

Application Note

UART to 7-Segment Display

SLG47910

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 1
© 2024 Renesas Electronics

This application shows how to design a UART to Seven-Segment Display. We are using a PmodSSD for the 2-

digit seven segment display connected to the Evaluation Board. The working of the UART Terminal is also

discussed in this AN. Simulation waveforms generated by GTKWave software can be used to verify the

functionality of the design.

This application note comes complete with design files which can be found in the Reference section.

Contents

Terms and Definitions ... 1

References.. 2

1. UART ... 2

2. Seven Segment Display .. 3

2.1 Seven-Segment Display Truth Table... 4

3. Ingredients .. 5

4. Verilog Code ... 5

5. Floorplan: CLB Utilization ... 8

6. Design Steps .. 9

7. GTKWave Simulation Waveform .. 13

7.1 UART to 7-Segment (main_tb) .. 13

7.2 Baud Rate Generator ... 13

7.3 UART_Receiver_rx .. 13

7.4 UART Receiver .. 14

7.5 Seven_Segment Display ... 14

8. Conclusion ... 14

9. Revision History .. 15

Terms and Definitions

FPGA Field Programmable Gate Array

UART Universal Asynchronous Receiver Transmitter

FPGA Core Circuit Block that contains the digital array macro cells

ForgeFPGA Workshop Top level FPGA display and control window

FPGA Editor Main FPGA design and simulation window

CLB Configuration Logic Block

EVB Evaluation Board

Pmod Peripheral Module Interface

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 2

References
For related documents and software, please visit: ForgeFPGA Low-density FPGAs | Renesas

Download our free ForgeFPGA™ Designer software [1] to open the .ffpga design files [2] and view the proposed
circuit design.

 [1] ForgeFPGA Designer Software, Software Download and User Guide

 [2] AN-FG-012 UART to 7seg.ffpga, ForgeFPGA Design File

 [3] SLG47910, Preliminary Datasheet, Renesas Electronics

1. UART

UART or Universal Asynchronous Receiver-Transmitter is a commonly utilized communication protocol between

devices. It provides a direct way to communicate with an FPGA, allowing for the exchange of commands between

a device which have a UART interface and the FPGA. With proper configuration, UART is compatible with various

serial protocols that require the transmission and reception of serial data. In serial communication, data is

transmitted bit by bit using a single line or wire, and in bi-directional communication, two wires are employed to

enable successful serial data transfer.

Figure 1: UART Data Transfer

The two signals of each UART device are named:

- Transmitter (Tx)

- Receiver (Rx)

The main purpose of a transmitter and receiver line for each device is to transmit and receive serial data intended

for serial communication (see Figure 1). For a UART, the baud rate needs to be set the same on both the

transmitting and the receiving device. UART devices have a few important parameters used for setting different

configurations (see Figure 2):

1. Baud Rate: It is the rate at which information is transferred between communication channels. It can also

be defined as the maximum number of bits per seconds to be transferred. Some common Baud Rates for

an UART device is 9600,19200 and 115200.

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

UART 1 UART 2

DATA BUSDATA BUS

RX

RX TX

TX

GND GND

https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/forgefpga-low-density-fpgas
https://www.renesas.com/eu/en/software-tool/go-configure-software-hub
https://www.renesas.com/eu/en/document/gde/forgefpga-workshop-user-guide?r=1570456
https://www.renesas.com/us/en/document/scd/fg-014-ffpga

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 3

2. Number of Data Bits: Data bits are contained inside a Data Frame. It can be 5 bits up to 8 bits long if

parity bit is used. If no parity bit is used, then the Data Frame can be 9 bits long. The parity bit can be

appended after the data is sent.

3. Stop Bit: To signal the end of the data packet, the sending UART drives the data transmission line from

a low voltage to a high voltage. The Stop Bit is most preferably set to 1. Stop Bits are 1, 1.5 and 2 bits.

Figure 2: Data Frame for Receiver

4. Parity Bit: Parity is used by the receiving UART to detect any changes that may have occurred during

transmission. Once the data frame is received, the receiving UART counts the number of bits with a value

of 1 and checks if the total is odd or even based on the value of the parity bit. In case of even parity (parity

bit set to 0), the total number of 1 bit in the data frame should be even, whereas in case of odd parity

(parity bit set to 1), the total number of 1 bit in the data frame should be odd. The UART considers the

transmission error-free when the parity bit matches the data. However, if the total is odd when the parity

bit is set to 0 or even when the parity bit is set to 1, the UART detects that the data frame has been

modified.

Figure 3: UART Receiver Block

2. Seven Segment Display

The seven-segment display is made up of seven LEDs that are arranged in a rectangular shape. Each LED is

referred to as “segment” because it forms part of a numerical digit when illuminated. In some cases, an extra 8th

LED may be included in the same package to indicate a decimal point (DP). When multiple seven-segment

displays are connected to display numbers the DP LED can be used to differentiate between whole numbers and

decimals. The displays common pin is generally used to identify which type of seven-segment display it is. As

1

START

BIT

1 TO 2

STOP

BITS

0 TO 1

PARITY

BIT

5 TO 9 DATA BITS

PACKET

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 4

each LED has two connecting pins, one called the “Anode” and the other called the “Cathode”, there are therefore
two types of LED seven-segment display called: Common Cathode (CC) and Common Anode (CA).

In the common cathode display, all the cathode connections of the LED segments are joined together to logic “0”
or ground. The individual segments are illuminated by application of a “HIGH”, or logic “1” signal via a current
limiting resistor to forward bias the individual Anode terminals (a-g). In the common anode display, all the anode

connections of the LED segments are joined together to logic “1”. The individual segments are illuminated by
applying a ground, logic “0” or “LOW” signal via a suitable current limiting resistor to the Cathode of the segment

(a-g). See Figure 4

Figure 4: Digital Segments for all numbers

2.1 Seven-Segment Display Truth Table

Decimal

Digit

Individual Segments Illuminated

a b c d e f g

0 H H H H H H L

1 L H H L L L L

2 H H L H H L H

3 H H H H L L H

4 L H H L L H H

5 L H H H L H H

6 H L H H H H H

7 H H H L L L L

8 H H H H H H H

9 H H H L L H H

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 5

3. Ingredients

▪ SLG47910 Device

▪ Latest Revision of the ForgeFPGA Workshop software

▪ ForgeFPGA Evaluation Board and cables

▪ PmodSSD Device (2-Digits)

▪ Jump Wire

4. Verilog Code

The UART to seven-Segment design is available for download (AN-FG-012 UART to 7seg.ffpga). It contains one

top module which has instances of two IP Modules: UART Receiver and the seven-Segment display. These two

modules are connected, and the necessary parameters are specified. The UART Receiver IP module has two

more sub-modules inside which is used to define the baud rate and to define the working of the receiver.

Shown below is the (*top*) module named uart_to_7seg. The Verilog code for UART to seven-segment can

be found in the complete design example. It is available for download (AN-FG-012 UART to 7seg.ffpga)

Multiple always block in the Verilog code allows the user to configure the counter and the UART FSM structure

to ensure communication between blocks and data flow. The signals in the UART Receiver IP Module can be seen

in Figure 3.

(* top *) module uart_to_7seg #(
 parameter IN_CLK_HZ = 50_000_000,
 parameter DATA_FRAME = 8, // number of data bits
 parameter BAUD_RATE = 115200, // transmitting speed
 parameter OVERSAMPLING_MODE = 16, // bit offset or overlap
 parameter STOP_BIT = 1, // length of stop bit
 parameter LSB = 1, // determine serial data transfer 1=
MSB to LSB
 parameter SEL_CA = 1 // common cathode
) (
// Main inputs
 (* iopad_external_pin, clkbuf_inhibit *) input i_clk,
 (* iopad_external_pin *) input i_por,
// OSC config outputs
 (* iopad_external_pin *) output osc_ctrl_en,

// Custom IO
 (* iopad_external_pin *) input i_rx,
 (* iopad_external_pin *) output rx_oe,
 (* iopad_external_pin *) output o_cat, // determines which active digit
 (* iopad_external_pin *) output o_out_a,
 (* iopad_external_pin *) output o_out_b,
 (* iopad_external_pin *) output o_out_c,
 (* iopad_external_pin *) output o_out_d,
 (* iopad_external_pin *) output o_out_e,
 (* iopad_external_pin *) output o_out_f,
 (* iopad_external_pin *) output o_out_g,
 (* iopad_external_pin *) output o_cat_oe,
 (* iopad_external_pin *) output o_out_a_oe,
 (* iopad_external_pin *) output o_out_b_oe,
 (* iopad_external_pin *) output o_out_c_oe,
 (* iopad_external_pin *) output o_out_d_oe,

https://www.renesas.com/us/en/document/scd/fg-014-ffpga
https://www.renesas.com/us/en/document/scd/fg-014-ffpga

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 6

 (* iopad_external_pin *) output o_out_e_oe,
 (* iopad_external_pin *) output o_out_f_oe,
 (* iopad_external_pin *) output o_out_g_oe
);

 wire w_rx_done;
 wire [7:0] w_rx_data, w_segment;
 wire [1:0] w_active_digit;
 reg [11:0] r_counter;
 reg [1:0] r_rx;
 reg r_tick;

 assign osc_ctrl_en = 1'b1;

 //oe
 assign rx_oe = 0;
 assign o_cat_oe = 1;
 assign o_out_a_oe = 1;
 assign o_out_b_oe = 1;
 assign o_out_c_oe = 1;
 assign o_out_d_oe = 1;
 assign o_out_e_oe = 1;
 assign o_out_f_oe = 1;
 assign o_out_g_oe = 1;
 // reset buffer
 wire w_rst;

 input_reset_buf impl_input_reset_buf (
 .i_clk (i_clk),
 .i_por (i_por),
 .o_rst (w_rst)
);

 //Synchronized rx to avoid metastability
 always @(posedge i_clk) begin
 if(w_rst) begin
 r_rx <= 2'b11;
 end else begin
 r_rx <= {r_rx[0], i_rx};
 end
 end

 assign o_cat = w_active_digit[1];

 always @(posedge i_clk) begin
 if (w_rst) begin
 r_counter <= 'h00;
 r_tick <= 1'b0;
 end else begin
 if(r_counter <= 2499) begin
 r_counter <= r_counter + 1;
 r_tick <= 1'b0;
 end else begin
 r_counter <= 'h00;
 r_tick <= 1'b1;
 end
 end
 end

// instantiate the UART Receiver
 uart_receiver #(

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 7

 .IN_CLK_HZ (IN_CLK_HZ),
 .DATA_FRAME (DATA_FRAME),
 .BAUD_RATE (BAUD_RATE),
 .OVERSAMPLING_MODE (OVERSAMPLING_MODE),
 .STOP_BIT (STOP_BIT),
 .LSB (LSB)
) impl_uart_rx (
 .i_clk (i_clk),
 .i_rst (w_rst),
 .i_rx (r_rx[1]),
 .o_rx_data (w_rx_data),
 .o_rx_done (w_rx_done)
);

// instantiate the 7-segment Module
 seven_seg_disp_ctrl_2d #(
 .SEL_CA (SEL_CA)
) impl_seven_seg_disp_ctrl_2d (
 .i_clk (i_clk),
 .i_load (w_rx_done),
 .i_en (1'b1),
 .i_rst (w_rst),
 .i_refresh_clock (r_tick),
 .i_data ({2'b00,w_rx_data}),
 .o_active_digit (w_active_digit),
 .o_segment (w_segment)
);

 assign o_out_a = w_segment[7];
 assign o_out_b = w_segment[6];
 assign o_out_c = w_segment[5];
 assign o_out_d = w_segment[4];
 assign o_out_e = w_segment[3];
 assign o_out_f = w_segment[2];
 assign o_out_g = w_segment[1];

endmodule

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 8

5. Floorplan: CLB Utilization

Figure 5: Floorplan

From Figure 5, we can see a part of the floorplan for this application note.

From the Verilog code, the user can observe which GPIOs are being used for this Application Note. This can also

be observed under the floorplan tab in the software. The connection between each CLB in the floorplan can be

observed by clicking on the CLB of interest and observing the yellow(input) and blue(output) wires connecting the

CLBs internally.

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 9

6. Design Steps

1. Launch the latest version of the Go Configure Software Hub. Select the SLG47910V device and the ForgeFPGA

Workshop software will load.

2. From the ForgeFPGA tool bar, select the FPGA Editor tab.

3. Enter the Verilog code into the HDL editor and save the code using the save button on the top left corner of the

FPGA Editor. Make sure that there are five tabs containing different parts of the code. (See Figure 6)

Figure 6: Source files for this project

4. Open the IO planner tab on the FPGA editor. Assign the IOs that are in the Verilog code to GPIO pins on the

device and save. (See Figure 7)

5. Next select the Synthesize button on the lower left side of the FPGA editor.

6. Select the Generate Bitstream button on the lower left side of the FPGA editor. Check the Logger and Issues

tabs to make sure that the Bitstream was generated correctly. Now click on the Floorplan tab and see the CLB

utilization. Press the Ctrl and the mouse wheel to zoom-in. (Figure 5). Confirm that the IOs selected in the IO

Planner (Figure 7) are shown in the floorplan.

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 10

Figure 7: IO Planner

7. This design file also comes with a testbench to verify the working of UART and the Seven-Segment display.

The simulation waveforms can be verified by using the inbuilt GTKWave software. Uart_receiver_tb is the

testbench for UART side of the design file and the seven_segment_tb is the other testbench used to verify the

working of the seven_segment display. The user can launch the GTKWave software by clicking on the Simulate

Testbench icon on the toolbar. This will automatically launch the GTKWave software provided there are no errors

in your testbench. The errors/issues can be observed from the console at the bottom of window.

8. In the GTKWave software, the user can insert the desired signal in the window from the list of all the signals in

the code and observe the waveform. Through the generated waveform the user can verify the functionality of

UART and the seven-segment display without going through the hassle of connecting the development board.

(See Section 7)

9. Once the user is satisfied with the waveform, the user can Debug the design file. Close the FPGA Editor and

go to the ForgeFPGA widow. Selecting the Debug tab will enable the debug controls. Double click on the VDD pin

and set VDD = 1.1V. Then double click on VDDIO pin and set VDDIO = 2.3V.

10. In the ForgeFPGA Workshop window, select Change platform on the Debugging Controls tab. Choose the

ForgeFPGA Development Platform then select Emulation. The Emulation button will toggle the design on and off.

11.To observe the outputs of this application note, connect the Evaluation Board along with the PmodSSD

connected to its GPIO. User the upper slots of the GPIO in the EVB to connect to the PmodSSD.

12. To send the data from the UART to the Pmod, we need to use the inbuilt UART Terminal. The EVB has a

connection for the UART. The user needs to connect the TX within the UART on the board to GPIO4 for the

UART Terminal to work. (See Figure 8)

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 11

Figure 8: UART Connection on EVB

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 12

Figure 9: UART Terminal

13. The user can then send the desired data from the UART Terminal to the PmodSSD in Hexadecimal form. The

user needs to set the Baud Rate as 115200 and set the Parity Bit to “None Parity”. The user can type the desired
data (HEX) they want to send to the Pmod in the UART Terminal (See Figure 9) and then click Send to see it

appear on the PmodSSD. (See Figure 10)

Figure 10: PmodSSD Results

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 13

7. GTKWave Simulation Waveform

The design file has three sets of testbenches which can be used to verify the functionality of the design. There are

three testbench files, uart_receiver_tb, seven_segment_display_tb and main_tb. Inside the uart_receiver_tb, we

have two sub modules, baud_rate_generator and uart_receiver_rx. We can observe the waveform for each

submodule in GTKWave to verify. The main_tb is used to verify the total functionality of the seven-segment

receiving data from the UART.

7.1 UART to 7-Segment (main_tb)

7.2 Baud Rate Generator

7.3 UART_Receiver_rx

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 14

7.4 UART Receiver

7.5 Seven_Segment Display

8. Conclusion

In this application, we integrated two IP Modules together and created a design which allows the data to flow from

a UART to a seven-segment display. The two digits can be observed on a PmodSSD which is connected to the

ForgeFPGA’s Evaluation Board. Through this Application Note we also understood the working of the UART

Terminal.

If interested, please contact the ForgeFPGA Business Support Team.

UART TO 7-SEGMENT DISPLAY

R19AN0311EU0101 Rev.3.00
Jul 31, 2024

 Page 15

9. Revision History

Revision Date Description

1.0 March 18, 2023 Initial release.

2.0 Feb 23, 2024 Updated as per BB Revision

3.0 July 17, 2024 Updated as per ForgeFPGA Workshop v6.43

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

