
 APPLICATION NOTE

R01AN1929EU0100 Rev. 1.00 Page 1 of 46
May 26, 2014

Renesas USB MCU
USB PMSC with Local File System and Flash Storage

Introduction
This document is an extension of the PMSC application note R01AN0514EJ0400. for USB Peripheral Mass Storage
class using Renesas. Added to this version is the ability of the RX platfrom to locally access (r/w) files on the board
using its own file system library, and also the ability to use the RSK63N’s serial flash chip.

It is an add-on for the RSK63N, but the implementation can be applied to any of the devices in the RX600.

Target Device
RX63N Group. This program can be used with other RX600 Series microcontrollers that have the same USB module as
the above target devices. When using this code in an end product or other application, its operation must be tested and
evaluated thoroughly.

This program has been evaluated usingthe Renesas Starter Kit board for RX63N.

The default storage for demo is RAM. See 9 for how to use the board SPI flash.

The storage media block size is set to 4 kB which only works with Win7 or later. This can be changed to standard 512 B
bokcs in ram_disk.h and ff_conf.h.

R01AN1929EU0100
Rev. 1.00

May 26, 2014

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 2 of 46
May 26, 2014

Content
1. Overview ... 4
1.1 Functions and Features... 4
1.2 Related Documents ... 4
1.3 Terms and Abbreviations .. 5

2. Using E2studio .. 6
2.1 Import the Project .. 6

3. Software Configuration .. 7
3.1 Module Configuration .. 7
3.2 File Structure ... 9
3.3 Setting Up the Code For Your Board .. 9
3.4 System Resources .. 10

4. Peripheral MSC Firmware Application Functionality (APL)... 13
4.1 Media R/W functionality as seen from USB Host .. 13
4.2 Media R/W functionality as seen from MCU application layer .. 16

5. Peripheral Device Class Driver (PDCD).. 17
5.1 Basic Functions ... 17
5.2 BOT Protocol Overview ... 17

6. USB Peripheral Mass Storage Class Driver (PMSCD) ... 24
6.1 Basic Functions ... 24
6.2 List of API Functions ... 24
6.3 Class Driver Registration... 30
6.4 User Definition Tables ... 30

7. Peripheral Mass Storage Device Driver (PMSDD) ... 31
7.1 PMSDD Storage Command Structure .. 32
7.2 List of PMSDD Functions .. 33
7.3 PMSDD Task Description ... 34

8. Target File System .. 35
8.1 User Interactive Board Demo .. 35
8.2 Long Filenames ... 35

9. Media Driver Interface ... 36
9.1 Overview of Media Driver API Functions .. 36
9.2 Selecting Media Driver .. 36
9.3 Changing (adding) Storage Media .. 37

10. The RAM Media Driver .. 39
10.1 RAM-disk Media Driver Default FAT Format... 39
10.2 RAM-disk Global Area Variables ... 39
10.3 Constant Definitions .. 40
10.4 Operation Overview ... 41

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 3 of 46
May 26, 2014

11. OS and Non-OS Resources .. 42
11.1 Including Resources in RTOS ... 42
11.2 Resource Registration in Non-OS Scheduler ... 43

12. Limitations ... 44

13. Using the Renesas Debug Console .. 45
13.1 STDIO Low Level Source Code .. 45

Website and Support ... 46

Revision Record .. 1

General Precautions in the Handling of MPU/MCU Products ... 2

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 4 of 46
May 26, 2014

1. Overview
This document is a manual describing use of the USB Peripheral Mass Storage class driver for Renesas.

1.1 Functions and Features
The USB Peripheral Mass Storage Class driver comprises a USB Mass Storage class bulk-only transport (BOT)
protocol. When combined with a USB peripheral control driver and storage device driver, it enables communication
with a USB host as a BOT-compatible storage device.

1.2 Related Documents
1. USB Revision 2.0 Specification
2. USB Mass Storage Class Specification Overview Revision 1.1
3. USB Mass Storage Class Bulk-Only Transport Revision 1.0, “BOT” protocol

 [http://www.usb.org/developers/docs/]
4. RX62N Group, RX621 Group User's Manual: Hardware. (Document No. R01UH0033EJ.)
5. RX63N Group User's Manual: Hardware. (Document No. R01UH0041EJ.)
6. RX630 Group User's Manual: Hardware. (Document No. R01UH0040EJ.)
7. R8A66597 Data Sheet. (Document No.REJ03F0229RJJ03F.)
8. Renesas USB Basic Firmware Application Note. (Document No. R01AN0512EJ.)
9. RX600 Series USB PMSC with Local File System and Flash Storage installation guide.
 (Document No. R01AN0529EJ.)
10. Block Access Media Driver API. (Document No. R01AN1443EU.)
11. Block Storage Driver for Serial Flash via RSPI. (Document No. R01AN1466EU.)

 Renesas Electronics Website

[http:// www.renesas.com/]

 USB Devices Page
[http://www.renesas.com/prod/usb/]

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 5 of 46
May 26, 2014

1.3 Terms and Abbreviations
ANSI : American National Standards Institute
APL : Application program
ASSP (asp) : Application Specific Standard Produce
BOT : USB mass storage class bulk only transport. See “Universal Serial Bus Mass

Storage Class Bulk-Only Transport” at USB Implementers Forum.

cost : Prefix of Function and File for Host & Peripheral USB-Basic-F/W
DDI : Device driver interface, or PMSDD API.
HEW : High-performance Embedded Workshop
H/W : Renesas USB device
ITRON, uITRON : Industrial The Real-time Operating system Nucleus
non-OS : USB basic firmware for OS less system
PCD : Peripheral control driver of USB-Basic-F/W
PCDC : Communications Devices Class for peripheral
PCI : PCD interface
PMSCD : Peripheral mass storage USB class driver (PMSCF + PCI + DDI)
PMSCF : Peripheral mass storage class function
PMSDD : Peripheral mass storage device driver (sample ATAPI driver)
PP : Pre-processed definition
pstd : Prefix of Function and File for Peripheral USB-Basic-F/W
R8A66597 : Renesas Hi-Speed USB2.0 ASSP R8A66597 board

(Use in combination with RX62N-RSK.)
RTOS : USB basic firmware for uITRON system
RX62N-RSK : Renesas Starter Kits for RX62N
RX630-RSK : Renesas Starter Kits for RX630
RX63N-RSK : Renesas Starter Kits for RX63N
Scheduler : Used to schedule functions, like a simplified OS.
Scheduler Macro : Used to call a scheduler function (non-OS)
Task : Processing unit
USB : Universal Serial Bus
USB-Basic-F/W : USB basic firmware for Renesas USB device (non-OS& RTOS)

(Note 1) When RX62N-RSK is used in conjunction with the R8A66597, SW1 is allocated to a port used by an
interrupt. Therefore, do not use SW1.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 6 of 46
May 26, 2014

2. Using E2studio
2.1 Import the Project
With e2 studio, a project should not be moved, but first exported then imported. Follow the directions below.

2.1.1 New Workspace
1. Create empty folder where you want workspace.

2. Start E2S, and point to that folder as E2S asks what workspace to open.

3. Click Workbench icon (bottom right in blue intro-screen).

4. Continue with next step below.

2.1.2 Existing Workspace
1. Select Import.

2. Select General => Existing Projects into workspace. ("Create new projects from an archive file or directory.")

3. Browse to

Archive zip-file, or

Root directory

For both, make sure checkbox "Copy project to workspace” is checked.

You have now imported this project into the workspace. You can go ahead and import other projects into the same
workspace... Follow below for importing to existing workspace.

Build with Cntrl+B.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 7 of 46
May 26, 2014

3. Software Configuration
3.1 Module Configuration
As shown in Figure 3-1, PDCD comprises two layers: PMSCD and PMSDD.

PMSCD comprises three layers: PCD API (PCI), PMSDD API (DDI), and BOT protocol control and data sends and
receives (PMSCF).

In the case of RTOS, PMSCD and PMSDD run on top of uITRON as tasks.

PMSCD uses the BOT protocol to communicate with the host via PCD.

PMSDD analyzes and executes storage commands received from PMSCD. PMSDD accesses media data via the media
driver.

Figure 3-1 shows the configuration of the modules.

Mass Storage Device Driver (PMSDD)

Device Driver Interface (DDI)

Peripheral Mass Storage Class Function (PMSCF)

PCD Interface (PCI)

USB Peripheral Control Driver (PCD)(Media driver)

USB Peripheral HardwareMedia

Peripheral
Mass Storage
Class Driver

(PMSCD)

Peripheral
 Device Class

Driver
(PDCD)

 Figure 3-1 Software Configuration Diagram

3.1.1 PDCD
As shown in Figure 3-1, PDCD incorporates PMSDD and PMSCD. PDCD takes care of class requests from the USB
host, and responds to USB host storage commands.

Table 3-1 provides an overview of the parts of PDCD, aswell as PCD and the media driver. The media driver is
implemented as an interchangeable block media type storage driver.

3.1.2 PMSCD
PMSCD comprises three layers: PMSCF, which performs BOT protocol control and data transmission/reception; DDI
for interfacing with PMSDD; and a group of functions (PCI) for interfacing with PCD. The main functions of these
layers are as follows.

1. PMSCF:

USB mass storage class BOT protocol control

CBW analysis, data transmission/reception, and CSW creation in coordination with PMSDD/PCD

Responding to class requests (MassStorageReset, GetMaxLUN)

2. PCI :

Processing of tasks, message boxes, and memory pools during configuration and detach

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 8 of 46
May 26, 2014

Receiving class requests

Clearing STALL states and setting related callback functions

Setting structures and callback functions for PCD transmit/receive data

3. DDI:

Driver registration.

Transferring data information and execution results during PMSDD execution - the ATAPI command result
callback is executed.

Table 3-1 Overview of Modules

Chapter
this doc

Module Description Reference folder/file Note

USB
Basic
FW

PCD USB peripheral hardware
control driver.

\USBSTDFW See “Renesas USB
Device USB Basic
Firmware Application
note” Document no.
R01AN0512.

Ch. 0 PCI PMSCF-PCD interface
functions.

\MSCFW\PMSC\
r_usb_pmsc_pci.c

Ch. 0 PMSCF Core component of PMSCD.
Controls BOT protocol data
and responds to USB class
requests. Also transfers
storage commands and data to
and from storage (PMSDD).

\MSCFW\PMSC\
r_usb_pmsc_request.c
r_usb_pmsc_driver.c

 DDI PMSDD-PMSCF interface:
Driver registration and
ATAPI result callback.

\MSCFW\PMSC\
r_usb_pmsc_ddi.c

Ch. 0 PMSDD Peripheral mass storage media
driver. It processes storage
commands from PMSCD and
accesses the media via the
block media driver below.
 (To be modified to match the
memory device.)

\MSCFW\MEDIA
\r_usb_atapi_driver.c

Ch. 0 Block
Media
Driver

Block media storage driver.
For either RAM or SPI flash
data storage.

\MSCFW\MEDIA
r_usb_atapi_memory.c

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 9 of 46
May 26, 2014

3.2 File Structure
The following shows the folder structure for the files provided in this device class.

This source code does not use the ANSI-C type IO interface.

+---WorkSpace

(USB-BASIC-FW) [Common USB code that is used by all USB firmware]
 +---USBSTDFW USB Basic FW

 +---include USB Basic FW Common header file

 +---nonOS / RTOS

((ANSI-C File I/O System Calls)
 +---ANSI [open(), close(), read(), write(), etc of the USB class driver]

(Class F/W)

 +---MSCFW

 | +---include Peripheral MSC header file

 | +---PMSC Peripheral MSC driver

(Sample Code) [user application]

 +---SmplMain

 | +---APL Sample Application

(HW Setting) [Hardware access layer; to manipulate the MCU’s USB register]

 +---HwResourceForUSB Hardware resource for RX63N/RX631 Group

 (media_driver) File system and storage media

 +---elm ELM FAT32 file system (long filenames and 4 kB storage media
 possible)

 +---r_bsp FIT BSP

 +---ram_disk Driver when using RAM instaed of serial flash (default)

 +---r_rspi_rx FIT RSPI

 +---r_spi_flash FIT Flash

 +---r_switches FIT Switches package

 +--- spi_flash_block_if Block storage interface

(uITRON) [uItron OS code]

 +---RI600_4 ITRON Folder (not included in non-OS version)

3.3 Setting Up the Code For Your Board
In this chapter we will set up the code for the MCU and board you want to use.

3.3.1 Endian
Set target for Little Endian as this is the default setup of the SW.

3.3.2 Add the Right “HW Resource” Code
Replace the existing code in folder HwResourceForUSB with the content of the relevant folder
HwResourceForUSB_devicename, as mentioned in 3.2.

3.3.3 Selecting Platform
Open file platform.h and uncomment one include file corresponding to your board

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 10 of 46
May 26, 2014

/* RSKRX63N */
#include "./board/rskrx63n/r_bsp.h"

3.3.4 Selecting Build Configuration
This version only supports RSK63N.

Figure 2. In HEW, Select the Build Configuration for the board you are going to use. Selecting configuration
determines which files are included in the project, include file directory paths, build options, etc.

Table 3-2 shows the file structure supplied with PDCD.

Table 3-2 File Structure

File Name Description Note
MEDIA/r_usb_atapi_memory.c FAT (16) /FAT(12) data Sample
MEDIA/r_usb_atapi_driver.c Device driver (PMSDD/media driver) Sample
include/r_usb_catapi_define.h Device driver header file Sample
PMSC/r_usb_pmsc_ddi.c PMSDD interface functions (DDI)

Driver registration, storage command callback.

PMSC/r_usb_pmsc_driver.c USB class driver (PMSCF)
PMSC/r_usb_pmsc_pci.c PCD interface functions (PCI)
PMSC/r_usb_pmsc_request.c PCD interface functions (class requests)
include/r_usb_pmsc_define.h PMSCD header file
APL/r_usb_pmsc_descriptor.c Mass storage class descriptor Sample
include/r_usb_cmsc_define.h PDCD(PMSCD+PMSDD) common header file
include/r_usb_pmsc_extern.h External reference header file

3.4 System Resources
3.4.1 RTOS version

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 11 of 46
May 26, 2014

Table 3-3 shows the µITRON resources used by PDCD on the µITRON version.

These resources are defined in the r_usb_peri.cfg file.

For details on how to define, refer to the Renesas USB Device USB Basic Firmware Application note.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 12 of 46
May 26, 2014

Table 3-3 uITRON Resources

Object Type Name/Task ID Task Description
Task
Stack size: USB_TSK_STK (512)

USB_PMSC_TSK PMSCD or usb_pmsc_Task
(File : r_usb_pmsc_driver.c)
Priority=3

USB_PFLSH_TSK PMSDD or usb_pmsc_SmpAtapiTask
(File : r_usb_atapi_driver.c)
Priority: 4

Mailboxes
Priority: 1
Waiting task queue: FIFO order
Message queue: FIFO order

USB_PMSC_MBX PDCD -> PMSCD / PMSDD -> PMSCD
mailbox ID

USB_PFLSH_MBX PMSCD -> PMSDD mailbox ID

Memory pool
Block count: USB_BLK_CNT (10)
Block size: USB_BLK_SIZ (64)
Waiting task queue: FIFO order

USB_PMSC_MPL PMSCD memory pool ID

USB_PFLSH_MPL PMSDD memory pool ID

OS base timer Hardware timer 1 ms

3.4.2 Non-OS Version
In the Non-OS version of PMSC, there is a scheduler that invokes a “task” when it has message(s) pending in the task’s
mailbox, and according to the task’s priority. Table 3-4 lists the ID and priority definitions used to register PMSC in the
scheduler.

These are defined in the r_usb_cKernelId.h header file.

For details on how to define, refer to the Renesas USB Device USB Basic Firmware Application note.

Table 3-4 ‘Tasks’ (Mailboxes)

Object Task Name / ID / Mailbox Module
Task USB_PMSC_TSK

/ USB_TID_3

PMSCD, or usb_pmsc_Task
(r_usb_pmsc_driver.c)
Priority: USB_PMSC_PRI (default=1)

USB_PFLSH_TSK
/ USB_TID_4

PMSDD, or usb_pmsc_SmpAtapiTask
(r_usb_atapi_driver.c)
Priority: USB_PFLSH_PRI (default=2)

Mailbox ID USB_PMSC_MBX
/ USB_PMSC_TSK

PDCD => PMSCD / PMSDD => PMSCD
(r_usb_pmsc_pci.c,
r_usb_pmsc_driver.c,
r_usb_pmsc_ddi.c)

USB_PFLSH_MBX
/ USB_PFLSH_TSK

PMSCD => PMSDD mailbox ID
(r_usb_atapi_driver.c)

Memory pool ID USB_PMSC_MPL
/ USB_PMSC_TSK

PMSCD memory pool ID

 USB_PFLSH_MPL
/ USB_PFLSH_TSK

PMSDD memory pool ID

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 13 of 46
May 26, 2014

4. Peripheral MSC Firmware Application Functionality (APL)
Both the USB host and the MCU’s firmware application can read and write to the storage media. This is possible since
both have FAT file system software. To avoid “collisions” due to writes from both sides to the FAT table and media,
the local file system should not be able to write data when attached to a USB host,

4.1 Media R/W functionality as seen from USB Host
PMSC’s main function is to enable file read/write operations on the connected USB mass storage device. The USB
peripheral is to be recognized by the host as a removable disk, so the host (e.g. PC) can performs operations such as
read and write files. Mass Storage Class specification defines the transport protocol (BOT), however, various command
sets could be used to control a storage device. The following are the command sets which can be used over USB:

SFF-8070i, (ATAPI) * – Command set used in this sample code.
SFF-8020i, MMC-2 (ATAPI)
QIC-157
UFI
SCSI transparent command set

This sample mass storage device driver supports the storage command set SFF-8070i (ATAPI) *.

* As listed in “Mass Storage Specification Overview v1.2”, command block specification SFF-8070i is used
(bInterfaceSubClass = 05h) together with protocol code “USB Mass Storage Class Bulk-Only” (BBB;
bInterfaceProtocol = 050h).

4.1.1 Operating Environment
The following diagram illustrates data transfer.

Figure 4.1 shows the operating environment example and Figure 4.2 shows the application operations example.

Figure 4.1 Operating Environment Example

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 14 of 46
May 26, 2014

Figure 4.2 Application Operations Example

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 15 of 46
May 26, 2014

4.1.2 Application Program Flow
In a sense, there is no “user application” The mass storage class driver and mass storage device driver solely executes
requests from the host.

Figure 4.3 shows the application processing flow overview.

Figure 4.3 Application Processing Sequence

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 16 of 46
May 26, 2014

4.1.3 API tasks
Table 4-1 shows lists the APL tasks.

Table 4-1 Lists of APL tasks

Function name Description
usb_cstd_task_start Starts Task
usb_pmsc_task_start A variety of Stars Task for peripheral USB
usb_papl_task_start Start Application task
usb_apl_task_switch Switches Task (non-OS version only)

4.2 Media R/W functionality as seen from MCU application layer
See chapter 9.1 “Overview of Media Driver API Functions”.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 17 of 46
May 26, 2014

5. Peripheral Device Class Driver (PDCD)
5.1 Basic Functions
The functions of PDCD are to:

1. Respond to mass storage class requests from USB host.
2 Respond to USB host storage commands which are encapsulated in the BOT protocol (Bulk Only Transport), see

below)

5.2 BOT Protocol Overview
BOT (USB MSC Bulk-Only Transport) is a transfer protocol that, encapsulates command, data, and status (results of
commands) using only two endpoints (one bulk in and one bulk out).

The ATAPI storage commands and the response status are embedded in a “Command Block Wrapper” (CBW) and a
“Command Status Wrapper” (CSW).

Figure 5-1 shows an overview of how the BOT protocol progresses with command and status data flowing between
USB host and peripheral.

Ready

Command Block Wrapper
Command transfer
(Host → Device)

Command Status Wrapper
Status transfer

(Device → Host)

Data-Out
(Host → Device)

Data-In
(Device → Host)

CBW transfer stage
(Command packet)

Data transfer stage
(Data packet)

CSW transfer stage
(Status packet)

Figure 5-1 BOT protocol Overview.
Command and status flow between USB host and peripheral.

5.2.1 CBW processing
When PMSCD receives a command block wrapper (CBW) from the host, it first verifies the validity of the CBW. If the
CBW is valid, PMSCD notifies PMSDD of the storage command contained in the CBW and requests analysis of the
command. PMSCD finally performs processing based on the analysis by PMSDD (command validity, data transfer
direction and size) and the information contained in the wrapper (data communication direction and size).

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 18 of 46
May 26, 2014

5.2.2 Sequence for storage command with no data transmit/receive
Figure 5-2 shows the sequence of storage commands without data transfer.

(1) CBW transfer stage

PMSCD issues a CBW receive request to PCD and registers a callback function. When PCD receives the CBW, it
executes a callback function which starts the CBW transfer stage. PMSCD verifies the validity of the CBW and
transfers the storage command (CBWCB) to PMSDD. PMSCD requests PMSDD to execute storage commands.
PMSDD executes the storage command and returns the result to PMSCD.

(2) CSW transfer stage

Based on the execution result at the time of callback, PMSCD creates a command status wrapper (CSW) and transmits
it to the host via PCD.

For details on PCD operation refer to the USB basic firmware Application note.

Host PCD PMSCD PMSDD

CBW transfer stage

CSW transfer stage

Transmit CBW
Ex.)TEST UNIT READY Call-back

(CBW transfer)

(CBW reception preparation)

Verify CBW validity

Verify CBW meaning

13-case identification

usb_pmsc_
SmpAtapiAnalyzeCBWCB()

usb_pmsc_
SmpAtapiCommandExecute()

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage
command

Execute storage
command

Callback function registration
called when storage

command execution is
completed

CBW receive request
(callback function registration

called when CBW is
received)

Figure 5-2 Sequence of Storage Command for No Transmit/Receive Data

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 19 of 46
May 26, 2014

5.2.3 Sequence with storage command for transmit (IN) data
Figure 5-3 shows the sequence of storage command when there is transmit (IN) data from the peripheral side.

(1) CBW transfer stage

PMSCD executes a CBW receive request to PCD, and sets up a callback. When PCD receives the CBW it executes the
callback. PMSCD verifies the validity of the CBW and transfers the storage command (CBWCB) to PMSDD. PMSDD
analyzes the data transmit command and returns the result to PMSCD. PMSCD then reads the CBW and sends an
ATAPI storage command execution request to PMSDD together with a callback registration.

(2) Data IN transfer stage

Based on the execution result at the time of callback, PMSCD notifies PCD of the data storage area and data size, and
data communication with the USB host takes place. When the peripheral PCD issues a transmit end notification (status),
PMSCD once again sends a continuation request to PMSDD, and data transmission is repeated.

(3) CSW transfer stage

When PMSCD receives a command processing end result from PMSDD, PMSCD creates a command status wrapper
(CSW) and transmits it to the host via PCD.

For PCD operation details refer the USB Basic Firmware Application note.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 20 of 46
May 26, 2014

Host PCD PMSCD PMSDD

CSW transfer stage

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage
command

Execute storage
command

Execute storage
command

Execute storage
command
(final data)

Data (IN) transfer stage

IN data

IN data

(transmit status)

Call-back

(transmit data information)

(transmit status)

Call-back

(transmit data information)

Call-back
(transmit data

information transfer)

Call-back
(transmit data

information transfer)

13-case identification

CBW transfer stage

Transmit CBW

Ex.) READ(10)
(CBW transfer)

Call-back
Verify CBW validity

Verify CBW meaning

usb_pmsc_
SmpAtapiAnalyzeCBWCB()

usb_pmsc_
SmpAtapiCommandExecute()

usb_pmsc_
SmpAtapiCommandExecute()

usb_pmsc_
SmpAtapiCommandExecute()

CBW receive request

Callback function registration
called when storage

command execution is
completed

Callback function registration
called when storage

command execution is
completed

(callback function registration
called when CBW is

received)

Data transfer

Data transfer

Figure 5-3 Sequence of Storage Command for Transmit (IN) Data

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 21 of 46
May 26, 2014

5.2.4 Sequence for storage command with receive (OUT) data
Figure 5-4 shows the sequence of storage command when there is transmit (OUT) data from the peripheral.

(1) CBW transfer stage

In the CBW transfer stage, PMSCD issues a CBW receive request to PCD and sets up a callback.. When PCD receives
the CBW it executes the callback. PMSCD verifies the validity of the CBW and transfers the storage command
(CBWCB) to PMSDD. PMSDD analyzes the data transmit command, and returns the result to PMSCD. PMSCD then
compares the analysis result from PMSDD with the information contained in the CBW and sends an ATAPI storage
command execution request to PMSDD together with a callback registration.

(2) Data OUT transfer stage

Based on the callback execution result, PMSCD notifies PCD of the data storage area and data size, and data
communication with the host takes place. When it receives transmit end notification from PCD, PMSCD once again
sends a common continuation request to PMSDD, and data transmission is repeated.

(3) CSW transfer stage

When it receives a command processing end result from PMSDD, PMSCD creates a command status wrapper (CSW)
and transmits it to the host via PCD.

For PCD operation details refer to the USB Basic Firmware Application note.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 22 of 46
May 26, 2014

Host PCD PMSCD PMSDD

CSW transfer stage

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage
command

Execute storage
command

Execute storage
command

Execute storage
command
(final data)

Data (OUT) transfer stage

OUT data

OUT data

(receive status)

Call-back

(receive data information)

(receive status)

Call-back

(receive data information)

Call-back
(receive data information

transfer)

Call-back
(receive data information

transfer)

13-case identification

CBW transfer stage

Transmit CBW

Ex.) WRITE(10)
(CBW transfer)

Call-back Verify CBW validity

Verify CBW meaning

usb_pmsc_
SmpAtapiAnalyzeCBWCB()

usb_pmsc_
SmpAtapiCommandExecute()

usb_pmsc_
SmpAtapiCommandExecute()

usb_pmsc_
SmpAtapiCommandExecute()

CBW receive request

Callback function registration
called when storage

command execution is
completed

Callback function registration
called when storage

command execution is
completed

(callback function registration
called when CBW is

received)

Data transfer

Data transfer

Figure 5-4 Sequence of Storage Command for Receive (OUT) Data

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 23 of 46
May 26, 2014

5.2.5 Access sequence for class request
Figure 5-5 shows the sequence when a mass storage class request is received.

(1) Setup Stage

When PCD receives a class request in the control transfer setup stage, it sends a request received notification to
PMSCD.

(2) Data Stage

PMSCD executes the control transfer data stage and notifies PCD of data stage end by means of a callback function.

(3) Status Stage

PCD executes the status stage and ends the control transfer.

Host PCD PMSCD PMSDD

Setup stage

Status

Ex.) GetMaxLUN

Call-back

Transmit MaxLUN
Data stage

Status stage

R_usb_pstd_ControlRead()

Create MaxLUN

Request notification

Figure 5-5 Sequence for Class Request

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 24 of 46
May 26, 2014

6. USB Peripheral Mass Storage Class Driver (PMSCD)
6.1 Basic Functions
The basic interface functions of PMSCD are to register, open, and close the Peripheral Mass Storage Class Driver.

The rest of the functionality inside PMSCD was already described in the sequence charts in chapter 0

Peripheral Device Class Driver (PDCD).

6.2 List of API Functions

Table 4.10 List of API Functions

Function Name Description
R_usb_pmsc_Registration Registers PMSC driver
R_usb_pmsc_Open Open PMSC driver
R_usb_pmsc_Close Close PMSC driver

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 25 of 46
May 26, 2014

R_usb_pmsc_Registration

Registers PMSC driver

Format
void R_usb_pmsc_Registration(USB_UTR_t *ptr)

Arguments
USB_UTR_t *ptr : Pointer to USB Transfer Structure

Return Values
－

Description
Register for the USB Peripheral Mass Storage Class .

Make your changes to the registration function according to the application program.

Use the USB_PCDREG_t type structure to register the driver to PCD.

For details, refer to "USB basic firmware Application note".

The information registered with the USB_PCDREG_t type structure members are as follows.

 pipetbl Pipe information table address

 devicetbl Device descriptor address

 qualitbl Device qualifier descriptor address

 configtbl Configuration descriptor address

 othertbl Other speed descriptor address

 stringtbl String descriptor address table

 classinit callback function to start at registration PDCD

 devdefault Callback function to start at transition to the default state

 devconfig Callback function to start at transition to the configuration state

 devdetach Callback function to start at transition to the detach starte

 devsuspend Callback function to start at transition to the suspend state

 devresume Callback function to start at transition to the resume state

 interface Callback function to start at change of interface

 ctrltrans Callback function to start at control transfer for the user

Notes
1. Please set the following member of USB_UTR_t structure.

 USB_REGADR_t ipp : USB register base address
 uint16_t ip : USB IP Number

If the callback process is not necessary, register to prepare a dummy function.

For USB device state detail, refer to " Universal Serial Bus Specification Revision 2.0 " Figure 9-1 Device State
Diagram

String descriptor address table is the more string descriptor address table. Reference case is as follows

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 26 of 46
May 26, 2014

uint8_t *usb_gpmsc_StrPtr[USB_STRINGNUM] =
{
 usb_gpmsc_StringDescriptor0, /* Language ID String Descriptor Address */
 usb_gpmsc_StringDescriptor1, /* iManufacturer String Descriptor Address */
 usb_gpmsc_StringDescriptor2, /* iProduct String Descriptor Address */
 usb_gpmsc_StringDescriptor3, /* iInterface String Descriptor Address */
 usb_gpmsc_StringDescriptor4, /* iConfiguration String Descriptor Address */
 usb_gpmsc_StringDescriptor5, /* iConfiguration String Descriptor Address */
 usb_gpmsc_StringDescriptor6 /* iSerialNumber String Descriptor Address */
};

Example

void usb_pmsc_task_start(void)
{
 USB_UTR_t utr;
 USB_UTR_t *ptr;

 ptr = &utr;
 ptr->ip = USB_PERI_USBIP_NUM;
 if(USB_NOUSE_PP != ptr->ip)
 {
 ptr->ipp = R_usb_cstd_GetUsbIpAdr(ptr->ip);

 R_usb_pmsc_Registration(ptr); /* Peripheral Application Registration */
 R_usb_pmsc_driver_start(ptr); /* Peripheral Class Driver Task Start

 setting */
 usb_pstd_usbdriver_start(ptr); /* Peripheral USB Driver Start Setting */
 usb_papl_task_start(ptr); /* Peripheral Application Task Start
 setting */
 }
}

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 27 of 46
May 26, 2014

R_usb_pmsc_Open

Open PMSC driver

Format

USB_ER_t R_usb_pmsc_Open(USB_UTR_t *ptr, uint16_t data1, uint16_t data2)

Argument

USB_UTR_t *ptr : Pointer to USB Transfer Structure

uint16_t data1 : Not used

uint16_t data2 : Not used

Return Value

uint16_t － Processing result 0:USB_E_OK

Description

This function is called when the USB device is connected to the USB host device and the USB communication
has enabled, and sets the CBW reception setting.

Note

This function is registered as a callback function to the member(devconfig) of USB_PCDREG_t structure.

Example

void R_usb_pmsc_Registration(USB_UTR_t *ptr)
{
 USB_PCDREG_t driver;

 /* Driver registration */
 /* Pipe Define Table address */
 driver.pipetbl = &usb_gpmsc_EpPtr[0];
 /* Device descriptor Table address */
 driver.devicetbl = (uint8_t*)&usb_gpmsc_DeviceDescriptor;
 /* Qualifier descriptor Table address */
 driver.qualitbl = (uint8_t*)&usb_gpmsc_QualifierDescriptor;
 /* Configuration descriptor Table address */
 driver.configtbl = (uint8_t**)&usb_gpmsc_ConPtr;
 /* Other configuration descriptor Table address */
 driver.othertbl = (uint8_t**)&usb_gpmsc_ConPtrOther;
 /* String descriptor Table address */
 driver.stringtbl = (uint8_t**)&usb_gpmsc_StrPtr;
 /* Driver init */
 driver.classinit = &usb_cstd_DummyFunction;
 /* Device default */
 driver.devdefault = &R_usb_pmsc_DescriptorChange;
 /* Device configuered */
 driver.devconfig = (USB_CB_INFO_t)&R_usb_pmsc_Open;
 /* Device detach */
 driver.devdetach = (USB_CB_INFO_t)&R_usb_pmsc_Close;
 /* Device suspend */
 driver.devsuspend = &usb_cstd_DummyFunction;
 /* Device resume */
 driver.devresume = &usb_cstd_DummyFunction;
 /* Interfaced change */

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 28 of 46
May 26, 2014

 driver.interface = &R_usb_pmsc_SetInterface;
 /* Control Transfer */
 driver.ctrltrans = &usb_pmsc_UsrCtrlTransFunction;
 R_usb_pstd_DriverRegistration(ptr, &driver);
}

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 29 of 46
May 26, 2014

R_usb_pmsc_Close

Close PMSC driver

Format

USB_ER_t R_usb_pmsc_Close(USB_UTR_t *ptr, uint16_t data1, uint16_t data2)

Argument

USB_UTR_t *ptr : Pointer to a USB Transfer Structure

uint16_t data1 : Not used

uint16_t data2 : Not used

Return Value

uint16_t － USB_E_OK

Description

This function is called at transition to the detached state. There are no operations. Add if
necessary.

Note

This function is registered as a callback function to the members (devdetach) of USB_PCDREG_t structure

.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 30 of 46
May 26, 2014

Example

void R_usb_pmsc_Registration(USB_UTR_t *ptr)
{
 USB_PCDREG_t driver;

 /* Driver registration */
 /* Pipe Define Table address */
 driver.pipetbl = &usb_gpmsc_EpPtr[0];
 /* Device descriptor Table address */
 driver.devicetbl = (uint8_t*)&usb_gpmsc_DeviceDescriptor;
 /* Qualifier descriptor Table address */
 driver.qualitbl = (uint8_t*)&usb_gpmsc_QualifierDescriptor;
 /* Configuration descriptor Table address */
 driver.configtbl = (uint8_t**)&usb_gpmsc_ConPtr;
 /* Other configuration descriptor Table address */
 driver.othertbl = (uint8_t**)&usb_gpmsc_ConPtrOther;
 /* String descriptor Table address */
 driver.stringtbl = (uint8_t**)&usb_gpmsc_StrPtr;
 /* Driver init */
 driver.classinit = &usb_cstd_DummyFunction;
 /* Device default */
 driver.devdefault = &R_usb_pmsc_DescriptorChange;
 /* Device configuered */
 driver.devconfig = (USB_CB_INFO_t)&R_usb_pmsc_Open;

 /* Device detach */
 driver.devdetach = (USB_CB_INFO_t)&R_usb_pmsc_Close; //

 /* Device suspend */
 driver.devsuspend = &usb_cstd_DummyFunction;
 /* Device resume */
 driver.devresume = &usb_cstd_DummyFunction;
 /* Interfaced change */
 driver.interface = &R_usb_pmsc_SetInterface;
 /* Control Transfer */
 driver.ctrltrans = &usb_pmsc_UsrCtrlTransFunction;
 R_usb_pstd_DriverRegistration(ptr, &driver);
}

6.3 Class Driver Registration
The device class driver PMSCD must be registered with PCD to function. Use the PeripheralRegistration() function to
register PMSCD, using the sample code as reference. For details, refer to the Renesas USB Device USB Basic
Firmware Application note.

6.4 User Definition Tables
It is necessary to create a descriptor table and pipe information table for use by PCD. Refer to the sample files
r_usb_PMSCdescriptor.c and r_usb_PMSCdefEp.h when creating these tables. For details, refer to the Renesas USB
Device USB Basic Firmware Application note.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 31 of 46
May 26, 2014

7. Peripheral Mass Storage Device Driver (PMSDD)
The main function of PMSDD is to analyze and call for execution of storage commands received from the host via
PMSCD. Enumeration is set up with InterfaceSubClass in the code as SFF-8070i (ATAPI). This command set is
therefore used by the host to control the storage media. These are the storage commands:

READ10
INQUIRY
REQUEST_SENSE
MODE_SENSE6
MODE_SENSE10
READ_FORMAT_CAPACITY
READ_CAPACITY
WRITE10
WRITE_AND_VERIFY
MODE_SELECT6
MODE_SELECT10
FORMAT_UNIT
TEST_UNIT_READY
START_STOP_UNIT
SEEK
VERIFY10
PREVENT_ALLOW

PMSDD notifies PMSCD of communication data and execution results related to storage command execution.
PMSDD divides the data transfer intp0 pieces when the transfer data length exceeds the user-specified block count.

 A master boot record (FAT16) sample table is provided.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 32 of 46
May 26, 2014

7.1 PMSDD Storage Command Structure
The “storage command structure” is USB_PMSC_CDB_t. The format of a storage command (SFF-8070i) differs
depending on the command category, so a union is used. Four patterns sort out from ten kinds of command type details
as shown in Table 7-1.

Table 7-1 USB_PMSC_CDB_t Structure

Union Member Type Structure Member Bit Count Command Category
s_usb_ptn0 uint8_t uc_OpCode Command determination (common)

uint8_t
s_LUN

b_LUN 3
b_reserved 5

uint8_t uc_data
s_usb_ptn12 uint8_t uc_OpCode INQUIRY /

REQUEST_SENSE uint8_t
s_LUN

b_LUN 3
b_reserved4 4
b_immed 1

uint8_t uc_rsv2[2]
uint8_t uc_Allocation
uint8_t uc_rsv1[1]
uint8_t uc_rsv6[6]

s_usb_ptn378 uint8_t uc_OpCode Not used (FORMAT UNIT)
uint8_t
s_LUN

b_LUN 3
b_FmtData 1
b_CmpList 1
b_Defect 3

uint8_t ul_LBA0
uint8_t ul_LBA1
uint8_t ul_LBA2
uint8_t ul_LBA3
uint8_t uc_rsv6[6]

s_usb_ptn4569 uint8_t uc_OpCode READ10 /
WRITE10 /
WRITE _AND_VERIFY /
MODE_SENSE /
FORMAT CAPACITY /
MODE SELECT

uint8_t
s_LUN

b_LUN 3
b_1 1
b_reserved2 2
b_ByteChk 1
b_SP 1

uint8_t ul_LogicalBlock0
uint8_t ul_LogicalBlock1
uint8_t ul_LogicalBlock2
uint8_t ul_LogicalBlock3
uint8_t uc_rsv1[1]
uint8_t us_Length_Hi
uint8_t us_Length_Lo

 uint8_t uc_rsv3[3]

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 33 of 46
May 26, 2014

Table 7-2 shows storage commands analysis result .

Table 7-2 The USB_PMSC_CBM_t Structure
- Contains “analysis” result of usb_pmsc_SmpAtapi AnalyzeCbwCb.

 Member PMSDD storage command
analysis RESULT

Remarks

uint32_t ar_rst Data direction. Direction of data transported in last ATAPI
command.

uint32_t ul_size Data size Size of data in last ATAPI command.

7.2 List of PMSDD Functions
Table 7-3 lists the functions of PMSDD.

Table 7-3 List of PMSDD Functions

Function Name Description
usb_pmsc_SmpAtapiAnalyzeCbwCb Analyzes storage command.
usb_pmsc_SmpAtapiTask Main task of PMSDD
usb_pmsc_SmpAtapiGetReadData Returns transmit data storage address and data size.
usb_pmsc_SmpAtapiGetReadMemory Read data address and data size
usb_pmsc_SmpAtapiGetWriteMemory Write data address and data size
usb_pmsc_SmpAtapiInitMedia Initialization at PMSDD start
usb_pmsc_SmpAtapiCloseMedia Processing at PMSDD end
usb_pmsc_SmpAtapiCommandExecute Transmits message from PMSCD to PMSDD main task.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 34 of 46
May 26, 2014

7.3 PMSDD Task Description
PMSDD receives storage commands from PMSCD and executes the storage command. PMSDD also receives host data
transfer results from PMSCD. Table 7-4 lists PMSDD command processing. When the transfer data size exceeds
USB_ATAPI_TRANSFER_UNIT, the data is divided into smaller units and transferred.

For commands that do not involve memory access, the transmitted data is created from the response data tables
usb_gpmsc_AtapiDataSize[],
usb_gpmsc_AtapiDataIndx[],
usb_gpmsc_AtapiReqIndx[], and
usb_gpmsc_AtapiRdDataTbl[]. (*1)

(*1) The response data table follows storage command set SFF-8070i, and the index into the table is determined
by the command. Refer to uc_OpCode in Table 7-1 USB_PMSC_CDB_t Structure) provided in the subclass.

Table 7-4 Corresponding Function for Each Storage Command

Storage command Corresponding Function Description
READ10 usb_pmsc_SmpAtapiGetReadMemory() Gets start address and size.
INQUIRY usb_pmsc_SmpAtapiGetReadData() Selects response data from array

usb_gpmsc_AtapiRdDataTbl.
REQUEST_SENSE usb_pmsc_SmpAtapiGetReadData() Selects response data from array

usb_gpmsc_AtapiRdDataTbl.
MODE_SENSE10 usb_pmsc_SmpAtapiGetReadData() Selects response data from array

usb_gpmsc_AtapiRdDataTbl.
READ_FORMAT_CAPACITY usb_pmsc_SmpAtapiGetReadData() Selects response data from array

usb_gpmsc_AtapiRdDataTbl.
READ_CAPACITY usb_pmsc_SmpAtapiGetReadData() Selects response data from array

usb_gpmsc_AtapiRdDataTbl.
WRITE10 usb_pmsc_SmpAtapiGetWriteMemory() Gets start address and size.
WRITE_AND_VERIFY usb_pmsc_SmpAtapiGetWriteMemory() Gets start address and size.
MODE_SELECT10 usb_pmsc_SmpAtapiGetWriteMemory() Gets start address and size.
FORMAT_UNIT usb_pmsc_SmpAtapiGetWriteMemory() Gets start address and size.
TEST_UNIT_READY usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE
START_STOP_UNIT usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE
SEEK usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE
VERIFY10 usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE
PREVENT_ALLOW usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_FAILED
Else usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_ERROR

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 35 of 46
May 26, 2014

8. Target File System
A FAT32 file system is incorporated with PMSC. This was added so that the target application can locally read and
write files to the media, separately from the USB host.

Before using this file system acknowledge the license conditions at http://creativecommons.org/licenses/by/3.0

This file system has many features, yet it is rather small in object size. Among them:

• It is a Windows compatible FAT32 file system.

• Long file name support is added. To test this in the demo, set USE_LONG_FILENAMES to 1 in
browse_files_from_rsk.c. The preprocessor output will then direct you to adjust a few more things to use
this.

• Multiple storage sector size support is abvailable. That is, larger than 512 byte memory blocks. This is
needed for many storage flash chips, for example the RSK63N has sector (block) storage size 4096 Bytes.

See http://elm-chan.org/fsw/ff/00index_e.html for details on the file system and its API.

8.1 User Interactive Board Demo
A local file browsing demo is also added.

SW1: List next file in current directory.

SW2: View file. Since the board only has a 2*8 character display, the content is only visible in the Debug Console
window.

SW3. Add a test file.

In the demo, files are only written when PMSC is in the non-configured USB state. That is, the USB cable is
disconnected. This was put in place to avoid duplicate - different - cached copies of FAT tables; the USB host’s and the
local one in PMSC. Non-identical copies of FAT tables could arise if both USB host and the PMSC APL both add files
while the media is mounted,

The source code for this demo is mainlyh in the file browse_files_from_rsk.c.By manuevering switches SW1-3 the user
browses the media and add test files.

The file system and demo can be removed if desired, e.g. to save space. In that case exclude files of the HEW project
window pane “Board_app_file_access”, and any calls to these modules or demo switches etc.

8.2 Long Filenames
Please be aware of any license restrictions on using long filenames in your product.

To use long file names, set USE_LONG_FILENAMES to 1 in browse_files_from_rsk.c and follow the text from the
preprocessor output to enable this. When enabled, The demo then write files with long names when SW3 is pressed.

http://elm-chan.org/fsw/ff/00index_e.html

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 36 of 46
May 26, 2014

9. Media Driver Interface
This chapter is an introduction to the block USB PMSC with Local File System and Flash Storage, and how it is used
for PMSC. For complete details on this API and how to create new media drivers that interface through it, see
application note no. r01an1443eu_rx.

PMSC is able to operate with a variety of devices as data storage media. It uses a block storage type driver API
described in the application note USB PMSC with Local File System and Flash Storage (Document No.
r01an1443eu_rx). The storage media interface is an abstract set of functions (R_MEDIA_Read, R_MEDIA_Write, etc)
which are the same regardless of the underlying driver that will be called behind the interface. PMSC can interface any
media driver that supports this API.

 By default, this application uses a RAM-disk media driver that is supplied preconfigured to use a specific RAM
memory area as example storage media. For the RSK63N there is the option to use the board’s SPI-flash as storage. See
9.3.2.

9.1 Overview of Media Driver API Functions
The Block Access Media Driver API serves to interface the PMSC application to a specific media device driver. The
selection of media is made through configuration files that the user must customize. There is one configuration file for
the Block Access Media Driver API, r_media_driver_api_config.h, which has a list of media devices, and another
configuration file for PMSC, r_usb_atapi_driver_config.h, which assigns the selected media driver to be used for
PMSC.

The transport layer subtype in this application is SFF-8070i (ATAPI). This layer processes the storage commands that
are contained in the Command Blocks that are tunneled through the BOT transport layer. Most of the work done to
process the command set is accomplished by routines in the file r_usb_atapi_driver.c. This is where the ATAPI data
storage commands that write or read the storage media, that is, the block API calls, originate. Storage commands pass
through the Block Access Media Driver API layer where they are directed to drivers for the assigned storage device.

Table 9-1 The Block Access Media Driver API functions

Function Name Description
R_MEDIA_Initialize Registers the media driver
R_MEDIA_Open Open media driver
R_MEDIA_Close Close media driver
R_MEDIA_Read Read from a media device
R_MEDIA_Write Write to a media device
R_MEDIA_Ioctl Perform control and query operations on a media device

9.2 Selecting Media Driver
A media driver has a structure that contains the pointers to its implementation of the API’s abstract functions shown in
Table 9-1 above. The name of this driver implementation structure must be assigned to a macro used by the ATAPI
task: ATAPI_MEDIA_DEVICE_DRIVER in r_media_driver_api_config.h.

The media driver has a logical unit number, LUN, assigned to it. The LUN used by the ATAPI task must be defined by
the macro ATAPI_MEDIA_LUN. The storage media used will be determined by how ATAPI_MEDIA_LUN is defined.

Example:

/* r_usb_atapi_driver_config.h */
#define ATAPI_MEDIA_DEVICE_DRIVER g_RamMediaDriver
#define ATAPI_MEDIA_LUN RAM_DISK_LUN
#define USB_ATAPI_BLOCK_UNIT RAMDISK_SECTSIZE

There are a few examples where this is done. To change (only RSK63N can be changed for now) uncomment one of the
macros under

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 37 of 46
May 26, 2014

/* UNCOMMENT ONE STORAGE MEDIA */

In the default example code for PSC, and as can be seen above, g_RamMediaDriver is a RAM-disk driver media
structure instantiated in the r_ram_disk.c source module. RAM_DISK_LUN is from the enumerated list of media
drivers in r_media_driver_api_config.h. The section, or block, size must match both what the host can handle (e.g.
Windows FAT and what the bottom layer driver can handle, e.g. 512 or 4096 bytes.

9.2.1 Initializing the Media Driver Function Set
Once the block media driver functions listed in the g_RamMediaDriver structure actually exist, all that is needed is to
call the abstract function

R_MEDIA_Initialize(ATAPI_MEDIA_LUN, &ATAPI_MEDIA_DEVICE_DRIVER);
which will write the actual driver member functions to g_MediaDriverList[] at runtime. Once the member functions
have populated MediaDriverList, calls to the other abstract block media functions; R_MEDIA_Open, R_MEDIA_Read,
R_MEDIA_Write,… will redirect to call the user’s particular driver functions. In other words, it all happens behind the
scene without the user having to replace the abstract call with the actual driver calls.

This runtime registration of the drivers can be omitted and the member functions be called directly. In that case the
member functions cannot be declared static in the driver source code.

This initialization call is already done in PMSC in file r_media_driver_api.c.

9.3 Changing (adding) Storage Media
Suppose you would like to change what media the data is stored on. Default is RAM, which being volatile memory will
not survive a power cycling. To use a different storage media, the read, write, etc functions must first be made to
conform to the block media driver API described above.

9.3.1 Steps to conform a driver to the block media API
1. In r_media_driver_api_config.h add the new media logical unit number to the enumeration.

2. Add the media driver interface function source code, using return types and arguments as specified in
r_media_driver_api.h. Add a media_driver_s structure containing pointers to these members at the top.

3. In r_usb_atapi_driver_config.h, add the definitions as described in 9.2.

4. Make sure to call the abstract initialize function.

9.3.2 Example - Serial Flash as Storage Media
As an example of a different permanent block storage media (as opposed to volatile RAM) a SPI-flash driver for a serial
SPI flash (U4 on the RSK63N) is added to the source tree. The serial flash chip is connected to the MCU over the
Renesas SPI interface; “RSPI”.

The member functions of this SPI flash driver, and all other files needed to use the SPI flash are in the folder
spi_flash_block_if. This folder contains the files shown in the SPI folder in HEW’s project pane. The file
spi_flash_block_if.c holds the API function definitions to interface the storage chip.

Setup To Use Serial Flash
The serial flash is available for the RSK63N only (PMSC v4.00), and is activated by following these steps.

1. Change r_usb_atapi_driver_config.h as shown below. This will change the build so that the code will use the
serial flash instead of RAM.

/* UNCOMMENT ONE STORAGE MEDIA */
//#define USE_RAM 1
#define USE_SPI_FLASH 1

2. Include the files grouped under the SPI folder in the project / build configuration. That is, the files
spi_flash_block_if.c, (spi_flash_test.c), r_rspi_rx.c, and r_spi_flash.c with associated include files.

3. Switch to 4 kB block size: Change MAX_SS in ffconf.h to be 0x1000 (4096 bytes). Also make sure that
SPIFLASH_DISK_SECTSIZE in spi_flash_block_if.h is the same size. See Restrictions below for more
information regarding block size change.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 38 of 46
May 26, 2014

Restrictions
The default demo, using RAM, with 512 byte sector size, will run fine on any Windows USB host.

To use the serial flash on the RSK63N with Windows as the USB host , Windows 7 or later must be used. This is
because the SPI flash needs a 4 kB file system allocation block size since that is the erase size of the U4 chip on the
RSK63N. Windows7 supports 4 kB physical blocks as opposed to previous versions of Windows.

The industry is rapidly moving towards 4 kB size for storage media. Using 512 bytes as sector size for the SPI flash
driver, being non-native for this particular SPI-flash would cause the code to be much complex, wear out the flash chip
up to 8 times as fast, and make writing some 8 times as slow. More on 4 kB sector (block) size for media storage can be
found at

http://www.support.microsoft.com/kb/2510009
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti

Figure 6. When using the SPI-flash for RSK63N, the drive must be
formatted using 4 kB sectors with Windows7 (standard block size
 going forward) as that is the erase size of the serial flash chip used.

http://www.support.microsoft.com/kb/2510009
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 39 of 46
May 26, 2014

10. The RAM Media Driver
The RAM-disk media driver that is supplied preconfigured to use RAM memory area as a virtual storage media device.
While this is provided primarily as a simplified example of a media driver to demonstrate the functionality of USB-
PMSC, it can still be useful as a means to transfer data to or from the MCU to the USB host. The RAM-disk uses either
on-chip RAM or external SDRAM if available.

1. The RX62N and RX63N sample code operates as media with 8 MB SDRAM

2. The RX630 operates as media with internal 32-kByte RAM.

3. Media is preformatted to appear as removable FAT file storage device.

4. Media driver supports connection to Windows OS (2000, XP, 7, etc) host.

5. Default format may be overwritten by format command from the host.

6. Host can read files from RAM-disk or write files to it, and can update the FAT format information as needed.

7. Size of the RAM-disk can be configured at build time by settings in a configuration file.

10.1 RAM-disk Media Driver Default FAT Format
The RAM-disk virtual media device is preformatted to appear as removable FAT file storage device. This permits files
to be placed in RAM and read back by the USB host. This format is implemented as a pre-initialized data section in
RAM with boot sector, FAT tables, and directory areas defined by hard-coded values. The file
r_ram_disk_format_data.c contains the section declarations and the pre-initialized data that will get copied to RAM at
system startup.

The beginning of the RAM-disk area (lowest memory address) is considered to be the boot sector (sector 0), as block
zero is the default boot sector area in a FAT formatted storage device. Therefore, all storage blocks are addressed
relative to this location. When a host device accesses the media device it will always communicate in terms of starting
logical block number (LBN) and block count (how many blocks to transfer.) Since the host knows how to navigate a
FAT formatted storage device, it will read the first sector to gain additional information about the specific format on the
RAM-disk, and from there it will discover where to look for additional file information. From that the host will know
which block number to access.

Alternatively, the host can re-format the RAM-disk, replacing the default boot sector, FAT tables, etc, with its own
format. In this case the host still knows where in the RAM image a specific block of data resides.

Note: It is not strictly necessary for a USB-PMSC device to have a FAT file system format, however most host systems
will expect to use the PMSC device for file storage with FAT as the file system type.

10.2 RAM-disk Global Area Variables
The entire RAM-disk RAM section is of global scope with a number of named variables. Table 10-1 lists the global
area variables of the media driver.

Table 10-1 Media Driver Global Areas

Type Variable Name Description
uint8_t g_ram_disk_boot_sector Primary Boot Record area (sector 0)
uint8_t g_ram_disk_table1 Dummy area (sector 1) *
uint8_t g_ram_disk_table_fat1 FAT table (sector 2) *
uint8_t g_ram_disk_table_fat2 FAT table (sector 3/66) *
uint8_t g_ram_disk_root_dir Directory entry area (sector 4/130) *

*Note: This RAM-disk media driver implementation only references the g_ram_disk_boot_sector variable,

which corresponds to the beginning of the RAM-disk memory section.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 40 of 46
May 26, 2014

10.3 Constant Definitions
Table 10-2 shows the constant definitions used for the RAM-disk media driver.

Table 10-2 PMSDD Constant Definitions

Description Definition name Value Remark
Media type RAMDISK_MEDIATYPE 0xF8u Modifiable
Signature RAMDISK_SIGNATURE 0xAA55u Not

modifiable
Sector size RAMDISK_SECTSIZE 512ul Modifiable
Cluster size RAMDISK_CLSTSIZE 0x01u Modifiable
FAT number RAMDISK_FATNUM 0x02u Modifiable
Media size *1 RAMDISK_MEDIASIZE RX62N, 6X63N: 8*1024*1024（=8 MB）

RX630: 32*1024（=32 kB）
Modifiable

Total number of
sectors*2

RAMDISK_TOTALSECT USB_MEDIA_SIZE / RAMDISK_SECTSIZE Not
modifiable

FAT Table Length*2 RAMDISK_FATLENGTH 341ul（FAT12, 256ul（FAT16） Not
modifiable

FAT table length*2 RAMDISK_FATSIZE (((RAMDISK_TOTALSECT-8) /
RAMDISK_FATLENGTH)+1)

Not
modifiable

Root directory RAMDISK_ROOTTOP (((RAMDISK_FATSIZE *
RAMDISK_FATNUM+1)/8+1)*8)

Not
modifiable
(Not used)

FAT start RAMDISK_FATTOP (RAMDISK_ROOTTOP -
(RAMDISK_FATSIZE * RAMDISK_FATNUM))

Not
modifiable
(Not used)

Root Directory size RAMDISK_ROOTSIZE 1ul Not
modifiable
(Not used)

*1 A minimum 20K byte capacity is required when connecting the device to a PC running WindowsXP.

FAT12 is selected when the media size is set to under 2M bytes.

FAT16 is selected when the media size is set to under 32M bytes.

“RAMDISK_MEDIASIZE” is defined in r_ram_disk.h and is 8M bytes for RX62N and RX63N SDRAMs and 32K
bytes for RX630 built-in RAM.

*2 Total number of sectors, FAT data length, and FAT table length are automatically calculated based on the media size.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 41 of 46
May 26, 2014

10.4 Operation Overview
Table 10-3 lists the RAM media variables and Figure 10.1 shows the RAM media block diagram.

Table 10-3 Media Variables

Sector No. Physical Address Accesible Size
Sector 0 g_ram_disk_boot_sector[] 512Byte
Sector 1 g_ram_disk_table1[] 512Byte
Sector 2 g_ram_disk_table_fat1[] 512Byte RAMDISK_FATSIZE
Sector 3/66 g_ram_disk_table_fat2[] 512Byte RAMDISK_FATSIZE
Sector 4/130 g_ram_disk_root_dir[] 512Byte16

PBR
Sector 0

Dummy area

Sector 1

FAT1
Sector 2

FAT2
Sector

Data

Sector

USB_PMSC_SECTSIZE

USB_MEDIA_FATSIZE

USB_PMSC_TOTALSECT

USB_PMSC_ROOTTOP

usb_gpmsc_MediaArea[]

usb_gpmsc_Table1[]

usb_gpmsc_TableFat1[]

usb_gpmsc_RootDir[]

Data

usb_gpmsc_TableFat2[]

Figure 10.1 Media Block

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 42 of 46
May 26, 2014

11. OS and Non-OS Resources
The methods of including resources when using the RTOS and non-OS versions are described below.

Please refer to USB Basic Firmware Application note for detail of how to register.

11.1 Including Resources in RTOS
When using the RTOS version (RI600), it is necessary to register tasks, mailboxes, memory pools, and interrupt vectors
in the ITRON configuration file (r_usb_peri.cfg).

11.1.1 PMSC Registration
In the sample program, the PMSC task is registered as follows.

 task[]{
 entry_address = usb_pmsc_Task();
 name = USB_PMSC_TSK;
 stack_size = 512;
 stack_section = SURI_STACK;
 priority = 5;
 initial_start = OFF;
 exinf = 0x0;
 };

11.1.2 APL Registration
In the sample program, the APL task is registered as follows. The priority is defined as the lowest level, except for idle
tasks.

 task[]{
 entry_address = usb_pmsc_SmpAtapiTask();
 name = USB_PFLSH_TSK;
 stack_size = 512;
 stack_section = SURI_STACK;
 priority = 5;
 initial_start = OFF;
 exinf = 0x0;
 };

11.1.3 PMSC Mailbox Registration
In the sample program, the PMSC mailbox is registered as follows.

 mailbox[]{

 name = USB_CLS_MBX;
 wait_queue = TA_TFIFO;
 message_queue = TA_MFIFO;
 max_pri = 1;
 };

11.1.4 APL Mailbox Registration
In the sample program, the APL mailbox is registered as follows.

 mailbox[]{
 name = USB_PMSC_MBX;
 wait_queue = TA_TFIFO;
 message_queue = TA_MFIFO;
 max_pri = 1;
 };

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 43 of 46
May 26, 2014

11.1.5 PMSC Memory Pool Registration
In the sample program, the PMSC memory pool is defined as ten 64-byte blocks.

 memorypool[]{
 name = USB_PCD_MPL;
 wait_queue = TA_TFIFO;
 section = BRI_HEAP;
 siz_block = 64;
 num_block = 10;
 };

11.1.6 APL Memory Pool Registration
In the sample program, the APL memory pool is defined as ten 64-byte blocks.

 memorypool[]{

 name = SB_PMSC_MPL;
 wait_queue = TA_TFIFO;
 section = BRI_HEAP;
 siz_block = 64;
 num_block = 10;
 };

11.2 Resource Registration in Non-OS Scheduler
When using the non-OS scheduler, it is necessary to register resources such as task IDs, mailbox IDs, and memory pool
IDs in the file"r_usb_cKernelId.h".

In the sample file, the registrations are as follows.

 /* Peripheral MSC Driver Task */
 #define USB_PMSC_TSK USB_TID_3 /* Task ID */
 #define USB_PMSC_MBX USB_PMSC_TSK /* Mailbox ID */
 #define USB_PMSC_MPL USB_PMSC_TSK /* Memorypool ID */

 /* Peripheral MSC Sample Task */
 #define USB_PFLSH_TSK USB_TID_4 /* Task ID */
 #define USB_PFLSH_MBX USB_PFLSH_TSK /* Mailbox ID */
 #define USB_PFLSH_MPL USB_PFLSH_TSK /* Memorypool ID */

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 44 of 46
May 26, 2014

12. Limitations
The following limitations apply to PMSC.

1. Structures are composed of members of different types.

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 45 of 46
May 26, 2014

13. Using the Renesas Debug Console
The Renesas Debug Console means you have the ability to use printf() statements in C to send trace strings to the
standard output. Standard output will in this case be the E1/E20 debug register. To use this feature, the following must
be true.

1. INIT_IOLIB() must be called. This is sometimes commented out in resetprog.c to save object code space.

2. In ..\media_driver\r_bsp\board\rskrx63nr_bsp_config.h, set
#define BSP_CFG_IO_LIB_ENABLE (1)

3. The code in 13.1 constitutes the putchar and getchar functions to reside in lowlvl.src so that the E1/E20 debug
ports are used for I/O processing. Replace the existing code with this if is not already in lowlvl.src.

4. Include <stdio.h> in any files where you wish to use printf-statements.

5. In e2 studio, add the Debug Console window by switching on both icons

“1/0” and

“Pin Console” as shown below.

Both must be on so that the print buffer in E1/E20 can be emptied, and not block.

13.1 STDIO Low Level Source Code

Use the following code in lowlvl.src to get printf statements to the E1/E20 Debug Console.
;---
; FILE :lowlvl.src
; DATE :Wed, Jul 01, 2009
; DESCRIPTION :Program of Low level
; CPU TYPE :RX
;---
 .GLB _charput
 .GLB _charget

FC2E0 .EQU 00084080h
FE2C0 .EQU 00084090h
DBGSTAT .EQU 000840C0h
RXFL0EN .EQU 00001000h
TXFL0EN .EQU 00000100h

 .SECTION P,CODE
;---
; _charput:
;---
_charput:
 .STACK _charput = 00000000h
__C2ESTART: MOV.L #TXFL0EN,R3
 MOV.L #DBGSTAT,R4
__TXLOOP: MOV.L [R4],R5
 AND R3,R5
 BNZ __TXLOOP
__WRITEFC2E0: MOV.L #FC2E0,R2
 MOV.L R1,[R2]
__CHARPUTEXIT: RTS
;---
; _charget:
;---
_charget:
 .STACK _charget = 00000000h
__E2CSTART: MOV.L #RXFL0EN,R3
 MOV.L #DBGSTAT,R4
__RXLOOP: MOV.L [R4],R5
 AND R3,R5
 BZ __RXLOOP
__READFE2C0: MOV.L #FE2C0,R2
 MOV.L [R2],R1
__CHARGETEXIT: RTS

; End of conditional code (section)
 .END

Renesas USB MCU USB PMSC with Local File System and Flash Storage

R01AN1929EU0100 Rev. 1.00 Page 46 of 46
May 26, 2014

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description
Page Summary

1.00 May 26, 2014 All Adapted from r01an0514ej_usb_pmsc, v.210.
Document:
Added chapter “Target File System”, and refined the chapter
“Media Driver Interface”.
Added chapter “Using the Renesas Debug Console”.
Added chapter “ Using E2studio”.
Source code: Major feature upgrades.

- Added target file system (Elm FAT32) to code. A local
application on board can now read and write files to
the media, aside from the USB host.

- A local file browsing demo is added. User uses
switches SW1-3 to browse, add test files etc.

- Long filenames are fully incorporated (R/W), and
multiple drives are supported (TFAT only one drive).

- SPI flash on RSK63N can be used as storage. For
Win7 and later only.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	1. Overview
	1.1 Functions and Features
	1.2 Related Documents
	1.3 Terms and Abbreviations

	2. Using E2studio
	2.1 Import the Project
	2.1.1 New Workspace
	2.1.2 Existing Workspace

	3. Software Configuration
	3.1 Module Configuration
	3.1.1 PDCD
	3.1.2 PMSCD

	3.2 File Structure
	1.1
	3.3 Setting Up the Code For Your Board
	3.3.1 Endian
	Set target for Little Endian as this is the default setup of the SW.
	3.3.2 Add the Right “HW Resource” Code
	3.3.3 Selecting Platform
	3.3.4 Selecting Build Configuration

	1.1
	3.4 System Resources
	3.4.1 RTOS version
	1.1.1
	3.4.2 Non-OS Version

	4. Peripheral MSC Firmware Application Functionality (APL)
	4.1 Media R/W functionality as seen from USB Host
	4.1.1 Operating Environment
	4.1.2 Application Program Flow
	4.1.3 API tasks

	4.2 Media R/W functionality as seen from MCU application layer

	5. Peripheral Device Class Driver (PDCD)
	5.1 Basic Functions
	5.2 BOT Protocol Overview
	5.2.1 CBW processing
	5.2.2 Sequence for storage command with no data transmit/receive
	(1) CBW transfer stage
	(2) CSW transfer stage

	5.2.3 Sequence with storage command for transmit (IN) data
	(1) CBW transfer stage
	(2) Data IN transfer stage
	(3) CSW transfer stage

	5.2.4 Sequence for storage command with receive (OUT) data
	(1) CBW transfer stage
	(2) Data OUT transfer stage
	(3) CSW transfer stage

	5.2.5 Access sequence for class request
	(1) Setup Stage
	(2) Data Stage
	(3) Status Stage

	6. USB Peripheral Mass Storage Class Driver (PMSCD)
	6.1 Basic Functions
	6.2 List of API Functions
	Format
	Arguments
	Return Values
	Description
	Notes

	6.3 Class Driver Registration
	6.4 User Definition Tables

	7. Peripheral Mass Storage Device Driver (PMSDD)
	7.1 PMSDD Storage Command Structure
	7.2 List of PMSDD Functions
	7.3 PMSDD Task Description

	8. Target File System
	8.1 User Interactive Board Demo
	8.2 Long Filenames

	9. Media Driver Interface
	9.1 Overview of Media Driver API Functions
	9.2 Selecting Media Driver
	9.2.1 Initializing the Media Driver Function Set

	9.3 Changing (adding) Storage Media
	9.3.1 Steps to conform a driver to the block media API
	9.3.2 Example - Serial Flash as Storage Media
	Setup To Use Serial Flash
	Restrictions

	10. The RAM Media Driver
	10.1 RAM-disk Media Driver Default FAT Format
	10.2 RAM-disk Global Area Variables
	10.3 Constant Definitions
	10.4 Operation Overview

	11. OS and Non-OS Resources
	11.1 Including Resources in RTOS
	11.1.1 PMSC Registration
	11.1.2 APL Registration
	11.1.3 PMSC Mailbox Registration
	11.1.4 APL Mailbox Registration
	11.1.5 PMSC Memory Pool Registration
	11.1.6 APL Memory Pool Registration

	11.2 Resource Registration in Non-OS Scheduler

	1.
	1.
	1.
	12. Limitations
	13. Using the Renesas Debug Console
	13.1 STDIO Low Level Source Code

	Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products

