

Migration Guide from R8C to RL78: Timer RG

Introduction

This document describes how to migrate from timer RG in R8C/36M Group to timer RG in RL78/G14 (This document describes the 64-pin package product as an example).

Target Device

RL78/G14, R8C/36M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Rev.1.00 Nov. 30, 2018

Contents	
1. Migration Method from R8C Family to RL78 Family	4
2. Differences between RL78/G14 and R8C/36M Group	6
2.1 Differences in Function Overview	6
2.2 Differences in Timer Mode (Input Capture Function)	7
2.3 Differences in Timer Mode (Output Compare Function)	8
2.4 Differences in PWM Mode	10
2.5 Differences in Phase Counting Mode	11
2.6 Assigned I/O Pins	12
2.7 Event Input Signal from the ELC	12
2.8 Register Compatibilities	13
2.9 Changes in Registers	15
2.9.1 Timer RG Mode Register (TRGMR)	15
2.9.2 Timer RG Control Register (TRGCR)	15
2.9.3 Timer Pin Select Register (TIMSR, R8C/36M Group Only)	15
3. Notes	16
3.1 I/O Pin Settings	
3.1.1 R8C/36M Group	
3.1.2 RL78/G14	
3.2 SFR Read/Write Access	
3.2.1 R8C/36M Group	
3.2.2 RL78/G14	
5.2.2 NE70/014	17
4. How to Migrate Timer RG in this Sample Code	18
5. Example of Migration from Timer Mode (Input Capture Function)	19
5.1 Specifications	19
5.2 Operation Check Conditions	20
5.3 Description of Hardware	20
5.3.1 Hardware Configuration Example	20
5.3.2 List of Pin to be Used	21
5.4 Description of Software	21
5.4.1 Operation Outline	21
5.4.2 List of Option Byte Settings	23
5.4.3 List of Functions	23
5.4.4 Function Specifications	24
5.4.5 Flowcharts	25
6. Example of Migration from Timer Mode (Output Compare Function)	40
6.1 Specifications	
6.2 Operation Check Conditions	
	••

6	.3 De	escription of Hardware	41
	6.3.1	Hardware Configuration Example	41
	6.3.2	List of Pin to be Used	42
6	.4 De	escription of Software	42
	6.4.1	Operation Outline	42
	6.4.2	List of Option Byte Settings	44
	6.4.3	List of Functions	44
	6.4.4	Function Specifications	44
	6.4.5	Flowcharts	45
7.	Sam	ple Code	59
8.	Refe	erence Application Notes	59
9.	Refe	erence Documents	59

1. Migration Method from R8C Family to RL78 Family

This application note explains how to achieve each mode (timer mode (input capture function and output compare function), PWM mode and phase counting mode) in timer RG of R8C/36M using RL78/G14. Table 1.1 shows the mode in timer RG of R8C/36M Group, and Table 1.2 shows the mode in timer RG of RL78/G14.

Timer RG is a 16-bit timer and supports three modes: timer mode (input capture function and output compare function), PWM mode and phase counting mode.

In timer mode (input capture function), the value of the TRG register can be transferred to registers TRGGRA and TRGGRB upon detecting the input edge (the rising edge/falling edge/both the rising and falling edges) of the input capture/output compare pins (TRGIOA and TRGIOB).

In timer mode (output compare function), when a compare match of the TRG register and the TRGGRA or TRGGRB register occurs, a signal is output from the TRGIOA or TRGIOB pin at a given level ("L" output/"H" output/toggle output).

In PWM mode, registers TRGGRA and TRGGRB are used as a pair and a PWM waveform is output from the TRGIOA output pin. By setting the compare match with either the TRGGRA or TRGGRB register as the counter clear source for the TRG register, a PWM waveform with duty 0% to 100% can be output from the TRGIOA pin.

In phase counting mode, automatic measurement is available for the counts of the two-phase encoder. A phase difference between external input signals from two pins TRGCLKA and TRGCLKB is detected and the TRG register is incremented/decremented.

Timer RG in R8C/36M and timer RG in RL78/G14 have the same operation mode, so the migration is possible.

About the detailed differences of timer RG, please refer to "2. Differences between RL78/G14 and R8C/36M Group" in this application note.

Additionally, for the sample programs of "timer mode (input capture function)" and "timer mode (output compare function)", please refer to "5. Example of Migration from Timer Mode (Input Capture Function)" ~ "6. Example of Migration from Timer Mode (Output Compare Function)".

For the sample programs of "PWM mode" and "phase counting mode", please refer to the application notes that are introduced in "8. Reference Application Notes".

Table 1.1 Operation Mode of Timer RG in R8C/36M

Timer RG in R8C/36M		
Mode		Function
Timer mode	- Input capture function	Count at the rising edge, falling edge, or both rising/falling edges
	- Output compare function	"L" output / "H" output / toggle output
PWM mode		PWM output available with any duty
Phase counting	g mode	Automatic measurement available for the counts of the two-phase encoder

Table 1.2 Corresponding Mode of Timer RG in RL78/G14

Timer RG in RL78/G14		
Mode		Function
Timer mode	- Input capture function	Count at the rising edge, falling edge, or both rising/falling edges
	- Output compare function	Low output / high output / toggle output
PWM mode		PWM output available with any duty cycle
Phase counting	g mode	Automatic measurement available for the counts of the two-phase encoder

2. Differences between RL78/G14 and R8C/36M Group

2.1 Differences in Function Overview

Table 2.1 lists the differences between timer RG in R8C/36M Group and timer RG in RL78/G14.

Table 2.1 Differences

ltem	R8C/36M Group Timer RG	RL78/G14 Timer RG
Count source	• f1 • f2 • f4 • f8 • f32 • fOCO40M • TRGCLKA • TRGCLKB	• fclк • fclк/2 • fclк/4 • fclк/8 • fclк/32 • TRGCLKA • TRGCLKB
Timer RG pins	P3_0, P3_2, P5_6, P5_7 Note	P00, P01, P50, P51 Note
Event input signal from event link controller (ELC)	No	Yes

Note: For details, refer to Table 2.7.

2.2 Differences in Timer Mode (Input Capture Function)

The operation of timer mode (input capture function) in timer RG in R8C/36M Group corresponds to timer mode (input capture function) in timer RG in RL78/G14.

Table 2.2 lists the differences between timer mode (input capture function) in timer RG of R8C/36M Group and timer mode (input capture function) in timer RG in RL78/G14.

_	R8C/36M Group (Timer mode	RL78/G14 (Timer mode	
Item	(Input Capture Function))	(Input Capture Function))	
Count sources	f1, f2, f4, f8, f32, fOCO40M External signal input to the TRGCLKj pin (valid edge selectable by a program)	fclk, fclk/2, fclk/4, fclk/8, fclk/32 External signal input to the TRGCLKA or TRGCLKB pin (valid edge selectable by a program)	
Count operation	Increment	Increment	
Count period	When bits CCLR1 to CCLR0 in the TRGCR register are set to 00b (free - running operation) 1/fk × 65,536 fk: Frequency of count source	When bits TRGCCLR1 to TRGCCLR0 in the TRGCR register are set to 00B (free - running operation) 1/fk × 65,536 fk: Frequency of count source	
Count start condition	1 (count starts) is written to the TSTART bit in the TRGMR register.	1 (count starts) is written to the TRGSTART bit in the TRGMR register.	
Count stop condition	0 (count stops) is written to the TSTART bit in the TRGMR register.	0 (count stops) is written to the TRGSTART bit in the TRGMR register.	
Interrupt request generation timing • Input capture (valid edge of the TRGIOj input) • TRG register overflow		 Input capture (valid edge of the TRGIOA and TRGIOB pin input) TRG register overflow 	
TRGIOA, TRGIOBProgrammable I/O port or input - capturepin functionsinput (selectable for each individual pin)		I/O port or input - capture input (selectable for each pin)	
TRGCLKA, TRGCLKB pin functions Programmable I/O port or external clock input		I/O port or external clock input	
Read from timer	The count value can be read by reading the TRG register.	The count value can be read by reading the TRG register.	
Write to timer	The TRG register can be written to.	The TRG register can be written to.	
 Input-capture input pin selection Either one or both of pins TRGIOA and TRGIOB Valid edge selection for input-capture input Rising edge, falling edge, or both rising and falling edges Timing for setting the TRG register to 0000h At overflow or input capture Buffer operation Digital filter 		 Input-capture input pin selection Either one or both of pins TRGIOA and TRGIOB Valid edge selection for input-capture input Rising edge, falling edge, or both rising and falling edges Timing for setting the TRG register to 0000H At overflow or input capture Buffer operation Digital filter Input capture operation by event input signal (input capture) from ELC 	

2.3 Differences in Timer Mode (Output Compare Function)

The operation of timer mode (output compare function) in timer RG in R8C/36M Group corresponds to timer mode (output compare function) in timer RG in RL78/G14.

Table 2.3 and Table 2.4 list the differences between timer mode (output compare function) in timer RG in R8C/36M Group and timer mode (output compare function) in timer RG in RL78/G14.

Item	R8C/36M Group (Timer mode	RL78/G14 (Timer mode	
	(Output Compare Function))	(Output Compare Function))	
	f1, f2, f4, f8, f32, fOCO40M	fclk, fclk/2, fclk/4, fclk/8, fclk/32	
Count sources	External signal input to the TRGCLKj pin	External signal input to the TRGCLKj	
	(valid edge selected by a program)	pin (valid edge selected by a program)	
Count operation	Increment	Increment	
Count periods	 When bits CCLR1 to CCLR0 in the TRGCR register are set to 00b (free-running operation) 1/fk × 65,536 fk: Frequency of count source When bits CCLR1 to CCLR0 in the TRGCR register are set to 01b or 10b (TRG is set to 0000h by the compare match with TRGGRj) 1/fk × (n+1) n: Value set in the TRGGRj register 	 When bits TRGCCLR1 and TRGCCLR0 in the TRGCR register are set to 00B (free-running operation) 1/fk × 65,536 fk: Frequency of count source When bits TRGCCLR1 and TRGCCLR0 in the TRGCR register are set to 01B or 10B (TRG is set to 0000H by the compare match with TRGGRj) 1/fk × (n + 1) n: Value set in the TRGGRj register 	
Waveform output timing	Compare match	Compare match (the content of the TRG register matches the content of the TRGGRj register)	
Count start condition	1 (count starts) is written to the TSTART bit in the TRGMR register.	1 (count starts) is written to the TRGSTART bit in the TRGMR register.	
Count stop condition	0 (count stops) is written to the TSTART bit in the TRGMR register.	0 (count stops) is written to the TRGSTART bit in the TRGMR register.	
 Compare match (the content of the TRG register matches the content of the TRGGRj register) TRG register overflows 		 Compare match (the contents of TRG register matches TRGGRj register) TRG register overflows 	
TRGIOA, TRGIOB pin functions	Programmable I/O port or output-compare output (selectable for each individual pin)	I/O port or output-compare output (selectable for each pin)	
TRGCLKA, TRGCLKB pin functions	Programmable I/O port or external clock input	I/O port or external clock input	
Read from timer	The count value can be read by reading the TRG register.	The count value can be read by reading the TRG register.	
Write to timer	The TRG register can be written to.	The TRG register can be written to.	

Table 2.3 Differences between Timer RG (Timer Mode (Output Compare Function)) (1/2)

Table 2.4 Differences between Timer RG (Timer Mode (Output Compare Function)) (2/2)

ltem	R8C/36M Group (Timer mode (Output Compare Function))	RL78/G14 (Timer mode (Output Compare Function))
Selectable functions	 Output-compare output pin selection Either one or both of pins TRGIOA and TRGIOB Output level selection at compare match "L" output, "H" output, or inverted output level Timing for setting the TRG register to 0000h Overflow or compare match with the TRGGRj register Buffer operation 	 Output-compare output pin selection Either one or both of pins TRGIOA and TRGIOB Output level selection at compare match Low output, high output, or inverted output level Timing for setting the TRG register to 0000H Overflow or compare match with the TRGGRj register Buffer operation

2.4 Differences in PWM Mode

The operation of PWM mode in timer RG in R8C/36M Group corresponds to PWM mode in timer RG in RL78/G14. Table 2.5 lists the differences between PWM mode in timer RG in R8C/36M Group and PWM mode in timer RG in RL78/G14.

	R8C/36M Group	RL78/G14
ltem	(PWM Mode)	(PWM Mode)
Count sources	f1, f2, f4, f8, f32, fOCO40M External signal input to the TRGCLKj pin (valid edge selected by a program)	fcLK, fcLK/2, fcLK/4, fcLK/8, fcLK/32 External signal input to the TRGCLKj pin (valid edge selected by a program)
Count operation	Increment	Increment
PWM waveform	 The "H" output timing of a PWM waveform is set into the TRGGRA register. The "L" output timing of a PWM waveform is set into the TRGGRB register. 	 The high output timing of a PWM waveform is set into the TRGGRA register. The low output timing of a PWM waveform is set into the TRGGRB register.
Count start condition	1 (count starts) is written to the TSTART bit in the TRGMR register.	1 (count starts) is written to the TRGSTART bit in the TRGMR register.
Count stop condition	0 (count stops) is written to the TSTART bit in the TRGMR register.	0 (count stops) is written to the TRGSTART bit in the TRGMR register.
 Compare match (the content of the TRG register matches the content of the TRG TRGGRj register) TRGGRj register overflows 		 Compare match (the content of TRG register matches the content of TRGGRj register) TRG register overflows
TRGIOA pin function	PWM output	PWM output
TRGIOB pin function	Programmable I/O port	I/O port
TRGCLKA, TRGCLKB pin functions	Programmable I/O port or external clock input	I/O port or external clock input
Read from timer The count value can be read by reading the TRG register.		The count value can be read by reading the TRG register.
Write to timer	The TRG register can be written to.	The TRG register can be written to.
Selectable • Timing for setting the TRG register to functions 0000h Overflow or compare match with the TRGGRj register • Buffer operation		 Timing for setting the TRG register to 0000H Overflow or compare match with the TRGGRj register Buffer operation

Table 2.5 Differences between Timer RG (PWM Mode)

2.5 Differences in Phase Counting Mode

The operation of phase counting mode in timer RG in R8C/36M Group corresponds to phase counting mode in timer RG in RL78/G14.

Table 2.6 lists the differences between phase counting mode in timer RG in R8C/36M Group and phase counting mode in timer RG in RL78/G14.

Table 2.6 Differences between Timer RG (Phase Counting Mode)

	R8C/36M Group	RL78/G14
ltem	(Phase Counting Mode)	(Phase Counting Mode)
Count source	External signal input to the TRGCLKj pin	External signal input to the TRGCLKj pin
Count operations	Increment/decrement	Increment/decrement
Count start condition	1 (count starts) is written to the TSTART bit in the TRGMR register.	1 (count starts) is written to the TRGSTART bit in the TRGMR register.
Count stop condition	0 (count stops) is written to the TSTART bit in the TRGMR register.	0 (count stops) is written to the TRGSTART bit in the TRGMR register.
	 Input capture (valid edge of the TRGIOj input) 	 Input capture (valid edge of TRGIOj input)
Interrupt request generation timing	• Compare match (the content of the TRG register matches the content of TRGGRj register)	 Compare match (the contents of TRG register matches the content of TRGGRj register)
	TRG register underflows	 TRG register overflows
	TRG register overflows	TRG register underflows
TRGIOA pin functionProgrammable I/O port, input-capture input, output-compare output, or PWM output		I/O port, input-capture input, output- compare output, or PWM output
TRGIOB pin function	Programmable I/O port, input-capture input, or output-compare output	I/O port, input-capture input, or output- compare output
TRGCLKA, TRGCLKB pin External clock input functions		External clock input
Read from timer The count value can be read by reading the TRG register.		The count value can be read by reading the TRG register.
Write to timer The TRG register can be written to.		The TRG register can be written to.
Selectable functions	• Selection of counter addition/substitution conditions Selected by bits CNTEN0 to CNTEN7 bits in the TRGCNTC register.	 Selection of counter increment/decrement conditions Selected by bits CNTEN0 to CNTEN7 in the TRGCNTC register.
	 Input capture/output compare functions and PWM functions can be used. 	 Input capture/output compare functions and PWM function can be used.

2.6 Assigned I/O Pins

Table 2.7 lists the assigned I/O pins used in timer RG in R8C/36M Group and timer RG in RL78/G14.

Pin Name	R8C/36M Group	RL78/G14	I/O	Function
TRGCLKA	P3_0	P00	Input	 In phase counting mode A-phase input When not in phase counting mode External clock A input
TRGCLKB	P3_2	P01	Input	 In phase counting mode B-phase input When not in phase counting mode External clock B input
TRGIOA	P5_6	P50	I/O	 In timer mode (output compare function) TRGGRA output compare output In timer mode (input capture function) TRGGRA input capture input In PWM mode PWM output
TRGIOB	P5_7	P51	I/O	 In timer mode (output compare function) TRGGRB output compare output In timer mode (input capture function) TRGGRB input capture input

Table 2.7 I/O Pins

2.7 Event Input Signal from the ELC

When using the RL78/G14 in timer mode or phase counting mode with the input capture function selected, input capture operation B can be executed by an event input signal from the ELC.

2.8 Register Compatibilities

Register compatibilities between timer RG in R8C/36M Group and timer RG in RL78/G14 are listed in Table 2.8 and Table 2.9.

ltem	R8C/36M Group	RL78/G14
Medule standby control	MSTCR register	PER1 register
Module standby control	MSTTRG bit	TRGEN bit
PWM mode select	TRGMR register	TRGMR register
PVVIVI mode select	PWM bit	TRGPWM bit
Phase counting mode	TRGMR register	TRGMR register
select	MDF bit	TRGMDF bit
Count control in phase counting mode	TRGCNTC register	TRGCNTC register
TRGIOA pin digital filter	TRGMR register	TRGMR register
function select	DFA bit	TRGDFA bit
TRGIOB pin digital filter	TRGMR register	TRGMR register
function select	DFB bit	TRGDFB bit
Digital filter function clock	TRGMR register	TRGMR register
select	Bits DFCK0 and DFCK1	Bits TRGDFCK0 and TRGDFCK1
TRG count start	TRGMR register	TRGMR register
TKG Count Start	TSTART bit	TRGSTART bit
Count source select	TRGCR register	TRGCR register
Count source select	Bits TCK0 to TCK2	Bits TRGTCK0 to TRGTCK2
External clock valid edge	TRGCR register	TRGCR register
select	Bits CKEG0 and CKEG1	Bits TRGCKEG0 and TRGCKEG1
TRG register clear source	TRGCR register	TRGCR register
select	Bits CCLR0 and CCLR1	Bits TRGCCLR0 and TRGCCLR1
	TRGIER register	TRGIER register
Interrupt enable	Bits IMIEA, IMIEB, UDIE and	Bits TRGIMIEA, TRGIMIEB, TRGUDIE,
	OVIE	and TRGOVIE
	TRGSR register	TRGSR register
Status flag	Bits IMFA, IMFB, UDF, OVF, and DIRF	Bits TRGIMFA, TRGIMFB, TRGUDF, TRGOVF, and TRGDIRF

Table 2.8 Register Compatibilities (1/2)

ltem	R8C/36M Group	RL78/G14
TRGGRA control	TRGIOR register	TRGIOR register
I RGGRA CONTO	Bits IOA0 and IOA1	Bits TRGIOA0 and TRGIOA1
TRGGRA mode select	TRGIOR register	TRGIOR register
I RGGRA mode select	IOA2 bit	TRGIOA2 bit
TRGGRC register	TRGIOR register	TRGIOR register
function select	BUFA bit	TRGBUFA bit
	TRGIOR register	TRGIOR register
TRGGRB control	Bits IOB0 and IOB1	Bits TRGIOB0 and TRGIOB1
	TRGIOR register	TRGIOR register
TRGGRB mode select	IOB2 bit	TRGIOB2 bit
TRGGRD register	TRGIOR register	TRGIOR register
function select	BUFB bit	TRGBUFB bit
	TIMSR register	
I/O pin select	Bits TRGIOASEL, TRGIOBSEL,	N/A
	TRGCLKASEL, and TRGCLKBSEL	
Setting of pins to be	N/A	Registers PM0 and PM5
used for timer I/O		Registers P0 and P5
		PR02H register
Interrupt priority level	TRGIC register	TRGPR0 bit
select	Bits ILVL0 to ILVL2	PR12H register
		TRGPR1 bit
Interrupt request hit	TRGIC register	IF2H register
Interrupt request bit	IR bit	TRGIF bit
Interrupt enable/dischle	N/A	MK2H register
Interrupt enable/disable		TRGMK bit
ELC input capture	N/A	TRGMR register
request select		TRGELCICE bit

Table 2.9 Register Compatibilities (2/2)

2.9 Changes in Registers

2.9.1 Timer RG Mode Register (TRGMR)

Clocks that can be specified for the digital filter function vary between R8C/36M Group and RL78/G14. Table 2.10 lists the comparison of digital filter function clocks.

R8C/36M Group		RL78/G14			
DFCK1 Bit	DFCK0 Bit	Function	TRGDFCK1 Bit	TRGDFCK0 Bit	Function
0	0	f32	0	0	f _{CLK} /32
0	1	f8	0	1	fclк/8
1	0	f1	1	0	fclk
1	1	Clock specified by bits TCK0 to TCK2 in TRGCR register	1	1	Clock specified by bits TRGTCK0 to TRGTCK2 in TRGCR register

Table 2.10 Comparison of Digital Filter Function Clocks

The TRGELCICE bit is newly added to the RL78/G14 to select the input capture operation by an event input signal from the ELC.

2.9.2 Timer RG Control Register (TRGCR)

Count source which can be specified is different between R8C/36M Group and RL78/G14. Table 2.11 lists the comparison of count sources.

R8C/36M Group		RL78/G14					
TCK2 Bit	TCK1 Bit	TCK0 Bit	Function	TRGTCK2 Bit	TRGTCK1 Bit	TRGTCK0 Bit	Function
0	0	0	f1	0	0	0	fclк
0	0	1	f2	0	0	1	f _{CLK} /2
0	1	0	f4	0	1	0	fclк/4
0	1	1	f8	0	1	1	f _{CLK} /8
1	0	0	f32	1	0	0	fclк/32
1	0	1	TRGCLKA input	1	0	1	TRGCLKA input
1	1	0	fOCO40M	1	1	0	Do not set.
1	1	1	TRGCLKB input	1	1	1	TRGCLKB input

Table 2.11 Comparison of Count Sources

2.9.3 Timer Pin Select Register (TIMSR, R8C/36M Group Only)

In R8C/36M Group, set the TIMSR register to specify whether to use pins assigned to timer RG I/O as I/O ports or timer RG I/O pins.

Set registers P0, P5, PM0, and PM5 in the RL78/G14 to use ports as timer RG I/O pins.

3. Notes

3.1 I/O Pin Settings

3.1.1 R8C/36M Group

To use the I/O pins in R8C/36M Group, make sure to set the TIMSR register before setting registers associated with timer RG. Do not change the setting value in the TIMSR register while timer RG is operating.

3.1.2 RL78/G14

In the RL78/G14, I/O ports which are multiplexed with pins TRGIOA and TRGIOB function as input ports after the MCU is reset.

To use pins TRGIOA and TRGIOB for output, perform the following steps:

- (1) Set the mode, initial value, and enable the output in order to set the initial value and enable output by an SFR (Special Function Register).
- (2) Set bits P50 and P51 in the P5 register which correspond to pins TRGIOA and TRGIOB to 0.
- (3) Set bits PM50 and PM51 in the PM5 register which correspond to pins TRGIOA and TRGIOB to 0 in output mode (output is started from pins TRGIOA and TRGIOB).
- (4) Start timer RG (set the TRGSTART bit in the TRGMR register to 1).

To change bits PM50 and PM51 in the PM5 register which correspond to pins TRGIOA and TRGIOB from output mode to input mode, perform the following steps:

- (1) Set bits PM50 and PM51 in the PM5 register which correspond to pins TRGIOA and TRGIOB to 1 in input mode (output is started from pins TRGIOA and TRGIOB).
- (2) Set the input capture function.
- (3) Start timer RG (set the TRGSTART bit in the TRGMR register to 1).

When pins TRGIOA and TRGIOB are changed from output mode to input mode, timer RG may capture the input signals depending on the pin state. When the digital filter is not used, timer RG detects an edge after two or more CPU clock cycles elapsed. Timer RG detects an edge after five or more sampling clock cycles of the digital filter elapsed if the digital filter is used.

3.2 SFR Read/Write Access

3.2.1 R8C/36M Group

In R8C/36M Group, set the MSTTRG bit in the MSTCR register to 0 (active) before setting other registers. When the MSTTRG bit is set to 1 (standby), access to the timer associated registers (addresses 0170h to 017Fh) is disabled.

3.2.2 RL78/G14

To set timer RG in the RL78/G14, set the TRGEN bit in the PER1 register to 1 (enable reading or writing the SFR used in timer RG) before setting other registers. When the TRGEN bit is 1 (disable reading or writing the SFR used in timer RG), writing to timer RG associated registers is ignored and all values read become the default values (except port registers and port mode registers).

(1) TRGMR register

- To switch the digital filter clock, perform the following steps:
- (a) When the TRGSTART bit in the TRGMR register is 0 (stop counting), set bits TRGDFA and TRGDFB (bits to select the digital filter function of pins TRGIOA and TRGIOB) in the TRGMR register, and bits TRGDFCK0 and TRGDFCK1 (bits to select the clock used in the digital filter function) in the TRGMR register.
 (b) Set the TRGSTART bit to 1 (start counting).

When not using the digital filter, if the reset values of bits TRGDFCK1 and TRGDFCK0 (00B, $f_{CLK}/32$) have not been changed, the TRGMR register can be set using just step (b).

In addition to external input pins (TRGIOA and TRGIOB), an event input signal from the ELC can also be selected as an operating source for input capture. To use this function, set the TRGELCICE bit in the TRGMR register to 1, and set the input capture function (set bits TRGIOB2 to TRGIOB0 to 100B to set an valid edge of the input capture as the rising edge). This function is disabled in PWM mode (the TRGPWM bit in the TRGMR register is 1) or the output compare function in timer mode is used (the TRGIOB2 bit in the TRGIOR register is 0).

(2) TRG register

Writing to the TRGMR register has priority over count reset operations generated by timer RG operating conditions.

4. How to Migrate Timer RG in this Sample Code

In this sample program, the operation of timer RG in R8C/36M Group is realized with RL78/G14 by the method shown in Table 4.1.

For the sample program of "PWM mode" and "phase counting mode", please refer to the application notes that are introduced in "8. Reference Application Notes".

In this application note, we only detail the sample program for the timer mode (input capture function) and timer mode (output compare function).

For detailed content of the sample program, please refer to "5. Example of Migration from Timer Mode (Input Capture Function)" ~ "6. Example of Migration from Timer Mode (Output Compare Function)".

Table 4.1 How to Migrate from R8C/36M Group to RL78/G14 in This Sample Program

Timer RG in R8C/36M Group	Timer RG in RL78/G14
Mode	Mode
Timer mode (Input capture function)	Timer mode (Input capture function)
Timer mode (Output compare function)	Timer mode (Output compare function)

5. Example of Migration from Timer Mode (Input Capture Function)

5.1 Specifications

The same operation as that in timer mode (input capture function) in timer RG of R8C/36M can be realized by using timer RG of RL78/G14.

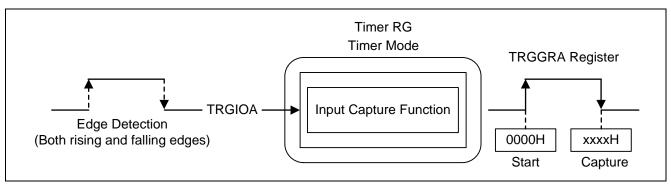

In timer mode (input capture function), the value of the TRG register can be transferred to registers TRGGRA and TRGGRB upon detecting the input edge of the input capture/output compare pins (TRGIOA and TRGIOB). The detection edge can be selected from the rising edge/falling edge/both rising and falling edges. The input capture function can be used for measuring pulse widths and periods.

Table 5.1 lists the peripheral function to be used and its use (an example of migration from timer mode (input capture function)), and Figure 5.1 shows the operation overview (an example of migration from timer mode (input capture function)).

Table 5.1 Peripheral Function to be Used and Its Use

(An Example of Migration from Timer Mode (Input Capture Function))

Peripheral Function	Use
Timer RG	Pulse width measurement
(Timer Mode (Input Capture Function))	

Figure 5.1 Operation Overview (An Example of Migration from Timer Mode (Input Capture Function))

Note: Figure 5.1 shows an operation example with bits TRGIOA1 and TRGIOA0 set to 10B (edge Detection: both edges of TRGIOA).

5.2 Operation Check Conditions

The sample code described in this chapter has been checked under the conditions listed in the table below.

Item	Description
Microcontroller used	RL78/G14 (R5F104LEAFB)
Operating frequency	High-speed on-chip oscillator (HOCO) clock: 32 MHz
	CPU/peripheral hardware clock: 32 MHz
Operating voltage	5.0 V (can run on a voltage range of 2.7 V to 5.5 V.)
	LVD operation (V _{LVD}): Reset mode TYP. 2.75 V
	Rising edge 2.81 V (2.76 V to 2.87 V)
	Falling edge 2.75 V (2.70 V to 2.81 V)
Integrated development environment (CS+)	CS+ V6.00.00 from Renesas Electronics Corp.
C compiler (CS+)	CC-RL V1.05.00 from Renesas Electronics Corp.
Integrated development environment (e ² studio)	e ² studio V6.0.0 from Renesas Electronics Corp.
C compiler (e ² studio)	CC-RL V1.05.00 from Renesas Electronics Corp.

Table 5.2 Operation Check Conditions

5.3 Description of Hardware

5.3.1 Hardware Configuration Example

Figure 5.2 shows an example of the hardware configuration that is used for this chapter.

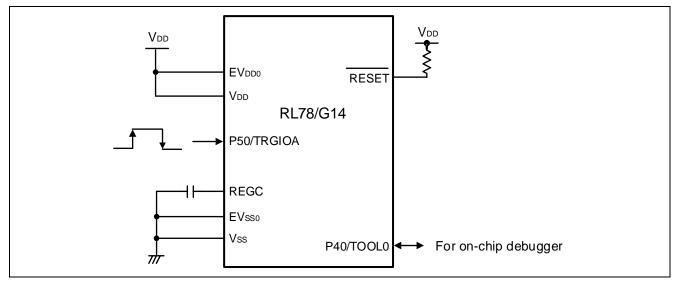


Figure 5.2 Hardware Configuration (Timer Mode (Input Capture Function))

- Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified accordingly. When designing and implementing an actual circuit, provide proper pin treatment and make sure that the hardware's electrical specifications are met (connect the input-only ports separately to V_{DD} or V_{SS} via a resistor).
 - 2. Connect any pins whose name begins with EV_{SS} to V_{SS} and any pins whose name begins with EV_{DD} to V_{DD} , respectively.
 - 3. V_{DD} must be held at not lower than the reset release voltage (V_{LVD}) that is specified as LVD.

5.3.2 List of Pin to be Used

Table 5.3 lists the pin to be used and its function.

Table 5.3 Pin to be Used and Its Function

Pin Name	I/O	Description
P50/TRGIOA	Input	TRGGRA input-capture input

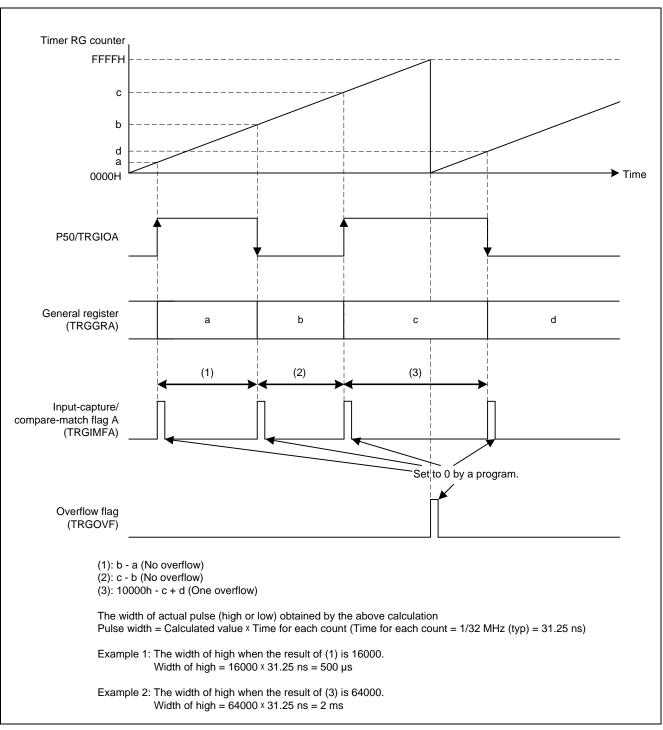
5.4 Description of Software

5.4.1 Operation Outline

This chapter describes how to set up the timer mode (input capture function) of timer RG. Each time a valid edge is detected on the timer input pin (TRGIOA), the MCU captures the count value of the timer and measures the time interval between pulses which arrive at the timer input pin (TRGIOA). When a timer interrupt (INTTRG) occurs upon completion of the capture, the sample code calculates the pulse interval and stores the calculation result in the on-chip RAM.

Table 5.4 lists the peripheral function to be used and its use. Figure 5.3 shows the timer mode and its interrupt operation.

(1) Initialize the timer RG.


<Conditions for setting> Use the input capture function as the timer RG operation mode. Select f_{CLK} as the count source of timer RG. Use both edges to detect the input capture to the TRGIOA pin. Use the digital filter function. Enable an interrupt when timer RG counter overflows. Enable an interrupt when an valid edge is detected. Set TRGIOA pin as input mode.

- (2) Sets "1" (starts counter operation) to TRGSTART bit of TRGMR register to start the count of timer RG.
- (3) Execute a HALT instruction to wait for timer interrupts (INTTRG).
- (4) When the overflow interrupt is generated, increment the value of the overflow counter. When the input-capture interrupt is generated, calculates the pulse width and stores the calculation result in the onchip RAM.
- (5) The sample code returns to step (3) to execute HALT instruction and waits for the next timer interrupt (INTTRG) from timer RG.

Table 5.4 Peripheral Function to be Used and Its Use

Peripheral Function	Use	
Timer RG	Measure the pulse width of TRGIOA pin.	

5.4.2 List of Option Byte Settings

Table 5.5 summarizes the settings of the option bytes.

Table 5.5 Option Byte Settings

Address	Value	Description
000C0H/010C0H	01101110B	Disable the watchdog timer.
		(Stop counting after the release from the reset state.)
000C1H/010C1H	0111111B	LVD operation (VLVD): Reset mode TYP. 2.75 V
		Rising edge 2.81 V (2.76 V to 2.87 V)
		Falling edge 2.75 V (2.70 V to 2.81 V)
000C2H/010C2H	11101000B	HS mode, HOCO: 32 MHz
000C3H/010C3H	10000100B	Enable the on-chip debugger.

5.4.3 List of Functions

Table 5.6 lists the functions that are used in this sample program.

Table 5.6 Functions

Function Name	Outline
R_TMR_RG0_Create()	Initialize timer RG.
R_TMR_RG0_Start()	Start timer RG operation.
r_tmr_rg0_interrupt()	Process timer interrupts of timer RG.

5.4.4 Function Specifications

The followings are the functions that are used in this sample program.

Synopsis	Initialize timer RG
Header	r_cg_macrodriver.h
	r_cg_timer.h
	r_cg_userdefine.h
Declaration	<pre>void R_TMR_RG0_Create(void)</pre>
Explanation	This function initializes timer RG.
Arguments	None
Return value	None
Remarks	None

[Function Name] R_TMR_RG0_Start()

Synopsis	Start timer RG operation
Header	r_cg_macrodriver.h
	r_cg_timer.h
	r_cg_userdefine.h
Declaration	void R_TMR_RG0_Start(void)
Explanation	This function enables timer RG interrupts and starts count operation.
Arguments	None
Return value	None
Remarks	None

[Function Name] r_tmr_rg0_interrupt ()

[
Synopsis	Timer RG interrupt processing
Header	r_cg_macrodriver.h
	r_cg_timer.h
	r_cg_userdefine.h
Declaration	static voidnear r_tmr_rg0_interrupt(void)
Explanation	This function measures the pulse width of the waveform from TRGIOA.
Arguments	None
Return value	None
Remarks	None

5.4.5 Flowcharts

5.4.5.1 Overall Flow

Figure 5.4 shows the overall flow of the sample program described in this chapter.

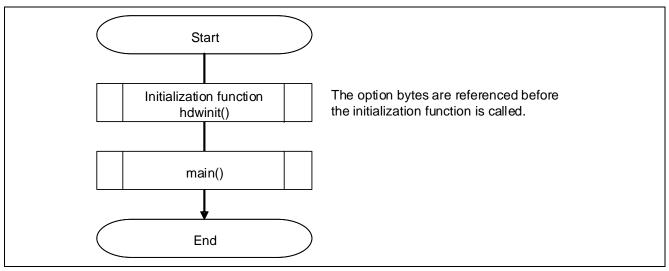
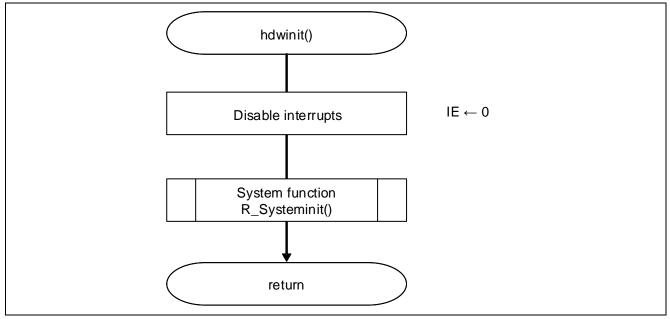



Figure 5.4 Overall Flow

5.4.5.2 Initialization Function

Figure 5.5 shows the flowchart for the initialization function.

Figure 5.5 Initialization Function

5.4.5.3 System Function

Figure 5.6 shows the flowchart for the system function.

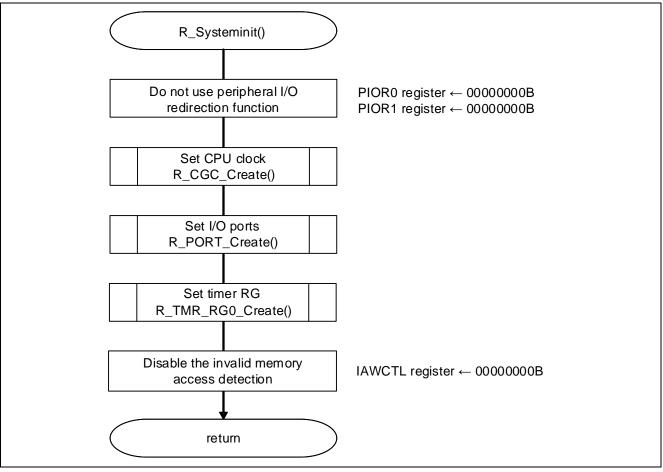
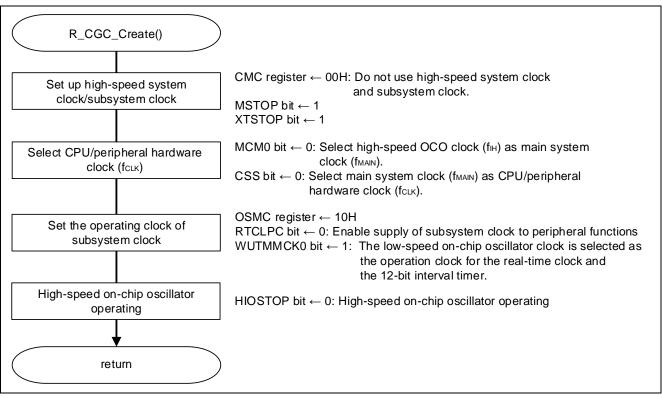



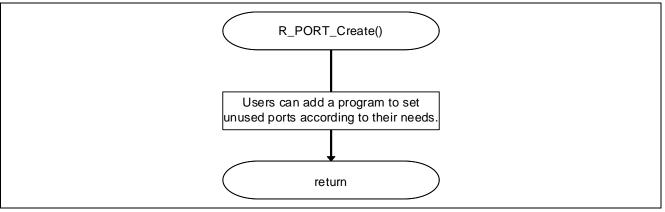
Figure 5.6 System Function

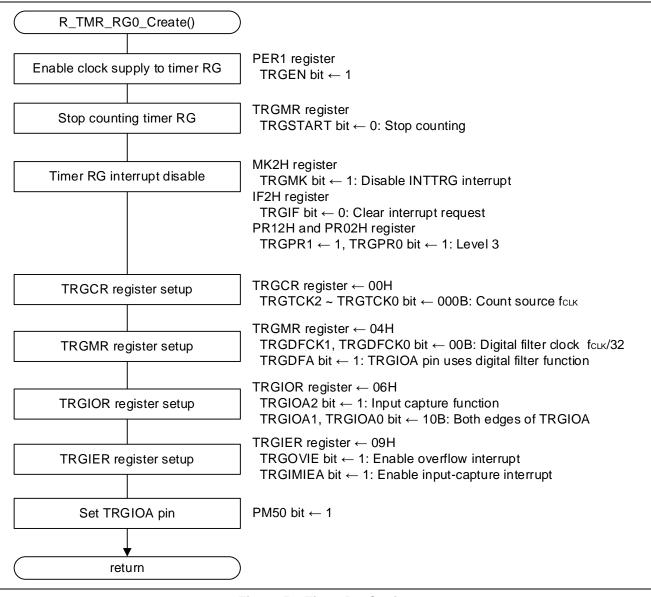
5.4.5.4 CPU Clock Setting

Figure 5.7 shows the flowchart for setting the CPU clock.

5.4.5.5 I/O Port Setting

Figure 5.8 shows the flowchart for setting the I/O ports.




Figure 5.8 I/O Port Setting

Caution: Please provide proper pin treatment and make sure that the electrical specifications are met. Connect each of any unused input-only ports to V_{DD} or V_{SS} via a separate resistor.

5.4.5.6 Timer RG Setting

Figure 5.9 shows the flowchart for setting timer RG.

Figure 5.9 Timer RG Setting

Start to supply the clock to timer RG

• Peripheral enable register 1 (PER1) Start to supply the clock to timer RG.

Symbol: PER1

7	6	5	4	3	2	1	0
DACEN	TRGEN	CMPEN	TRD0EN	DTCEN	0	0	TRJ0EN
Х	1	Х	Х	Х	0	0	Х

Bit 6

TRGEN	Control of timer RG input clock supply
0	Stop input clock supply. • SFR used by timer RG cannot be written.
1	 Timer RG is in the reset status. Enable input clock supply. SFR used by timer RG can be read/written.

x: Bits not used in this setting item

Setup of timer RG operation and interrupt level

• Timer RG mode register (TRGMR) Stop timer RG counter operation.

Symbol: TRGMR

7	6	5	4	3	2	1	0
TRGSTART	TRGELCICE	TRGDFCK1	TRGDFCK0	TRGDFB	TRGDFA	TRGMDF	TRGPWM
0	Х	Х	Х	Х	Х	Х	Х

Bit 7

TRGSTART	Timer RG count start
0	Count stops
1	Count starts

Disabling timer RG interrupt

• Interrupt mask flag register (MK2H)

Disable interrupt processing.

• Interrupt request flag register (IF2H) Clear the interrupt request flag.

Symbol: MK2H

 7	6	5	4	3	2	1	0
FLMK	IICAMK1	1	SREMK3 TMMK13H	TRGMK	TRDMK1	TRDMK0	PMK11 CMPMK1
Х	Х	1	Х	1	Х	Х	Х

Bit 3

TRGMK	Interrupt servicing control				
0	Interrupt servicing enabled				
1	Interrupt servicing disabled				

Symbol: IF2H

7	6	5	4	3	2	1	0
FLIF	IICAIF1	0	SREIF3 TMIF13H	TRGIF	TRDIF1	TRDIF0	PIF11 CMPIF1
Х	Х	0	Х	0	Х	Х	Х

Bit 3

TRGIF	Interrupt request flag				
0	No interrupt request signal is generated.				
1	Interrupt request is generated, interrupt request status.				

x: Bits not used in this setting item

Setting timer RG interrupt priority level

• Priority specification flag register (PR12H, PR02H)

Specifies level 3 (low priority level).

Symbol: PR12H

7	6	5	4	3	2	1	0
FLPR1	IICAPR11	1	SREPR13 TMPR113H	TRGPR1	TRDPR11	TRDPR10	PPR111 CMPPR11
Х	Х	1	Х	1	Х	Х	Х

Symbol: PR02H

_	້ 7	6	5	4	3	2	1	0
	FLPR0	IICAPR01	1	SREPR03 TMPR013H	TRGPR0	TRDPR01	TRDPR00	PPR011 CMPPR01
ĺ	Х	Х	1	Х	1	Х	Х	Х

Bit 3

TRGPR1	TRGPR0	Priority level selection
0	0	Specify level 0 (high priority level)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority level)

x: Bits not used in this setting item

Setting the timer RG operation

• Timer RG control register (TRGCR) Count source selection.

Symbol: TRGCR

7	6	5	4	3	2	1	0
0	TRGCCLR1	TRGCCLR0	TRGCKEG1	TRGCKEG0	TRGTCK2	TRGTCK1	TRGTCK0
0	Х	Х	Х	Х	0	0	0

Bit 2 to 0

TRGTCK2	TRGTCK1	TRGTCK0	Timer RG count source select
0	0	0	f _{clk}
0	0	1	fclk/2
0	1	0	fclk/4
0	1	1	fclk/8
1	0	0	fclk/32
1	0	1	TRGCLKA input
1	1	1	TRGCLKB input
0	Other than abov	е	Setting prohibited

• Timer RG mode register (TRGMR) Select digital filter.

Symbol: TRGMR

7	6	5	4	3	2	1	0
TRGSTART	TRGELCICE	TRGDFCK1	TRGDFCK0	TRGDFB	TRGDFA	TRGMDF	TRGPWM
Х	Х	0	0	Х	1	Х	Х

Bit 5 and 4

TRGDFCK1	TRGDFCK0	Digital filter function clock select Note			
0	0	f _{clк} /32			
0	1	fclk/8			
1	0	fclk			
1	1	Clock selected by bits TRGTCK0 to TRGTCK2 in TRGCR register			

Bit 2

TRGDFA	Digital filer function select for TRGIOA pin							
0	Digital filter function not used							
1	1 Digital filter function used							
When the digital filte	When the digital filter is used, edge detection is performed after up to five cycles of the sampling clock.							

Note: Set this bit while the TRGSTART bit is 0 (count stops).

x: Bits not used in this setting item

• Timer RG I/O control register (TRGIOR) Set the mode and select the valid edge.

Symbol: TRGIOR

7	6	5	4	3	2	1	0
TRGBUFB	TRGIOB2	TRGIOB1	TRGIOB0	TRGBUFA	TRGIOA2	TRGIOA1	TRGIOA0
Х	Х	Х	Х	Х	1	1	0

Bit 2

TRGIOA2	TRGGRA mode select Notes 1, 2
0	Output compare function
1	Input capture function

Bit 1 and 0

TRGIOA1	TRGIOA0	TRGGRA control			
0	0	Rising edge of TRGIOA			
0	1	Falling edge of TRGIOA			
1 0		Both edges of TRGIOA			
Other th	Other than above Setting prohibited				
In the input capture	function, input the c	apture content of TRG register to TRGGRA register			

Note 1:When the TRGIOj2 (j = A or B) bit is 1 (input capture function), the TRGGRj register functions as an input capture register.

Note 2:When the TRGIOj2 (j = A or B) bit is 0 (output compare function), the TRGGRj register functions as a compare match register. After a reset, the TRGIOj pin outputs as follows until bits TRGIOj0 and TRGIOj1 are set and the first compare match occurs.

TRGIOj1 and TRGIOj0 = 01B: High output

10B: Low output

11B: Low output

This TRGIOR register controls I/O pins in timer mode. It is disabled in PWM mode. It is disabled in PWM mode.

Set the TRGIOR register while the count is stopped (TRGSTART in TRGMR register = 0).

x: Bits not used in this setting item

• Timer RG interrupt enable register (TRGIER) Enable/Disable interrupt.

Symbol: TRGIER

7	6	5	4	3	2	1	0
0	0	0	0	TRGOVIE	TRGUDIE	TRGIMIEB	TRGIMIEA
0	0	0	0	1	0	0	1

Bit 3

TRGOVIE	Overflow interrupt enable
0	Interrupt by TRGOVF bit disabled
1	Interrupt by TRGOVF bit enabled

Bit 2

TRGUDIE	Underflow interrupt enable
0	Interrupt by TRGUDF bit disabled
1	Interrupt by TRGUDF bit enabled

Bit 1

TRGIMIEB	Input-capture/compare-match interrupt enable B
0	Interrupt by TRGIMFB bit disabled
1	Interrupt by TRGIMFB bit enabled

Bit 0

TRGIMIEA	Input-capture/compare-match interrupt enable A
0	Interrupt by TRGIMFA bit disabled
1	Interrupt by TRGIMFA bit enabled

x: Bits not used in this setting item

5.4.5.7 Main Processing

Figure 5.10 shows the flowchart for the main processing.

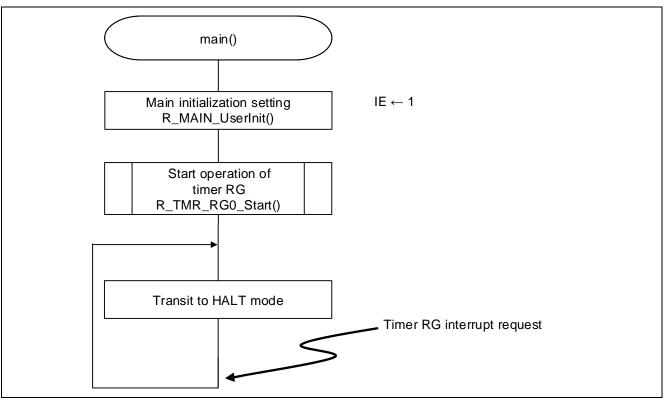


Figure 5.10 Main Processing

5.4.5.8 Timer RG Operation Start

Figure 5.11 shows the flowchart for starting timer RG operation.

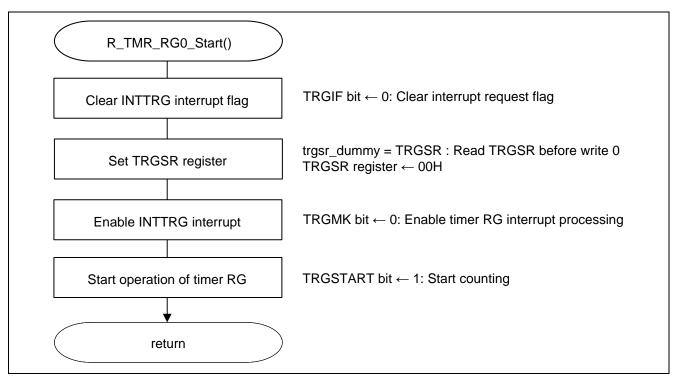


Figure 5.11 Timer RG Operation Start

Configuring the timer interrupt

• Interrupt request flag register (IF2H)

Clear the interrupt request flag.

Symbol: IF2H

7	6	5	4	3	2	1	0
FLIF	IICAIF1	0	SREIF3 TMIF13H	TRGIF	TRDIF1	TRDIF0	PIF11 CMPIF1
Х	Х	0	Х	0	Х	Х	Х

Bit 3

TRGIF	Interrupt request flag
0	No interrupt request signal is generated.
1	Interrupt request is generated, interrupt request status.

• Interrupt mask flag register (MK2H)

Enable interrupt processing.

Symbol: MK2H

7	6	5	4	3	2	1	0
FLMK	IICAMK1	1	SREMK3 TMMK13H	TRGMK	TRDMK1	TRDMK0	PMK11 CMPMK1
Х	Х	1	Х	0	Х	Х	Х

Bit 3

TRGMK	Interrupt servicing control			
0	Interrupt servicing enabled			
1	Interrupt servicing disabled			

Starting timer RG counter operation

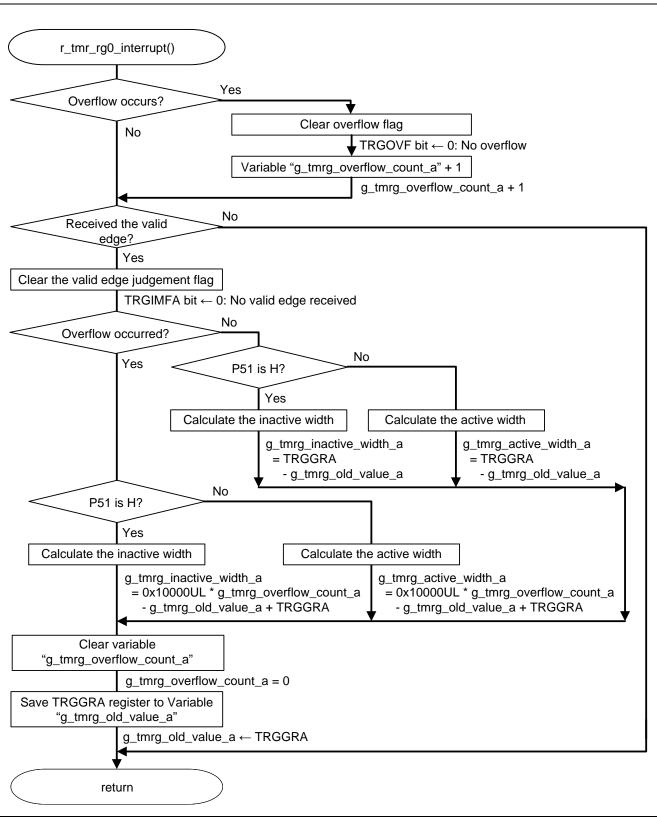
• Timer RG mode register (TRGMR)

Start timer RG counter operation.

Symbol: TRGMR

7	6	5	4	3	2	1	0
TRGSTART	TRGELCICE	TRGDFCK1	TRGDFCK0	TRGDFB	TRGDFA	TRGMDF	TRGPWM
1	Х	Х	Х	Х	Х	Х	Х

Bit 7


TRGSTART	Timer RG count start
0	Count stops
1	Count starts

x: Bits not used in this setting item

5.4.5.9 INTTRG Interrupt Processing

Figure 5.12 shows the flowchart for INTTRG interrupt processing.

Figure 5.12 INTTRG Interrupt Processing

RENESAS

6. Example of Migration from Timer Mode (Output Compare Function)

6.1 Specifications

The same operation as that in timer mode (output compare function) in timer RG of R8C/36M can be realized by using timer RG of RL78/G14.

This mode (output compare function) detects when the content of the TRG register matches the content of the TRGGRA register or the TRGGRB register (compare match). When a match occurs, a signal is output from the TRGIOA or TRGIOB pin at a given level.

Table 6.1 lists the peripheral function to be used and its use (an example of migration from timer mode (output compare function)), and Figure 6.1 shows the operation overview (an example of migration from timer mode (output compare function)).

Table 6.1 Peripheral Function to be Used and Its Use

(An Example of Migration from Timer Mode (Output Compare Function))

Peripheral Function	Use		
Timer RG	Output the pulse by a compare match between the TRG		
(Timer Mode (Output Compare Function))	register and TRGGRB register.		

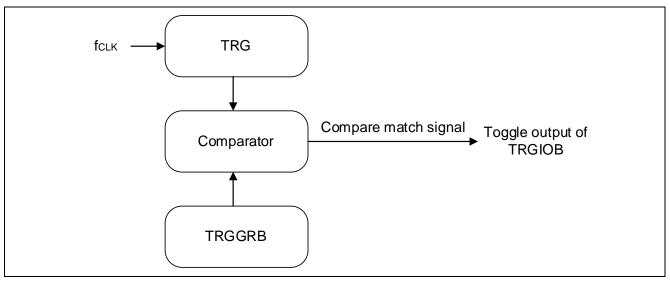


Figure 6.1 Operation Overview

(An Example of Migration from Timer Mode (Output Compare Function))

6.2 Operation Check Conditions

The sample code described in this chapter has been checked under the conditions listed in the table below.

Item	Description
Microcontroller used	RL78/G14 (R5F104LEAFB)
Operating frequency	High-speed on-chip oscillator (HOCO) clock: 32 MHz
	CPU/peripheral hardware clock: 32 MHz
Operating voltage	5.0 V (can run on a voltage range of 2.7 V to 5.5 V.)
	LVD operation (V _{LVD}): Reset mode TYP. 2.75 V
	Rising edge 2.81 V (2.76 V to 2.87 V)
	Falling edge 2.75 V (2.70 V to 2.81 V)
Integrated development environment (CS+)	CS+ V6.00.00 from Renesas Electronics Corp.
C compiler (CS+)	CC-RL V1.05.00 from Renesas Electronics Corp.
Integrated development environment (e ² studio)	e ² studio V6.0.0 from Renesas Electronics Corp.
C compiler (e ² studio)	CC-RL V1.05.00 from Renesas Electronics Corp.

Table 6.2 Operation Check Conditions

6.3 Description of Hardware

6.3.1 Hardware Configuration Example

Figure 6.2 shows an example of the hardware configuration that is used for this chapter.

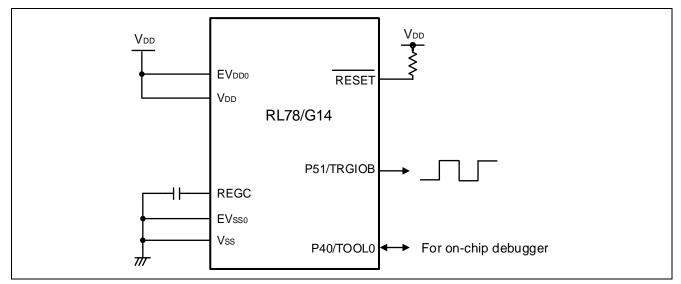


Figure 6.2 Hardware Configuration (Timer Mode (Output Compare Function))

- Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified accordingly. When designing and implementing an actual circuit, provide proper pin treatment and make sure that the hardware's electrical specifications are met (connect the input-only ports separately to V_{DD} or V_{SS} via a resistor).
 - 2. Connect any pins whose name begins with EV_{SS} to V_{SS} and any pins whose name begins with EV_{DD} to V_{DD} , respectively.
 - 3. V_{DD} must be held at not lower than the reset release voltage (V_{LVD}) that is specified as LVD.

6.3.2 List of Pin to be Used

Table 6.3 lists the pin to be used and its function.

Table 6.3 Pin to be Used and Its Function

Pin Name	I/O	Description
P51/TRGIOB	Output	TRGGRB output compare output.

6.4 Description of Software

6.4.1 Operation Outline

This chapter describes how to set up the timer mode (output compare function) of timer RG.

In this sample program, set the TRGGRB as an output compare function. When the content of the TRG register matches the content of the TRGGRB register, the output from the TRGIOB pin will be inverted every 1 ms.

Timer RG interrupt is not used in this sample program.

Table 6.4 lists the peripheral function to be used and its use. Figure 6.3 shows the timer mode and its interrupt operation.

(1) Initialize the timer RG.
<Conditions for setting>
Use the output compare function as the timer RG operation mode.
Select f_{CLK} as the count source of timer RG.
Set TRGGRB register.
Disable interrupts INTTRG.
Set TRGIOB pin as output mode.

(2) Set "1" (start counter operation) to TRGSTART bit of TRGMR register to start the count of timer RG.

(3) Execute a HALT instruction.

(4) When the compare occurs, the output of TRGIOB pin is inverted automatically.

Table 6.4 Peripheral Function to be Used and Its Use

Peripheral Function	Use		
Timer RG	P51/TRGIOB output pulse (period is 2 ms, duty ratio is 50%).		

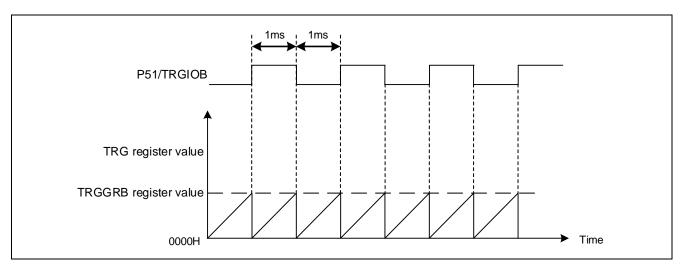


Figure 6.3 Overview of Timer RG Operation (Timer Mode (Output Compare Function))

6.4.2 List of Option Byte Settings

Table 6.5 summarizes the settings of the option bytes.

Table 6.5 Option Byte Settings

Address	Value	Description
000C0H/010C0H	01101110B	Disable the watchdog timer.
		(Stop counting after the release from the reset state.)
000C1H/010C1H	0111111B	LVD operation (V _{LVD}): Reset mode TYP. 2.75 V
		Rising edge 2.81 V (2.76 V to 2.87 V)
		Falling edge 2.75 V (2.70 V to 2.81 V)
000C2H/010C2H	11101000B	HS mode, HOCO: 32 MHz
000C3H/010C3H	10000100B	Enable the on-chip debugger.

6.4.3 List of Functions

Table 6.6 lists the functions that are used in this sample program.

Table 6.6 Functions

Function Name	Outline
R_TMR_RG0_Create()	Initialize timer RG.
R_TMR_RG0_Start()	Start timer RG operation.

6.4.4 Function Specifications

The followings are the functions that are used in this sample program.

[Function Name] R_TMR_RG0_Create()

Synopsis	Initialize timer RG
Header	r_cg_macrodriver.h
	r_cg_timer.h
	r_cg_userdefine.h
Declaration	void R_TMR_RG0_Create(void)
Explanation	This function initializes timer RG.
Arguments	None
Return value	None
Remarks	None

[Function Name] R_TMR_RG0_Start()

Synopsis	Start timer RG operation
Header	r_cg_macrodriver.h
	r_cg_timer.h
	r_cg_userdefine.h
Declaration	void R_TMR_RG0_Start(void)
Explanation	This function starts count operation.
Arguments	None
Return value	None
Remarks	None

6.4.5 Flowcharts

6.4.5.1 Overall Flow

Figure 6.4 shows the overall flow of the sample program described in this chapter.

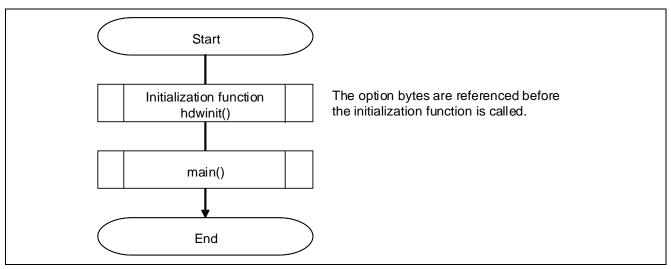
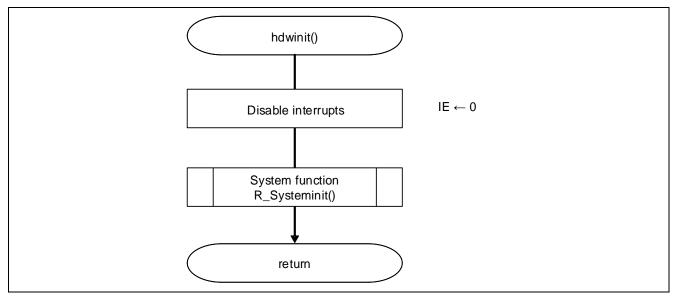



Figure 6.4 Overall Flow

6.4.5.2 Initialization Function

Figure 6.5 shows the flowchart for the initialization function.

Figure 6.5 Initialization Function

6.4.5.3 System Function

Figure 6.6 shows the flowchart for the system function.

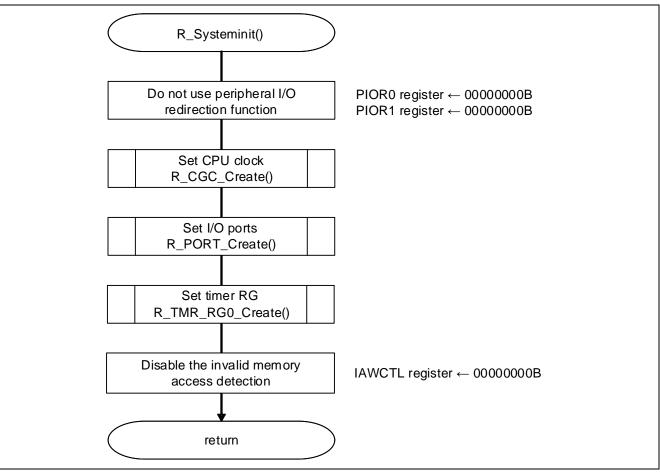
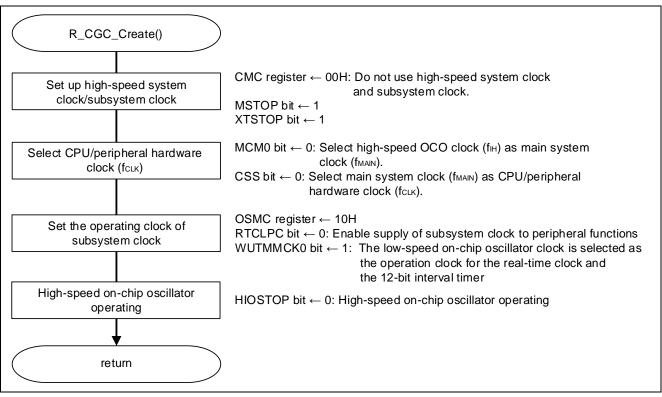



Figure 6.6 System Function

6.4.5.4 CPU Clock Setting

Figure 6.7 shows the flowchart for setting the CPU clock.

6.4.5.5 I/O Port Setting

Figure 6.8 shows the flowchart for setting the I/O ports.

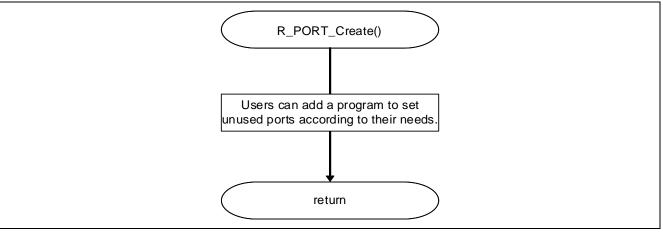


Figure 6.8 I/O Port Setting

 $\label{eq:caution: Caution: Please provide proper pin treatment and make sure that the electrical specifications are met. Connect each of any unused input-only ports to V_{DD} or V_{SS}$ via a separate resistor.

6.4.5.6 Timer RG Setting

Figure 6.9 shows the flowchart for setting timer RG.

R_TMR_RG0_Create()	
Enable clock supply to timer RG	PER1 register TRGEN bit ← 1
Stop counting timer RG	TRGMR register TRGSTART bit \leftarrow 0: Stop counting
Timer RG interrupt disable	MK2H register TRGMK bit ← 1: Disable INTTRG interrupt IF2H register TRGIF bit ← 0: Clear interrupt request
TRGCR register setup	TRGCR register ← 40H TRGCCLR1, TRGCCLR0 bit ← 10B: Clear by compare match with TRGGRB TRGTCK2 ~ TRGTCK0 bit ← 000B: Count source fctk
TRGGRB register setup	TRGGRB register ← 7CFFH (31999) : 1ms = (1/32MHz) × 32000
TRGMR register setup	TRGMR register ← 00H TRGMDF bit ← 0: Increment TRGPWM bit ← 0: Timer Mode
TRGIOR register setup	TRGIOR register ← 30H TRGIOB2 bit ← 0: Output compare function TRGIOB1, TRGIOB0 bit ← 11B: Toggle output
TRGIER register setup	TRGIER register \leftarrow 00H TRGOVIE bit \leftarrow 0: Disable overflow interrupt TRGGUDIE bit \leftarrow 0: Disable underflow interrupt TRGIMIEB bit \leftarrow 0: Disable input-capture/output compare interrupt TRGIMIEA bit \leftarrow 0: Disable input-capture/output compare interrupt
Set TRGIOB pin	POM51 bit $\leftarrow 0$ P51 bit $\leftarrow 0$
	PM51 bit ← 0
return	

Figure 6.9 Timer RG Setting

Start to supply clock to timer RG

• Peripheral enable register 1 (PER1) Start to supply the clock to timer RG.

Symbol: PER1

7	6	5	4	3	2	1	0
DACEN	TRGEN	CMPEN	TRD0EN	DTCEN	0	0	TRJ0EN
Х	1	Х	Х	Х	0	0	Х

Bit 6

TRGEN	Control of timer RG input clock supply
0	Stop input clock supply. • SFR used by timer RG cannot be written. • Timer RG is in the reset status.
1	Enable input clock supply. • SFR used by timer RG can be read/written.

x: Bits not used in this setting item

Setup of timer RG operation and interrupt level

• Timer RG mode register (TRGMR)

Stop timer RG counter operation.

Symbol: TRGMR

7	6	5	4	3	2	1	0
TRGSTART	TRGELCICE	TRGDFCK1	TRGDFCK0	TRGDFB	TRGDFA	TRGMDF	TRGPWM
0	Х	Х	Х	Х	Х	Х	Х

Bit 7

TRGSTART	Timer RG count start
0	Count stops
1	Count starts

Disabling timer RG interrupt

• Interrupt mask flag register (MK2H)

Disable interrupt processing.

• Interrupt request flag register (IF2H) Clear the interrupt request flag.

Symbol: MK2H

7	6	5	4	3	2	1	0
FLMK	IICAMK1	1	SREMK3 TMMK13H	TRGMK	TRDMK1	TRDMK0	PMK11 CMPMK1
Х	Х	1	Х	1	Х	Х	Х

Bit 3

TRGMK	Interrupt servicing control					
0	Interrupt servicing enabled					
1	Interrupt servicing disabled					

Symbol: IF2H

7	6	5	4	3	2	1	0
FLIF	IICAIF1	0	SREIF3 TMIF13H	TRGIF	TRDIF1	TRDIF0	PIF11 CMPIF1
Х	Х	0	Х	0	Х	Х	Х

Bit 3

TRGIF	Interrupt request flag				
0	No interrupt request signal is generated.				
1	Interrupt request is generated, interrupt request status.				

x: Bits not used in this setting item

Setting the timer RG operation • Timer RG control register (TRGCR)

Count source selection.

Symbol: TRGCR

7	6	5	4	3	2	1	0
0	TRGCCLR1	TRGCCLR0	TRGCKEG1	TRGCKEG0	TRGTCK2	TRGTCK1	TRGTCK0
0	1	0	Х	Х	0	0	0

Bit 6 and 5

TRGCCLR1	TRGCCLR0	TRG register clear source select
0	0	Clear disabled
0	1	Clear by input capture or compare match with TRGGRA
1	0	Clear by input capture or compare match with TRGGRB
Other th	an above	Setting prohibited

Bit 2 to 0

TRGTCK2	TRGTCK1	TRGTCK0	Timer RG count source select
0	0	0	f _{CLK}
0	0	1	fclk/2
0	1	0	fclk/4
0	1	1	fclk/8
1	0	0	fclk/32
1	0	1	TRGCLKA input
1	1	1	TRGCLKB input
(Other than abov	e	Setting prohibited

Setting TRGGRB register

• Timer RG general register (TRGGRB) Setup the pulse width.

Symbo	l: TRGO	GRB													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1

x: Bits not used in this setting item

• Timer RG mode register (TRGMR) Operation mode selection.

Symbol: TRGMR

7	6	5	4	3	2	1	0
TRGSTART	TRGELCICE	TRGDFCK1	TRGDFCK0	TRGDFB	TRGDFA	TRGMDF	TRGPWM
Х	Х	Х	Х	Х	Х	0	0

Bit 1

TRGMDF	Phase counting mode select
0	Increment
1	Phase counting mode
When the TRGMDF the TRGCR registe	F bit is set to 0, the counter counts the count source set by bits TRGTCK0 to TRGTCK2 in r.

Bit 0

TRGPWM	PWM mode select
0	Timer Mode
1	PWM mode

x: Bits not used in this setting item

• Timer RG I/O control register (TRGIOR) Set the mode.

Symbol: TRGIOR

7	6	5	4	3	2	1	0
TRGBUFB	TRGIOB2	TRGIOB1	TRGIOB0	TRGBUFA	TRGIOA2	TRGIOA1	TRGIOA0
Х	0	1	1	Х	Х	Х	Х

Bit 6

TRGIOB2	TRGGRB mode select Notes 1, 2
0	Output compare function
1	Input capture function

Bit 5 and 4

TRGIOB1	TRGIOB0	TRGGRB control
0	0	Pin output by compare match is disabled
0	1	Low output
1	0	High output
1	1	Toggle output
the output compare	e function, output th	ne compare match between registers TRG and TRGGRB

Note 1:When the TRGIOj2 (j = A or B) bit is 1 (input capture function), the TRGGRj register functions as an input capture register.

Note 2:When the TRGIOj2 (j = A or B) bit is 0 (output compare function), the TRGGRj register functions as a compare match register. After a reset, the TRGIOj pin outputs as follows until bits TRGIOj0 and TRGIOj1 are set and the first compare match occurs.

TRGIOj1 and TRGIOj0 = 01B: High output

10B: Low output

11B: Low output

This TRGIOR register controls I/O pins in timer mode. It is disabled in PWM mode. It is disabled in PWM mode. Set the TRGIOR register while the count is stopped (TRGSTART in TRGMR register = 0).

x: Bits not used in this setting item

• Timer RG interrupt enable register (TRGIER) Disable interrupt.

Symbol: TRGIER

7	6	5	4	3	2	1	0
0	0	0	0	TRGOVIE	TRGUDIE	TRGIMIEB	TRGIMIEA
0	0	0	0	0	0	0	0

Bit 3

TRGOVIE	Overflow interrupt enable
0	Interrupt by TRGOVF bit disabled
1	Interrupt by TRGOVF bit enabled

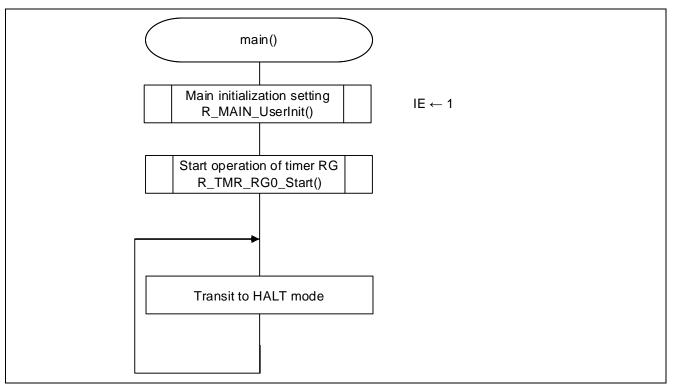
Bit 2

TRGUDIE	Underflow interrupt enable
0	Interrupt by TRGUDF bit disabled
1	Interrupt by TRGUDF bit enabled

Bit 1

TRGIMIEB	Input-capture/compare-match interrupt enable B
0	Interrupt by TRGIMFB bit disabled
1	Interrupt by TRGIMFB bit enabled

Bit 0


TRGIMIEA	Input-capture/compare-match interrupt enable A
0	Interrupt by TRGIMFA bit disabled
1	Interrupt by TRGIMFA bit enabled

x: Bits not used in this setting item

6.4.5.7 Main Processing

Figure 6.10 shows the flowchart for the main processing.

Figure 6.10 Main Processing

6.4.5.8 Timer RG Operation Start

Figure 6.11 shows the flowchart for starting timer RG operation.

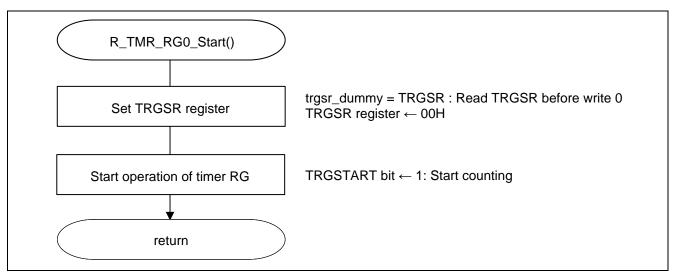


Figure 6.11 Timer RG Operation Start

Starting timer RG counter operation

• Timer RG mode register (TRGMR) Start timer RG counter operation.

Symbol: TRGMR

7	6	5	4	3	2	1	0
TRGSTAR	T TRGELCICE	TRGDFCK1	TRGDFCK0	TRGDFB	TRGDFA	TRGMDF	TRGPWM
1	Х	Х	Х	Х	Х	Х	Х

Bit 7

TRGSTART	Timer RG count start			
0	Count stops			
1	Count starts			

x: Bits not used in this setting item

7. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

8. Reference Application Notes

RL78/G14 Timer RG Buffer Operation in PWM Mode CC-RL (R01AN2853) RL78/G14 Timer RG in Phase Counting Mode CC-RL (R01AN2573) The latest versions can be downloaded from the Renesas Electronics website.

9. Reference Documents

User's Manual: Hardware RL78/G14 User's Manual: Hardware (R01UH0186) R8C/36M Group User's Manual: Hardware (R01UH0259) The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description		
Rev.	Date	Page		Summary
1.00	Nov. 30, 2018	-	First edition issued	
1.00	1404. 50, 2010			

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
 Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Ind Tel: +91-80-67208700, Fax: +91-80-67208777 Indiranagar, Bangalore 560 038, India Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338