
 Application Note

R01AN3777EJ0101 Rev.1.01 Page 1 of 42
Apr 28, 2025

Bluetooth Low Energy Protocol Stack
Security Library
Introduction

Security Library provides APIs to ease the usage of security features provided by BLE protocol stack. Security Library
shall use with BLE protocol stack V1.20. The library can be used with Central / Peripheral. Also, can be used on
Embedded / Modem Configuration.

Target Device
RL78/G1D

Contents

1. Overview ... 4

2. Security Library Usage .. 5
2.1 Initialization.. 6
2.2 Set Security Parameters ... 7

2.2.1 Role .. 8
2.2.2 Authentication Requirement .. 8
2.2.3 IO Capabilities ... 8
2.2.4 Privacy ... 8

2.3 Pairing / Encryption .. 9
2.3.1 Pairing .. 10
2.3.2 Encryption ... 15

2.4 Service Request Error Response .. 17
2.5 Security Information Management .. 19

2.5.1 Saving Security Information .. 19
2.5.2 Deletion of Security Information ... 19

3. Interface Definitions ... 20
3.1 Functions ... 20

3.1.1 SecLib_Init ... 20
3.1.2 SecLib_Set_Param .. 20
3.1.3 SecLib_Start_Encryption ... 21
3.1.4 SecLib_Pairing_Req_Resp .. 21
3.1.5 SecLib_Passkey_Req_Resp .. 21
3.1.6 SecLib_SrvcReq_Error_Resp .. 22
3.1.7 SecLib_Delete_Bonding_Info .. 22
3.1.8 SecLib_Rand ... 23

3.2 Events ... 24

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 2 of 42
Apr 28, 2025

3.2.1 SECLIB_EVENT_INIT_COMP ... 24
3.2.2 SECLIB_EVENT_SET_PARAM_COMP .. 24
3.2.3 SECLIB_EVENT_PAIRING_COMP ... 25
3.2.4 SECLIB_EVENT_ENC_COMP .. 25
3.2.5 SECLIB_EVENT_PAIRING_REQ .. 26
3.2.6 SECLIB_EVENT_PASSKEY_IND ... 26
3.2.7 SECLIB_EVENT_PASSKEY_REQ .. 26
3.2.8 SECLIB_EVENT_CHK_ADDR_COMP .. 26
3.2.9 SECLIB_EVENT_DELETE_BONDING_INFO_COMP .. 26

3.3 Definitions .. 27
3.3.1 SECLIB_EVENT_TYPE ... 27
3.3.2 SECLIB_EVENT ... 27
3.3.3 SECLIB_PARAM .. 28
3.3.4 SECLIB_DELETE_TARGET .. 28
3.3.5 SECLIB_EVENT_HANDLER ... 28
3.3.6 CFG_SECLIB_DEBUG .. 28
3.3.7 CFG_SECLIB_BOND_NUM .. 28

4. How to Introduce Security Library into Existing Project ... 29
4.1 Procedure ... 29

4.1.1 Project settings ... 29
4.1.2 Security Library ... 30
4.1.3 Data Flash Library settings .. 31

5. Internal Behavior Sequence .. 33
5.1 SecLib_Init ... 33
5.2 SecLib_Set_Param .. 34
5.3 SecLib_Start_Encryption (Central Initiated, Pairing is not completed)............................... 35
5.4 SecLib_Start_Encryption (Peripheral initiated, Pairing is not completed) 36
5.5 SecLib_Start_Encryption (Central initiated, Pairing is completed) 37
5.6 SecLib_Start_Encryption (Peripheral initiated, Pairing is completed) 37
5.7 SecLib_Start_Encryption (Central initiated, Pairing is completed but Perpheral losts the

bonding information) .. 38
5.8 SecLib_Start_Encrytion (Peripheral initiated, Pairing is completed but Central lost the

bonding information) .. 38

6. Appendix ... 39
6.1 ROM size, RAM size .. 39
6.2 Vulnerability Avoidance Measures in the Event of Encryption Failure 40

6.2.1 Sequence ... 40
6.2.2 Vulnerability Avoidance Measures ... 41

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 3 of 42
Apr 28, 2025

Terminology
Terminology Remark

Role Each device has a role defined by profile or service.

Advertising The act to advertise a presence of itself to scanning devices.

Scanning The act to search for advertising devices.

Central One of the role defined by Link Layer and GAP. The device which was scanning, or initiating a
connection before establishing the connection, becomes Central after the connection. Central
defines the timings of transmission during the connection.

Peripheral One of the role defined by Link Layer and GAP. The device which was advertising before a
connection, becomes Peripheral after the connection.

MITM attack Man In The Middle attack. An attacker device intervenes between two communicating devices
and eavesdrop, insert or modify information on communication.

Authentication Authentication is executed to establish security between two devices.

Just Works One of the pairing method. This method is used when devices have no input / output
capabilities, or have no requirement on high security. This method has no protection against
MITM attack. Unauthenticated pairing.

Passkey Entry One of the pairing method. This method is used when devices have 6-digits number input /
output capabilities, such as a display / keyboard. This method has protection against MITM
attack. Authenticated pairing.

OOB Out of Band. One of the pairing method. Two devices exchange the information needed for
authentication by using the other than Bluetooth.

RPA Resolvable Privacy Address. One of the Bluetooth device address type. This address is changed
in a period to reduce the ability to track the device from an attacker device.

IRK Identity Resolving Key. This key is used to generate RPA. The device uses RPA distributes
IRK to the peer device during pairing. The peer device can identify the device by using the IRK.

LTK Long Term Key. This key is used for encryption. The key distributed by Slave is used for
encryption.

GAP Generic Access Profile. This profile defines the functions for two devices to discover each other
and establish a connection.

GATT Generic Attribute Profile. This profile defines a Service and the procedures to access the
Service. This profile has Server role and Client role. Server role provides Service, and Client
role make access (ex. Service discovery, write request) to the Service.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 4 of 42
Apr 28, 2025

1. Overview
Security Library provides APIs to ease the usage of security features provided by BLE protocol stack. Security Library

shall use with BLE protocol stack V1.20 or later. The library can be used with Central / Peripheral. Also, can be used on
Embedded / Modem Configuration.

The following features of Security Library makes it easier to provide security features than using rBLE API.

 Generates Passkey / LTK / IRK automatically

 Manages security information automatically

 Execute privacy functionality automatically

 Execute appropriate procedure depends on security status or service request error with a peer device

Table 1-1 shows the overview of security features provided by Security Library.

Table 1-1 Security Features

Function Description

Pairing Pairing is executed to establish keys used for encryption or privacy. After completing
pairing, BLE communication is encrypted. There are two types of pairing.

 Unauthenticated Pairing which have no protection against MITM

 Authenticated Pairing which have a protection against MITM

Encryption Encrypt BLE communication. By encryption, BLE communication is protected from an
attacker device. To enable encryption, security information should be exchanged by pairing
in advance.

Bonding The act of storing security information. The stored security information is used subsequent
encryption or privacy.

Privacy The feature that reduces the ability to track a device by using RPA. Even with a device using
RPA, the peer device can identify the device by exchanging security information with the
peer device during pairing.

This document has following structures. Section 2 describes how to use Security Library. You should read through the
section before you use Security Library. Section 3 describes API interface. Section 4 describes the procedure to
introduce Security Library into existing project. Section 5 describes the behavior of Security Library. You should read
this section when you want to understand Security Library internal behavior.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 5 of 42
Apr 28, 2025

2. Security Library Usage
This section describes how to use Security Library. Security Library has APIs that required to execute, and APIs that

execute per Application needs. Regarding the usage of each API, refer the section number describes in the “Refer”
column.

Table 2-1 shows APIs that required to execute when you use Security Library.

Table 2-1 APIs that required to execute

Procedure API Refer
Initialization Function SecLib_Init 2.1

Event SECLIB_EVENT_INIT_COMP
Set security parameters Function SecLib_Set_Param 2.2

Event SECLIB_EVENT_SET_PARAM

Table 2-2 shows APIs that execute per Application needs.

Table 2-2 APIs that execute per Application needs

Procedure API Refer
Pairing / Encryption Function SecLib_Start_Encryption

SecLib_Pairing_Req_Resp
SecLib_Passkey_Req_Resp

2.3

Event SECLIB_EVENT_PAIRING_COMP
SECLIB_EVENT_ENC_COMP
SECLIB_EVENT_PAIRING_REQ
SECLIB_EVENT_PASSKEY_IND
SECLIB_EVENT_PASSKEY_REQ

Service Request Error
Handling

Function SecLib_SrvcReq_Error_Resp 2.4
Event -

Security Information
Management

Function SecLib_Delete_Bonding_Info 2.5
Event SECLIB_EVENT_DELETE_BONDING_INFO_COMP

Security Library API have similar behavior to rBLE API. The result of the call is reported to a specified callback

function as an event. You must not call another function before being reported the event for the previous function call.
Security Library is implemented using rBLE API. Security Library realizes security features by using rBLE functions.

Security Library has a callback function to receive rBLE event. The callback handles security related rBLE events, but
security un-related rBLE events are reported to Application.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 6 of 42
Apr 28, 2025

2.1 Initialization
To use Security Library, you need to initialize Security Library first. The initialization is executed by SecLib_Init

function. The result is reported as SECLIB_EVENT_INIT_COMP event.

In Application without Security Library, the initialization is executed by RBLE_GAP_Reset function. But when you
use Security Library, SecLib_Init function shall be used instead of RBLE_GAP_Reset function. RBLE_GAP_Reset
function is internally called in SecLib_Init function.

Figure 2-1 shows the usage example of SecLib_Init function. SecLib_Init function shall be called after rBLE mode is
in RBLE_MODE_ACTIVE.

1. static void app_seclib_callback(SECLIB_EVENT *event)
2. {
3. switch (event->type) {
4. /* ... skip ... */
5. case SECLIB_EVENT_INIT_COMP:
6. if (event->param.status == RBLE_OK) {
7. /* SecLib_Init has finshed with OK. */
8. }
9. else {
10. /* SecLib_Init has finshed with Error. */
11. }
12. break;
13. /* ... skip ... */
14. }
15. }
16.
17. static void app_callabck(RBLE_MODE mode)
18. {
19. switch (mode) {
20. /* ... skip ... */
21. case RBLE_MODE_ACTIVE:
22. SecLib_Init(&app_gap_callback, NULL, &app_seclib_callback);
23. break;
24. /* ... skip ... */
25. }
26. }
27.
28. BOOL RBLE_App_Init(void)
29. {
30. /* ... skip ... */
31. RBLE_Init(&app_callback);
32. /* ... skip ... */
33. }

Figure 2-1 SecLib_Init function usage example

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 7 of 42
Apr 28, 2025

2.2 Set Security Parameters
After completing the initialization, you need to set security parameters. SecLib_Set_Param function is used to set the

security parameters. The result is reported as SECLIB_EVENT_SET_PARAM_COMP event.

SecLib_Set_Param function also can be used to change security parameters.

Figure 2-2 shows the usage example of SecLib_Set_Param function. SecLib_Set_Param function shall be called after
SECLIB_EVENT_INIT_COMP event.

1. static SECLIB_PARAM app_sec_param = {
2. RBLE_MASTER, /* role */
3. RBLE_AUTH_REQ_MITM_BOND, /* auth_req */
4. RBLE_IO_CAP_KB_ONLY, /* iocap */
5. TRUE, /* rpa_generate */
6. };
7.
8. static void app_seclib_callback(SECLIB_EVENT *event)
9. {
10. switch (event->type) {
11. /* ... skip ... */
12. case SECLIB_EVENT_INIT_COMP:
13. if (event->param.status == RBLE_OK) {
14. SecLib_Set_Param(&app_sec_param);
15. }
16. else {
17. /* SecLib_Init has finished with Error. */
18. }
19. break;
20.
21. case SECLIB_EVENT_SET_PARAM_COMP:
22. if (event->param.status == RBLE_OK) {
23. /* SecLib_Set_Param has finished with OK. */
24. }
25. else {
26. /* SecLib_Set_Param has finished with Error. */
27. }
28. break;
29. /* ... skip ... */
30. }
31. }

Figure 2-2 SecLib_Set_Param function usage example

Table 2-3 shows security parameter list. The security parameters are defined as SECLIB_PARAM structure.

Table 2-3 Security Parameters

Security Parameters Descriptions Refer
role Role 2.2.1
auth_req Authentication Requirement 2.2.2
iocap IO Capabilities 2.2.3
rpa_generate Privacy Feature 2.2.4

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 8 of 42
Apr 28, 2025

2.2.1 Role
Depends on the device’s role, set either of the value shown in Table 2-4 to “role” field.

Table 2-4 Role settings

Value Descriptions

RBLE_MASTER The device is Central.

RBLE_SLAVE The device is Peripheral.

2.2.2 Authentication Requirement
Depends on the security requirement of the device, set either of the value in Table 2-5 to “auth_req” field. This setting

is used in section 2.3.1.

Table 2-5 Authentication Requirement settings

Value Descriptions

RBLE_AUTH_MITM_BOND Request Authentication Pairing.

(This case has a protection against MITM, Use Passkey
as the pairing method.)

RBLE_AUTH_NO_MITM_BOND Request Unauthentication Pairing.

(This case does not have a protection against MITM. Use
Just Works as the pairing method.)

2.2.3 IO Capabilities
Depends on the Input / Output capabilities of the device, set either of the value shown in Table 2-6 to “iocap” field.

This setting is used in section 2.3.1.

Table 2-6 IO Capabilities settings

Value Descriptions

RBLE_IO_CAP_DISPLAY_ONLY 6-digits output capability (ex. Display)

RBLE_IO_CAP_DISPLAY_YES_NO 6-digits output capability (ex. Display) and
Yes/No input capability (ex. Button)

RBLE_IO_CAP_KB_ONLY 0~9 number input capability (ex. Keyboard)

RBLE_IO_CAP_NO_INPUT_NO_OUTPUT No input / output capabilities

RBLE_IO_CAP_KB_DISPLAY 0~9 number input capability (ex. Keyboard) and
6-digits output capability (ex. Display)

2.2.4 Privacy
Depends on the privacy requirement of the device, set either of the value shown in Table 2-7 to “rpa_generate” field.

When you set TRUE to this field, RPA is used as the Bluetooth device address and the address is changed periodically.
The address change interval is determined by GAP_RESOLVABLE_PRIVATE_ADDR_INTV.

Table 2-7 Privacy settings

Value Descriptions

TRUE Use RPA as Bluetooth device address and periodically
change the address.

FALSE Not use RPA.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 9 of 42
Apr 28, 2025

2.3 Pairing / Encryption
Pairing / Encryption is executed by SecLib_Start_Encryption function. This function performs as follows depends on

the security status with a peer device.

 If pairing with the peer device is not completed, it starts pairing. The pairing result is reported as
SECLIB_EVENT_PAIRING_COMP event. After completing the pairing, the communication is encrypted.

 If pairing with the peer device have completed, enable encryption by using keys exchanged during pairing. The
result of encryption is reported as SECLIB_EVENT_ENC_COMP event.

Security Library checks the pairing with the peer device have completed or not after connecting. This result is reported
as SECLIB_EVENT_CHK_ADDR_COMP event.

Even when either pairing or encryption is performed, communication is encrypted after completion. But pairing uses a

temporally key for encryption. To enable encryption using keys exchanged during pairing, re-call
SecLib_Start_Encryption function after completing pairing with the peer device.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 10 of 42
Apr 28, 2025

2.3.1 Pairing
When you call SecLib_Start_Encryption function without completing pairing with the peer device, pairing is started.

Figure 2-3 shows the sequence of pairing. Pairing executes following procedures.

 Pairing request / response (Figure 2-3-A)

 Just Works / Passkey Entry (Figure 2-3-B)

 Exchange / store Security information (Figure 2-3-C)

 Pairing completion (Figure 2-3-D)

Figure 2-3 Pairing sequence

 Figure 2-3 is the one example for pairing sequence. It is changed depends on security parameters settings.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 11 of 42
Apr 28, 2025

(1) Pairing request / response

Pairing starts from sending pairing request to the peer device. The device receiving the pairing request responds to the
request by sending pairing response. Pairing response includes decision about accept or decline the request.

Pairing request

When calling SecLib_Start_Encryption function without completing pairing, this function sends pairing request to the
peer device.

Pairing response

When a device receives pairing request, it is reported to Application as SECLIB_EVENT_PAIRING_REQ event.
Application responds to the event by SecLib_Pairing_Req_Resp function with the decision, accept or decline for the
request. The decision should be selected by User.

Figure 2-4 shows the SecLib_Pairing_Req_Resp function usage example. In this example, when
SECLIB_EVENT_PAIRING_REQ event is happened, report it to User to get the user decision, and responds to it by
SecLib_Pairing_Req_Resp function.

1. static uint16_t conhdl;
2.
3. /* This is pseudo function which receives user input (yes/no). */
4. static void app_user_input_yes_no(BOOL yes_no)
5. {
6. SecLib_Pairing_Req_Resp(conhdl, yes_no);
7. }
8.
9. static void app_seclib_callback(SECLIB_EVENT *event)
10. {
11. switch (event->type) {
12. /* ... skip ... */
13. case SECLIB_EVENT_PAIRING_REQ:
14. /* Confirm to user whether accept the pairing request or not. */
15. Printf("Accept pairing request?: (yes/no)\n");
16. /* Save conhdl to use for SecLib_Pairing_Req_Resp argument. */
17. conhdl = event->param.pairing_req.conhdl;
18. break;
19. /* ... skip ... */
20. }
21. }

Figure 2-4 SecLib_Pairing_Req_Resp function usage example

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 12 of 42
Apr 28, 2025

(2) Passkey Entry / Just Works

Security Library supports two pairing method, Just Works and Passkey Entry (OOB is not supported). Which pairing
method is used during pairing is determined from the combination of Authentication Requirement and IO Capabilities
of both devices. Table 2-8 and Table 2-9 shows the decision flow.

Table 2-8 Decision by Authentication Requirements

Peripheral Central MITM_BOND NO_MITM_BOND

MITM_BOND Refer Table 2-9 Refer Table 2-9

NO_MITM_BOND Refer Table 2-9 Unauthenticated
Just Works

Table 2-9 Decision by IO Capabilities

Central
Peripheral

DISPLAY_
ONLY

DISPLAY_
YES_NO

KB_
ONLY

NO_INPUT_
NO_OUTPUT

KB_
DISPLAY

DISPLAY_
ONLY

Unauthenticated
Just Works

Unauthenticated
Just Works

Authenticated
Passkey Entry
Central: Input

Peripheral: Display

Unauthenticated
Just Works

Authenticated
Passkey Entry
Central: Input

Peripheral: Display

DISPLAY_
YES_NO

Unauthenticated
Just Works

Unauthenticated
Just Works

Authenticated
Passkey Entry
Central: Input

Peripheral: Display

Unauthenticated
Just Works

Authenticated
Passkey Entry
Central: Input

Peripheral: Display

KB_
ONLY

Authenticated
Passkey Entry

Central: Display
Peripheral: Input

Authenticated
Passkey Entry

Central: Display
Peripheral: Input

Authenticated
Passkey Entry
Central: Input

Peripheral: Input

Unauthenticated
Just Works

Authenticated
Passkey Entry

Central: Display
Peripheral: Input

NO_INPUT_N
O_OUTPUT

Unauthenticated
Just Works

Unauthenticated
Just Works

Unauthenticated
Just Works

Unauthenticated
Just Works

Unauthenticated
Just Works

KB_
DISPLAY

Authenticated
Passkey Entry

Central: Display
Peripheral: Input

Authenticated
Passkey Entry

Central: Display
Peripheral: Input

Authenticated
Passkey Entry
Central: Input

Peripheral: Display

Unauthenticated
Just Works

Authenticated
Passkey Entry

Central: Display
Peripheral: Input

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 13 of 42
Apr 28, 2025

Just Works

Application have no things to do with Just Works pairing method (Table 2-3-B is not executed).

Passkey Entry

Depends on IO Capabilities setting, devices shall display passkey to User or receive passkey from User.

 SECLIB_EVENT_PASSKEY_IND event is reported to the device. The device shall output the passkey on the
display to show it to User.

1. static void app_seclib_callback(SECLIB_EVENT *event)
2. {
3. switch (event->type) {
4. /* ... skip ... */
5. case SECLIB_EVENT_PASSKEY_IND:
6. /* Display passkey to user. */
7. Printf("Passkey: %06ld\n", event->param.passkey_ind.passkey);
8. break;
9. /* ... skip ... */
10. }
11. }

Figure 2-5 SECLIB_EVENT_PASSKEY_IND event usage example

 SECLIB_EVENT_PASSKEY_REQ is reported to the device to request User to input the passkey displayed on
the peer device. The user input passkey is passed to Security Library through SecLib_Passkey_Req_Resp
function.
Figure 2-6 shows the example usage of SecLib_Passkey_Req_Resp function.

1. static uint16_t conhdl;
2.
3. /* This is pseudo function which receives user input (passkey). */
4. static void app_user_input_passkey(uint32_t passkey)
5. {
6. SecLib_Passkey_Req_Resp(conhdl, passkey);
7. }
8.
9. static void app_seclib_callback(SECLIB_EVENT *event)
10. {
11. switch (event->type) {
12. /* ... skip ... */
13. case SECLIB_EVENT_PASSKEY_REQ:
14. /* Request user to input passkey displayed on Peer Device. */
15. Printf("Input passkey:\n");
16. /* Save conhdl to use for SecLib_Passkey_Req_Resp argument. */
17. conhdl = event->param.passkey_req.conhdl;
18. break;
19. /* ... skip ... */
20. }
21. }

Figure 2-6 SecLib_Passkey_Req_Resp function usage example

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 14 of 42
Apr 28, 2025

(3) Exchange / store Security information

Exchange security information used for encryption or privacy. Security information is stored in Data Flash by
Bonding. The information will be used for subsequent encryption or privacy.

(4) Pairing completion

The completion of pairing is reported as SECLIB_EVENT_PAIRING_COMP event. Figure 2-7 shows the usage
example of SECLIB_EVENT_PAIRING_COMP event.

1. static void app_seclib_callback(SECLIB_EVENT *event)
2. {
3. switch (event->type) {
4. /* ... */
5. case SECLIB_EVENT_PAIRING_COMP:
6. if (event->param.pairing_comp.status == RBLE_OK) {
7. /* Pairing has finished with OK. */
8. }
9. else {
10. /* Pairing has finished with Error. */
11. }
12. break;
13. /* ... */
14. }
15. }

Figure 2-7 SECLIB_EVENT_PAIRING_COMP event usage example

(5) Pairing fail

Pairing will fail with the following cases. To re-start pairing, the connection should be disconnected once, re-connect
and then re-start pairing.

 When a pairing request is declined. The error is reported as SECLIB_EVENT_PAIRING_COMP event with the
status is RBLE_SM_PAIR_ERR_PAIRING_NOT_SUPPORTED.

 When pairing is not completed with 30 seconds. The error is reported as SECLIB_EVENT_PAIRING_COMP
event with the status is RBLE_ERR.

 When a user input wrong passkey. The error is reported as SECLIB_EVENT_PAIRING_COMP event with the
status is RBLE_SM_PAIR_ERR_CFM_VAL_FAILED.

 When at least one of Central or Peripheral requesting Authenticate Pairing (Passkey), but Unauthenticated
Pairing (Just Works) is selected as the pairing method due to IO Capabilities combination. The pairing is failed
and the error is reported as SECLIB_EVENT_PAIRING_COMP event with the status is
RBLE_SM_PAIR_ERR_AUTH_REQUIREMENTS.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 15 of 42
Apr 28, 2025

2.3.2 Encryption
When you call SecLib_Start_Encryption function after completing pairing with the peer device, encryption is started.

Figure 2-8 shows the sequence of encryption. Encryption executes following procedures.

 Start encryption (Figure 2-8-A)

 Store management data (Figure 2-8-B)

 Encryption completion (Figure 2-8-C)

Figure 2-8 Encryption sequence

(1) Start Encryption

Encryption is executed with keys exchanged during pairing.

(2) Store management data

As described in section 2.5.1, information for LRU is updated.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 16 of 42
Apr 28, 2025

(3) Encryption completion

 When encryption is completed, SECLIB_EVENT_ENC_COMP event is reported. Figure 2-9 shows
SECLIB_EVENT_ENC_COMP event usage example. This example checks encryption result.

1. static void app_seclib_callback(SECLIB_EVENT *event)
2. {
3. switch (event->type) {
4. /* ... */
5. case SECLIB_EVENT_ENC_COMP:
6. if (event->param.enc_comp.status == RBLE_OK) {
7. /* Encryption has finished with OK. */
8. }
9. else {
10. /* Encryption has finished with Error. */
11. }
12. break;
13. /* ... */
14. }
15. }

Figure 2-9 SECLIB_EVENT_ENC_COMP event usage example

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 17 of 42
Apr 28, 2025

2.4 Service Request Error Response
When one device start service request, such as GATT Write, but the request is failed due to the permission setting of

the characteristic or security status with the peer device, a service request error will be occurred.
SecLib_SrvcReq_Error_Resp function executes pairing (2.3.1) or encryption (2.3.2) depend on the security status. If

the security status does not permit the procedure, it returns an error. Table 2-10 shows SecLib_SrvcReq_Error_Resp
function behavior of Security Library included in sample programs depending on each combination of security status.

Table 2-10 Security request error and action depends on security status

Service Request Error Pairing Encryption Action

Insufficient Authentication None Disabled Start pairing.

(Execute Figure 2-3 A~D)

None Enabled Return RBLE_STATUS_ERROR

(Never be happened.)

Unauthenticated Disable Start encryption. If it fails start pairing.[Note 1]

(Execute Figure 2-8 A~C. If encryption failed,
Figure 2-8 C is not reported and execute Figure 2-3
A~D.)

Unauthenticated Enabled Start Authenticated Pairing.

(Execute Figure 2-3 A~D with a MITM protection)

Authenticated Disabled Start encryption. If it fails start pairing. [Note 1]

(Execute Figure 2-8 A~C. If encryption failed,
Figure 2-8 C is not reported and execute Figure 2-3
A~D.)

Authenticated Enabled Return RBLE_ERR.

(When the peer device requests LE Secure
Connection which is not supported by RL78/G1D.)

Insufficient Encryption None Disabled Start pairing.

(Execute Figure 2-3 A~D)

None Enabled Return RBLE_STATUS_ERROR.

(Never be happened.)

Unauthenticated Disable Start encryption. If it fails start pairing. [Note 1]

(Execute Figure 2-8 A~C. If encryption failed,
Figure 2-8 C is not reported and execute Figure 2-3
A~D.)

Unauthenticated Enabled Return RBLE_STATUS_ERROR.

(Never be happened.)

Authenticated Disabled Start encryption. If it fails start pairing. [Note 1]

(Execute Figure 2-8 A~C. If encryption failed,
Figure 2-8 C is not reported and execute Figure 2-3
A~D.)

Authenticated Enabled Return RBLE_STATUS_ERROR.

(Never be happened.)

Note 1: If you connect to a malicious device with the same BD address as the paired device, the encryption will fail
because the malicious device does not have the encryption key. The included Security Library automatically starts
pairing when encryption fails, and pairing with the malicious device may be established. To avoid this vulnerability, it
is recommended to follow Section 6.2 to prevent pairing from starting automatically when encryption fails.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 18 of 42
Apr 28, 2025

Figure 2-10 shows the usage example of SecLib_SrvcReq_Error_Resp function. This example set GATT Write ATT
code to att_code argument.

1. static void app_gatt_callback(RBLE_GATT_EVENT *event)
2. {
3. switch (event->type) {
4. /* ... skip ... */
5. case RBLE_GATT_EVENT_WRITE_CHAR_RESP:
6. SecLib_SrvcReq_Error_Resp(conhdl, event->param.write_char_resp.att_code);
7. break;
8. /* ... skip ... */
9. }
10. }

Figure 2-10 SecLib_SrvcReq_Error_Resp function usage example

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 19 of 42
Apr 28, 2025

2.5 Security Information Management
Security information is stored to Data Flash when pairing / encryption is completed. Application can delete the

security information by calling Security Library API.

2.5.1 Saving Security Information
Security Library saves security information when pairing / encryption is completed. Table 2-11 shows security

information items. If Application try to save more bonding information than CFG_SECLIB_BOND_NUM, depend on
LRU algorithm (Least Recently Used), the oldest bonding information is overwritten by a new one. To execute LRU,
access information of each bonding information is also saved when pairing / encryption is completed.

Table 2-11 Security Information

Data Description

Local device IRK LTK generated by the local device.

Management Data Record of the access for each bonding information. This is used for LRU algorithm.

Bonding information Security information for each peer devices, see Table 2-12. (The number of storable
bonding information on Data Flash is determined by CFG_SECLIB_BOND_NUM.)

Table 2-12 Bonding Information

Data Description

Security Property Security Level with the peer device.

Key Size LTK key size.

Peer Device Address The address of the peer device.

Peer Device Address Type The address type of the peer device.

Peer Device IRK IRK generated by the peer device.

Peer Device LTK LTK generated by the peer device.

Local Device LTK LTK generated by the local device.

2.5.2 Deletion of Security Information
Security information will be deleted with the following cases.

 When Application executes SecLib_Delete_Bonding_Info function. The specified bonding information is deleted.
The result is reported as SECLIB_EVENT_DELETE_BONDING_INFO_COMP.

 When bonding information is stored more than CFG_SECLIB_BOND_NUM and try to save new one. The least
recently used bonding information is overwritten by a new one.

 When encryption failed. The failed bonding information is deleted.[Note 1] In this case, as described in “Bluetooth
Core Specification 4.2 Vol 3 10.6 Encryption Procedure”, RPA should be changed by calling SecLib_Set_Param
function with the “rpa_generate” field is TRUE.
Note 1: If you follow section 6.2, the Security Library will not delete the bonding information.

 The local IRK included in security information is deleted only when all bonding information are deleted.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 20 of 42
Apr 28, 2025

3. Interface Definitions
3.1 Functions
3.1.1 SecLib_Init
RBLE_STATUS SecLib_Init(RBLE_GAP_EVENTHANDLER gap_callback,

RBLE_VS_EVENTHANDLER vs_callback,
SECLIB_EVENTHANDLER lib_callback)

 This function initializes Security Library.

 The result is reported by SECLIB_EVENT_INIT_COMP event.

 This function shall be called after rBLE mode is in RBLE_MODE_ACTIVE.

 This function shall be called instead of RBLE_GAP_Reset function. RBLE_GAP_Reset function is called in
this function. Application shall not call RBLE_GAP_Reset directly.

 RBLE_VS_Enable is called in this function. Application shall not call RBLE_VS_Enable function directly.
Vendor Specific functions can be used after SECLIB_EVENT_INIT_COMP event.

 Parameter:

 gap_callback The callback used to report GAP Event.

 vs_callback The callback used to report Vendor Specific Event.

 seclib_callback The callback used to report Security Library Event.

 Return:

 RBLE_OK Success.

 RBLE_PARAM_ERR gap_callback or seclib_callback is NULL.

3.1.2 SecLib_Set_Param
RBLE_STATUS SecLib_Set_Param(SECLIB_PARAM *param)

 This function set security parameters.

 The result is reported by SECLIB_EVENT_SET_PARAM_COMP event.

 This function can be used to change security parameters.

 This function cannot be used when connecting with peer devices.

 Parameter:

 param Security Parameters

 Return:

 RBLE_OK Success.

 RBLE_PARAM_ERR param is NULL.

 RBLE_STATUS_ERROR This function is called before SECLIB_EVENT_INIT_COMP event occurred.

This function is called during in connection with peer devices.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 21 of 42
Apr 28, 2025

3.1.3 SecLib_Start_Encryption
RBLE_STATUS SecLib_Start_Encryption(uint16_t conhdl)

 If pairing is not completed with the peer device, execute pairing. The result is reported as
SECLIB_EVENT_PAIRING_COMP.

 If pairing is already completed with the peer device, execute encryption. The result is reported as
SECLIB_EVENT_ENC_COMP.

 Parameter:

 conhdl Connection Handle

 Return:

 RBLE_OK Success.

 RBLE_PARAM_ERR conhdl is invalid.

 RBLE_STATUS_ERROR This function is called before SECLIB_EVENT_SET_PARAM event.

This function is called before SECLIB_EVENT_CHK_ADDR_COMP event.

3.1.4 SecLib_Pairing_Req_Resp
RBLE_STATUS SecLib_Pairing_Req_Resp(uint16_t conhdl, BOOL accept)

 This function responses to pairing request.

 This function shall be used only for responding SECLIB_EVENT_PAIRING_REQ event. Application shall not
call this function in another situation.

 Parameter:

 conhdl Connection Handle.

 accept TRUE (Accept the pairing request) or FALSE (Decline the pairing request).

 Return:

 RBLE_OK Success.

 RBLE_PARAM_ERR conhdl is invalid.

3.1.5 SecLib_Passkey_Req_Resp
RBLE_STATUS SecLib_Passkey_Req_Resp(uint16_t conhdl, uint32_t passkey)

 This function responses to passkey request during pairing.

 This function shall be used only for responding SECLIB_EVENT_PASSKEY_REQ event. Application shall
not call this function in another situation.

 Parameter:

 conhdl Connection Handle

 passkey Passkey

 Return:

 RBLE_OK Success.

 RBLE_PARAM_ERR conhdl is invalid.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 22 of 42
Apr 28, 2025

3.1.6 SecLib_SrvcReq_Error_Resp
RBLE_STATUS SecLib_SrvcReq_Error_Resp(uint16_t conhdl, uint8_t att_err)

 This function executes pairing / encryption per the service request error.

 This function can handle Insufficient Authentication, Insufficient Encryption. Application calls this function by
set the service request error to att_err argument.

 Parameter:

 conhdl Connection Handle

 att_err RBLE_ATT_ERR_INSUFF_AUTHEN Handle Insufficient Authentication error.

 RBLE_ATT_ERR_INSUFF_ENC Handle Insufficient Encryption error.

 RBLE_ATT_ERR_NO_ERROR Do nothing.

 Return:

 RBLE_OK Success.

 RBLE_PARAM_ERR att_err is invalid.

conhdl is invalid.

 RBLE_STATUS_ERROR This function is called before SECLIB_EVENT_SET_PARAM_COMP event.

This function is called before SECLIB_EVENT_CHK_ADDR_COMP event.

Invalid security status.

 RBLE_ERR The peer device requests Authenticated pairing, but the local device only has
RBLE_IO_CAP_NO_INPUT_NO_OUTPUT IO Capabilities.

Authenticated pairing is already completed with the peer device, and Insufficient
Authentication is occurred (The peer device requests LE Secure Connection.)

3.1.7 SecLib_Delete_Bonding_Info
RBLE_STATUS SecLib_Delete_Bonding_Info(SECLIB_DELETE_TARGET target)

 Delete bonding information from Data Flash.

 The result is reported by SECLIB_EVENT_DELETE_BONDING_INFO_COMP event.

 Parameter:

 target SECLIB_DELETE_ALL_BONDS Delete all bonding information.

 SECLIB_DELETE_ALL_BUT_ACTIVE_BOND Delete bonding information for devices not in
connection.

 Return:

 RBLE_OK Success.

 RBLE_PARAM_ERR target is invalid.

 RBLE_STATUS_ERROR This function is called before SECLIB_EVENT_INIT_COMP event.

 RBLE_BUSY Failed to access Data Flash.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 23 of 42
Apr 28, 2025

3.1.8 SecLib_Rand
uint16_t SecLib_Rand(void)

 This function generates 16-bits random number.

 This function is used in Security Library to generate Passkey / LTK / IRK.

 This function shall be defined by Application.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 24 of 42
Apr 28, 2025

3.2 Events
3.2.1 SECLIB_EVENT_INIT_COMP
SECLIB_EVENT_INIT_COMP

RBLE_STATUS status The result of SecLib_Init function call.

Value Descriptions

RBLE_OK Success.

RBLE_ERR Fail.

3.2.2 SECLIB_EVENT_SET_PARAM_COMP
SECLIB_EVENT_SET_PARAM_COMP

RBLE_STATUS status The result of SecLib_Set_Param function call.

Value Descriptions

RBLE_OK Success.

RBLE_ERR Fail.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 25 of 42
Apr 28, 2025

3.2.3 SECLIB_EVENT_PAIRING_COMP
SECLIB_EVENT_PAIRING_COMP

RBLE_STATUS status The result of pairing.

Value Descriptions

RBLE_OK Success.

RBLE_ERR Failed to save security information.

Pairing is not completed within 30 seconds.

RBLE_SM_PAIR_ERR_C
FM_VAL_FAILED

The input passkey is invalid.

RBLE_SM_PAIR_ERR_A
UTH_REQUIREMENTS

Authentication requirement is not satisfied.

RBLE_SM_PAIR_ERR_P
AIRING_NOT_SUPPORT
ED

Pairing request is declined.

uint16_t conhdl Connection Handle

uint16_t sec_prop Security Property of completed pairing.

Value Descriptions

RBLE_SMP_SEC_NONE Pairing failed.

RBLE_SMP_UNAUTHENTICATED Unauthenticated pairing.

RBLE_SMP_AUTHENTICATED Authenticated pairing.

3.2.4 SECLIB_EVENT_ENC_COMP
SECLIB_EVENT_ENC_COMP

RBLE_STATUS status The result of encryption.

Value Descriptions

RBLE_OK Success.

RBLE_ERR Fail.

uint16_t conhdl Connection Handle

uint16_t sec_prop Security Property of completed pairing.

Value Descriptions

RBLE_SMP_SEC_NONE Pairing failed.

RBLE_SMP_UNAUTHENTICATED Unauthenticated pairing.

RBLE_SMP_AUTHENTICATED Authenticated pairing.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 26 of 42
Apr 28, 2025

3.2.5 SECLIB_EVENT_PAIRING_REQ
SECLIB_EVENT_SET_PARAM_COMP

uint16_t conhdl Connection Handle

uint8_t auth_req The peer device’s Authentication Requirement.

uint8_t iocap The peer device’s IO Capabilities.

This filed is valid only when Central starts the pairing. When Peripheral starts the pairing,
this field is invalid.

3.2.6 SECLIB_EVENT_PASSKEY_IND
SECLIB_EVENT_PASSKEY_IND

uint16_t conhdl Connection Handle

uint32_t passkey Passkey

3.2.7 SECLIB_EVENT_PASSKEY_REQ
SECLIB_EVENT_PASSKEY_REQ

uint16_t conhdl Connection Handle

3.2.8 SECLIB_EVENT_CHK_ADDR_COMP
SECLIB_EVENTCHK_ADDR_COMP

uint8_t status The result of the confirmation which the pairing with the peer device is finished or not.

Status Description

RBLE_OK Pairing is completed with the peer device.

RBLE_ERR Pairing is not completed with the peer device.

uint16_t conhdl Connection Handle

3.2.9 SECLIB_EVENT_DELETE_BONDING_INFO_COMP
SECLIB_EVENT_DELETE_BONDING_INFO_COMP

uint8_t status The result of the SecLib_Delete_Bonding_Info.

Status Description

RBLE_OK Success.

RBLE_ERR Fail.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 27 of 42
Apr 28, 2025

3.3 Definitions
3.3.1 SECLIB_EVENT_TYPE

1. typedef enum {
2. SECLIB_EVENT_INIT_COMP = 0x01,
3. SECLIB_EVENT_SET_PARAM_COMP,
4. SECLIB_EVENT_PAIRING_COMP,
5. SECLIB_EVENT_ENC_COMP,
6. SECLIB_EVENT_CHK_ADDR_COMP,
7. SECLIB_EVENT_DELETE_BONDING_INFO_COMP,
8. SECLIB_EVENT_PAIRING_REQ,
9. SECLIB_EVENT_PASSKEY_IND,
10. SECLIB_EVENT_PASSKEY_REQ,
11. } SECLIB_EVENT_TYPE;

3.3.2 SECLIB_EVENT

1. typedef struct seclib_event_t {
2. SECLIB_EVENT_TYPE type;
3. union {
4. /* SECLIB_EVENT_INIT_COMP */
5. /* SECLIB_EVENT_SET_PARAM_COMP */
6. /* SECLIB_EVENT_DELETE_BONDING_INFO_COMP */
7. RBLE_STATUS status;
8.
9. /* SECLIB_EVENT_ENC_COMP */
10. struct enc_t {
11. RBLE_STATUS status;
12. uint16_t conhdl;
13. uint8_t sec_prop;
14. } enc;
15.
16. /* SECLIB_EVENT_PAIRING_COMP */
17. struct pairing_t {
18. RBLE_STATUS status;
19. uint16_t conhdl;
20. uint8_t sec_prop;
21. } pairing;
22.
23. /* SECLIB_EVENT_CHK_ADDR_COMP */
24. struct chk_addr_t {
25. RBLE_STATUS status;
26. uint16_t conhdl;
27. } chk_addr;
28.
29. /* SECLIB_EVENT_PAIRING_REQ */
30. struct pairing_req_t {
31. uint16_t conhdl;
32. uint8_t auth_req;
33. uint8_t iocap;
34. } pairing_req;
35.
36. /* SECLIB_EVENT_PASSKEY_IND */
37. struct passkey_ind_t {
38. uint16_t conhdl;
39. uint32_t passkey;
40. } passkey_ind;
41.
42. /* SECLIB_EVENT_PASSKEY_REQ */
43. struct passkey_req_t {
44. uint16_t conhdl;
45. } passkey_req;

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 28 of 42
Apr 28, 2025

46. } param;
47. } SECLIB_EVENT;

3.3.3 SECLIB_PARAM

1. typedef struct seclib_param_t {
2. uint8_t role;
3. uint8_t auth_req;
4. uint8_t iocap;
5. BOOL rpa_generate;
6. } SECLIB_PARAM;

3.3.4 SECLIB_DELETE_TARGET

1. typedef enum {
2. SECLIB_DELETE_ALL_BONDS = 0x01,
3. SECLIB_DELETE_ALL_BUT_ACTIVE_BOND,
4. } SECLIB_DELETE_TARGET;

3.3.5 SECLIB_EVENT_HANDLER

1. typedef void (*SECLIB_EVENT_HANDLER)(SECLIB_EVENT *event);

3.3.6 CFG_SECLIB_DEBUG
When this macro is defined, Security Library debug log is enabled.

3.3.7 CFG_SECLIB_BOND_NUM
This macro defines the number of bonding information storable into Data Flash. This is configured from Development

environment. Refer section 4.1.1 for the procedure.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 29 of 42
Apr 28, 2025

4. How to Introduce Security Library into Existing Project
4.1 Procedure

This section describes the procedure to introduce Security Library into an existing project.

4.1.1 Project settings
(a) CFG_SECLIB_BOND_NUM

Configure the number of bonding information storable in DataFlash by setting CFG_SECLIB_BOND_NUM. The
procedure to set the macro is shown in the “Add include path” section.

(b) Add source code

Add Security Library source code (seclib.c, secdb.c) into the project.

(c) Add include path

Add include path to Security Library header files (seclib.h, secdb.h). The addition of the include path is set on the
development environment. The following shows the procedure on each development environment.

CS+

Double click on “CA78K0R (Build Tool)” or “CC-RL (Build Tool)” in the project tree. A setting menu is shown then
select “Common Option” tab. Set “Macro definition” and “Include file directories”.

e2 studio

Right click on the project shown in “Project Explorer” and select “Renesas Tool Settings” from the dropdown menu.
Select “C/C++ Build” “Settings” “Compiler” “Source”. Set “Macro definition” and “Include file directories”.

IAR Embedded Workbench

Right click on the project shown in Workspace and select “options…” from the dropdown menu. Select “C/C++
Compiler” “Preprocessor”. Set “Defined symbols: (one per line)” and “Additional include directories: one per line)”.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 30 of 42
Apr 28, 2025

4.1.2 Security Library
(1) Delete unusable API / Event with Security Library

The following APIs cannot be used in Application with Security Library. If these APIs are in use remove the
implementation.

 All SM APIs (rBLE APIs that have prefix RBLE_SM).

 The following GAP or VS API.

GAP / VS Function GAP Event

 RBLE_GAP_Reset GAP

 RBLE_GAP_Set_Bonding_Mode

 RBLE_GAP_Set_Security_Request

 RBLE_GAP_Set_Random_Address

 RBLE_GAP_Set_Privacy_Feature

 RBLE_GAP_Start_Bonding

 RBLE_GAP_Bonding_Info_Ind

 RBLE_GAP_Bonding_Response

 RBLE_GAP_Authorized_Ind

 RBLE_VS_Enable

 RBLE_GAP_EVENT_RESET_RESULT

 RBLE_GAP_EVENT_SET_BONDING_MODE_COMP

 RBLE_GAP_EVENT_SET_SECURITY_REQUEST_COMP

 RBLE_GAP_EVENT_RPA_RESOLVED

 RBLE_GAP_EVENT_SET_RANDOM_ADDRESS_COMP

 RBLE_GAP_EVENT_SET_PRIVACY_FEATURE_COMP

 RBLE_GAP_EVENT_BONDING_COMP

 RBLE_GAP_EVENT_BONDING_REQ_IND

(2) SecLib_Rand function

Implement SecLib_Rand function in Application. Use the random number generation function provided by your
Application or Device. In Embedded configuration, you can use rand function provided by standard library. In Modem
Configuration, Host CPU shall provide a random number generation function.

1. uint16_t SecLib_Rand(void)
2. {
3. return rand();
4. }

(3) Security Library Callback

Implement the callback function which receives Security Library event.

1. static void app_seclib_callback(SECLIB_EVENT *event)
2. {
3. switch (event->type) {
4. /* ... skip ... */
5. case SECLIB_EVENT_INIT_COMP:
6. break;
7. /* ... skip ... */
8. default:
9. break;
10. }
11. }

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 31 of 42
Apr 28, 2025

(4) Replace RBLE_GAP_Reset with SecLib_Init function

Call SecLib_Init function instead of RBLE_GAP_Reset function. If existing Application is using RBLE_GAP_Reset
function, replace it with SecLib_Init function. The event to report the completion of initialization is also changed from
RBLE_GAP_EVENT_RESET_RESULT event to SECLIB_EVENT_INIT_COMP event.

(5) Other Security Library functions call

 Call Security Library functions by referring section 2 and 3.

4.1.3 Data Flash Library settings

For the preparation to save bonding information into Data Flash, add following data structures. On Modem
Configuration, these are defined in RL78/G1D side.

(1) renesas/src/driver/dataflash/eel_descriptor_t02.h

Edit the file as the following.

 Adding EEL_ID_MD, EEL_ID_LD_IRK and EEL_ID_BOND_1 are mandatory.

 The number of EEL_ID_BOND_* (including EEL_ID_BOND_1) shall be greater or equal to
CFG_SECLIB_BOND_NUM. The following is the case of CFG_SECLIB_BOND_NUM=8.

 Since the number of EEL_ID_BOND_* can be greater or equal to CFG_SECLIB_BOND_NUM, the following
setting will also work with CFG_SECLIB_BOND_NUM=4. But memory region for 4 bonding information is
wasted.

1. enum
2. {
3. EEL_ID_BDA = 0x01,
4. EEL_ID_MD = 0x02, // <- Add (mandatory)
5. EEL_ID_LD_IRK = 0x03, // <- Add (mandatory)
6. EEL_ID_BOND_1 = 0x04, // <- Add (mandatory)
7. EEL_ID_BOND_2 = 0x05, // <- Add
8. EEL_ID_BOND_3 = 0x06, // <- Add
9. EEL_ID_BOND_4 = 0x07, // <- Add
10. EEL_ID_BOND_5 = 0x08, // <- Add
11. EEL_ID_BOND_6 = 0x09, // <- Add
12. EEL_ID_BOND_7 = 0x0A, // <- Add
13. EEL_ID_BOND_8 = 0x0B, // <- Add
14. EEL_ID_END
15. };

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 32 of 42
Apr 28, 2025

(2) renesas/src/driver/dataflash/eel_descriptor_t02.c

Edit the file as the following.

 Include secdb.h header file.

 Adding SECDB_MD, SECDB_IRK are mandatory.

 Add SECDB_BONDs. The number of SECDB_BOND shall be equal to the number of EEL_ID_BOND_*. The
following example is the case of CFG_SECLIB_BOND_NUM=8.

1. #include "secdb.h" <- Add (mandatory)
2.
3. /* ... skip ... */
4.
5. _EEL_CNST _EVENTfar const eel_u08 eel_descriptor[EEL_VAR_NO+2] =
6. {
7. (eel_u08)(EEL_VAR_NO), /* variable count */
8. (eel_u08)(BD_ADDR_LEN), /* id=1: EEL_ID_BDA */
9. (eel_u08)(sizeof(SECDB_MD)), // <- Add (mandatory)
10. (eel_u08)(sizeof(SECDB_IRK)), // <- Add (mandatory)
11. (eel_u08)(sizeof(SECDB_BOND)), // <- Add (mandatory)
12. (eel_u08)(sizeof(SECDB_BOND)), // <- Add
13. (eel_u08)(sizeof(SECDB_BOND)), // <- Add
14. (eel_u08)(sizeof(SECDB_BOND)), // <- Add
15. (eel_u08)(sizeof(SECDB_BOND)), // <- Add
16. (eel_u08)(sizeof(SECDB_BOND)), // <- Add
17. (eel_u08)(sizeof(SECDB_BOND)), // <- Add
18. (eel_u08)(sizeof(SECDB_BOND)), // <- Add
19. (eel_u08)(0x00), /* zero terminator */
20. };

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 33 of 42
Apr 28, 2025

5. Internal Behavior Sequence
5.1 SecLib_Init

Figure 5-1 Initialization sequence

A) Reset GAP.

B) Initialize Data Flash.

C) Load security information from Data Flash and retain it on SRAM.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 34 of 42
Apr 28, 2025

5.2 SecLib_Set_Param

Figure 5-2 Set security parameters sequence

A) Enable bonding mode.

B) Set Authentication Requirement per “auth_req”.

C) Generate IRK if “rpa_generate” is TRUE.

D) Set Privacy Feature.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 35 of 42
Apr 28, 2025

5.3 SecLib_Start_Encryption (Central Initiated, Pairing is not completed)

Figure 5-3 Central initiated Pairing sequence

A) Pairing Phase 1: Central requests pairing and Peripheral responds to the request.

B) Pairing Phase 2: Authenticate devices with Passkey Entry.

C) Pairing Phase 3: Exchange security information between Central / Peripheral.

D) After completing pairing, save bonding information.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 36 of 42
Apr 28, 2025

5.4 SecLib_Start_Encryption (Peripheral initiated, Pairing is not completed)

Figure 5-4 Peripheral initiated Pairing sequence

A) Pairing Phase 1: Peripheral requests to establish security to Central and Central starts pairing.

B) Pairing Phase 2: Authenticate devices with Passkey Entry.

C) Pairing Phase 3: Exchange security information between Central / Peripheral.

D) After completing pairing, save bonding information.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 37 of 42
Apr 28, 2025

5.5 SecLib_Start_Encryption (Central initiated, Pairing is completed)

Figure 5-5 Central initiated Encryption sequence

A) Central starts encryption.

B) After encryption is completed, update Management Data used by LRU.

5.6 SecLib_Start_Encryption (Peripheral initiated, Pairing is completed)

Figure 5-6 Central initiated Encryption sequence

A) Peripheral requests to establish security to Central. Central starts encryption by using keys exchanged during
pairing with the Peripheral.

B) After encryption is completed, update Management Data used by LRU.

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 38 of 42
Apr 28, 2025

5.7 SecLib_Start_Encryption (Central initiated, Pairing is completed but
Perpheral losts the bonding information)

A) Central starts pairing but Peripheral lost the bonding information, the encryption is failed.

B) Central deletes the bonding information just failed.[Note 1]

C) Central starts pairing. [Note 1]

Note 1: If you connect to a malicious device with the same BD address as the paired device, the encryption will fail
because the malicious device does not have the encryption key. The included Security Library automatically starts
pairing when encryption fails, and pairing with the malicious device may be established. To avoid this vulnerability, it
is recommended to follow Section 6.2 to prevent pairing from starting automatically when encryption fails.

5.8 SecLib_Start_Encrytion (Peripheral initiated, Pairing is completed but Central
lost the bonding information)

Same sequence with section 5.4.

SecLib_Start_Encryption

SM_Start_Enc

SM_Ltk_Req_Resp

SM_ENC_START_IND

Central

Application rBLE APISecLib DataFlash

Peripheral

rBLE API ApplicationDataFlash SecLib

SM_LTK_REQ_FOR_ENC_IND

Delete Completed
Delete Failed Bonding Info

Start Encryption

A

B

No LTK

Start pairing (Same as 5.3 A~D)

SECLIB_EVENT_PAIRING_COMP SECLIB_EVENT_PAIRIING_COMP

C

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 39 of 42
Apr 28, 2025

6. Appendix
6.1 ROM size, RAM size

Table 6-1 shows Security Library ROM / RAM usage. The value is changed depends on
CFG_SECLIB_BOND_NUM. The following shows CFG_SECLIB_BOND_NUM=4 and 7 settings.

Table 6-1 ROM, RAM usage

Compiler Central (4/7) Peripheral (4/7)

ROM RAM ROM RAM

CA78K0R V1.72 7,606
7,602

552
858

7,528
7,592

500
756

CC-RL V1.03.00 5,229
5,228

556
868

5,155
5,164

502
758

IAR EW V1.40.6 5,165
5,170

556
866

4,720
4,720

502
758

IAR EW V2.20.1 5,111
5,111

556
866

4,670
4,670

502
758

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 40 of 42
Apr 28, 2025

6.2 Vulnerability Avoidance Measures in the Event of Encryption Failure
If you connect to a malicious device with the same BD address as the paired device, the encryption will fail because

the malicious device does not have the encryption key. The included Security Library automatically starts pairing when
encryption fails, and pairing with the malicious device may be established. To avoid this vulnerability, it is
recommended to prevent pairing from starting automatically when encryption fails below.

6.2.1 Sequence
Figure 6-1 shows the vulnerable sequence.

The problem is that if Central, which uses the original Security Library, connects to a malicious device that somehow
obtains the same BD address as the paired Peripheral and pairs it with Just Works, the bonding information of the paired
Peripheral will be automatically deleted.

To work around this problem, you need to make a change to notify the application of an event when encryption fails,
as shown in Figure 6-2.

Figure 6-1 Vulnerable sequence

Figure 6-2 Sequence to avoid vulnerability

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 41 of 42
Apr 28, 2025

6.2.2 Vulnerability Avoidance Measures
To avoid vulnerability, change the application to notify an event when encryption fails.

The Security Library function that performs this process is seclib_enc_failed() on seclib.c, shown in Figure 6-3.
Change the implementation of this function as shown in Figure 6-4.

1. /* Encryption has finished with error. */
2. static void seclib_enc_failed(uint16_t cidx)
3. {
4. RBLE_STATUS status = RBLE_OK;
5. uint16_t bidx = CON(cidx).bidx;
6. int i;
7.
8. SECLIB_ERR("SecLib_Start_Encryption: Failed (encryption)", CON(cidx).con_state);
9.
10. CON(cidx).con_state &= ~SECLIB_CON_STATE_ENC_COMP;
11.
12. /* Delete failed bond info. */
13. memset(&BOND(bidx), 0x00, sizeof(BOND(bidx)));
14.
15. /* Check whether other pairing is ongoing. */
16. for (i = 0; i < CFG_CON; i++) {
17. if (CON_STATE_DONE(SECLIB_CON_STATE_IN_PAIRING, i)) {
18. break;
19. }
20. }
21.
22. /* If other pairing is not ongoing, delete bonding information. */
23. if (i == CFG_CON) {
24. info.db_cidx = cidx;
25. info.db_context = SECLIB_DB_CONTEXT_ENC_DELTETE_COMP;
26. info.db.md.data[bidx] = 0;
27. status = SecDb_Save(&info.db, ((uint16_t)1 << bidx), FALSE, TRUE);
28. }
29.
30. /* Event if failed to delete md, go ahead. */
31. if ((i != CFG_CON) || (status != RBLE_OK)) {
32. seclib_send_enc_comp_event(RBLE_ERR, CON(cidx).conhdl, RBLE_SMP_KSEC_NONE);
33. }
34. }

Figure 6-3 Processing when encryption fails (no notification to the application, deletion of bond information)

1. /* Encryption has finished with error. */
2. static void seclib_enc_failed(uint16_t cidx)
3. {
4. SECLIB_ERR("SecLib_Start_Encryption: Failed (encryption)", CON(cidx).con_state);
5.
6. CON(cidx).con_state &= ~SECLIB_CON_STATE_ENC_COMP;
7.
8. seclib_send_enc_comp_event(RBLE_ERR, CON(cidx).conhdl, RBLE_SMP_KSEC_NONE);
9. }

Figure 6-4 Processing when encryption fails (notifying the application)

Bluetooth Low Energy Protocol Stack Security Library

R01AN3777EJ0101 Rev.1.01 Page 42 of 42
Apr 28, 2025

Revision History

Rev. Date
Description
Page Summary

V1.00 Mar 1, 2017 - Initial version
V1.01 Apr 28, 2025 40 Described how to avoid the vulnerability.

17, 19, 38 Added note about vulnerabilities and added link to section 6.2

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. The Bluetooth® word mark and logos are registered
trademarks owned by Bluetooth SIG, Inc. and any use of such marks
by Renesas Electronics Corporation is under license. Other trademarks
and registered trademarks are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	2. Security Library Usage
	2.1 Initialization
	2.2 Set Security Parameters
	2.2.1 Role
	2.2.2 Authentication Requirement
	2.2.3 IO Capabilities
	2.2.4 Privacy

	2.3 Pairing / Encryption
	2.3.1 Pairing
	(1) Pairing request / response
	(2) Passkey Entry / Just Works
	(3) Exchange / store Security information
	(4) Pairing completion
	(5) Pairing fail

	2.3.2 Encryption
	(1) Start Encryption
	(2) Store management data
	(3) Encryption completion

	2.4 Service Request Error Response
	2.5 Security Information Management
	2.5.1 Saving Security Information
	2.5.2 Deletion of Security Information

	3. Interface Definitions
	3.1 Functions
	3.1.1 SecLib_Init
	3.1.2 SecLib_Set_Param
	3.1.3 SecLib_Start_Encryption
	3.1.4 SecLib_Pairing_Req_Resp
	3.1.5 SecLib_Passkey_Req_Resp
	3.1.6 SecLib_SrvcReq_Error_Resp
	3.1.7 SecLib_Delete_Bonding_Info
	3.1.8 SecLib_Rand

	3.2 Events
	3.2.1 SECLIB_EVENT_INIT_COMP
	3.2.2 SECLIB_EVENT_SET_PARAM_COMP
	3.2.3 SECLIB_EVENT_PAIRING_COMP
	3.2.4 SECLIB_EVENT_ENC_COMP
	3.2.5 SECLIB_EVENT_PAIRING_REQ
	3.2.6 SECLIB_EVENT_PASSKEY_IND
	3.2.7 SECLIB_EVENT_PASSKEY_REQ
	3.2.8 SECLIB_EVENT_CHK_ADDR_COMP
	3.2.9 SECLIB_EVENT_DELETE_BONDING_INFO_COMP

	3.3 Definitions
	3.3.1 SECLIB_EVENT_TYPE
	3.3.2 SECLIB_EVENT
	3.3.3 SECLIB_PARAM
	3.3.4 SECLIB_DELETE_TARGET
	3.3.5 SECLIB_EVENT_HANDLER
	3.3.6 CFG_SECLIB_DEBUG
	3.3.7 CFG_SECLIB_BOND_NUM
	3.3.8

	4. How to Introduce Security Library into Existing Project
	4.1 Procedure
	4.1.1 Project settings
	(a) CFG_SECLIB_BOND_NUM
	(b) Add source code
	(c) Add include path

	4.1.2 Security Library
	(1) Delete unusable API / Event with Security Library
	(2) SecLib_Rand function
	(3) Security Library Callback
	(4) Replace RBLE_GAP_Reset with SecLib_Init function
	(5) Other Security Library functions call

	4.1.3 Data Flash Library settings
	(1) renesas/src/driver/dataflash/eel_descriptor_t02.h
	(2) renesas/src/driver/dataflash/eel_descriptor_t02.c

	5. Internal Behavior Sequence
	5.1 SecLib_Init
	5.2 SecLib_Set_Param
	5.3 SecLib_Start_Encryption (Central Initiated, Pairing is not completed)
	5.4 SecLib_Start_Encryption (Peripheral initiated, Pairing is not completed)
	5.5 SecLib_Start_Encryption (Central initiated, Pairing is completed)
	5.6 SecLib_Start_Encryption (Peripheral initiated, Pairing is completed)
	5.7 SecLib_Start_Encryption (Central initiated, Pairing is completed but Perpheral losts the bonding information)
	5.8 SecLib_Start_Encrytion (Peripheral initiated, Pairing is completed but Central lost the bonding information)

	6. Appendix
	6.1 ROM size, RAM size
	6.2 Vulnerability Avoidance Measures in the Event of Encryption Failure
	6.2.1 Sequence
	6.2.2 Vulnerability Avoidance Measures

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

