

RL78/G14, H8/36109

Migration Guide from H8 to RL78: Exception Handling

Introduction

This application note describes how to migrate the Exception handling of H8/36109 to the Reset function and the Interrupt function of RL78/G14 (100-pin package).

Target Device

RL78/G14, H8/36109

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Exception handling of H8/36109 and Interrupt function and Reset function of RL78/G143	
2.	Differences between Reset	
3.	Differences between Interrupt	
3.1	Differences in Function Overview	
3.2	Register Compatibilities	
3.3	Comparison between Interrupt Priorities7	
4.	Sample Code for Interrupt Function	
5.	Documents for Reference	
Rev	ision History13	

1. Exception handling of H8/36109 and Interrupt function and Reset function of RL78/G14

Table 1.1 shows the functions of the Exception handling of H8/36109, Table 1.2 shows the functions of Reset function of RL78/G14, Table 1.3 shows the functions of Interrupt function of RL78/G14.

Function	Explanation	
Reset	A reset has the highest exception priority. Exception handling starts after	
	the reset state is cleared by a negation of the \overline{RES} signal. Exception	
	handling is also started when the watchdog timer overflows.	
	The exception handling executed at this time is the same as that for a	
	reset by the RES pin.	
Trap Instruction	Exception handling starts when a trap instruction (TRAPA) is executed. A vector address corresponding to a vector number from 0 to 3 which are specified in the instruction code is generated. Exception handling can be executed at all times in the program execution state, regardless of the setting of the I bit in CCR.	
Interrupts	External interrupts other than the NMI and internal interrupts other than the address break are masked by the I bit in CCR, and kept pending while the I bit is set to 1. Exception handling starts when the current instruction or exception handling ends, if an interrupt is requested. The priority levels of interrupt sources other than the NMI and address break can be set for each module by the interrupt control register (ICR).	

|--|

Table 1.2 Functions of Reset function of RL78/G14

Function	Explanation	
External reset	External reset input via RESET pin	
Internal reset	- Internal reset by watchdog timer program loop detection	
	 Internal reset by comparison of supply voltage and detection voltage of power-on-reset (POR) circuit 	
	 Internal reset by comparison of supply voltage of the voltage detector (LVD) and detection voltage 	
	- Internal reset by execution of illegal instruction (Note)	
	- Internal reset by RAM parity error	
	- Internal reset by illegal-memory access	

Note. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or onchip debug emulator.

Function	Explanation
Maskable interrupts	These interrupts undergo mask control. Maskable interrupts can be divided into four priority groups by setting the priority specification flag registers. Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupt requests, each having the same priority, are simultaneously generated, then they are processed according to the default priority of vectored interrupt servicing. A standby release signal is generated and STOP, HALT, and SNOOZE modes are released. External interrupt requests and internal interrupt requests are provided as
	maskable interrupts.
Software interrupt	This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

Table 1.3Functions of Interrupt function of RL78/G14

Table 1.4 shows the Exception handling corresponding to the Reset function and the Interrupt function.

H8/36109	RL78/G14		
Reset	External reset, Internal reset		
Trap Instruction	None		
Interrupts (Include NMI interrupt request)	Maskable interrupts		

Table 1.4	Correspondence between Functions
-----------	----------------------------------

2. Differences between Reset

Table 2.1 summarizes the differences between the reset functions of H8/36109 and RL78/G14.

Item	H8/36109	RL78/G14
Reset sources	Reset by the RES pin	External reset input via RESET pin
	Reset by the Watchdog timer	 Internal reset by watchdog timer program loop detection Internal reset by comparison of supply voltage and detection voltage of power- on-reset (POR) circuit Internal reset by comparison of supply voltage of the voltage detector (LVD) and detection voltage Internal reset by execution of illegal instruction (^{Note)} Internal reset by RAM parity error Internal reset by illegal-memory access

Note. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or onchip debug emulator.

3. Differences between Interrupt

3.1 Differences in Function Overview

Table 3.1 shows the differences between the Interrupt.

Table 3.1 Difference between Interrupt			
Item	H8/36109	RL78/G14	
	Interrupt	Interrupt	
Interrupt request	- External interrupt	- External interrupt	
	- Internal interrupt	- Internal interrupt	
External interrupt request	- IRQ3 to IRQ0 interrupt	- Pin input edge detection	
	- WKP interrupt	- Key return signal detection	
	Non-maskable interrupt	None	
Priority level	2 level	4 level	
Interrupt Response Time	19 to 41 States	9 clocks to 16 clocks	
		$(1 \operatorname{clock} = 1/f_{CLK})$	
Interrupt request flag	IRRXX bit	XXIFX bit	
	IWPXX bit		
Interrupt Enable	IENXX bit	XXMKX bit	
Interrupt Priority Level	ICRXX bit	XXPR1X, XXPR0X bit	

3.2 Register Compatibilities

Table 3.2 compares the registers for the Interrupt functions of the H8/36109 and the RL78/G14.

Item	H8/36109	RL78/G14
Interrupt edge select register	IEGR1 register, IEGR2 register	EGP0 register, EGP1 register
		EGN0 register, EGN1 register
Interrupt enable register	IENR1 register, IENR2 register	MK0L register, MK0H register
		MK1L register, MK1H register
		MK2L register, MK2H register
Interrupt flag register	IRR1 register, IRR2 register	IF0L register, IF0H register
		IF1L register, IF1H register
		IF2L register, IF2H register
Wakeup interrupt flag register	IWPR register	None
Interrupt control registers	ICRA register	PR00L register, PR00H register
	ICRB register	PR01L register, PR01H register
	ICRC register	PR02L register, PR02H register
	ICRD register	PR10L register, PR10H register
		PR11L register, PR11H register
		PR12L register, PR12H register

Table 3.2	Comparison between	Registers
	oompanoon sourcon	riegietere

3.3 Comparison between Interrupt Priorities

Table 3.3 to Table 3.7 compare the interrupt priorities of H8/36109 and RL78/G14 (100-pin products).

H8/36109					RL78/G14				
Vector Number	Related Module	Exception Sources	Vector Address	Default Priority	Name	Trigger	Vector Table		
	-	-	-	_	Reset	Reset Source	Address 00000H		
0	RES pin Watchdog timer	Reset	H'000000	0	INTWDTI	Watchdog timer interval	00004H		
1	-	Reserved for system	H'000004	1	INTLVI	Voltage detection	00006H		
2		use		2	INTP0	Pin input edge detection	00008H		
3				3	INTP1		0000AH		
4				4	INTP2		0000CH		
5				5	INTP3		0000EH		
6				6	INTP4		00010H		
7	External interrupt pin	NMI	H'00001C	7	INTP5		00012H		
8	CPU	Trap instruction #0	H'000020	8	INTST2/ INTCSI20/ INTIIC20	UART2 transmission transfer end or buffer empty interrupt/CSI20 transfer end or buffer empty interrupt/IIC20 transfer end	00014H		
9	CPU	Trap instruction #1	H'000024	9	INTSR2 INTCSI21/ INTIIC21	UART2 reception transfer end/CSI21 transfer end or buffer empty interrupt/IIC21 transfer end	00016H		
10	CPU	Trap instruction #2	H'000028	10	INTSRE2	UART2 reception communication error occurrence	00018H		
					INTTM11H	End of timer channel 11 count or capture (at higher 8-bit timer operation)			
11	CPU	Trap instruction #3	H'00002C	11	INTST0/ INTCSI00/ INTIIC00	UART0 transmission transfer end or buffer empty interrupt/CSI00 transfer end or buffer empty interrupt/IIC00 transfer end	0001EH		

Table 3.3 Comparison between Interrupt Priorities (1/5)

	H8/36109				RL78/G14					
Vector Number	Related Module	Exception Sources	Vector Address (Note)	Default Priority	Name	Trigger	Vector Table Address			
12	Address break	Break conditions satisfied	H'000030	12	INTSR0/ INTCSI01/ INTIIC01	UART0 reception transfer end/CSI01 transfer end or buffer empty interrupt/IIC01 transfer end	00020H			
13 C	CPU	Direct transition by executing the SLEEP instruction	H'000034	13	INTSRE0	UART0 reception communication error occurrence	00022H			
					INTTM01H	End of timer channel 01 count or capture (at higher 8-bit timer operation)				
14	External interrupt pin	IRQ0 Low-voltage detection interrupt	H'000038	14	INTST1/ INTCSI10/ INTIIC10	UART1 transmission transfer end or buffer empty interrupt/CSI10 transfer end or buffer empty interrupt/IIC10 transfer end	00024H			
15		IRQ1	H'00003C	15	INTSR1/ INTCSI11/ INTIIC11	UART1 reception transfer end/CSI11 transfer end or buffer empty interrupt/IIC11 transfer end	00026H			
16		IRQ2	H'000040	16	INTSRE1	UART1 reception communication error occurrence	00028H			
					INTTM03H	End of timer channel 03 count or capture (at higher 8-bit timer operation)				
17		IRQ3	H'000044	17	INTIICA0	End of IICA0 communication	0002AH			
18		WKP	H'000048	18	INTTM00	End of timer channel 00 count or capture	0002CH			
19	RTC	Overflow	H'00004C	19	INTTM01	End of timer channel 01 count or capture	0002EH			
20	-	Reserved for system use	H'000050	20	INTTM02	End of timer channel 02 count or capture	00030H			
21				21	INTTM03	End of timer channel 03 count or capture	00032H			

Table 3.4Comparison between Interrupt Priorities (2/5)

Table 3.5 Comparison between Interrupt Priorities (3/5)									
		H8/36109	I	RL78/G14					
Vector Number	Related Module	Exception Sources	Vector Address	Default Priority	Name	Trigger	Vector Table		
			(Note)				Address		
22	Timer V	Compare match A	H'000058	22	INTAD	End of A/D conversion	00034H		
		Compare match B							
		Overflow							
23	SCI3	Receive data full	H'00005C	23	INTRTC	Fixed-cycle signal of real-	00036H		
		Transmit data empty				time clock/alarm match			
		Transmit end				detection			
		Receive error							
24	IIC2	Transmit data empty	H'000060	24	INTIT	Interval signal detection	00038H		
		Transmit end							
		Receive data full							
		Arbitration lost/overrun							
		error							
		NACK detection							
		Stop condition detected							
25	_	Reserved for system	H'000064	25	INTKR	Key return signal detection	0003AH		
26	_	use	11000004	26	INTST3/	UART3 transmission	0003CH		
20				20	INTCSI30/	transfer end or buffer empty	0000011		
					INTIIC30	interrupt/CSI30 transfer end			
						or buffer empty			
						interrupt/IIC30 transfer end			
27				27	INTSR3/	UART3 reception transfer	0003EH		
					INTCSI31/	end/CSI31 transfer end or			
					INTIIC31	buffer empty interrupt/IIC31			
						transfer end			
28				28	INTTRJ0	Timer RJ interrupt	00040H		
29	Timer B1	Overflow	H'000074	29	INTTM10	End of timer channel 10	00042H		
						count or			
30		Pagaryad for ayatam	H'000078	30	INTTM11	capture End of timer channel 11	00044H		
30	-	Reserved for system use	П 000076	30		count or	0004411		
		use				capture			
31				31	INTTM12	End of timer channel 12	00046H		
						count or			
						capture			
32	SCI3_2	Receive data full	H'000080	32	INTTM13	End of timer channel 13	00048H		
	_	Transmit data empty				count or			
		Transmit end				capture			
		Receive error							

Table 3.5Comparison between Interrupt Priorities (3/5)

			parison bet	ween Inte	errupt Prior	. ,		
		H8/36109		RL78/G14				
Vector Number	Related Module	Exception Sources	Vector Address (Note)	Default Priority	Name	Trigger	Vector Table Address	
33	-	Reserved for system use	H'000084	33	INTP6	Pin input edge detection	0004AH	
34	SCI3_3	Receive data full Transmit data empty Transmit end Receive error	H'000088	34	INTP7		0004CH	
35	Timer RC	Input capture A / compare match A Input capture B / compare match B Input capture C / compare match C Input capture D / compare match D Overflow	H'00008C	35	INTP8		0004EH	
36	A/D converter	A/D conversion end	H'000090	36	INTP9		00050H	
37	Timer RD_0	Compare match / input capture A0 to D0 Overflow	H'000094	37	INTP10 INTCMP0	Pin input edge detection Comparator detection 0	00052H	
38	Timer RD_1	Compare match / input capture A1 to D1 Overflow	H'000098	38	INTP11 INTCMP1	Pin input edge detection Comparator detection 1	00054H	
39	Timer RD_2	Compare match / input capture A2 to D2 Overflow	H'00009C	39	INTTRD0	Timer RD0 input capture, compare match, overflow, underflow interrupt	00056H	
40	Timer RD_3	Compare match / input capture A3 to D3 Overflow	H'0000A0	40	INTTRD1	Timer RD1 input capture, compare match, overflow, underflow interrupt	00058H	
41	Clock switching	When the system clock sources are switched from the external-input signal to the internal-generated signal	H'0000A4	41	INTTRG	Timer RG input capture, compare match, overflow, underflow interrupt	0005AH	

Table 3.6Comparison between Interrupt Priorities (4/5)

	H8/36109				RL78/G14			
Vector Number	Related Module	Exception Sources	Vector Address (Note)	Default Priority	Name	Trigger	Vector Table Address	
-	-	-	-	42	INTSRE3	UART3 reception communication error occurrence End of timer channel 13 count or capture (at 8-bit timer operation)	0005CH	
-	-	-	-	43	INTIICA1	End of IICA1 communication	00060H	
-	-	-	-	44	INTFL	Reserved (Note2)	00062H	

Table 3.7Comparison between Interrupt Priorities (5/5)

Note1. Only the first address is listed.

Note2. Be used at the flash self-programming library or the data flash library.

4. Sample Code for Interrupt Function

The sample code for the interrupt functions is explained in the following application notes.

• RL78/G13 Key Interrupt Function CC-RL (R01AN2700)

5. Documents for Reference

User's Manual:

- RL78/G14 User's Manual: Hardware (R01UH0186)
- RL78 family User's Manual: Software (R01US0015)
- H8/36109 Group User's Manual: Hardware (R01UH0294)
- H8/300H Series Software Manual (REJ09B0213)

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News:

The latest information can be downloaded from the Renesas Electronics website.

Revision History

		Descriptio	n
Rev.	Date	Page	Summary
1.00	Jul.10, 2020.	-	First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.