOV.L [R14], RI15
SHAR #01H, R15
MOV.L R15, [R14]
RTS

Code size: 15 bytes
Number of cycles: 10

Code size: 13 bytes
Number of cycles: 8

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 86 of 89
RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.20 Changing Bit Fields with Two or More Bits to the char Type
When a bit field has two or more bits, change the bit field to the char type. Note, however, that this will

increase the amount of ROM in use.

Bit Fields

char

C source code

struct {
unsigned char b0:1;
unsigned char bl:2;
} dw;

unsigned char dummy;

int func(void)
{
if (dw.bl) {
dummy++;
}

return (0);

}

C source code

struct {
unsigned char b0:1;
unsigned char bl;

} db;

unsigned char dummy;

int func(void)
{
if (db.bl) {
dummy++;
}
return (0);

}

Assembly-language expanded code

__func:
.STACK func=4
MOV.L #00000006H, R15
MOV.L # dw, R14
TST [R14].UB, R15
MOV.L #00000000H, R1

BNE L12

L11l: ; if break bb
RTS

L12: ; if then bb

MOV.L # dummy, R14
MOVU.B [R14], RI15
ADD #01H, R15
MOV.B R15, [R14]
RTS

Assembly-language expanded code

_func:
.STACK func=4
MOV.L # db, R1
MOVU.B 01H[R1], R1
CMP #00H, R1
MOV.L #00000000H, R1
BNE L12

L11l: ; if break bb
RTS

L12: ; if then bb
MOV.L # dummy, R14
MOVU.B [R14], R15
ADD #01H, R15
MOV.B R15, [R14]
RTS

Code size: 29 bytes
ROM size: 1 byte
Number of cycles: 10

Code size: 28 bytes
ROM size: 2 bytes
Number of cycles: 9

R20ANO0643EJ0101 Rev.1.01

Jan.16.24

RENESAS

Page 87 of 89

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

4.21 Assigning Small Absolute Values when Referring to Constants

When referring to constants, assigning a small absolute value may reduce the code size. When constant
values are used to assign IDs, use numbers with small absolute values.

Larger Value

Smaller Value

C source code

#define ID 1 (1000)

int id;
void func(void)

{

C source code

#define ID 1 (1)

int 1id;
void func (void)

{

Assembly-language expanded code

__func:
.STACK func=4
MOV.L # id, R14
MOV.L #000003E8H, [R14]
RTS

Assembly-language expanded code

_func:
.STACK func=4
MOV.L # id, R14
MOV.L #00000001H, [R14]
RTS

Code size: 11 bytes

Code size: 10 bytes

R20AN0643EJ0101 Rev.1.01
Jan.16.24

Page 88 of 89
RENESAS

RX Family C/C++ Compiler Package CC-RX V3 Programming Techniques

Revision History

Description
Rev. Date Page Summary
1.00 Aug. 31, 2021 5 New release
1.01 Jan. 16, 2024 9 Added specific target devices.
R20AN0643EJ0101 Rev.1.01 Page 89 of 89

Jan.16.24 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi (Max.) and Vi1 (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard™: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’'s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	2. Options
	2.1 Compiler Options
	2.1.1 -instalign4/-instalign8
	2.1.2 -nouse_div_inst
	2.1.3 -stack_protector/-stack_protector_all
	2.1.4 -avoid_cross_boundary_prefetch
	2.1.5 -optimize
	2.1.6 -speed/-size
	2.1.7 -loop
	2.1.8 -inline
	2.1.9 -case
	2.1.10 -volatile
	2.1.11 -const_copy
	2.1.12 -const_div/-noconst_div
	2.1.13 -library
	2.1.14 -scope/-noscope
	2.1.15 -schedule/-noschedule
	2.1.16 -map/-smap
	2.1.17 -approxdiv
	2.1.18 -simple_float_conv
	2.1.19 -nofpu
	2.1.20 -dpfpu
	2.1.21 -tfu=intrinsic, mathlib
	2.1.22 -alias
	2.1.23 -branch_chaining/-nobranch_chaining
	2.1.24 -ip_optimize
	2.1.25 -merge_files
	2.1.26 -whole_program
	2.1.27 -dbl_size
	2.1.28 -int_to_short
	2.1.29 -auto_enum
	2.1.30
	2.1.30 -pack
	2.1.31 -fint_register
	2.1.32 -branch
	2.1.33 -base
	2.1.34 -nouse_pid_register
	2.1.35 -save_acc
	2.1.36 -control_flow_integrity

	2.2 Assembler Option
	2.3 Linkage Options
	2.3.1 -optimize=symbol_delete
	2.3.2 -optimize=same_code
	2.3.3 -optimize=short_format
	2.3.4 -optimize=branch

	3. Language Extensions
	3.1 #pragma Directives
	3.1.1 #pragma interrupt

	4. Coding Techniques
	4.1 Using Structures
	4.2 Variables and the const Qualifier
	4.3 Local Variables and Global Variables
	4.4 Offsets for Structure Members
	4.5 Allocating Bit Fields
	4.6 Loop Control Variable
	4.7 Function Interfaces
	4.8 Reducing the Number of Loops
	4.9 Using Tables
	4.10 Branches
	4.11 Inline Expansion
	4.12 Using if-else Statements Instead of switch Statements
	4.13 Using Temporary Variables to Consolidate Access to External Variables
	4.14 Moving Identical Expressions in More than One Conditional Branch Destination before the Conditional Branch
	4.15 Replacing a Sequence of Complicated if Statement with a Simple Statement Having the Same Logical Meaning
	4.16 Converting short- or char-Type Variables into the int Type
	4.17 Unifying Common case Processing in switch Statements
	4.18 Replacing for Loops with do-while Loops
	4.19 Replacing Division by Powers of Two with Shift Operations
	4.20 Changing Bit Fields with Two or More Bits to the char Type
	4.21 Assigning Small Absolute Values when Referring to Constants

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

