
Application Note

DA9061/2 Schematic Checklist

AN-PM-103

Abstract

Optimizing the schematic for DA9061/2 ensures correct and efficient operation of the PMIC and the system. This is achieved by selecting appropriate external passive components, and appropriate configuration of the PMIC OTP.

DA9061/2 Schematic Checklist**Contents**

Abstract	1
Contents	2
1 Terms and Definitions	3
2 References	3
3 Introduction	4
4 Schematic Checklist	4
5 Further Assistance	7
Revision History	8

DA9061/2 Schematic Checklist

1 Terms and Definitions

GUI	Graphical User Interface
OTP	One-Time Programmable (memory)
RTC	Real Time Clock
SoC	System-On-Chip
PMIC	Power Management Integrated Circuit
SmartCanvas™	Dialog GUI

2 References

- [1] DA9062, Datasheet, Dialog Semiconductor
- [2] DA9061, Datasheet, Dialog Semiconductor
- [3] UM-PM-008, SmartCanvas™ DA9061/2 User Manual, Dialog Semiconductor

DA9061/2 Schematic Checklist

3 Introduction

DA9061/2 is a power management integrated circuit (PMIC) optimized for supplying systems with single- and dual-core processors, I/O, DDR memory, and peripherals. It targets mobile devices, medical equipment, IVI systems, and FPGA-based applications.

This checklist is intended to help a hardware designer identify common errors that can arise in schematics containing the DA9061/2. The checklist is only a reference to common errors, and is not a substitute for rigorous system development and an understanding of the PMIC behavior as described in the DA9061/2 datasheet [1] [2].

4 Schematic Checklist

Table 1: Checklist

General	Comments		
OTP variant	Notes	Checked (Y/N)	Comments
Design name			
Schematic version			
Review date			
Which OTP variant is being used?	This can provide useful background for the review.		
OTP version number			
Core Operation			
V _{SYS}	2.8 V to 5.5 V		
V _{DDIO}	1.2 V to 3.6 V		
VSYS capacitor	1 μ F		
IREF resistor	200 k Ω . Must be \leq 1 % tolerance.		
VREF capacitor	2.2 μ F		
VBBAT capacitor	470 nF		
VDDCORE capacitor	2.2 μ F		
Crystal	The RTC requires an external crystal of 32.768 kHz as well as load Capacitors.		
XTAL_IN and XTAL_OUT	If the crystal is not required then both pins should be grounded.		

Core operation	Notes	Checked (Y/N)	Comments
nRESET timing	The nRESET timer control can be set in SmartCanvas™. RESET_EVENT sets the start point of time and RESET_TIMER the time till reset event. Make sure nRESET is active until after the important		

DA9061/2 Schematic Checklist

Core operation	Notes	Checked (Y/N)	Comments
	rails have turned on.		
nRESET pin	Register control IRQ_TYPE determines if the pin is push-pull or open-drain. Check an external pull-up is present if open-drain.		
nRESETREQ	nRESETREQ is an active-low reset input. nRESETREQ should be either pulled high to V _{SYS} or tied to V _{SYS} , never floating.		
nONKEY	nONKEY should be either pulled high to V _{SYS} or tied to V _{SYS} , never floating.		
TP	TP should not be left floating. Pull down to ground, via 10 kΩ. Ideally, a test-point will be provided for system debug.		
LDOS			
LDO input voltages	LDO2/3/4: 2.8 V to 5.5 V If supplied by a buck, the minimum voltage is 1.5 V.		
LDO2/3/4 input capacitor	1 µF		
LDO1 output capacitor	1 µF		
LDO2/3/4 output capacitor	2.2 µF		
LDO output voltage	LDO1: 0.9 V to 3.6 V LDO2/3/4: 0.9 V to 3.6 V		
LDO output current	LDO1: 100 mA LDO2/3/4: 300 mA		
DVC_1 register control	If VDLO<x>_SEL_A and VDLO<x>_SEL_B have different voltages and only one specific voltage is desired, then the regulator needs to be set correctly.		
Bucks			
Buck supply voltage	2.8 V to 5.5 V Supply voltage minimum for Buck3 is 3.3 V if I _{OUT} > 1.5 A.		
Input capacitors	2 x 22 µF or 4 x 10 µF		

Bucks	Notes	Checked (Y/N)	Comments
Buck output voltage	Buck1/2: 0.3 V to 1.57 V Buck3: 0.8 V to 3.34 V Buck4: 0.53 V to 1.8 V		

DA9061/2 Schematic Checklist

Bucks	Notes	Checked (Y/N)	Comments
Buck output current	Buck1/2: 2.5 A Buck3: 2 A Buck4: 1.5 A		
Buck1/2/3/4: current limit register settings I_{LIM}	Controlled with BUCK<x>_ILIM register. Buck1/2: Full Current Mode: 1400 mA to 4400 mA Half Current Mode: 700 mA to 2200 mA Buck3: 1700 mA to 3200 mA Buck4: 700 mA to 2200 mA		
Minimum ISAT values required at current limits	Current limit: 1500 mA 1200 mA 950 mA 750 mA ISAT: 1750 mA 1460 mA 1180 mA 940 mA		
Buck1/Buck2 dual-phase mode	5 A output. Enabled by controls BUCK1_2_MERGE. Outputs from both inductors need to be routed together.		
Output capacitors	Buck1/2: Full Current Mode: 2 x 47 μ F Half Current Mode: 2 x 22 μ F Buck3: At $I_{OUT} \leq 1.5$ A: 2 x 22 μ F At $I_{OUT} > 1.5$ A: 2 x 47 μ F Buck4: 2 x 22 μ F		
DVC_1 register control	If VBUCK<x>_SEL_A and VBUCL<x>_SEL_B have different voltages and only one specific voltage is desired then the regulator needs to be set correctly.		

GPIOs	Notes	Checked (Y/N)	Comments
Unused GPIOs	Check that they are one of the following: <ul style="list-style-type: none">• configured as an input, with internal pull-down enabled via register CONFIG_K, or,• configured as an output, or,• tied to GND		

DA9061/2 Schematic Checklist

GPIOs	Notes	Checked (Y/N)	Comments
GPIO events	Check unused GPIOs have events masked in register IRQ_MASK_C.		
Are there any GPIOs configured to have special features? (SYS_EN, PWR_EN, Watchdog trigger input)	Check the signal behavior. Ensure the port is correctly configured as active-high or active-low using control GPIO<x>_TYPE.		
Power Sequencer			
Start-up sequence	Is it correct for the system requirements?		
WAIT_STEP and dummy slots	Has the WAIT_STEP feature been used correctly, or set to 0x00? If dummy (empty) slots are used, are they correct?		
Minimize in-rush	Turning all regulators on in the same slot will cause a large inrush current and potentially cause a drop in input voltage and cause the PMIC to power down.		
Are the sequencer pointers placed in a suitable slot?	PART_DOWN ≤ SYSTEM_END SYSTEM_END ≤ POWER_END POWER_END ≤ MAX_COUNT		

5 Further Assistance

For further assistance on debugging and for a detailed schematic and OTP check, please refer to the DA9061/2 Datasheet found on the Dialog website (<https://www.dialog-semiconductor.com/pmic>) or contact your local FAE.

DA9061/2 Schematic Checklist**Revision History**

Revision	Date	Description
1.0	16-Nov-2017	Initial version.
2.0	18-Feb-2022	File was rebranded with new logo, copyright and disclaimer

DA9061/2 Schematic Checklist

Status Definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.