R2A20134EVB-TINW

1. Overview

The R2A20134EVB-TINW is an LED driver IC evaluation board for LED tube lamp. All the components to control LED lighting system are onboard, it is easy to start evaluation by supplying power and connecting LED load.
The board has a step-down flyback circuit, operates in constant current mode, and features high efficiency, high power factor, low THD, low ripple voltage, and low noise. It complies with harmonic current limitation (IEC 61000-3-2 Class C).

For evaluating this board, please refer to the R2A20134SP data sheet as well.

2. Specification

No.	Item	Specification
1	Input voltage range	85 to 264 VAC (single phase 47 to 63 Hz$)$
2	Output power	18 W (max.)
3	Output voltage	55 V (typ.)
4	Output current	330 mA (typ.)
5	Efficiency	85% or more (when Vin $=100$ to 240 VAC$)$
6	Power factor	0.95 or more (when Vin $=100$ to 240 VAC$)$
7	Switching frequency	Variable (minimum switching frequency: 50 kHz)
8	Operation mode	Critical Conduction Mode
9	Board	Two layers / glass epoxy (FR4) / dual-sided mount
10	Size $(\mathrm{W} \times \mathrm{D} \times \mathrm{H})$	425 mm $\times 20 \mathrm{~mm} \times 10 \mathrm{~mm}$ (component side)

3. Board System Diagram and Connection

4. PCB Layout

5. Performance Data

5.1 Operation Waveform

5.2 Power Factor

5.3 Efficiency

5.4 THD (Total Harmonic Distortion)

5.5 Output Current

5.6 Harmonic Current

5.7 Conducted EMI (CISPR15)

- Vin = AC100 V, 50 Hz , LED load $(\mathrm{VF}=55 \mathrm{~V})$, Iout $=330 \mathrm{~mA}$

- Vin = AC240 V, 50 Hz , LED load $(\mathrm{VF}=55 \mathrm{~V})$, Iout $=330 \mathrm{~mA}$

6. Schematic

7. Bill of Materials

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacturer
IC1	Control IC	R2A20134SP	1			Renesas Electronics
IC2	Constant voltage/current control IC	M62237FP	1			Renesas Electronics
C1	x Capacitor	Not Mount	1			
C2	x Capacitor	Not Mount	1			
C3	x Capacitor	LE473	1	275 V	0.047 F F	Okaya Electric
C4	x Capacitor	LE473	1	275 V	0.047 HF	Okaya Electric
C5	Ceramic Capacitor	RDED72J224K5B1	1	630 V	$0.22 \mu \mathrm{~F}$	Murata Manufacturing
C6	Ceramic Capacitor	DESD33A102KN2A	1	1000V	1000pF	Murata Manufacturing
C7	Ceramic Capacitor	DESD33A101KN2A	1	1000 V	100pF	Murata Manufacturing
C8	Chip Capacitor	GRM188R71E105KA12D	1	25 V	$1 \mu \mathrm{~F}$	Murata Manufacturing
C9	Chip Capacitor	GRM188R71E105KA12D	1	25 V	14F	Murata Manufacturing
C10	Chip Capacitor	Not Mount	1			
C11	Electrolytic Capacitor	PX	1	50 V	$22 \mu \mathrm{~F}$	Rubycon
C12	Chip Capacitor	Not Mount	1			
C13	Unused number					
C14	Electrolytic Capacitor	TXW	1	80 V	470, F	Rubycon
C15	Electrolytic Capacitor	TXW	1	80 V	470¢F	Rubycon
C16	Chip Capacitor	Not Mount	1			
C17	Chip Capacitor	Not Mount	1			
C18	Chip Capacitor	Not Mount	1			
C19	Chip Capacitor	GRM188R11H103KA01D	1	25 V	$0.01 \mu \mathrm{~F}$	Murata Manufacturing
C20	Chip Capacitor	Not Mount	1			
C21	Unused number					
C22	Ceramic Capacitor	DEBF33D102ZD1B	1	2000 V	1000pF	Murata Manufacturing
Q1	MOSFET	RJK5030DPD	1	500 V	5A	Renesas Electronics
Q2	MOSFET	STB21N90K5	1	900 V	18.5A	ST Micro
Q3	Transistor	Not Mount	1			
L1	Common mode choke coil	Not Mount	1			
L2	Common mode choke coil	LF1290NP-392	1	0.36A	3.9 mH	Sumida
L3	Radial lead inductor	10RHT2	1	0.4 A	$820 \mu \mathrm{H}$	токо
L4	Radial lead inductor	10RHT2	1	0.4 A	$820 \mu \mathrm{H}$	токо
L5	Radial lead inductor	10RHT2	1	0.27 A	1.5 mH	токо
L6	Chip resistor	CRCW12060000ZOEA	1		0Ω	VISHAY
L7	Chip resistor	CRCW12060000ZOEA	1		0Ω	VISHAY
L8	Chip resistor	CRCW12060000ZOEA	1		0Ω	VISHAY
L9	Chip resistor	CRCW12060000ZOEA	1		0Ω	VISHAY
T1	Transformer	TYPE-B	1	$600 \mu \mathrm{H}$		SMI
PC1	Photo coupler	PS2561D-1	1			Renesas Electronics
DB1	Bridge diode	S1NB60	1	600 V	1A	Shindengen Electric
D1	Rectitiging diode	HSU119-E	1	80 V	100 mA	Renesas Electronics
D2	Schottky barrier diode	Not Mount	1			
D3	Fast recovery diode	D1NK100	1	1kV	1A	Shindengen Electric
D4	High voltage diode	HSU83-E	1	250 V	100 mA	Renesas Electronics
D5	High voltage diode	HSU83-E	1	250 V	100 mA	Renesas Electronics
D6	Zener diode	Not Mount	1			
D7	Zener diode	Not Mount	1			
D8	Fast recovery diode	MURS260T3	1	600 V	2A	ON Semiconductor
ZD1	Zener diode	RKZ20B2KJ	1	150 mW	20 V	Renesas Electronics
ZD2	Zener diode	RKZ20B2KJ	1	150 mw	20 V	Renesas Electronics
2D3	Zener diode	RKZ8.2B2KJ	1	150 mw	8.2 V	Renesas Electronics
zD4	Zener diode	Not Mount	1			
R1	Chip resistor	Not Mount	1			
R2	Chip resistor	MCR50JZHJ472	1	1/2W	$4.7 \mathrm{k} \Omega$	ROHM
R3	Chip resistor	MCR50JZHJ472	1	1/2W	$4.7 \mathrm{k} \Omega$	ROHM
R4	Chip resistor	RK73B2ATTD105J	1	1/8W	$1 \mathrm{M} \Omega$	KOA
R5	Chip resistor	RK73B2ATTD105J	1	1/8W	$1 \mathrm{M} \Omega$	KOA
R6	Chip resistor	RK73B2BTTD180J	1	1/4W	18Ω	KOA
R7	Metal oxide film resistor	MO2C	1	2W	120k Ω	KOA
R8	Chip resistor	RK73B2ATTD104J	1	1/8W	100k Ω	KOA
R9	Chip resistor	Not Mount	1			
R10	Wire-wound resistor	NKN200JT-73-0R2	1	2W	0.2Ω	Yageo
R11	Chip resistor	Not Mount	1			
R12	Chip resistor	RK73B2ATTD101J	1	1/8W	100Ω	KOA
R13	Chip resistor	RK73H2BTTD1000F	1	1/4W	100Ω	KOA
R14	Chip resistor	RK73B2ATTD560J	1	1/8W	56Ω	KOA
R15	Chip resistor	Not Mount	1			
R16	Chip resistor	RK73B2ATTD303J	1	1/8W	$30 \mathrm{k} \Omega$	KOA
R17	Chip resistor	RK73B2ATTD273J	1	1/8W	$27 \mathrm{k} \Omega$	KOA
R18	Chip resistor	Not Mount	1			
R19	Chip resistor	Not Mount	1			
R20	Chip resistor	RK73B2ATTD302J	1	1/8w	$3 \mathrm{k} \Omega$	KOA
R21	Chip resistor	RK73B2ATTD204J	1	1/8W	200k 2	KOA
R22	Unused number					
R23	Chip resistor	RK73B2ATTD303J	1	1/8W	$30 \mathrm{k} \Omega$	KOA
R24	Chip resistor	RK73B2ATTD222J	1	1/8W	$2.2 \mathrm{k} \Omega$	KOA
R25	Chip resistor	RK73B2ATTD102J	1	1/8W	$1 \mathrm{k} \Omega$	KOA
R26	Chip resistor	RK73B2ATTD303J	1	1/8W	$30 \mathrm{k} \Omega$	KOA
R27	Chip resistor	Not Mount	1			
R28	Chip resistor	RK73B2ATTD562J	1	1/8W	5.6k 2	KOA
R29	Metal film resistor	MOSX1C	1	1 W	1Ω	KOA
R30	Metal film resistor	Not Mount	1			
R31	Chip resistor	RK73B2ATTD563J	1	1/8W	$56 \mathrm{k} \Omega$	KOA
R32	Chip resistor	RK73Z2ATTD	1	1A	0Ω	KOA
R33	Chip resistor	Not Mount	1			
R34	Chip resistor	Not Mount	1			
R35	Chip resistor	RK73B2ATTD222J	1	1/8W	$2.2 \mathrm{k} \Omega$	KOA
R36	Chip resistor	RK73B2ATTD104J	1	1/8W	100k Ω	KOA
R37	Chip resistor	Not Mount	1			
R38	Chip resistor	Not Mount	1			
F1	Fuse	39211000440	1	250 V	1A	Littelfuse
FB1	Ferrite bead	BL02RN2R1M2B	1			Murata Manufacturing
FB2	Ferrite bead	Jumper	1			

Note: The components may be changed to improve the circuit characteristics.

8. Design Guide

Figure 8.1 R2A20134EVB-TINW Circuit
This evaluation board operates in constant current (CC) mode. The board controls the output current Iout to be constant. Iout and the COMP pin voltage are constant, so current I1, which flows into the primary side of transformer T1, is proportional to input voltage Vin. The input current Iin is generated by smoothing I1, so Iin is also proportional to Vin. This leads to the good power factor and THD (total harmonic distortion) characteristics (refer to Figure 8.3).

8.1 Setting Switching Frequency

The frequency is generally in the range from 20 to 100 kHz , both in consideration of efficiency and so that it is not in the range of audible frequencies.
The minimum oscillation frequency is set to 50 kHz on this evaluation board.

8.2 Selection of Switching Frequency Setting Resistance Rrt

When the evaluation board operates in current critical mode, the RT pin is pulled down to GND by the Rrt resistor with a value of several hundred $\mathrm{k} \Omega$. The value of Rrt on the board is $200 \mathrm{k} \Omega$.

8.3 Selection of Transformer (T1)

8.3.1 Design Example of Transformer

1. The peak value of the current in the primary-side transformer, I1, and the peak value of the current in the secondaryside transformer, I2, are calculated.

$$
\begin{aligned}
& \mathrm{I}_{1}(\text { peak })=\frac{2}{\operatorname{Don}} \times \operatorname{lin}(\text { peak })=\frac{2 \sqrt{2} \text { Pout }}{\text { Don Vin }(\min) \eta}[A]=\frac{2 \times \sqrt{2} \times 18}{0.45 \times 80 \times 0.85}=1.66[A] \\
& \mathrm{I}_{2}(\text { peak })=\frac{2}{\operatorname{Doff}} \times \operatorname{Is}(\text { peak })=\frac{2}{\operatorname{Doff}} \times \frac{2 \times \text { Pout }}{\left(\operatorname{Vout}+V_{F}\right)}[A]=\frac{2}{0.55} \times \frac{2 \times 18}{(55+1)}=2.34[A]
\end{aligned}
$$

Figure 8.2 Transformer Circuit
2. The inductance of the primary-side transformer, LP, is calculated. The calculation formula is as follows in current critical mode:

$$
\mathrm{Lp}=\frac{\sqrt{2} \operatorname{Vin}(\min) \text { Don }}{\mathrm{I}_{1}(\text { peak }) \text { fout }}[\mathrm{H}]=\frac{\sqrt{2} \times 80 \times 0.45}{1.66 \times 50 \times 10^{3}}[\mathrm{H}]=613[\mu \mathrm{H}]
$$

A value of $600 \mu \mathrm{H}$ is selected for inductance in accordance with the result of the calculation.
3. After selected the transformer core, the number of turns in the winding of the primary-side transformer, Np , is calculated.

$$
\mathrm{Np}=\frac{\sqrt{2} \operatorname{Vin}(\mathrm{~min}) \operatorname{Don}}{\mathrm{fsw} \Delta \mathrm{~B} \mathrm{Ae}} \times 10^{8}[\mathrm{~T}]=\frac{\sqrt{2} \times 80 \times 0.45}{50 \times 10^{3} \times 2400 \times 0.55} \times 10^{8}=77.1[\mathrm{~T}]
$$

A value of 80 turns is selected for Np in accordance with the result of the calculation.
4. The inductance of the secondary-side transformer, LS, is calculated.

$$
\text { Ls }=\frac{\left(\text { Vout }+V_{F}\right)}{I_{2}(\text { peak })} \times \frac{\text { Doff }}{\text { fout }}[H]=\frac{55+1}{2.34} \times \frac{0.55}{50 \times 10^{3}}[H]=263.2[\mu \mathrm{H}]
$$

An value of $220 \mu \mathrm{H}$ is selected for inductance in accordance with the result of the calculation.

Figure 8.3 Relationship between Transformer Current, Input Current, and Input Voltage
5. The number of turns in the winding of the secondary-side transformer, NS, is calculated.

$$
N s=\sqrt{\frac{L s}{L p}} N p[T]=\sqrt{\frac{220 \mu}{600 \mu}} \times 80[T]=48.4[\mathrm{~T}]
$$

A value of 48 turns is selected for Ns in accordance with the result of the calculation.
6. The number of turns in the winding of the auxiliary transformer, Nb , is calculated.

$$
\mathrm{Nb}=\frac{\mathrm{Vb}}{\mathrm{Vout}+\mathrm{V}_{\mathrm{F}}} \mathrm{Ns}[\mathrm{~T}]=\frac{20}{55+1} \times 48[\mathrm{~T}]=17.1[\mathrm{~T}]
$$

A value of 17 turns is selected for Nb in accordance with the result of the calculation.

Vin(min):	Minimum input voltage (actual value)	lin(peak):	Peak value of input current	Don:	On-time duty
Vin(peak):	Peak value of input voltage	$\mathrm{Ae}:$	Effective cross-sectional area of the core $\left[\mathrm{cm}^{2}\right]$	Doff:	Off-time duty
Vout:	Output voltage	$\Delta \mathrm{B}:$	Core magnetic flux density variation $[\mathrm{G}]$	Pout:	Output power
$\mathrm{V}_{\mathrm{F}:}$	Diode forward voltage	$\mathrm{fout}:$	Switching frequency		
$\mathrm{Vb}:$	Voltage across auxiliary winding	$\mathrm{\eta}:$	Efficiency of conversion		

8.4 Selection of MOSFET (Q1)

Firstly, Drain-Source voltage of MOSFET, Vds, should be calculated. At the moment of MOSFET turning off, that is Vds reaching to maximum voltage, surge voltage Vk derived from transformer leakage inductance arises in addition to Vin and fly-back voltage Vf. When VK is 200 V , Vds (max.) when the MOSFET is turned off is calculated as follows:

$$
\operatorname{Vds}(\max)=\sqrt{2} \operatorname{Vin}(\max)+V f+V_{K}=\sqrt{2} \times 264+\frac{80}{48} \times(55+1.5)+200=667.5[V]
$$

Figure 8.4 Vds Waveform of MOSFET
The peak drain current, I1(peak), at minimum input voltage is calculated as follows:

$$
I_{1}(\text { peak })=\frac{\sqrt{2} \operatorname{Vin}(\min) \text { Don }}{L p \text { fout }}=\frac{\sqrt{2} \times 80 \times 0.45}{600 \times 10^{-6} \times 50 \times 10^{3}}=1.7[\mathrm{~A}]
$$

Based on the result of the calculation, the MOSFET with voltage rating of 900 V and a rated current of 18.5 A is selected so that it operates within a range of safe operation.

Note: Please confirm if selected components’ rating meet to actual operation.

8.5 Selection of Current Detection Resistor (Rcs1)

The overcurrent detection resistor Rcs1 for the primary-side overcurrent protection (OCP) is calculated as follows:
Considering that the OCP threshold of IC1, Vocp, is 0.6 V (typ.) and I1(peak) is calculated as above, the OCP threshold is set to 3.0 A .

$$
\operatorname{Rcs} 1[\Omega]=\frac{\mathrm{V}_{\mathrm{OCP}}}{l_{1}(\text { peak })}=\frac{0.6}{3.0}=0.2[\Omega]
$$

A value of 0.2Ω (rated power of 2 W) is selected for current detection resistor RCS in accordance with the result of the calculation.

Figure 8.5 Current Detection Resistor

8.6 Selection of Output Current Setting Resistor

The resistor used to set the output current Iout, Rcs2, is calculated.
Rcc1 and Rcc2 are determined so that the formula is satisfied.

$$
\operatorname{Rcs} 2[\Omega]=\frac{\mathrm{Rcc} 2}{\mathrm{Rcc} 1+\mathrm{Rcc} 2} \times \frac{\text { Vref }}{\text { lout }}
$$

The charge control IC2 allows the use of a reference voltage Vref (A) for the error amplifier of 1.25 V or less through the addition of an external resistor. Because the reference voltage of the IC2, Vref, is 1.25 V , Vref (A) is 0.33 V when Rcc 1 is $56 \mathrm{k} \Omega$ and Rcc 2 is $20 \mathrm{k} \Omega$. Because the target for the output current Iout is 0.33 A , a value of 1Ω is selected for current detection resistor Rcs2.

Figure 8.6 IC2 and Peripheral Circuit

8.7 Selection of Secondary-side Rectifying Diode (D1)

The maximum reverse voltage which is applied when the secondary-side rectifying diode is turn off, V_{AK} (max.), is calculated.

$$
V_{\mathrm{AK}}(\max)=\mathrm{Vs}+\operatorname{Vout}=\frac{\mathrm{Ns}}{\mathrm{~Np}} \times \sqrt{2} \operatorname{Vin}(\max)+\mathrm{Vout}=\frac{48}{80} \times \sqrt{2} \times 264+80=304[\mathrm{~V}]
$$

The maximum value of the forward current, I_{F}, is calculated.

$$
\mathrm{I}_{\mathrm{F}}(\max)=\frac{2}{\text { Doff }} \times \text { lout }=\frac{2}{0.55} \times 0.33=1.2[\mathrm{~A}]
$$

Figure 8.7 Secondary-side Rectifying Diode
Based on the above, a fast recovery diode (FRD) with rated reverse voltage of 600 V and a rated current of 2 A is selected.

Note: Please confirm if selected component's rating meet to actual operation.

8.8 Setting of Overvoltage Protection (OVP) Circuit

The constants for the overvoltage protection (OVP) circuit of the output are selected. The following is the relationship between Vovp, the voltage when the output is open circuit, and Rovp1 and Rovp2.

$$
\text { Vovp }=\frac{\text { Rovp1 }+ \text { Rovp2 }}{\text { Rovp2 }} \times \text { Vref }
$$

Vovp is set to 60 V . Then, a value of $100 \mathrm{k} \Omega$ is selected for Rovp1 and a value of $2.2 \mathrm{k} \Omega$ is selected for Rovp2 so that the above formula is satisfied.

8.9 Setting of ZCD

The ZCD detection signal level is set. The voltage at the CS pin, Vcs, must be greater than or equal to Vzcd (19 mV (max.)) of IC1. In addition, current Ics ($-85 \mu \mathrm{~A}$) flowing from the CS pin into Rzcd1 and Rcs applies an offset to the voltage on the CS pin. Accordingly, for correct ZCD detection, the value of Rzcd1 must satisfy the following relationship: Ics \times Rzcd1 < Vzcd

$$
\mathrm{Vcs}=\frac{\mathrm{R}_{\mathrm{ZCD} 1}+\mathrm{R}_{\mathrm{ZCD} 2}}{\mathrm{R}_{\mathrm{ZCD} 2}} \times\left(\mathrm{Vb}-\mathrm{V}_{\mathrm{F}}\right)
$$

When Vcs is set to $0.2 \mathrm{~V}, 20 \mathrm{~V}$ is substituted for $\mathrm{Vb}, 0.5 \mathrm{~V}$ is substituted for VF , and Rzcd1 is set to 56Ω, Rzcd2 is 5.6 $\mathrm{k} \Omega$ in accordance with the above formula.
9. PCB Layout Guidelines

(1) Make the wiring around the IC as short as possible in order to reduce the switching noise influence.
(2) Connect the CS line as close as possible to Rcs to shorten the wiring. Also, please place a noise suppression filter as close as possible to IC.
(3) Wire the independent thick GND pattern of the IC as close to the Rcs1 resistor (on the output side) as possible. Also, place the VCC bypass capacitor and the RT resistor as close to the IC as possible.
(4) To decrease the parasite inductance, connect T1 and the drain of Q1 by using independent think and short pattern.
(5) Make this track as thick and short as possible because the switching current flows into the wire.

Website and Support

Renesas Electronics Website

http://www.renesas.com/
Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Description	
Rev.	Date	Page	Summary
Rev.1.00	Sep 27, 2013	-	First edition issued

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible fo the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket Onta
Tel: +1-905-898-5441, Fax +1-905-898-3220 9C3, Canada
Renesas Electronics Europe Limited
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Dukes Meadow, Millboard Road, Bourne End, Bu
Renesas Electronics Europe GmbH
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858/-7898
Renesas Electronics Hong Kong Limited
Tel: +852-2886-9318,'Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: $+82-2-558-3737$ F Fax: +82-2-558-5141
Tel: + $+82-2-558-3737$, Fax: + $82-2-558-5141$

