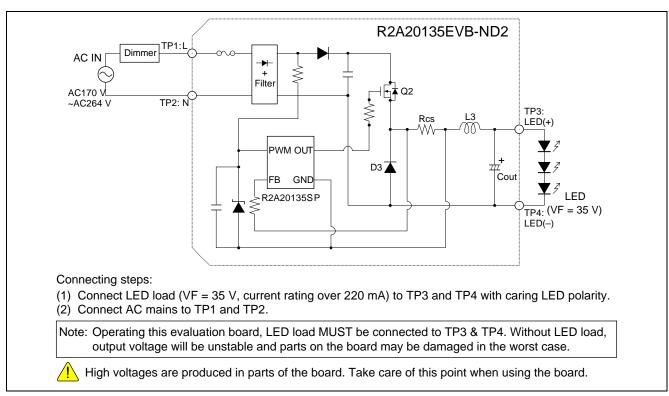


R2A20135EVB-ND2

R19AN0024EJ0100 Rev.1.00 Jul 30, 2013

R2A20135 Evaluation Board

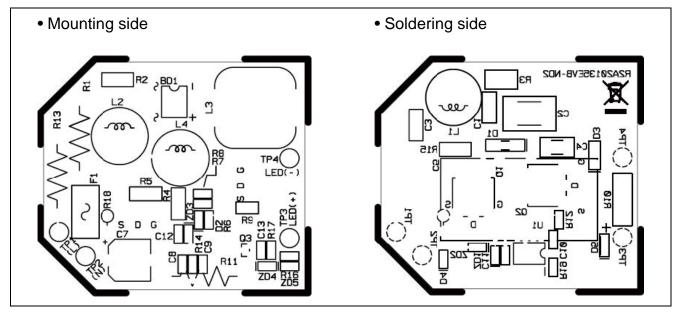
1. General Description

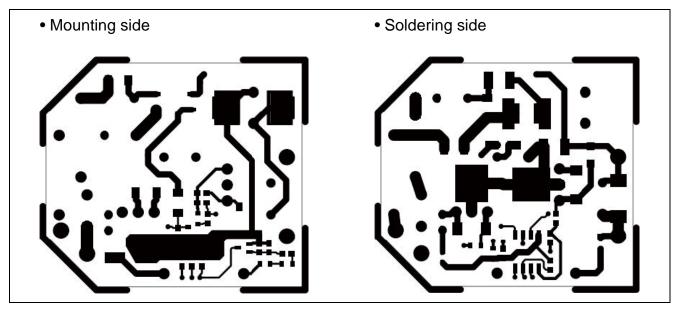

R2A20135EVB-ND2 is an evaluation tool for evaluating LED control IC R2A20135. As all of the parts and the peripheral circuit which are necessary for LED lighting control are built on this evaluation board, R2A20135 can be evaluated with just only supplying AC power source and connecting LED load.

Since this evaluation board is composed as Step-down/High-side (non-isolated), it achieves high efficiency, high power factor, low THD (total harmonic distortion) and low output current ripple. Furthermore, phase cut dimming is supported with dimmable function built in R2A20135. For using this board, please also refer the R2A20135SP datasheet and application note.

2. Specifications

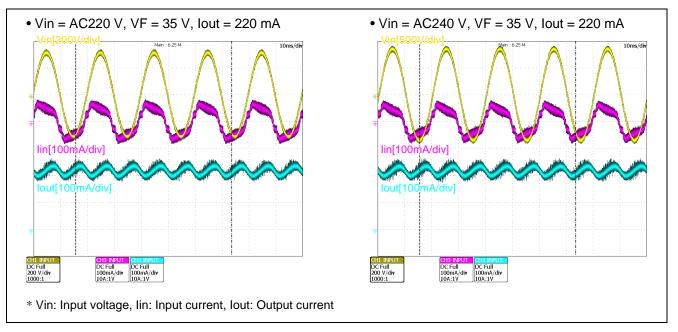
No.	Items Specifications			
1	Input voltage range	AC170 to 264 V (single phase 47 to 63 Hz)		
2	Input power	9.5 W (typ.)		
3	Output voltage (VF)	DC35 V		
4	Output current	220 mA (typ.)		
5	Efficiency	80% < (@Vin = AC220 V)		
6	Power factor	0.9 < (@Vin = AC220 V to 240 V)		
7	Switching frequency	35 kHz (min.)		
8	Operation mode	Critical Conduction Mode		
9	PCB	Dual layers / Glass epoxy (FR4) / Dual-sided mount		
10	Size (W ´ D ´ H)	36 mm ′ 41 mm ′ 20 mm (Top layer)		

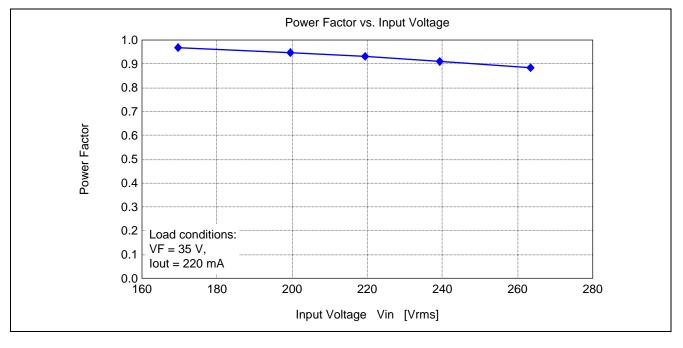

3. System Diagram & Connection



4. PCB Layout

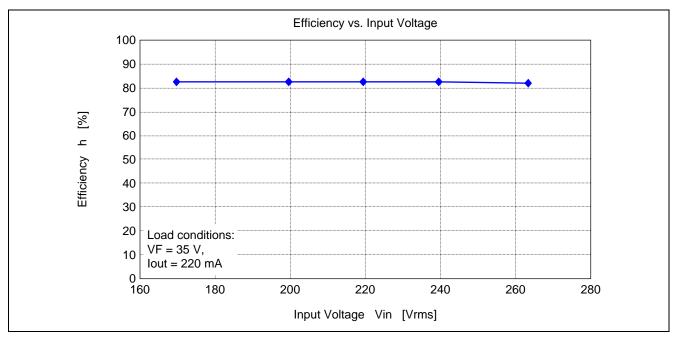
4.1 Parts Layout


4.2 PCB Layout

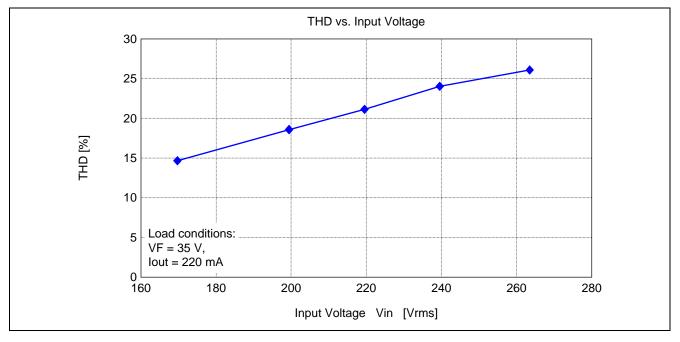


5. Performance Characteristics

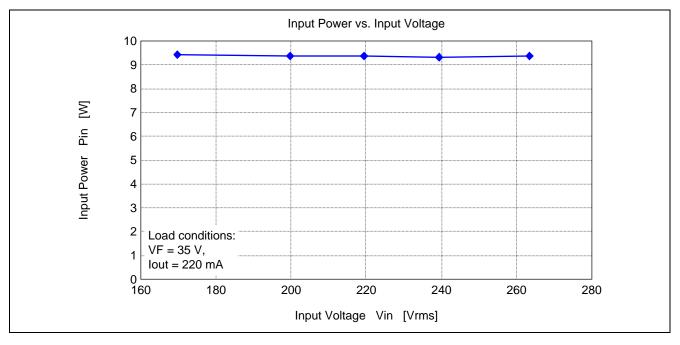
5.1 Waveforms



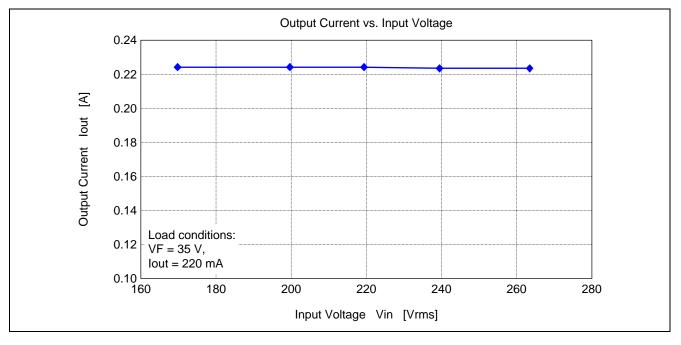
5.2 Power Factor

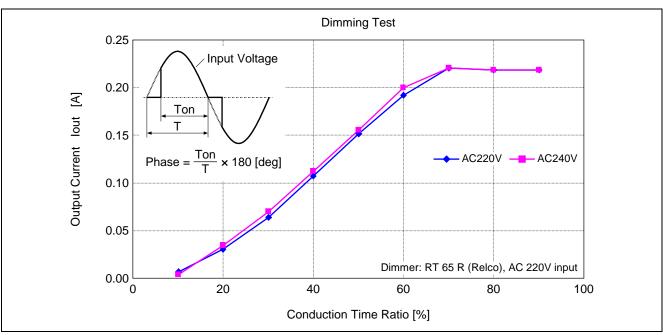


5.3 Efficiency

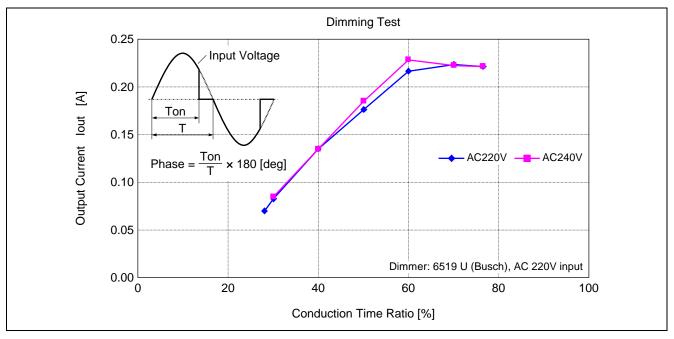


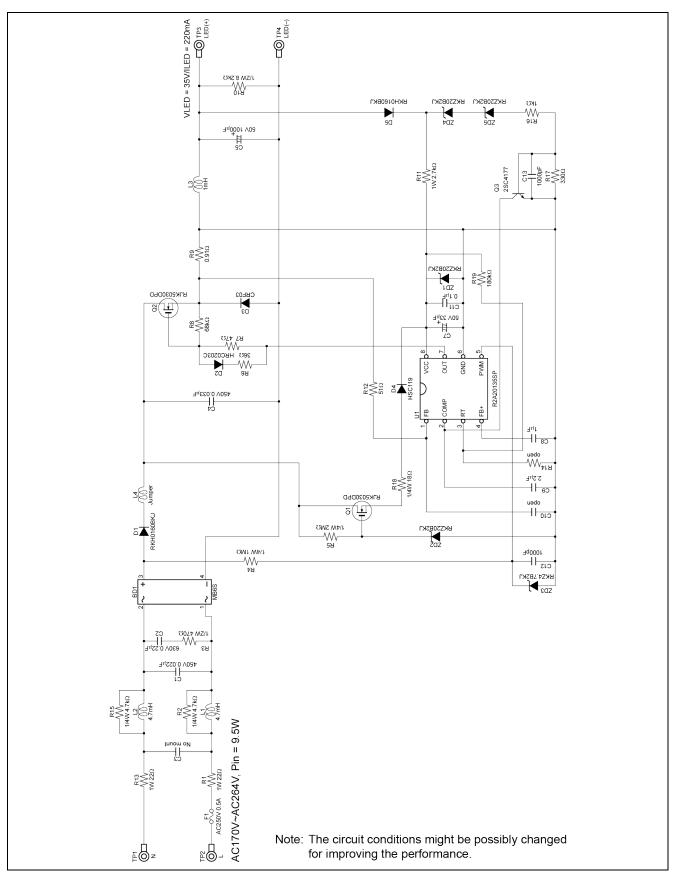
5.4 THD (Total Harmonic Distortion)



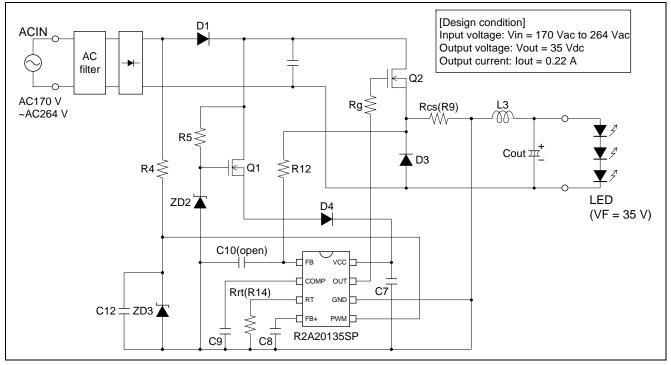

5.5 Input Power

5.6 Output Current




5.7 Dimming Characteristic (Leading edge dimmer)

5.8 Dimming Characteristic (Trailing edge dimmer)



6. R2A20135EVB-ND2 Schematic

7. Design Guide

In critical conduction mode operation, current flow through the inductor is proportional to a voltage across the inductor and its waveform is shown in Figure 7.2.

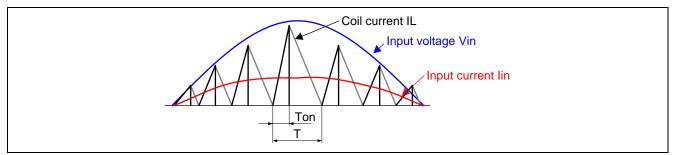


Figure 7.2 Input Current & Inductor Current

7.1 Setting Critical Conduction Mode Control Operation

To set critical conduction mode operation, RT terminal is necessary to be connected as 'open'.

* In case malfunction is caused by noise or other effect, RT terminal should be pulled up to Vcc level.

Also, it is necessary that R12 is set to below 100 Wand C10 is connected to open so as to set FB terminal voltage below 13 mV in zero current detection.

7.2 Setting Switching Frequency

In critical conduction mode operation, switching frequency changes according to input voltage. To avoid audio frequency band and reduce switching loss, the switching frequency should be set from 20 kHz to 100 kHz. Now, the switching frequency is set to 40 kHz with considering above.

7.3 Setting Rcs

The relation between output current lout and Rcs is in following formula;

Rcs = 0.2/lout

when the design condition is Iout = 0.22 A, Rcs will be;

Rcs = 0.2/0.22 = 0.91 W

7.4 Selecting Inductor L

Firstly, the inductance is calculated in the condition of the minimum switching frequency.

When the condition that the minimum Vin is 170 Vac and Vout is 35 V is given, on duty Don will be;

 $D_{ON} = Vout/(Vin) = 35/(170 \text{ '} \overrightarrow{O2}) = 0.146$

as the switching frequency is 40 kHz, on period Ton will be calculated;

Ton = D_{ON} /fout = 0.146/40 kHz = 3.64 ms

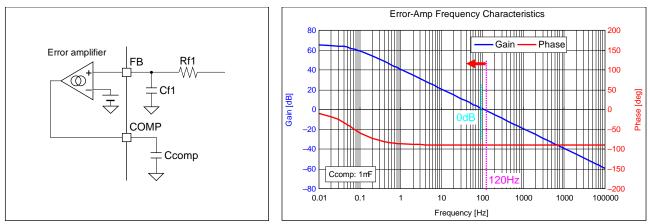
when the condition is given as input voltage; Vin = 170 V, output power Pout; $0.22 \cdot 35 = 7.7 W$, conduction angle ^(*1) is 90%, average input current Iin (ave) will be;

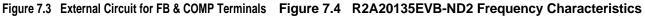
lin(ave) = Pout/h/Vin = 7.7/0.90/170 = 50 mA

and inductor current peak will be;

thus,

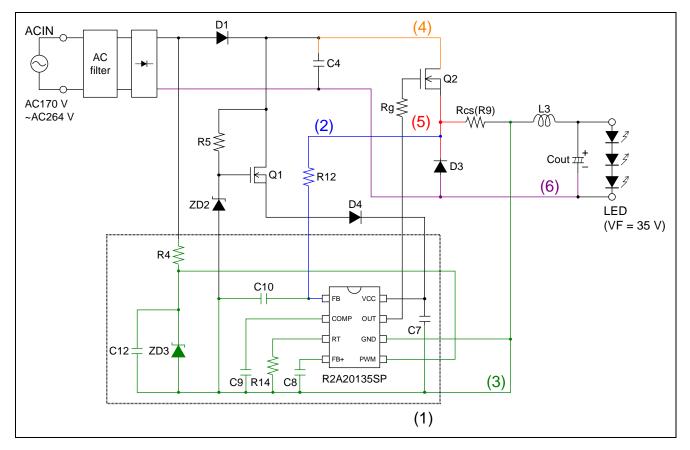
L = (Vin – Vout) \checkmark Ton/lin(peak) = (170 \checkmark $\ddot{C}2 - 35) <math>\checkmark$ 3.64 ms/0.687 = 1090 mH


1 mH inductor will be selected from standard parts line-up with considering tolerance rating and size.


Note: *1 Please also see refer setting L in R2A20135SP application note conduction angle.

7.5 Loop Filter of Feedback Amplifier (external circuit for FB & COMP terminal)

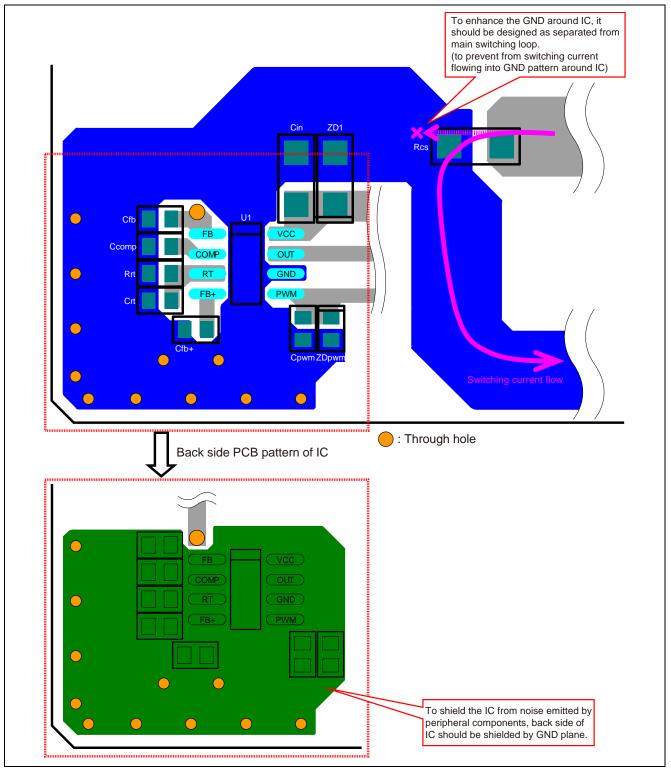
Frequency characteristics of R2A20135EVB-ND2 is shown in Figure 7.4. Although this system is controlled as current mode (first-order lag system) and can operate stably, it is recommended that Ccomp (shown in Figure 7.3.) is set to make loop gain as 0 dB under 100 - 200 Hz which is double frequency of the AC mains; 50 - 60 Hz. On the evaluation board, Ccomp has been set to 1 mF.


In the case that CR filter, which is composed of Cf1 and Rf1, is added to FB terminal to reduce noise influence, please consider output current of FB terminal and select Rf1 condition which sets lower FB terminal voltage than ZCD threshold voltage. On this evaluation board, Rf1 condition is 51 W. Also, please select the capacitor Cf1 which is enough small time constant condition against the switching frequency. Cf1 is 'open' on this evaluation board.

8. PCB Layout Guide

- (1) Make the wring around the IC as short as possible in order to reduce the switching noise influence.
- (2) Connect the CS line as close as possible to Rcs to shorten the wiring.
- (3) Wire the independent wide GND pattern and connect it as close as possible to Rcs (output side). Also, please place bypass capacitors (C7) of Vcc and Vref, and the resistors of RT and FB (R14, R12) as close as possible to IC, as well as the wiring between GND of IC and the bypass capacitor (Cref) of Vref pin as short as possible.
- (4) Make the wire between Q2 (Drain) and C4 (+) as short and as thick as possible.
- (5) Make the track between Q2 (source) and D3 (cathode) as short and as thick as possible.
- (6) As switching current flows, make this track as short and as thick as possible.

8.1 PCB Pattern Design


To prevent switching noise influence to the IC, PCB pattern should be designed based on following PCB design example.

* Components numbers correspond to the schematics shown in previous page.

* This IC peripheral PCB pattern guidelines should be followed regardless of any topology.

Note; this PCB pattern design is for reference and operation is not guaranteed. Please verify the operation sufficiently in actual PCB.

PCB Pattern Design Example (IC peripheral)

9. Bill of Materials

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacturer	Note	
PWB	Printed-wiring board	R2A20135EVB-ND2	1			Renesas Electronics		
U1	IC	R2A20135SP	1	24V		Renesas Electronics	SOP-8	
Q1	FET	RJK5030DPD	1	500V	5A	Renesas Electronics	TO-252 (DPAK)	
Q2	FET	RJK5030DPD	1	500V	5A	Renesas Electronics	TO-252 (DPAK)	
Q3	Transistor	2SC1622A	1	60V	0.1A	Renesas Electronics	2SC1623	
Q4	Transistor	No mount						
BD1	Bridge diode	MB6S	1	600V	0.5A	VISHAY	TO-269AA (MBS)	
D1	Diode	M1F60	1	600V	1A	Shindengen	M1F	
D2	SBD	HRC0203C-E	1	30V	0.2A	Renesas Electronics	UFP	
D3	FRD	CRF03	1	600V	0.7A	Toshiba	S-FLAT	
D4	Diode	HSC119	1	80V	100mA	Renesas Electronics	UFP	
D5	Diode	RKH0160AKU	1	600V	100mA	Renesas Electronics	URP	
ZD1	Zener diode	RKZ20B2KJ	1	20V	5mA	Renesas Electronics	UFP	
ZD2	Zener diode	RKZ20B2KJ	1	20V	5mA	Renesas Electronics	UFP	
ZD3	Zener diode	RKZ4.7B2KJ	1	4.7V	5mA	Renesas Electronics	UFP	
ZD4	Zener diode	No mount						
ZD5 *	Zener diode	RD39SB1	1	39V	200mA	Renesas Electronics	UFP	
R1	Resistor		1	1W	22		Leaded	
R2	Chip resistor		1	1/6W	4.7k		Leaded	
R3	Chip resistor		1	1/4W	470		Leaded	
R4	Chip resistor		1	1/4W	1M		3216, High voltage	
R5	Chip resistor		1	1/4W	2M		3216, High voltage	
R6	Chip resistor		1	1/10W	36		1608	
R7	Chip resistor		1	1/10W	47		1608	
R8	Chip resistor		1	1/10W	68k		1608	
R9	Chip resistor		1	1/4W	0.91		2012, High accuracy (over 1%)	
R10-1	Chip resistor		1	1/4W	12k		3216	
R10-2	Chip resistor			1/4W	24k		3216	
R11	Resistor			1W	2.7k		Leaded	
R12	Chip resistor		1	1/10W	51		1608	
R13	Chip resistor	No mount					1608	
R14	Chip resistor	No mount					1608	
R15	Chip resistor	No mount					1608	
R16	Chip resistor		1	1/2W	0		3225	
R17	Chip resistor	No mount	1	1/10W	330		3216	
R18 *	Resistor		1	1/6W	4.7k		Leaded	
R19 *	Resistor		1	1W	22		Leaded	
R20 *	Resistor		1	1/4W	18		Leaded	
R21 *	Chip resistor		1	1/10W	10k		1608	
R22 *	Chip resistor		1	1/10W	1k		1608	
C1	Ceramic capacitor	GR331BD72W223KW01L	1	450V	0.022mF	murata	3216	
C2	Ceramic capacitor	GRM55DR72J224KW01L	1	630V	0.22mF	murata	5750	
C3	Ceramic capacitor	No mount					3216	
C4	Ceramic capacitor	GR331BD72W333KW01L	1	450V	0.033mF	murata	3216	
C5	Electrochemical capacitor	ECA1HHG102	1	50V	1000mF	Panasonic	smaller than f 12.5 25, 105°C	
C6	Ceramic capacitor	No mount					2012	
C7	Electrochemical capacitor		1	25V	33mF		3225	
C8	Ceramic capacitor	GRM188	1	25V	1mF	murata	1608	
C9	Ceramic capacitor	GRM188	1	10V	2.2mF	murata	1608	
C10	Ceramic capacitor	No mount	1				1608	
C11	Ceramic capacitor	No mount	1				1608	
C12	Ceramic capacitor	GRM188	1	25V	1000pF	murata	1608	
C13 *	Ceramic capacitor	GRM188	1	25V	1000pF	murata	1608	
L1	Inductor	LHLC08TB472J	1	0.16A	4.7mH	Yuden		
L2 °	Inductor	LHLC08TB472J	1	0.16A	4.7mH	Yuden		
L3	Inductor	MSS1278-105KLB	1	0.48Arms	1mH	Coilcraft		
L4 °	Inductor	short						
F1	Fuse	HTS 500mA	1	AC250V	0.5A	Skygate		
TP1	Test point	No mount	1				MAC8 ST-3-2 size	
TP2	Test point	No mount	1				MAC8 ST-3-2 size	
TP3	Test point	No mount	1				MAC8 ST-3-2 size	
TP4	Test point	No mount	1				MAC8 ST-3-2 size	

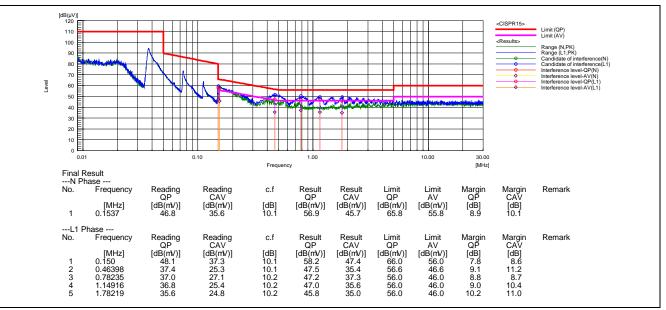
Note: The parts might be possibly changed for improving the performance.

10. Conducted Emission

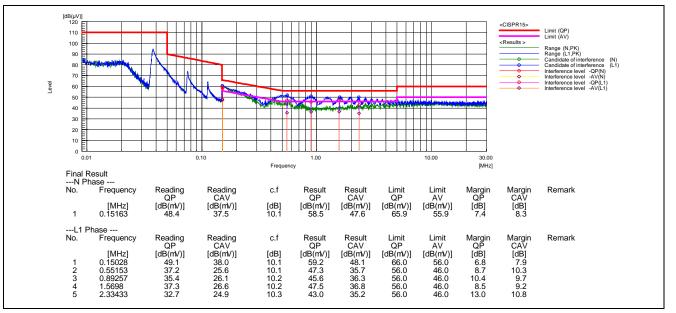
10.1 Conducted Emission Standard (CISPR15) Adaptation

This evaluation board is possible to meet the conducted emission standard (CISPR15) by changing or adding some components.

However, basic characteristics such as power efficiency or power factor are trade-off for conducted emission, please adjust each components' value according to required performance.


10.1.1 Schematic with Conducted Emission Filter

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacturer	Note
R1	Resistor		1	1W	68		Leaded
R19	Resistor		1	1W	68		Leaded
C3	Ceramic capacitor	GR331BD72W333KW01L	1	450V	0.033mF	murata	3216
L4	Inductor	LHLC08TB472J	1	0.16A	4.7mH	Yuden	



10.2 Conducted Emission Test Results (CISPR15)

· Vin = 220 Vac, 60 Hz, actual LED load (VF = 35 V), Iout = 220 mA

• Vin = 240 Vac, 60 Hz, actual LED load (VF = 35 V), Iout = 220 mA

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Description		
Rev.	Date	Page	Summary	
Rev.1.00	Jul 30, 2013	—	First edition issued	

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation Refer to "http://www.renesas.com/" for the latest and detailed information.

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Ciara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tei +852-2886-9318, Fax: +852 2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorr . p Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Unit 906, Вюск В, Menara Amcorp, Amcorp т Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-588-3737, Fax: +82-2-558-5141