

Renesas RA Family

NIST SP800-22r1a Random Number Statistical Test Report for RA4E2

Target product		RA4E2					
Evaluation	Brief	The random sequence gained from RA4E2.					
sample	Original file	RA4E2_Random_Number_Data_20230622.1Gbit.zip					
	Binary file	RA4E2_Random_Number_Data_20230622.1Gbit.bin					
	Provided by	REE/IIBU/IOTBD/IPM1/IPM12					
	Date gained	June 22, 2023					
Evaluation dep	partment	Renesas Electronics Corporation Embedded Processing, Digital Power and Signal Chain Solutions Group Shared R&D Core Technology Division Security Competence Center					
Test started or	I	July 23, 2023					
Test completed	d on	July 23, 2023					
Result		PASS From the result obtained by the test tool shown below, the tester confirmed that the result was PASS.					

The following standard and tool were used for this statistical test of the evaluation sample:

- Special Publication 800-22 Revision 1a
 A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Revised: April 2010, NIST
- Test tool: sts-2.1.2 The tool is downloadable from the following web site: <u>https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software</u>

1. Introduction

1.1 Test Description

This is the report of the SP 800-22 based statistical tests for the evaluation sample.

Note: The evaluation sample is the random sequence generated by the RNG implemented in the target product for SP800-22 test suite. The file was converted to a binary format by the evaluation department.

The test was conducted by REL/EPSG/SRCTE/SSCC, based on NIST SP 800-22 Revision 1a [SP800-22]: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, revised: April 2010, published by NIST.

The test was conducted by utilizing the test tool downloaded from the following NIST web page [STS2.1.2]: <u>https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software</u>.

The following 15 statistical tests are described in Chapter 2 of [SP 800-22].

No	Statistical Tests
1	Frequency (Monobit) Test
2	Frequency Test within a Block
3	Runs Test
4	Test for the Longest Run of Ones in a Block
5	Binary Matrix Rank Test
6	Discrete Fourier Transform (Spectral) Test
7	Non-overlapping Template Matching Test
8	Overlapping Template Matching Test
9	Maurer's "Universal Statistical" Test
10	Linear Complexity Test
11	Serial Test
12	Approximate Entropy Test
13	Cumulative Sums (Cusum) Test
14	Random Excursions Test
15	Random Excursions Variant Test

Table 1. Statistical Tests of [SP800-22]

1.2 Test Method

The test tool tests and determines the randomness by utilizing the proportion of sequences that pass a statistical test and the distribution of P-value to check the uniformity, as described in Section 4.2 of [SP800-22]. (Refer to [SP800-22] for details).

1.3 Test Strategy

The test tool can perform all statistical tests in a single execution. In this case, the common parameters of all statistical tests are sequence length and sample size. These parameters are mandatory to be used.

The tester selected 1,000,000 bits as the sequence length. This value of the sequence length is the maximum recommended length of each statistical test in [SP800-22].

The tester selected 1,000 as the sample size. Since the significance level is 0.001, the sample size 1,000 is the minimum size that is statistically meaningful. This significance level of 0.001 is default value.

The tester selected default values not only for the significance level but also for the other parameters in each statistical test.

2. Test results from the test tool

2.1 Test preparation

The evaluation sample sent from client department was a hexadecimal text file. So, the evaluation department converted it to a binary file and stored in the web storage of the testing department. The tester applied this binary file to the test tool.

2.2 Test results

The parameters were selected according to the test strategy described in section 1.3. That is, the sequence length was 1,000,000 bits, the sample size was 1,000, and the other parameters were default values. As shown in the test method described in section 1.2, the test result is judged by the proportion of the sequences and the distribution of P-value.

According to the test tool, the PASS reference values are as follows:

Note: The PASS values of the proportion of the sequences were calculated and output to the report file (finalAnalysisReport.txt) by the test tool. The PASS values of the proportion of the sequences shown in Table 2 are values from this output file.

Decided value	PASS value	Note
Distribution of P-value	≥ 0.0001	
Proportion of the sequences	≥ 980	Each statistical test except for the random excursion (variant) test.
	≥ Differ by each trial. For the value, refer to Appendix A.1.	Random excursion (variant) test.

Table 2. PASS Reference Values

The details of the proportion of the sequences and the distribution of P-value calculated by the Test Tool are shown in Appendix A.

According to the reference values shown in Table 2, all test results satisfied the reference value.

3. Conclusions

All test results satisfied the reference value. Therefore, the result was PASS.

Appendix A

When the test is completed, the test tool outputs the test summary (finalAnalysisReport.txt). Below is the test summary for the evaluation sample.

Appendix A.1 Sequence length = 1,000,000 / Sample size = 1,000

Renesas RA FamilyNIST SP800-22r1a Random Number Statistical Test Report for RA4E2

99	99	105	112	95	92	95	87	113	103	0.707513	991/1000	NonOverlappingTemplate
112	90	104	81	93	121	99	106	105	89	0.165340	993/1000	NonOverlappingTemplate
96	96	85	102	110	93	95	114	110	99	0.603841	989/1000	NonOverlappingTemplate
96	104	89	103	107	117	102	103	81	98	0.457825	990/1000	NonOverlappingTemplate
100	94	109	90	109	95	95	101	97	110	0.869278	994/1000	NonOverlappingTemplate
104	95	103	105	95	109	86	95	95	113	0.743915	989/1000	NonOverlappingTemplate
90	105	95	114	105	82	100	97	100	112	0.486588	991/1000	NonOverlappingTemplate
94	94	96	105	94	108	96	95	121	97	0.632955	991/1000	NonOverlappingTemplate
94	91	105	97	116	100	90	105	104	98	0.786830	992/1000	NonOverlappingTemplate
94	84	103	109	103	100	121	88	101	97	0.361938	987/1000	NonOverlappingTemplate
114	100	109	91	104	91	95	106	108	82	0.433590	983/1000	NonOverlappingTemplate
106	86	106	90	83	104	102	114	108	101	0.402962	982/1000	NonOverlappingTemplate
122	79	106	101	90	107	106	96	104	89	0.162606	985/1000	NonOverlappingTemplate
95	98	113	92	97	95	96	107	97	110	0.859637	990/1000	NonOverlappingTemplate
100	98	100	99	91	106	117	89	98	102	0.798139	989/1000	NonOverlappingTemplate
94	93	102	109	100	104	89	96	97	116	0.751866	993/1000	NonOverlappingTemplate
97	105	89	100	111	104	97	108	87	102	0.800005	989/1000	NonOverlappingTemplate
82	101	138	93	96	98	97	97	92	106	0.020831	992/1000	NonOverlappingTemplate
96	103	91	102	86	89	121	113	105	94	0.277082	992/1000	NonOverlappingTemplate
96	92	111	101	97	89	93	106	100	115	0.697257	986/1000	NonOverlappingTemplate
103	86	96	113	97	106	107	94	95	103	0.784927	987/1000	NonOverlappingTemplate
114	97	87	112	95	89	117	93	87	109	0.185555	988/1000	NonOverlappingTemplate
99	97	115	96	83	108	106	105	98	93	0.618385	989/1000	NonOverlappingTemplate
103	117	100	92	89	95	98	106	94	106	0.719747	991/1000	NonOverlappingTemplate
113	102	89	102	110	94	107	104	94	85	0.574903	987/1000	NonOverlappingTemplate
94	110	96	100	101	95	108	101	108	87	0.854708	988/1000	NonOverlappingTemplate
91	106	95	101	104	97	92	98	122	94	0.579021	994/1000	NonOverlappingTemplate
106	98	92	82	95	90	112	123	100	102	0.196920	982/1000	NonOverlappingTemplate
82	99	114	89	109	104	105	100	99	99	0.568739	992/1000	NonOverlappingTemplate
92	91	97	106	100	103	99	113	98	101	0.927677	993/1000	NonOverlappingTemplate
95	97	117	110	92	104	104	90	105	86	0.494392	993/1000	NonOverlappingTemplate
102	86	95	105	101	93	97	106	107	108	0.869278	990/1000	NonOverlappingTemplate
82	115	100	88	97	133	109	77	97	102	0.004085	992/1000	NonOverlappingTemplate
110	90	105	100	102	101	97	102	106	87	0.877083	991/1000	NonOverlappingTemplate
98	97	98	104	105	100	112	112	85	89	0.645448	982/1000	NonOverlappingTemplate
105	101	102	98	107	95	85	98	101	108	0.910091	990/1000	NonOverlappingTemplate
98	123	92	99	95	105	95	97	101	95	0.628790	986/1000	NonOverlappingTemplate
101	106	112	103	97	97	86	90	101	107	0.784927	993/1000	NonOverlappingTemplate
91	97	98	98	93	113	104	103	96	107	0.907419	991/1000	NonOverlappingTemplate
100	99	107	101	97	98	92	96	94	116	0.886162	992/1000	NonOverlappingTemplate
87	113	92	107	114	94	100	85	104	104	0.401199	993/1000	NonOverlappingTemplate
88	103	85	106	110	108	103	96	98	103	0.723804	988/1000	NonOverlappingTemplate
90	94	94	98	108	105	99	93	117	102	0.731886	993/1000	NonOverlappingTemplate
96	120	98	108	77	95	101	85	118	102	0.068571	987/1000	NonOverlappingTemplate
101	100	106	99	102	97	97	94	106	98	0.998058	990/1000	NonOverlappingTemplate
105	83	106	100	83	117	96	96	113	101	0.255705	990/1000	NonOverlappingTemplate
107	85	92	109	103	108	96	95	103	102	0.792508	985/1000	NonOverlappingTemplate
114	91	85	105	88	106	113	79	118	101	0.058612	991/1000	NonOverlappingTemplate
95	105	118	113	95	100	82	80	105	107	0.134944	996/1000	NonOverlappingTemplate
110	87	89	96	96	100	115	106	96	105	0.612147	996/1000	NonOverlappingTemplate
111	109	103	100	94	108	75	91	114	95	0.192724	991/1000	NonOverlappingTemplate
104	90	92	87	109	107	100	93	103	115	0.572847	989/1000	NonOverlappingTemplate
105	98	121	107	74	96	104	92	115	88	0.055361	987/1000	NonOverlappingTemplate
116	97	98	94	89	106	90	105	103	102	0.739918	990/1000	NonOverlappingTemplate
107	96	89	111	94	98	101	95	113	96	0.781106	986/1000	NonOverlappingTemplate
101	114	82	102	108	78	117	112	90	96	0.062427	992/1000	NonOverlappingTemplate
103	85	106	90	116	116	95	107	96	86	0.231956	992/1000	NonOverlappingTemplate
111	97	88	103	94	105	108	102	102	90	0.820143	992/1000	NonOverlappingTemplate

Renesas RA FamilyNIST SP800-22r1a Random Number Statistical Test Report for RA4E2

96	99	98	101	97	95	113	87	111	103	0.812905	991/1000	NonOverlappingTemplate
118	108	74	105	90	86	99	103	108	109	0.080519	989/1000	NonOverlappingTemplate
95	115	100	98	91	112	104	97	100	88	0.691081	989/1000	NonOverlappingTemplate
107	110	98	116	91	109	77	96	90	106	0.185555	989/1000	NonOverlappingTemplate
79	97	101	92	103	109	102	100	110	107	0.576961	991/1000	NonOverlappingTemplate
97	113	90	98	114	114	97	108	77	92	0.145326	991/1000	NonOverlappingTemplate
101	99	103	92	99	104	108	96	97	101	0.994005	995/1000	NonOverlappingTemplate
116	110	94	101	91	90	94	95	102	107	0.649612	984/1000	NonOverlappingTemplate
86	108	96	97	90	118	100	101	113	91	0.383827	992/1000	NonOverlappingTemplate
89	109	103	99	94	109	90	102	103	102	0.878618	993/1000	NonOverlappingTemplate
89	102	115	104	105	91	92	95	107	100	0.729870	993/1000	NonOverlappingTemplate
106	112	111	88	84	113	89	79	100	118	0.040635	990/1000	NonOverlappingTemplate
74	100	91	103	110	104	100	96	115	107	0.229559	993/1000	NonOverlappingTemplate
89	91	88	116	95	100	104	118	100	99	0.377007	991/1000	NonOverlappingTemplate
102	113	94	109	90	88	94	89	127	94	0.103753	990/1000	NonOverlappingTemplate
99	105	108	91	92	77	104	105	128	91	0.053627	992/1000	NonOverlappingTemplate
100	110	106	92	98	88	111	79	104	112	0.296834	989/1000	NonOverlappingTemplate
95	101	107	90	82	101	108	97	118	101	0.439122	994/1000	NonOverlappingTemplate
113	81	95	94	99	106	99	108	105	100	0.618385	985/1000	NonOverlappingTemplate
104	95	111	91	98	95	91	110	96	109	0.788728	987/1000	NonOverlappingTemplate
91	113	100	95	93	115	107	91	92	103	0.583145	990/1000	NonOverlappingTemplate
109	95	100	124	83	104	93	112	80	100	0.071177	990/1000	NonOverlappingTemplate
118	104	99	101	88	95	89	100	90	116	0.360287	986/1000	NonOverlappingTemplate
107	99	106	82	104	106	100	106	99	91	0.759756	990/1000	NonOverlappingTemplate
105	86	113	115	102	80	89	103	105	102	0.225998	994/1000	NonOverlappingTemplate
114	100	116	100	90	89	94	104	102	91	0.524101	982/1000	NonOverlappingTemplate
86	96	126	101	111	92	98	90	95	105	0.197981	996/1000	NonOverlappingTemplate
102	101	100	85	96	121	85	91	103	116	0.182550	986/1000	NonOverlappingTemplate
101	106	89	102	95	94	109	83	113	108	0.508172	989/1000	NonOverlappingTemplate
111	96	107	107	103	107	102	80	89	98	0.512137	989/1000	NonOverlappingTemplate
110	93	89	93	109	100	100	99	95	112	0.769527	988/1000	NonOverlappingTemplate
116	83	91	107	97	100	111	94	95	106	0.435430	988/1000	NonOverlappingTemplate
110	104	104	105	84	109	100	92	91	101	0.699313	995/1000	NonOverlappingTemplate
98	103	108	93	111	99	103	81	102	102	0.713641	986/1000	NonOverlappingTemplate
108	117	87	88	92	95	101	107	93	112	0.352107	988/1000	NonOverlappingTemplate
98	105	101	121	94	108	75	119	97	82	0.026057	991/1000	NonOverlappingTemplate
93	101	89	87	105	103	103	110	105	104	0.812905	988/1000	NonOverlappingTemplate
100	82	116	111	86	88	117	91	109	100	0.093157	984/1000	NonOverlappingTemplate
104	110	103	94	113	119	84	86	83	104	0.106246	993/1000	NonOverlappingTemplate
102	108	103	104	97	100	97	92	94	103	0.987896	994/1000	NonOverlappingTemplate
123	99	87	94	100	105	98	91	98	105	0.461612	987/1000	NonOverlappingTemplate
94	79	115	111	113	102	99	95	96	96	0.308561	988/1000	NonOverlappingTemplate
106	98	86	86	117	110	100	96	90	111	0.305599	992/1000	NonOverlappingTemplate
104	100	102	97	119	89	92	92	95	110	0.570792	989/1000	NonOverlappingTemplate
91	94	109	106	99	107	92	87	95	120	0.399442	990/1000	NonOverlappingTemplate
94	97	116	95	102	86	96	103	111	100	0.666245	991/1000	NonOverlappingTemplate
96	106	97	94	107	102	95	92	105	106	0.964295	985/1000	NonOverlappingTemplate
107	101	90	106	107	104	88	97	96	104	0.886162	986/1000	NonOverlappingTemplate
122	91	102	85	84	86	110	110	110	100	0.079051	990/1000	NonOverlappingTemplate
94	100	101	106	112	90	99	113	91	94	0.735908	983/1000	NonOverlappingTemplate
110	116	91	100	102	85	99	106	103	88	0.478839	991/1000	NonOverlappingTemplate
103	90	101	98	99	94	96	117	109	93	0.753844	992/1000	NonOverlappingTemplate
98	106	106	120	90	103	103	82	106	86	0.242986	992/1000	NonOverlappingTemplate
88	111	115	109	83	103	106	87	99	99	0.292519	982/1000	NonOverlappingTemplate
115	92	103	100	100	92	102	96	104	96	0.901959	987/1000	NonOverlappingTemplate
99	100	103	105	89	102	99	109	114	80	0.496351	987/1000	NonOverlappingTemplate
98	93	79	104	116	99	109	98	103	101	0.473064	991/1000	NonOverlappingTemplate
97	112	102	99	102	108	101	102	84	93	0.801865	993/1000	NonOverlappingTemplate

Renesas RA FamilyNIST SP800-22r1a Random Number Statistical Test Report for RA4E2

104	101	95	81	108	103	99	81	104	124	0.112047	989/1000	NonOverlappingTemplate
109	97	103	116	107	110	90	98	84	86	0.304126	988/1000	NonOverlappingTemplate
104	91	121	109	106	92	80	94	93	110	0.160805	984/1000	NonOverlappingTemplate
103	90	92	92	103	84	112	109	106	109	0.490483	990/1000	NonOverlappingTemplate
116	93	104	97	108	89	89	88	106	110	0.422638	994/1000	NonOverlappingTemplate
102	102	113	106	105	79	104	85	101	103	0.410055	989/1000	NonOverlappingTemplate
93	124	100	104	101	97	96	106	86	93	0.394195	995/1000	NonOverlappingTemplate
104	72	95	99	100	110	110	103	95	112	0.211064	991/1000	NonOverlappingTemplate
98	86	103	100	109	91	105	84	113	111	0.399442	986/1000	NonOverlappingTemplate
104	101	107	102	95	98	105	106	95	87	0.939005	988/1000	NonOverlappingTemplate
105	98	121	107	75	96	102	94	113	89	0.093720	987/1000	NonOverlappingTemplate
93	116	92	93	98	108	103	110	88	99	0.595549	991/1000	OverlappingTemplate
118	97	110	102	99	100	97	95	79	103	0.417219	980/1000	Universal
96	92	92	113	93	111	107	96	102	98	0.783019	988/1000	ApproximateEntropy
67	65	67	55	69	71	58	60	54	57	0.779497	616/623	RandomExcursions
53	61	44	73	80	88	48	57	48	71	0.000153	617/623	RandomExcursions
69	52	47	65	83	55	57	64	58	73	0.052642	620/623	RandomExcursions
71	58	71	65	61	54	62	71	61	49	0.522810	614/623	RandomExcursions
58	56	52	67	59	72	54	65	76	64	0.435787	616/623	RandomExcursions
65	53	65	72	56	67	64	54	77	50	0.259489	615/623	RandomExcursions
71	63	62	53	81	48	49	68	59	69	0.069976	617/623	RandomExcursions
62	73	56	63	64	55	74	65	61	50	0.513162	617/623	RandomExcursions
56	65	54	60	64	60	70	52	73	69	0.601900	616/623	RandomExcursionsVariant
64	55	48	69	60	65	64	62	67	69	0.712193	620/623	RandomExcursionsVariant
59	61	47	76	62	68	67	59	54	70	0.338862	619/623	RandomExcursionsVariant
62	60	53	65	73	62	70	59	70	49	0.494076	619/623	RandomExcursionsVariant
61	58	66	62	67	60	74	67	56	52	0.747962	619/623	RandomExcursionsVariant
60	65	76	56	60	54	73	65	56	58	0.535772	618/623	RandomExcursionsVariant
58	71	70	75	63	62	63	54	50	57	0.426918	618/623	RandomExcursionsVariant
65	67	61	66	51	72	67	68	53	53	0.535772	617/623	RandomExcursionsVariant
57	70	55	59	63	67	58	61	79	54	0.459900	616/623	RandomExcursionsVariant
56	55	64	65	67	63	53	63	68	69	0.860163	615/623	RandomExcursionsVariant
64	54	66	63	60	52	61	60	72	71	0.735066	615/623	RandomExcursionsVariant
75	64	66	45	55	59	71	64	61	63	0.346582	616/623	RandomExcursionsVariant
83	62	54	62	66	54	58	64	56	64	0.318838	617/623	RandomExcursionsVariant
74	66	66	62	49	69	52	66	57	62	0.472198	618/623	RandomExcursionsVariant
63	69	70	59	62	54	64	48	72	62	0.548839	616/623	RandomExcursionsVariant
63	62	63	71	56	59	73	58	54	64	0.800846	615/623	RandomExcursionsVariant
58	74	56	61	75	61	71	55	44	68	0.128778	611/623	RandomExcursionsVariant
64	63	52	77	67	59	69	58	58	56	0.558699	610/623	RandomExcursionsVariant
118	113	110	80	102	106	88	93	88	102	0.131879	987/1000	Serial
122	93	111	100	98	92	108	98	90	88	0.323668	986/1000	Serial
108	99	91	103	97	96	106	115	98	87	0.725829	988/1000	LinearComplexity

The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 980 for a sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately = 609 for a sample size = 623 binary sequences.

For further guidelines construct a probability table using the MAPLE program provided in the addendum section of the documentation.

Appendix B

Appendix B.1 NIST Statistical Test Suite ~ STS2.1.2 ~

The [SP800-22] compliant test suite ([STS2.1.2]) is provided by NIST.

[Download page]

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software

[File link]

https://csrc.nist.gov/CSRC/media/Projects/Random-Bit-Generation/documents/sts-2_1_2.zip

[File format]

Provided in C source files (public domain). Make command required for obtaining the test executable file.

[Operating environment]

Unix/Linux PC, or Windows PC with some compatibility layers like Cygwin, WSL.

gcc, make, and perl packages are also required.

[Test contents]

The 15 tests listed below and defined in [SP800-22] are executed:

- The Frequency (Monobit) Test
- Frequency Test within a Block
- The Runs Test
- Tests for the Longest-Run-of-Ones in a Block
- The Binary Matrix Rank Test
- The Discrete Fourier Transform (Spectral) Test
- The Non-overlapping Template Matching Test
- The Overlapping Template Matching Test
- Maurer's "Universal Statistical" Test
- The Linear Complexity Test
- The Serial Test
- The Approximate Entropy Test,
- The Cumulative Sums (Cusums) Test
- The Random Excursions Test
- The Random Excursions Variant Test.

Figure 1. Random Number Evaluation Flow

- (1) The client department runs the RNG on the target product and gains random sequences. The sequences are saved in a hexadecimal text format as the evaluation sample.
- (2) The client department send the evaluation sample to the evaluation department.
- ③ The evaluation department evaluate its randomness with [STS2.1.2].
 - (A) Convert the evaluation sample(2) into the single binary file.
 - (B) Run [STS2.1.2] with the "Sequence size" 1,000,000 bit in the argument.
 - (C) In the configuration "Input file", select the binary file converted at (A).
 - (D) The tool will ask the "Sample size", then specify 1000 samples.
 - (E) Other options are not changed from the default values.
 - (F) The test log "finalAnalysisReport.txt" is output to the experiments/AlgorithmTesting subdirectory.
- (4) The evaluation department checks each part in the test log described in Figure 2 and judges the Pass/Fail.
 - (A) Check the pass criteria of the Non-random excursion tests (C1 in Figure 2).
 - (B) Check the pass criteria of the random excursion tests (C2 in Figure 2).
 - (C) Check the pass proportion of the Non-random excursion tests (A1 in Figure 2) and the random excursion tests (A2 in Figure 2).
 - (D) If all the A1 and A2 values are greater or equal than C1 and C2 respectively, the test result is PASS.

Renesas RA FamilyNIST SP800-22r1a Random Number Statistical Test Report for RA4E2

 C1	gener C2	ator C3	cis C4	C5	ome/a C6	15022 C7	2748/ C8	sts- C9	-2. 1. C10	2/c P-	lata/MEF -VALUE	GED_RX	72T. bi TION	n> ST/	↓ ↓ ATISTICAL TEST↓
91 105 98 92 94 118 96	110 108 104 108 99 86 93	97 99 109 119 103 104 111	117 97 97 94 117 82 109	100 88 123 105 107 105 96	94 97 81 106 102 103 117	80 90 98 92 83 96 87	102 117 99 98 80 115 88	91 99 92 93 112 97 102	118 100 99 93 103 94 101	0. 0. 0. 0. 0. 0. 0.	152044 697257 296834 583145 196920 224821 446556	990, 984, 992, 992, 990, 988, 990,	/1000 /1000 /1000 /1000 /1000 /1000 /1000	り	Frequency↓ B1 BlockFrequency↓ CumulativeSums↓ CumulativeSums↓ Runs↓ LongestRun↓ Rank↓
101 121 62 62	113 97 59 66	109 95 57 64	105 120 61 70	98 96 67 68	99 56	91 EX 58	101 AMI 75	99 PLE 49	84 54	0. 0. 0. 0.	719747 027497 817120 413802	988, 988 608, 609,	/1000 /1000 /622 /622		Universal↓ ApproximateEntropy↓ RandomExcursions↓ RandomExcursions↓
57 59 94 103 96	68 52 91 99 84	72 73 99 89 110	50 70 88 99 104	58 61 110 84 111	64 58 105 101 108	63 65 114 101 96	68 55 106 114 83	57 62 94 108 115	65 67 99 102 93	0. 0. 0. 0.	700637 703946 682823 684890 241741	614, 614, 989, 991, 988,	/622 /622 /1000 /100 /1000		RandomExcursionsVariant RandomExcursionsVariant Serial↓ B1 Serial↓ LinearComplexity↓
The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 980 for a sample size = 1000 binary sequences. ψ The minimum pass rate for the random excursion (variant) test is approximately = 608 for a sample size = 622 binary sequences. ψ															

Figure 2. Descriptions in finalAnalysisReport

4. Website and Support

Visit the following URLs to learn about key elements of the RA family, download components and related documentation, and get support:

RA Product Information RA Product Support Forum RA Flexible Software Package Renesas Support renesas.com/ra renesas.com/ra/forum renesas.com/FSP renesas.com/support

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Jul.26.23		Initial release

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.