
 APPLICATION NOTE

REU05B0104-0106 Rev.1.06 Page 1 of 32
Apr 12, 2010

R8C Family
IEC 60730-1 Self Test Sample Code API And Demo

Content

1. Introduction.. 2

2. Application software safety considerations ... 2

3. Summary of Demo .. 3

4. Register Protection.. 5

5. Guide to the API .. 5
API_TestCPU... 6
API_TestRAMmemory ... 8
API_TestRamUserStack .. 10
API_TestROMmemory... 11
API_TestMainClockStability... 14
API_ReadADopenCircuit ... 17
API_CheckAD .. 19
API_DisableFlashRW .. 21
API_ReadPORresetVal.. 22
API_MonitorVccAndResetIfLow... 24
API_SetPinSRtoReadIO .. 25
API_StartWDTwithSlowOCO... 26
(API_TestWDT).. 28

6. More functions... 28

7. References and Bibliography .. 28
Other documents and presentations on testing according to IEC 60730.. 28

Website and Support ... 32

REU05B0104-0106
Rev.1.06

Apr 12, 2010

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 2 of 32
Apr 12, 2010

1. Introduction
All home appliances intended for the European Union market must today comply with the International Electrotechnical
Committee’s standard IEC 60730-1, “Automatic electrical controls for household and similar use”. Both Europe
and the U.S. have introduced IEC regulations defining safety requirements in the design of home appliances, but in the
U.S. the standard UL1998 is still in use.

White goods microcontroller design teams therefore need to consider what is required in terms of hardware and
software in order to comply with the IEC 607301 requirements. Appendix H of IEC 60730-1 specifically defines
requirements for ‘controls using software’.

This document explains example software test routines that have been developed as a help in fulfilling the standard’s
Appendix H software requirements for Class B controllers, ‘control functions intended to prevent unsafe operation’. See
table in 7(7).

Demonstration target

The example project was created for the R8C/35a. Most routines can be used for devices in the R8C/Tiny family. For
M16C and H8, there exist corresponding CPU, RAM and ROM test source code. This source code is included in the
project.

Tools used

• Renesas M16C Standard Toolchain version 5.45.00. (compiler, assembler, linker):

• E8a in-circuit debugger.

Time measurement conditions

Execution time measurements were done at 20 MHz CPU clock. No compiler optimizations. Measurement was taken
with a scope. The ‘Un’ pin (p2_3) accessible on jumper JA214 on the RSKR8C35A was toggled before and after the
function call.

2. Application software safety considerations
Apart from the test routines of the API, here are some safety considerations to take into account when writing a
software application for equipment of Class B.

• Monitor for application state machine misbehavior, this could be done by checking for functions called in the
wrong sequence using a safety checking state machine.

• Check for uncalled functions.

• Check for functions not finished.

• Ensure the circumstances are right before executing a function, e.g. ‘Door locked before motor on’

• Dynamically enable / disable a function’s ability to run.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 3 of 32
Apr 12, 2010

3. Summary of Demo
The demo is made so the tests can be run one by one using a menu system. The idea is to present a simple interface to
the user who will later decide how to use the API in his/her product.

Switch 1 on the RSKR8C35A selects a test in order shown in the table.

Switch 2 runs the test. Pass or fail will be displayed on line two of the LCD.

Table 1. List of software API tests and the order in which they appear in demo and are arranged in the source
code.

API test function Switch 1
LCD line 1

Switch 2
LCD line 2

Comments

API_TestCPU "CPU test" OK
NOT OK

API_TestRAMmemory "RAM test" OK
NOT OK

Select type of RAM test.

API_TestRamUserStack "StckUser" OK
NOT OK

API_TestROMmemory "ROM test" OK
NOT OK

Select type of flash memory test.

API_TestMainClockStability "FtstTyp1" or
"FtstTyp2"

OK
NOT OK

Select freq. test type 1 or 2,
permissible deviation etc.

API_CheckAD "Adreftst" OK
NOT OK

API_ReadADopenCircuit "ADOCtest" OK
NOT OK

API_DisableFlashRW "DsblFlsh" OK
NOT OK

*..

API_ReadPORresetVal "EnablPOR" OK
NOT OK

Follow procedure in source code
to set up.

API_MonitorVccAndResetIfLow "MonVcc " OK
NOT OK

*

API_SetPinSRtoReadIO "IOread " OK
NOT OK

API_StartWDTwithSlowOCO "WDT " OK
NOT OK

 *

(API_TestWDT) "TestWDT " CPU reset if
watchdog is
on

Else “OK”

User test of working/non-
working watchdog, not strictly
part of API

*This function depends all or in part of the setting of the OFS register(s) which are not
changed when running this function. This is statically set in flash memory when the
device is programmed.

Code size

The total code size for the demo including start up code and LCD driver is given below:

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 4 of 32
Apr 12, 2010

RAM: 1262 Bytes

ROM data: 661 Bytes

Program code: 4985 Bytes

Table 2. Execution time and size for the tests. CPU clock frequency is 20 MHz.

API test function API Execution time Program
code size
[bytes]

Max stack
usage in call
hierarchy
[bytes]

API_TestCPU 51 us 28 64

API_TestRAMmemory For testing 86 bytes of demo
RAM.

RamTest March C 16Bit:
27.0 ms

RamTest March X 16Bit:
14.5 ms

RamTest March X WOM
16Bit:
4.0 ms.

206 208

API_TestRamUserStack Tests the user stack, 80h
bytes.

RamTest March C 16Bit:
138 us

62 74, at this depth
the stack is
switched to a
new location
while testing the
normal stack.

API_TestROMmemory 1kB (1024 bytes) of flash
tested.

Simple CRC-16 with lookup
table:
12.4 ms

CRC16-CCITT using bit
shift:
9.5 ms

CRC16-CCITT with static
table:
11.0 ms

41 66

API_TestMainClockStability Method 1:
Typical 21 ms
Min. 11 ms
Max. 31 ms.

Method 2:
1.6 us

22 7

API_CheckAD 12.0 us 60 7

API_ReadADopenCircuit 12.1 us 55 7

API_DisableFlashRW 4.8 us 28 3

API_ReadPORresetVal 9 CPU cycles 4 3

API_MonitorVccAndResetIfLow 7.0 us. 48 3

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 5 of 32
Apr 12, 2010

API_SetPinSRtoReadIO 3.4 us. 14 3

API_StartWDTwithSlowOCO 9.2 us. 27 6

4. Register Protection
There is a safety feature to protect many SFR registers from unintentional writes. The protected registers are CM0,
CM1, CM3, OCD, FRA0, FRA1, FRA2, FRA3, PM0 PM1, PD0, OCVREFCR, VCA2, VD1LS, VW0C, VW1C, and
VW2C.

API functions that use any of these protected registers, have this noted in their respective chapter in this document.

5. Guide to the API
The following pages show each API test call’s syntax and provides explanations.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 6 of 32
Apr 12, 2010

API_TestCPU

Test of CPU Registers
The CPU test performs write and read back tests of the CPU registers.

Format
rslt_t API_TestCPU(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
None (other than the MCU core).

API execution time
51 us.

Comments
All CPU registers are tested:

 - General purpose registers (R0,R1, R2, R3,A0, A1, FB)

 - Interrupt Table Registers (INTBL, INTBH)

 - User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

 Static Base register (SB)

 - Program counter (PC)

 - Flag Register (FLG)

They are tested by writes and subsequent readbacks of two different test patterns.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 7 of 32
Apr 12, 2010

Figure 1. CPU registers of the R8C/35a. All are tested by API_TestCPU. Two different test patterns are written
and read back to and from the registers.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 8 of 32
Apr 12, 2010

API_TestRAMmemory
Test of RAM
RAM memory is tested by three alternative marching RAM tests over the memory range.

Format
rslt_t API_TestRAMmemory(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
None (CPU core).

API execution time
One call to TestRAMmemory() was measured. This consists of multiple calls to the underlying test algorithm. The test
covers all of RAM from the SFR area at 0x400 to the stack at 0x45E in the demo, or 86 bytes of RAM.

(1) Using RamTest_March_C_16Bit

27.0 ms.

(2) Using RamTest_March_X_16Bit

14.5 ms.

(3) Using RamTest_March_X_WOM_16Bit

4.0 ms.

See further document 7(2) 下の. More execution times are here listed for various memory sizes and optimizations for
the R8C core using an earlier version of the compiler.

Comments
Test alternatives

The test is non-destructive and copies the user data to a buffer. After testing is complete, the original data is restored.
The three different RAM tests are variants of bit pattern test read/writes to memory. A customer would only need to
select one:

• RAM memory test using March C

• RAM memory test using March X

• RAM March X test algorithm for Word Oriented Memory

Sectioning of memory for non-destructive testing

The memory low address to test cannot be found at run-time, so instead it is inserted when the code is linked, and so
will always be up-to-date.

A small ‘bss’ memory section (static variable section without initial values) ram_iec_safe is set aside to be able to do a
non-destructive memory test. For a startup test where RAM is not yet used, this restoring of data can be omitted. If so,

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 9 of 32
Apr 12, 2010

pass the argument NULL (0) to the underlying RAM test inside the API. This is actually done for the testing of the
ram_iec_safe section. Since this section is a test buffer, it does not need to be restored with any original content.

The RAM test recovery data buffer needs to be placed in a dedicated space. This section has already been set up in the
demo, but is configurable in size and location. To change, open the sect30.inc file and search for the string
ram_iec_safe. The code of interest looks like this:

;RAM Safe area for RAM march test.
 .section ram_iec_safe_SE,DATA
 .org 400H
;ram_iec_safe_top:
 .section ram_iec_safe_NE,DATA,ALIGN

;Moved up 'normal' bss for IEC.
 .section data_SE,DATA
 .org 408H

To change a section location in the sect30.inc file, change the .org address to another value.

To change the size of the RAM test buffer, change RAM_TEST_BUFSIZE in file iec_tests.c. A larger buffer will make
RAM testing faster.

'Normal' bss-RAM will start after the ram_iec_safe test buffer, so if RAM_TEST_BUFSIZE is enlarged, the
data_SE .org section address will need to move up in address. For example, if buffer is 0x20 words (=0x40 bytes) move
data_SE origin to 440H.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 10 of 32
Apr 12, 2010

API_TestRamUserStack
Test of RAM Stack
Stack memory is tested by any of the three RAM tests.

Format
rslt_t API_TestRamUserStack(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
80h bytes of dedicated swap memory for the stack to switch to and use while the regular stack is tested.

API execution time
One call to the API was measured. This consists of multiple calls to the underlying test algorithm. The test covers the
whole user stack. Size 80h of RAM.

(1) Using RamTest_March_C_16Bit

50 ms. Roughly half is for first testing the temporary user stack first.

Comments
Test alternatives

The test is non-destructive and copies the user stack data to a new temporary stack ram_iec_temp_ustack while the test
is run. This area is first tested in a destructive test. After that the normal stack is tested. After testing the stack area the
test code restores the original stack and then switches back to it.

The stack pointer is tested in the CPU register tests.

A heap shall not be used according to MISRA coding rules.

The sectioning of memory for non-destructive testing of the user stack is the same procedure as for testing RAM.

Alternative stack testing

Write two known numbers onto the stack start and end addresses. The numbers are stored in flash/ ROM.

Read the stack values and compare with the stored ones. (In a case of stack overflow, the stack pointer will reach the
end of the stack & overwrite the end number.) If the values have changed, the stack has been corrupted.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 11 of 32
Apr 12, 2010

API_TestROMmemory
Test of ROM
ROM memory is tested by three alternative CRC methods over the memory range.

Format
rslt_t API_TestROMmemory(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
No MCU peripheral resources are used.

API execution time
1024 bytes (1kB) of flash tested.

Using Simple CRC 16 with lookup table (CRC16_Small_LT) 12.4 ms

Using CRC16 CCITT using bit shift (CRC16_CCITT) 9.5 ms

CRC16 CCITT with static table (CRC16_CCITT_Small_LT) 11.0 ms

Figure 2. The table shows execution times for all included CRC sub tests.

For more execution time tests, see 16.1(4) below. Here, more execution times are listed for various memory sizes and
optimizations for the R8C.

A CRC check can be done on flash content & compared to a stored value to ensure no data/code has been corrupted.

There are four alternative functions in the underlying test code to calculate a CRC checksum of the flash memory . The
user of this application note is recommended to select one of the four functions. In the API you just uncomment the
functions that you wish to use, and comment the others.

.1. Simple CRC-16 with lookup table. As this uses a table, it takes up more memory space, but is fast (about same
speed as the CRC-CCITT with lookup table.)

2. CRC-CCITT using bit shifting. Best 'overall' choice for time and memory footprint. It takes up no table const
memory and is only marginally slower than the next, which uses a lookup table.

3. CRC-CCITT using a table. Fastest, but takes up more flash.

4. CRC-CCITT with small lookup table. Uses much less const memory and little RAM, but rather slow.

Comments
Setting start address, length, and CRC value

At the top of the iec_tests.c file, some ROM test values must be set. The section that contains the CRC value is in a
separate ROM test flash memory section rom_iec_ref and cannot be included in the memory test. To change a section
location, change the .org address to another location in the sect30.inc file. This is done similar to the RAM test above.

In file iec_test.c we will make use of the memory labels to calculate start address and length for our check summing
range:

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 12 of 32
Apr 12, 2010

/*********************
 * IEC ROM test *
 *********************/
/* Starting memory address for ROM that is to be IEC-tested. */
static const uint8_t* const romtest_start_addr = (const uint8_t* const)
&rom_NE_top;
static const uint32_t rom_test_length = 0x01000;

/* Memory address for ROM CRC reference value and length to test.
These addresses cannot be found at run-time, only at link time. */
#pragma SECTION rom rom_iec_ref
static const uint16_t crc_ref = 0x4ccc;

ROM test start address

This is taken from the section label where the application code starts. In our example rom_NE_top, whose address is
automatically resolved by the linker. The label rom_NE_top is found in the sect30.inc file.

Setting test length directly

Check your map file for rom_test_length, the length of your application code in bytes.

Setting test length automatically

The length from one section to another can also be calculated automatically by adding another label to the sect30.inc,
e.g. reset in sect30.inc:

const uint32_t rom_test_length = ((const uint32_t) ((uint32_t)&reset -
(uint32_t)&rom_NE_top));

The address reset is at the end of memory. This is prepared for in the demo. Uncomment the line above in iec_test.c to
use it, and comment the line right before it.

Marked in the map file below in Figure 3is the area for rom_test_length when the ‘automatic’ length calculation
formula is used.

Setting the CRC check reference value

After finishing development of your application, the value of the CRC checksum must be found and entered into the
reference value crc_ref. In the demo this can be done by pressing Switch 3 on the RSK at the same time as
API_TestROMmemory is started by pressing Switch 1. The CRC value should show up on the LCD display. Enter this
value as crc_ref and reprogram the part.

Note that the download debug kernel cannot be used when doing this if it is part of the checked flash memory region, as
the debugger will not be there when the device is programmed standalone.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 13 of 32
Apr 12, 2010

Figure 3. A memory map for the demo project. It shows the memory region in red that will be tested when the
project length is automatically calculated. The length is the address difference of the assembler labels reset and
rom_NE_top. In this case FFDCh – 8010h = 7FECh or 32748 bytes.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 14 of 32
Apr 12, 2010

API_TestMainClockStability
Test of CPU Clock
The CPU clock speed is compared with a reference clock.

Format
rslt_t API_TestMainClockStability(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
• Timer RA and Timer RA interrupt.

• Timer RB and Timer RB interrupt if method 2 is used.

API execution time
Method 1

21 ms typical, min 11 ms, max 31 ms.

Method 2

1.6 us.

The second method’s implementation has the interrupts running continuously, so a result only needs to be ‘polled’. The
timers could be freed up completely between measurements. To do this, init timers A and B at the API call, and then
modify the Timer RA interrupt to set a ‘freq test finished’ flag when the measurement is finished. The main application
would later evaluate the result when the flag has been set. The execution time for this function would then increase with
the time to call InitTimerRA() and InitTimerRB().

Comments
The main clock on the RSKR8C35a test is based on the crystal X1. The sample code uses the RSK’s 32.7 kHz on-board
clock, or ‘sub-clock’, to check if the oscillator used as the CPU clock is out of range. The sub-clock is a separate
oscillator and thus an independent time source.

Two methods are presented. To use a method, uncomment it’s macro definition in timeradc.h. That is, to use method
two, edit timeradc.h to be:

//#define MEAS_CPU_CLOCK_METHOD_1 1
#define MEAS_CPU_CLOCK_METHOD_2 1

Also set the percentage frequency deviation allowed, e.g.

#define PERCENT_DEV_ALLOWED 2

Note that the permitted clock deviation must take into consideration the instability of the used reference clock as well,
in the sample code case sub-clock fC.

The mean measurement value must also be set. This will depend on the value of the Timer RA (and RB) reset values,
and on the frequency of the clocks. This value can be calculated or measured empirically. See file timeradc.h. There is
one for each method.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 15 of 32
Apr 12, 2010

#define CLOCK_MEAS_MEAN 0x0003670

Finally, the number of sample measurements to take, to average the measurement for method 2 is determined by

#define NR_FMEAS_SAMPLES 20

The higher the number, the more accurate the frequency measurement will be, and the more it will be averaged over
time.

The minimum and maximum frequency measurement values will be calculated by the NC30 preprocessor.

Using one timer

In the sample code, Timer RA is clocked with the 32.7 kHz sub-clock and triggers an interrupt after 10 ms (can be
changed, see below) and then toggles a flag. The measuring function increments in a loop as long as the flag is high. In
the original sample code this is set to be for 10 ms (ten interrupt periods).

When taking a measurement, the MCU increments a counter during the whole measurement period, and so is
completely occupied during the measurement time. This counting may not be disturbed. Therefore the interrupt flag
register is saved and loaded with a value of one less than the TimerRA interrupt level, so only Timer RA may interrupt
the measurement (except watchdog, reset and NMI interrupts). The counter is then compared with a constant reference
value for pass/fail. The IPL is afterwards restored (normally this will be to 0).

The interrupt frequency and thus the length of time the MCU is occupied can easily be changed.

If Timer RA settings or NR_FREQ_MEAS_TMR_IRQS is changed, CLOCK_MEAS_MEAN and must be adjusted.

Using two timers

This method uses both Timer RA and Timer RB. Timer A is used to measure the number of Timer B cycles (interrupts)
that have occurred between Timer A interrupts.

Using two timers alleviates the MCU from being occupied when the measurement is taken. The drawback is two timer
resources are used with this method.

The source code builds a sum over several TimerRA periods (NR_FMEAS_SAMPLES) to increase accuracy.

Figure 4. How frequency is checked using only one timer in the demo. The CPU is occupied during the test.

freq_meas_flag

t

The test code
waits for the measurement flag
to go high. It then increments a

counter in a loop until
the flag goes low again.

Count value is measurement
of main CPU clock.

If not close to ref value
system clock is considered faulty.

Timer RA

Counts to 10
Then generates interrupt

Main CPU clock

Secondary oscillator
fC32 = 32700Hz/32 =

~ 1000 Hz Interrupt rate (in the example code. 100 Hz.)
Each Timer RA interrupt, toggle freq_meas_flag

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 16 of 32
Apr 12, 2010

Other ways to detect frequency deviation

There are more ways to detect frequency deviation, such as using a port pin PWM signal over an RC filter & read
voltage on the filter’s slope. This will give a voltage slope vs. frequency.

Figure 5. Test of CPU clock frequency using two timers freeing up the MCU during frequency testing. A mean
value over several TimerRA periods (NR_FMEAS_SAMPLES) is calculated to increase accuracy.

Secondary oscillator
fC32 = 32700Hz/32

~ 1000 Hz

t

t

Main CPU clock
f2 = 10 MHz

Timer RB

Counts to 100*100 in
example code (T=1 ms)

Then generates interrupt.

Interrupt rate = 10 *106/(100*100) = 1000 Hz.

Period between TimerRA interrupts in example is 10 ms.

Each Timer RA interrupt, count nr of interrupts
of Timer RB that have occurred.

If average count is not close to 10ms/1ms = 10,
system clock is considered faulty.

(Average value over several TimerRA periods
is built to determine pass/fail.)

Timer RA

Counts to 10, T=10 ms.
Then generates interrupt

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 17 of 32
Apr 12, 2010

API_ReadADopenCircuit
A-D Sensor Connection Check
Tests whether a sensor is broken or disconnected.

Format
rslt_t API_ReadADopenCircuit(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
• Watchdog Timer circuit.

• On Chip Oscillator

API execution time
12.1 us.

Comments
This function checks if an A-D conversion value is out of bounds.

If the A-D channel input is pulled weakly high to Vcc (or low to ground) in parallel to the sensor, the A-D channel
input voltage will be Vcc (or ground) if the sensor is disconnected. If this should occur, it can be detected by reading
the AD input channel value and comparing it to a maximum (or minimum) allowable value. For this to work, the
allowable range of the sensor may not extend up to Vcc if a pull-up resistor is used, or go all the way down to 0 V if the
input is weekly pulled in parallel to 0 V.

To more quickly check if an A-D input is stuck at an extreme value, the A/D Open-Circuit Detection Assist Function is
used as described in the HW manual 7(6). This Open-Circuit Detection Assist function reduces influence of a
previously converted channel by charging the chopper amp capacitor to Vcc (or ground) before starting a conversion.
When a sensor is selected by the A-D input selector, precharging the A-D input enables a faster check whether the value
is out of the acceptable A-D sensor range.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 18 of 32
Apr 12, 2010

Figure 6. The A/D Open-Circuit Detection Assist Function increases the speed of a ‘sensor plausibility check’ by
pre-charging the A-D input before reading the conversion value. The sensor is then read and checked to be below
the Vcc value (e.g. 3FF with 10 bits), signifying that the gage is still connected.

NOTE: If this test, which precharges the A-D input, is run immediately prior to measuring a regular A-D reading, e.g.
measuring the On-Chip Voltage Reference, the observed OCVREF value may be affected. Therefore, sufficient
sampling time is necessary for the A/D conversion input timing.

MCU

Sensor

Hi imp. pull-up
to Vcc if sensor
should break off.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 19 of 32
Apr 12, 2010

API_CheckAD
Test of A-D reading using On-Chip Voltage Reference
A fault in the A-D converter (or a variation in VREF) can be confirmed using the on-chip reference voltage.

This function tests that the A-D is functioning properly by connecting the R8C35 MCU On-Chip Voltage Reference to
the A-D comparator and taking a measurement. Its value should be within an expected range defined in constant
memory.

Format
rslt_t API_CheckADref(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
• A-D converter. No regular AD channel is occupied, the reference is set apart from AN0-AN11.

API execution time
12.0 us.

Comments
The test connects the On-Chip Voltage Reference to the A-D input and then does a conversion. The value input to the
comparator is Vref and OCVREF. The test checks whether the A-D reading is within a range of the On-Chip Voltage
Reference value of 1.34V. If the measurement is outside a range, the A-D unit is considered faulty. Of course, a bad
value could also mean that Vref or OCVREF have changed, though this cannot be checked by the test, nor is it likely.

The A-D in the R8C/35a demo is clocked at 10 MHz (f1 / 2). This frequency is low enough for a VCC down to 3.0 V.

When measuring the OCVREF, φAD should be 4MHz or below. Use maximum A/D sampling time (see HW manual).
This is the time for VIN electric potential to stabilized from 0V or Vcc to the value of OCVREF. In addition, a short
delay must be added in the firmware immediately after the point where OCVREF is connected before reading the value
to make sure that it has time to charge the AD input completely. That is, right after ADEX0 and OCVREFAN are set to
one.

A/D conversion results may contain erroneous data due to possible variances in the internal power supply voltage
during conversion. This is caused by the flash memory and A/D converter sharing the same power supply in the MCU.
Countermeasure: Take an average of more than one conversion result. This is according to Technical Note TN-SH7-
A719A/E.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 20 of 32
Apr 12, 2010

•

Figure 7. The internal reference voltage Vref is measured. The read value is then checked against a
memory reference range.

The actual OCVREF value was measured to be 2.25 V with a of Vcc=5.11 V for the demo.

The ADEX0 bit in the ADCON1 register and the OCVREFAN bit in the OCVREFCR register select the on-chip
reference voltage.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 21 of 32
Apr 12, 2010

API_DisableFlashRW
Protecting Flash Memory
This function protects program and data flash memory from unintentional erases or writes.

Format
rslt_t API_DisableFlashRW(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
-

API execution time
4.8 us.

Comments
Out of reset, the erase and write operations on user program flash memory can be disabled by the FMR0 register. There
are also individual lock bits with which to protect the data flash blocks. These are set by the OFS register.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 22 of 32
Apr 12, 2010

API_ReadPORresetVal
Using the Built-in Power On Reset
Starts up the MCU when Vcc rises up above Vdet0.

Format
rslt_t API_ReadPORresetVal(void);

Return Values
5: 3.80 V selected (Vdet0_3).
4: 2.85 V selected (Vdet0_2).
3: 2.35 V selected (Vdet0_1).
2: 1.90 V selected (Vdet0_0).
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
• MCU reset circuit.

API execution time
9 CPU cycles. The function is simply an explanation on how to set up the MCU.

Comments
Power On Reset is an MCU feature that starts up the MCU when Vcc rises up above Vdet0. Internal resets are made
possible by using an external capacitor & diode, but without the need of an external IC.

If the /Reset pin is pulled high to VCC, of a value Vdet0 or above, the low-speed on-chip oscillator clock starts
counting. When it counts to 8, the MCU enters the reset sequence. For R8C devices other than the R8C/35a, the voltage
level needs to rise by at least trth mV/ms (Figure 8).

Do not use the .X30 file with HEW to program the device standalone as the OFSREG data is not included.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 23 of 32
Apr 12, 2010

Figure 8 shows the reset signal going low (active) for a rise above Vdet0

To use this functionality, tie the /Reset pin to Vcc. A reset will then occur automatically when Vcc rises above Vdet0.
All you need to do code-wise is set Vdet0 which may be chosen between: 3.80 V, 2.85 V, 2.35 V, and 1.90 V. The
voltage level is set with the OFS-register. See the source code for comments on how to set this.

See application note in 7(5) for more details on Power On Reset.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 24 of 32
Apr 12, 2010

API_MonitorVccAndResetIfLow
Monitor DC Power Supply Fluctuation
Power on resets will occur when Vcc falls below Vdet0.

Format
rslt_t API_MonitorVccAndResetIfLow(void);

Return Values
5: 3.80 V selected (Vdet0_3).
4: 2.85 V selected (Vdet0_2).
3: 2.35 V selected (Vdet0_1).
2: 1.90 V selected (Vdet0_0).
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
• Voltage Detection Circuit.

API execution time
7.0 us.

Protection
This function has associated registers that are protected from unintentional writes by the MCU’s protection function.

Comments
The demo includes a function to have the MCU reset when the voltage drops below Vdet0. This is called Voltage
Monitor 0 Reset. Power on resets will occur when Vcc falls below Vdet0 if the LVDAS-bit "Voltage detection 0 circuit
start bit" in the OFS-register is set to 0.

Figure 8 shows how the MCU will reset when external power drops below Vdet0.

See Application note in 7(5), rej05b1023_r8cap.pdf for more details on Voltage Monitor 0 Reset.

Do not use the .X30 file with HEW to program the device standalone as the OFSREG data is not included.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 25 of 32
Apr 12, 2010

API_SetPinSRtoReadIO
Detect actual voltage level of an IO pin.
Set up the MCU to detect actual high or low voltage level of an IO pin.

Format
rslt_t API_SetPinSRtoReadIO(void);

Parameters
None.

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
None

API execution time
3.4 us.

Comments
This function sets up the MCU (currently only R8C/35a) to use the Output Level Detection function which detects the
actual voltage high or low of an IO pin. The port status can be read regardless of direction mode.

To set up the MCU to read the actual IO pin voltage (1 or 0), set the PINSR (I/O Function Pin Select) register’s
IOINSEL bit to 1.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 26 of 32
Apr 12, 2010

API_StartWDTwithSlowOCO
Using the Watchdog
The watchdog is typically used as ‘Time Slot Monitor’ and resets the MCU when its timer is not serviced regularly.

Format
rslt_t API_StartWDTwithSlowOCO(void);

Return Values
0: OK.
1: NOT OK.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
• Watchdog Timer circuit.

• On Chip Oscillator

API execution time
9.2 us.

Protection
This function has associated registers that are protected from unintentional writes by the MCU’s protection function.
See chapter Register Protection.

Comments
The watchdog is typically used as the ‘Time Slot Monitor’ in the IEC standard.

Either of following can be selected to run the watchdog:

• Count starts automatically after a reset. This is determined by the OFSREG register.

• Count starts by writing to a watchdog register.

Do not use the .X30 file with HEW to program the device standalone as the OFSREG data is not included

Count Source Protection Mode

The watchdog is used in Count Source Protection Mode Enabled. This means the watchdog will be clocked with the
125 kHz On-Chip Oscillator.

If the watchdog is initialized by writing to the wdts or wdtr register, the watchdog timer will reset the MCU if it’s
counter underflows. To avoid watchdog resets, the software must write to the watchdog timer to reset it regularly.

Starting the watchdog

The watchdog can be started in two ways.

1. Automatically at reset by setting the registers OFSREG and OFSREG2. Since the watchdog will start
counting from reset, it must be refreshed earlier on as opposed to starting it manually as in 2.

2. From application source code. Start the watchdog by writing to the Watchdog Start or Reset register. By
using this method the watchdog interrupt can be used instead of having the MCU reset. To use the

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 27 of 32
Apr 12, 2010

watchdog start and refresh code already provided, define WDT to e.g. ‘1’ from within HEW. This is
easiest as it will be defined globally for all files and will enable watchdog refresh code.

In the example code a 100% write window is used, meaning the watchdog can be refreshed anytime in its count cycle.
To have a 100% write cycle OFS2REG set the must be set to 0xFF. (It is 0 by default!) See the source code for how to
set this register.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 28 of 32
Apr 12, 2010

(API_TestWDT)
User test of Watchdog
This is not a part of resident test code. It is just a manual demo test function for developers to check whether the
Watchdog is running

Format
rslt_t API_TestWDT(void);

Return Values
0: OK. Watchdog was not on.
CPU RESET: Watchdog was running.

Properties
Prototyped in file iec_tests.c
Implemented in file iec_tests.h

Resources used
• Watchdog Timer circuit.

• On Chip Oscillator

API execution time
NA

Protection
NA

Comments
 If the CPU resets. The function goes into a delay-loop, occupying the CPU. The watchdog is not serviced and so it will
time out and reset the CPU if it is running.

6. More functions
Other functions which are not explicitly part of Class B software testing requirements that can be added to testing are

7. References and Bibliography

Other documents and presentations on testing according to IEC 60730.
(1) Renesas Guide to IEC 60730-1 with regards to integrated controls

Written with the designers of products (e.g. white goods) in mind. A general investigation, guide, and condensation of
the relevant parts of the standard for MCU-controlled class B products. Written by RTA.

(2) Self Test Sample Code for Renesas Microcontroller Families. Application Note REG05B0016-0400.

(3) Walking, marching and galloping patterns for memory tests

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 29 of 32
Apr 12, 2010

RAM testing algorithms. Defines the fault types; Stuck-a-faults, Coupling faults, Transition faults etc. A term paper for
ELEC 7250 submitted by Arvind Raghuraman.

(4) March Test for Word oriented Memories

A research paper on software marching tests. Another term paper for ELEC 7250 submitted by Arvind Raghuraman.

(5) Power-On Reset Function and Voltage Monitor 0 Reset

Renesas document REJ05B1023. This document contains voltage level diagrams and behavior for Vdet0.

(6) The R8C/35A Group Hardware Manual

The R8C/35A HW manual REJ09B0407-0010 was used when writing this document.

(7) The IEC60730-1 standard

The governing standard for the E.U.

Appendix H lists “requirements for electronic controls” and specifies measures for insuring compliance. This is the
main section of interest for software tests. Of special interest for Renesas and white goods applications is software
Class B which ‘control functions intended to prevent unsafe operation of the controlled equipment’.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 30 of 32
Apr 12, 2010

Condensed version of table H.11.12.7 for Class B controllers

Component Fault/error Acceptable measures Definitions MCU
Impacted

1. CPU
1.1 Registers Stuck at Functional test, or H.2.16.5 YES

periodic self-test using either: H.2.16.6 YES
– static memory test, or H.2.19.6 YES
– word protection with single bit redundancy H.2.19.8.2 YES

1.3 Programme counter Stuck at Functional test, or H.2.16.5 YES
periodic self-test, or H.2.16.6 YES
independant time slot monitoring, or H.2.16.5 YES
logical monitoring of the programme sequence H2.18.10.2 YES

2. Interrupt handling
 & execution

No interrupt or
too frequent interrupt Functional test, or H.2.16.5 YES

time-slot monitoring H.2.16.5 YES
3. Clock Wrong frequency Functional test, or H.2.18.10.1 YES

time-slot monitoring H.2.18.10.4 YES
4. Memory

4.1 Invariable Memory All single bit faults Periodic modified checksum; or mutliple checksum
or word protection with single bit redundancy H.2.19.3.1 YES

mutliple checksum, or
or word protection with single bit redundancy H.2.19.3.2 YES

word protection with single bit redundancy H.2.19.8.2 YES

4.2 Variable Memory DC fault Periodic static memory test, or word protection with
single bit redundancy H.2.19.6 YES

word protection with single bit redundancy H.2.19.8.2 YES
4.3 Addressing
(relevant to variable
& invariable memory)

Stuck at word protection with single bit redundancy
including the address H.2.19.18.2 YES

5. Internal data path Stuck at word protection with single bit redundancy H.2.19.18.2 YES

5.2 Addressing Wrong address word protection with single bit redundancy
including the address H.2.19.18.2 YES

6. External communication Hamming distance 3 word protection with multi-bit redundancy, or H.2.19.18.1 NO

CRC - single word, or H.2.19.4.1 NO
transfer redundancy, or H.2.18.2.2 NO
protocol test H.2.18.14 NO

6.3 Timing Wrong point in time Time slot monitoring, or H.2.18.10.4 NO
scheduled transmission H.2.18.18 NO
Time slot and logical monitoring, or
comparison of redundant communication
channels by euther:

H2.2.18.10.3 NO

- Reciproque comparison H.2.18.15 NO
- Independant hardware comparator H.2.18.3 NO

Wrong sequence logical monitoring, or H.2.18.10.2 NO
Time slot monitoring, or H.2.18.10.4 NO
scheduled transmission H.2.18.18 NO

7. Input/output periphery Faults conditions
specified in H.27 Plausibility check H.2.18.13 YES

7.2 Analog I/O

7.2.1 A/D & D/A convertor Faults conditions
specified in H.27 Plausibility check H.2.18.13 YES

7.2.2 Analog MUX Wrong addressing Plausibility check H.2.18.13 YES

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 31 of 32
Apr 12, 2010

Comments.

2. To test that periodical interrupts occur as designed, a counter in each ISR can be incremented when an interrupt
occurs. For example, if the Serial Peripheral Interface (SPI) is configured to generate an interrupt every 10 ms, the
SPI should generate at least 10 interrupts in 100 ms. This counter can then be verified by the another timer interrupt,
for example the same interrupt as used in the frequency test.

4.3 and 5 do not contain the wording “memory test”. Item 4.3 concerns the RAM & Flash/ROM. It is possible to
detect the "stuck at" fault by the self-test software if the routines are called periodically and after reset. Item 5
concerns the internal data path. Any errors are detected by the use of internal independent Watch Dog Timer. If
there are any errors or faults in the addressing of the internal bus the program will not run correctly. The WDT is
the right HW module to detect such errors.

6. External comm. Protocol test: This could be a function reading a static memory area being written to by an
interrupt. The function would clear the data before exiting.

The Interrupt test implements the independent time slot monitoring H.2.18.10.4 defined by the IEC 60730 standard.
It checks whether the number of interrupts that occurred is within the predefined range. The goal of the Interrupt
test is to verify that interrupts occur regularly. The Interrupt test function can be invoked at specified time intervals.
It is triggered by a timer or line frequency interrupt to monitor and verify the interrupt operation.

R8C Family IEC 60730-1 Self Test Sample Code API And Demo

REU05B0104-0106 Rev.1.06 Page 32 of 32
Apr 12, 2010

Website and Support
Renesas Electronics Website

http://www.renesas.com

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record
Comments

Rev.

Date Page Summary

0.90 Aug 29 ‘08 — First edition for review.
0.94 Sep 14 ’08 After review FP.
0.95 Sep 16 ‘08 Before group review RTA.
0.98 Oct 2 ‘08 Changes according to review Sep 19.
1.00 Oct 10 ‘08 Official release.
1.03 Mar 20 ‘09 Changes as per RSO feedback for RTE’s core tests.
1.04 Apr 2 ‘09 Changes for GSCE (A4, doc number added)
1.05 Jun 5 ‘09 Omitted all Hi-speed OCO references. Refer back to 1.04

workspace and application note when OCO is re-released.
1.06 Apr 12 ‘10 API_TestRamUserStack and API_TestWDT sections added.

Chapter 3 tables also changed to include this API.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

