

R32C/100 Series Using DMAC in Repeat Transfer Mode

R01AN0448EJ0100 Rev. 1.00 Mar. 31, 2011

## Abstract

This document describes a method for using the DMA controller (DMAC) in repeat transfer mode with the R32C/100 Series.

# Products

MCUs: R32C/116 Group, R32C/117 Group, and R32C/118 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.



# Contents

| 1.  | Specifications                    | 3 |
|-----|-----------------------------------|---|
| 2.  | Operation Confirmation Conditions | 1 |
| 3.  | Reference Application Notes       | 1 |
| 4.  | Hardware                          | 1 |
| 4.1 | Pin Used                          | 1 |
| 5.  | Software                          | 5 |
| 5.1 | Operation Overview                | 5 |
| 5.2 | Invariable Table                  | 7 |
| 5.3 | Variable Table                    |   |
| 5.4 | Flowcharts                        | 3 |
| 5.4 | I.1 Main Processing               | 3 |
| 5.4 | I.2 DMAC Initial Setting          |   |
| 6.  | Sample Code10                     | ) |
| 7.  | Reference Documents               | ) |
| 8.  | Website and Support               | ) |



### 1. Specifications

Direct Memory Access (DMA) is a system that can control data transfer without using the CPU. The R32C/100 Series' four channel DMAC transmits 8-bit (byte), 16-bit (word), or 32-bit (long word) data in cycle-steal mode from a source address to a destination address every time a transfer request is generated. In repeat transfer mode, when the DCTi register is set to 00000000h, the value of the DCRi register is reloaded into the DCTi register to continue the DMA transfer (i = 0 to 3).

Table 1.1 lists the Peripheral Function and Its Application. Figure 1.1 and Figure 1.2 show the Block Diagram and Bus Timing, respectively.

| Table 1.1         Peripheral Function and Its Applic | ation |
|------------------------------------------------------|-------|
|------------------------------------------------------|-------|

| Peripheral Function | Application   |  |  |
|---------------------|---------------|--|--|
| DMAC (DMA0)         | Data transfer |  |  |

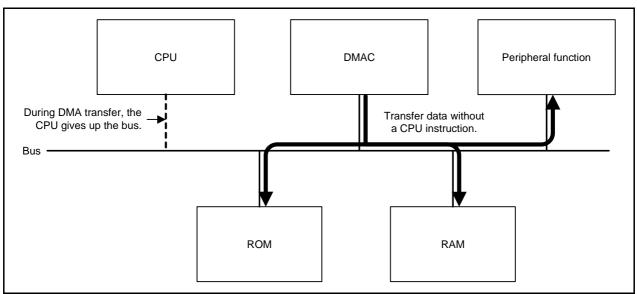
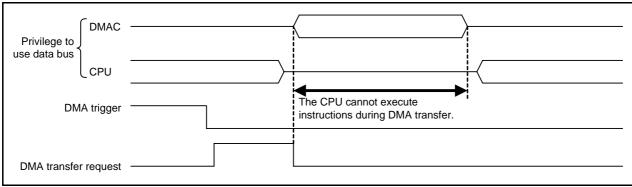




Figure 1.1 Block Diagram







# 2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

| ltem                                  | Contents                                                                                                                                                                                      |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MCU used                              | R5F64189DFD (R32C/118 Group)                                                                                                                                                                  |
| Operating frequencies                 | Main clock: 16 MHz<br>PLL clock: 100 MHz<br>Base clock: 50 MHz<br>CPU clock: 50 MHz<br>Peripheral bus clock: 25 MHz<br>Peripheral function clock source: 25 MHz                               |
| Operating voltage                     | 5 V                                                                                                                                                                                           |
| Integrated development<br>environment | Renesas Electronics Corporation<br>High-performance Embedded Workshop Version 4.07                                                                                                            |
|                                       | Renesas Electronics Corporation<br>R32C/100 Series C Compiler V.1.02 Release 01                                                                                                               |
| C compiler                            | Compile options<br>-D_STACKSIZE_=0X300 -D_ISTACKSIZE_=0X300<br>-DVECTOR_ADR=0x0FFFFBDC -c -finfo -dir "\$(CONFIGDIR)"<br>(Default setting is used in the integrated development environment.) |
| Operating mode                        | Single-chip mode                                                                                                                                                                              |
| Sample code version                   | Version 1.00                                                                                                                                                                                  |
| Board used                            | Renesas Starter Kit for R32C/118 (product name: R0K564189S000BE)                                                                                                                              |

 Table 2.1
 Operation Confirmation Conditions

# 3. Reference Application Notes

The application notes associated with this application note are listed below. Refer to the following application notes for additional information.

- R32C/100 Series Configuring PLL Mode (REJ05B1221-0100)
- R32C/100 Series Configuring DMAC (REJ05B1220-0100)

### 4. Hardware

### 4.1 Pin Used

Table 4.1 lists the Pin Used and Its Function.

| Pin Name  | I/O   | Function          |
|-----------|-------|-------------------|
| P8_2/INT0 | Input | DMA trigger input |



### 5. Software

#### 5.1 **Operation Overview**

DMA0 is activated to perform memory-to-memory transfer. In this application note, set the falling edge of INTO as a trigger for DMA.

(1) DMAC initial settings

Set DMAC operation and a trigger for DMA. Also set the  $\overline{INT0}$  pin to use the  $\overline{INT0}$  interrupt as a trigger for DMA.

Settings for DMA0 are as follows:

- Transfer mode: Repeat transfer
- Transfer size: 8 bits
- Source addressing: Increment
- Destination addressing: Fixed
- Transfer counter (registers DCT0 and DCR0): Five times
- Source address (registers DSA0 and DSR0): Start address of source data (400h)
- Destination address (registers DDA0 and DDR0): Destination address (1000h)
- Select a trigger for DMA: INTO falling edge
- (2) When a DMA trigger (INT0 falling edge) is generated

When the falling edge of a signal is applied to the  $\overline{INT0}$  pin, data is DMA transferred from the address specified by the DSA0 register to the address specified by the DDA0 register. After the DMA transfer, 1 is subtracted from the DCT register and 1 is added to the DSA0 register. <sup>(1)</sup>

When the DCT0 register changes from 00000001h to 0000000h, the value of the DCR0 register is reloaded into the DCT0 register to continue the DMA transfer. At the same time, the values of registers DSR0 and DDR0 are reloaded into registers DSA0 and DDA0, respectively.

Note:

1. 1 is added when the transfer size is 8 bits. When the transfer size is 16 bits, 2 is added.



Figure 5.1 shows a DMA Transfer Operation Example.

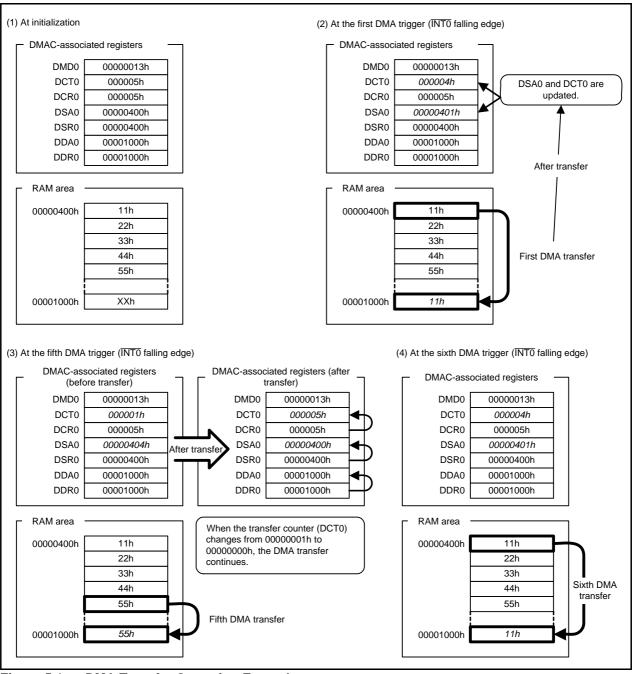



Figure 5.1 DMA Transfer Operation Example

RENESAS

Figure 5.2 shows a Repeat Transfer Timing Example.

| DMA trigger (INT0)                                          |                                            |                   |                                 |            |           |     |        |      | - |
|-------------------------------------------------------------|--------------------------------------------|-------------------|---------------------------------|------------|-----------|-----|--------|------|---|
|                                                             | СРИХСРИ                                    | DMA               | СРИСРИ                          | DMA        | ХСРИХСРИХ | DMA | СРИСРИ | DMA  | - |
| DCT0 register                                               | 02h                                        | _χ                | 01h                             | - <u> </u> | 05h       | _γ  | 04h    | 03h  | - |
| When the DCT0 re<br>00000000h, the va<br>into the DCT0 regi | egister change<br>alue of the DC<br>ister. | s from<br>R0 regi | 00000001h to<br>ster is reloade |            |           |     |        |      | - |
| DCR0 register                                               |                                            |                   | 05h                             | //         |           |     |        |      | - |
| DSA0 register                                               | 403h                                       |                   | 404h<br>Reload                  |            | 400h      |     | 401h   | 402h | - |
| DSR0 register                                               |                                            |                   | 400h                            | //         |           |     |        |      | - |
| DDA0 register                                               |                                            |                   | 1000                            | n<br>      |           |     |        |      | - |
|                                                             |                                            |                   | Reload                          |            |           |     |        |      | - |
| DDR0 register                                               |                                            |                   | 1000                            | h'         |           |     |        |      | - |
| IR flag in the 1<br>DM0IC register <sub>0</sub>             | )                                          |                   |                                 |            |           |     |        |      | - |

Figure 5.2 Repeat Transfer Timing Example

#### 5.2 Invariable Table

Table 5.1 lists the Invariables Used in the Sample Code.

#### Table 5.1Invariables Used in the Sample Code

| Invariable Name | Setting Value | Contents                |
|-----------------|---------------|-------------------------|
| DEST_ADDRESS    | 1000h         | DMA destination address |
| TRANS_COUNT     | 5             | Number of DMA transfers |

#### 5.3 Variable Table

Table 5.2 lists the Global Variable.

| Table 5.2 | Global Variable |
|-----------|-----------------|
|           |                 |

| Туре          | Variable Name | Contents                                                  | Function Used |
|---------------|---------------|-----------------------------------------------------------|---------------|
| unsigned char | Inatall       | DMA transfer source data<br>(11h, 22h, 33h, 44h, and 55h) | DMAC_init     |

RENESAS

### 5.4 Flowcharts

### 5.4.1 Main Processing

Figure 5.3 shows the Main Processing.

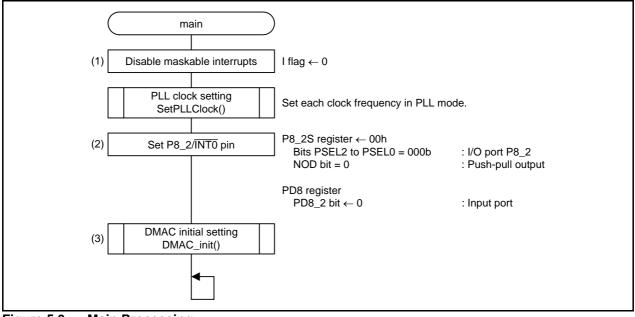



Figure 5.3 Main Processing



### 5.4.2 DMAC Initial Setting

Figure 5.4 shows the DMAC Initial Setting.

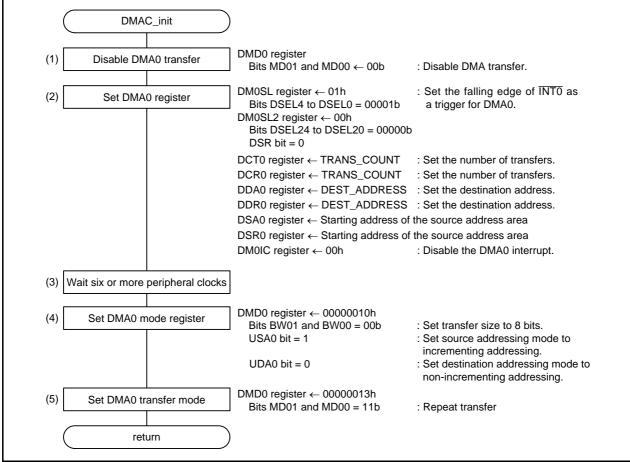



Figure 5.4 DMAC Initial Setting



## 6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

## 7. Reference Documents

R32C/116 Group User's Manual: Hardware Rev.1.10 R32C/117 Group User's Manual: Hardware Rev.1.10 R32C/118 Group User's Manual: Hardware Rev.1.10 The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual R32C/100 Series C Compiler Package V.1.02 C Compiler User's Manual Rev.2.00 The latest version can be downloaded from the Renesas Electronics website.

# 8. Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry



| Revision History | R32C/100 Series                    |
|------------------|------------------------------------|
| Revision history | Using DMAC in Repeat Transfer Mode |

| Rev. | Date          | Description |                      |  |  |
|------|---------------|-------------|----------------------|--|--|
| Rev. |               | Page        | Summary              |  |  |
| 1.00 | Mar. 31, 2011 | _           | First edition issued |  |  |

All trademarks and registered trademarks are the property of their respective owners.

### General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
  - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
  not access these addresses; the correct operation of LSI is not guaranteed if they are
  accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

#### Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" written consent of Renesas Electronics should be for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for any application application as exploration categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which there are supported as the specific as the specific".
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
  "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
  designed for life support.
- \*Specific\*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information



#### SALES OFFICES

#### **Renesas Electronics Corporation**

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Compe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +861-04285-1155, Fax: +480-21828-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A2L1 Center, No.1233 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China Tel: +862-1-877-1818, Fax: +462-21-887-7789 Renesas Electronics Hong Kong Limited Unit 1001.161, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +862-24175-9800, Fax: +868 2-8175-9870 Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipel, Taiwan Tel: +862-24175-9800, Fax: +868 2-8175-9870 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2175-9900, Fax: +868 2-8175-9870 Renesas Electronics Kong Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2175-9900, Fax: +865-2495-9910 Renesas Electronics Kong Co., Ltd. 11F, Samik Lavied or Bildy, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +60-37755-9390, Fax: +865-2495-9510