

 Company confidential

Application Note

Developing a DA14580 Bluetooth
Profile Using Sample128

AN-B-029

Abstract

This Application Note describes how to implement a custom Bluetooth profile on the DA14580 using
the sample service, sample128, as a foundation.

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 2 of 53 © 2022 Renesas Electronics

Contents

Contents ... 2

Figures .. 3

Tables ... 4

1 Terms and definitions ... 4

2 References ... 4

3 Introduction .. 5

4 Building a project that includes the sample128 service ... 6

4.1 Creating a new project based on the template_fh sample application 6

4.2 Add the sample128 service to the project ... 6

4.2.1 Adding the sample128 path to the project Include Paths 6

4.2.2 Adding the sample128 source code to the project .. 8

4.2.3 Including sample128 .. 9

5 Interfacing your application with sample128 ... 11

5.1 Creating the service database .. 12

5.2 Enabling the service .. 14

5.3 Implementing message handlers .. 15

5.4 Trying it out .. 20

6 Using sample128 ... 22

6.1 Implementing a kernel timer .. 23

6.2 Adding some functionality ... 25

7 Modifying sample128 .. 28

7.1 The basics of sample128 .. 28

7.1.1 The primary service declaration attribute .. 29

7.1.2 The characteristic declaration attribute .. 29

7.1.3 The characteristic value declaration attribute .. 29

7.1.4 The client configuration declaration attribute ... 30

7.1.5 Summarizing the components of sample128 .. 30

7.2 Modifying the data size of characteristic 1 .. 30

7.2.1 Defining our new data type of 8 bytes ... 30

7.2.2 Recalculating the size of the database .. 31

7.2.3 Modifying the value attribute .. 31

7.2.4 Modifying messages between sample128 and the application 32

7.3 Adding a new characteristic to the service .. 36

7.3.1 Defining our new data type of 10 bytes ... 36

7.3.2 Calculating the size of the new database .. 37

7.3.3 Building the new database ... 38

7.3.4 Initializing the characteristic value ... 42

7.3.5 Setting the default value of characteristic 3 ... 44

7.3.6 Updating the characteristic value from the application .. 45

7.3.7 Implementing support for GATT notify ... 47

8 Revision history ... 52

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 3 of 53 © 2022 Renesas Electronics

Figures

Figure 1: Options for target .. 6
Figure 2: Opening include paths list .. 7
Figure 3: Adding an include path ... 7
Figure 4: Adding source code .. 8
Figure 5: Finding source files .. 8
Figure 6: Sample128 source files .. 9
Figure 7: Configuration of the project .. 9
Figure 8: Including the service ... 10
Figure 9: Message flow diagram ... 11
Figure 10: Creating the database .. 12
Figure 11: Enumerating the service database ... 13
Figure 12: Creating the service database ... 13
Figure 13: Enabling the service ... 14
Figure 14: Sending service enable message .. 14
Figure 15: Definition of event handlers .. 15
Figure 16: Event handler prototypes ... 16
Figure 17: Database created handler .. 18
Figure 18: Service disabled handler and Char1 value changed handler .. 19
Figure 19: GATT discovery using BlueLoupe .. 21
Figure 20: Sample128 tutorial functionality ... 22
Figure 21: Adding a message primitive ... 23
Figure 22: Adding a message handler .. 23
Figure 23: Timer handler prototype ... 23
Figure 24: Timer handler implementation .. 24
Figure 25: Starting our kernel timer ... 25
Figure 26: Declaring a global variable ... 25
Figure 27: Timer functionality implementation ... 26
Figure 28: Write event implementation .. 26
Figure 29: UUID of sample128 service ... 29
Figure 30: Characteristic 1 declaration .. 29
Figure 31: Different sized declaration type IDs ... 30
Figure 32: Adding service128 to the database .. 30
Figure 33: Defining a new type .. 31
Figure 34: Initialization of a global variable ... 31
Figure 35: Changes to the database size .. 31
Figure 36: Changing the value attribute .. 32
Figure 37: The sample128_enable_req structure ... 32
Figure 38: The sample128_val_ind structure .. 32
Figure 39: Setting the default value via memcpy .. 33
Figure 40: Retrieving the value of characteristic 1 .. 33
Figure 41: The sample128_send_val prototype .. 34
Figure 42: Changes to sample128_send_val .. 34
Figure 43: Changes to gattc_write_cmd_ind_handler ... 35
Figure 44: Changes to sample128_enable_req_handler .. 36
Figure 45: Defining a new data type in sample128.h .. 36
Figure 46: Database changes ... 38
Figure 47: Defining attribute values ... 40
Figure 48: Indexing the 3 new attributes ... 41
Figure 49: Changes to sample128.h ... 41
Figure 50: The new characteristic is exposed (BlueLoupe) .. 42
Figure 51: Initialization of a global variable ... 42
Figure 52: Modifying the enable structure ... 43
Figure 53: Initialization of the characteristic value ... 44
Figure 54: Default value of characteristic 3 ... 44
Figure 55: New characteristic update structure ... 45

file:///C:/Users/Geoff/Documents/Dialog/Documents%202015/GC%20work%201/AN-B-029%20%20Developing%20a%20Bluetooth%20Smart%20custom%20profile(GC1).docx%23_Toc417824991

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 4 of 53 © 2022 Renesas Electronics

Figure 56: New message primitives .. 45
Figure 57: Implementing a new handler .. 46
Figure 58: Change the first byte of characteristic 3 ... 47
Figure 59: Adding the new characteristic’s client configuration to sample128.h 48
Figure 60: Changing the service environment structure ... 48
Figure 61: Initializing notification ... 49
Figure 62: Handling notification subscriptions ... 50

Tables

Table 1: The GATT database of sample128 ... 28
Table 2: The new GATT table ... 37

1 Terms and definitions

BT SIG Bluetooth® Special Interest Group

IDE Integrated Development Environment

SDK Software Development Kit

DVK Development Kit (DA14580 Expert, Pro, or Basic)

UUID Universally Unique Identity

GATT Generic Attribute Profile

MDK Microprocessor Development Kit

UUID Universally Unique Identifier

2 References

1. UM-B-003, Software Development Guide

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 5 of 53 © 2022 Renesas Electronics

3 Introduction

The Bluetooth Special Interest group has adopted a rich list of profiles and services to cover a wide
variety of use cases in which Bluetooth Smart plays a role. The beauty of these already specified
profiles and services is that their specifications are very clear and pretty much guarantees
interoperability between smartphones and tablets and all kinds of peripheral devices. Before you
venture into creating your own service or profile, it is recommended that you visit the BT SIG website
www.bluetooth.org to see if a service or profile that meets your requirements has already been
adopted.

In some cases, however, it is necessary to implement your own services or profiles. Your application
may require some new functionality that does not fit within the already-adopted profiles or services.
This document functions as a guide/tutorial on how to implement such custom services on the Dialog
Semiconductor SmartBond series DA1458x.

You should already be familiar with the hardware and the Keil µVision MDK IDE, and you should
have all the tools and drivers installed and operational. You should also have some basic knowledge
of Bluetooth Smart and the concept of peripheral and central devices.

This tutorial will only address custom service implementation on the peripheral device side.

http://www.bluetooth.org/

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 6 of 53 © 2022 Renesas Electronics

4 Building a project that includes the sample128 service

The Dialog SDK contains a profile named sample128. The ‘128’ part of the name relates to the fact
that the sample service uses a 128-bit UUID. The BT SIG adopted services all use a 16-bit short
form. Custom services must use the long 128-bit form. In this section, we will demonstrate how to
include sample128 in your project.

4.1 Creating a new project based on the template_fh sample application

Clone the template_fh project as described in the Software Development Guide [1]. In the following,
we will assume that you have called the project “custom”, but you can use any name you like. Open
the newly created project and apply the following steps.

4.2 Add the sample128 service to the project

Adding the sample128 service requires the following steps (detailed instructions will follow):

1. Adding the sample128 path to the project include paths

2. Adding the source code of sample128 to the project

3. Including sample128

4.2.1 Adding the sample128 path to the project Include Paths

Click the “Options for Target” icon:

Figure 1: Options for target

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 7 of 53 © 2022 Renesas Electronics

Open the “C/C++” tab and click on the button to the right of the Include Paths field:

Figure 2: Opening include paths list

Click at the bottom of the Include Paths list and type in the path for sample128 (you can also use the
button to the right to browse for the path):

Figure 3: Adding an include path

Or, for the copy & paste fans out there:

Click “OK” to close the folder setup window and click “OK” to close the “Options for Target” window.

.\..\..\..\src\ip\ble\hl\src\profiles\sample128

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 8 of 53 © 2022 Renesas Electronics

4.2.2 Adding the sample128 source code to the project

Expand the project folder so it shows the view below:

Figure 4: Adding source code

Right-click on the profiles folder and select “Add Existing Files to Group ‘profiles’…”
Navigate to the folder “dk_apps/src/ip/ble/hl/src/profiles/sample128”:

Figure 5: Finding source files

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 9 of 53 © 2022 Renesas Electronics

You should see the following two files:

Figure 6: Sample128 source files

Select the two C source files and click “Add”, then “Close”.

Now, rebuild the project to get the compiler to map the header files (this simplifies navigation).

4.2.3 Including sample128

Open the file “da14580_config.h” file (expand the “app” folder and the “app.c” file, locate the file and
double-click on it to open it).

Change #undef CFG_PRF_SAMPLE128 to #define CFG_PRF_SAMPLE128 as shown below:

Figure 7: Configuration of the project

The file sample128_task header should also be added to the project header file “app_custom_proj.h”:

#define CFG_PRF_SAMPLE128

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 10 of 53 © 2022 Renesas Electronics

Figure 8: Including the service

You should be able to build the project at this time and only see the two standard warnings.

#include "sample128_task.h"

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 11 of 53 © 2022 Renesas Electronics

5 Interfacing your application with sample128

The sample128 service implementation provides two characteristics. The first characteristic is a
simple, single-byte-sized characteristic, facilitating client-side read and write permissions. The other
characteristic is also a single byte, but this one facilitates read and notify permissions.

The application controls initializing the service, creating the service database and enabling the
service upon a remote client connection. The application might also update the value of the second
characteristic, which causes a GATT notify to be sent to any connected client that has subscribed to
notifications.

The application will receive a confirmation from the service task when the database has been
created, and it will receive indications from the service when a remote client writes to a characteristic
or a remote client device (a central) causes the service to be disabled.
The message flow is illustrated below:

Application Sample128 Service Remote Client

It is usually recommended to implement a task between the application task and the service task; this
is also how the sample applications in the SDK are structured. For this tutorial, in order to minimize
the number of files that need to be touched and in order to decrease complexity, we will flatten the
structure by implementing all interfaces to the sample service in the application task itself. This
approach is acceptable as long as we don’t need a lot of custom services.

App initialized

Client write indication

Create service database request

Enable service command

Update characteristic 2 value command

Remote client connects

Remote client writes to characteristic

Service database created confirmation

Remote client disconnects

Service disabled indication

Figure 9: Message flow diagram

GATT Notify

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 12 of 53 © 2022 Renesas Electronics

5.1 Creating the service database

The database of a service must be created in the “app_db_init_func()” of “app_custom_proj.c”:

Figure 10: Creating the database

case (APP_SAMPLE128):

{

 app_sample128_create_db_send();

} break;

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 13 of 53 © 2022 Renesas Electronics

APP_SAMPLE128 must be enumerated among all other profiles in “app_api.h”. This allows the
application to loop through all the required services and create their databases one by one:

Figure 11: Enumerating the service database

We must also implement the “app_sample128_create_db_send()” function. This can be done in the
“app_custom_proj.c” file in the function definitions segment:

Figure 12: Creating the service database

The function simply sends a message to the service task requesting the creation of the service
database.

void app_sample128_create_db_send(void)

{

 struct sample128_create_db_req *req = KE_MSG_ALLOC(

 SAMPLE128_CREATE_DB_REQ,

 TASK_SAMPLE128,

 TASK_APP,

 sample128_create_db_req

);

 ke_msg_send(req);

}

#if (BLE_SAMPLE128)

 APP_SAMPLE128,

#endif //(BLE_SAMPLE128)

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 14 of 53 © 2022 Renesas Electronics

5.2 Enabling the service

The sample128 service must be enabled after a remote client has connected to the device. This can
be done in the “app_connection_func()” function of “app_custom_proj.c”:

Figure 13: Enabling the service

We will implement the “app_sample128_enable()” function in the function definition segment of
“app_custom_proj.c” - just below the definition of “app_sample128_create_db_send()”:

Figure 14: Sending service enable message

void app_sample128_enable(void)

{

 // Allocate the message

 struct sample128_enable_req* req = KE_MSG_ALLOC(

 SAMPLE128_ENABLE_REQ,

 TASK_SAMPLE128,

 TASK_APP,

 sample128_enable_req

);

 req->conhdl = app_env.conhdl;

 req->sec_lvl = PERM(SVC, ENABLE);

 req->sample128_1_val = 0x01; // default value for sample128 characteristic 1

 req->sample128_2_val = 0xff; // default value for sample128 characteristic 2

 req->feature = 0x00; // client CFG notify/indicate disabled

 // Send the message

 ke_msg_send(req);

}

app_sample128_enable();

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 15 of 53 © 2022 Renesas Electronics

5.3 Implementing message handlers

As mentioned earlier, the sample128 service task will send the following kernel messages to the
application:

1. A confirmation when the service database has been created

2. An indication when a remote client writes to a characteristic value

3. An indication when the service database is disabled (due to a remote client

disconnection)

Three event handlers need to be defined for these events. In “app_task_handlers.h”, add the
following code:

Figure 15: Definition of event handlers

Finally, these handlers must be implemented in the application. In the project header file,
“app_custom_proj.h”, add the following prototypes:

#if BLE_SAMPLE128

 {SAMPLE128_CREATE_DB_CFM, (ke_msg_func_t)sample128_create_db_cfm_handler},

 {SAMPLE128_VAL_IND, (ke_msg_func_t)sample128_val_ind_handler},

 {SAMPLE128_DISABLE_IND, (ke_msg_func_t)sample128_disable_ind_handler},

#endif

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 16 of 53 © 2022 Renesas Electronics

Figure 16: Event handler prototypes

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 17 of 53 © 2022 Renesas Electronics

We will implement the tree handlers in the “app_custom_proj.c” file. Handling the “database created
confirmation” is implemented as shown below:

/**

 **

 * @brief Handles sample128 profile database creation confirmation.

 * @return If the message was consumed or not.

 **

 */

int sample128_create_db_cfm_handler(ke_msg_id_t const msgid,

 struct sample128_create_db_cfm const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id);

/**

 **

 * @brief Handles disable indication from the sample128 profile.

 * @return If the message was consumed or not.

 **

 */

int sample128_disable_ind_handler(ke_msg_id_t const msgid,

 struct sample128_disable_ind const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id);

/**

 **

 * @brief Handles write of 1st characteristic event indication from sample128 profile

 * @return If the message was consumed or not.

 **

 */

int sample128_val_ind_handler(ke_msg_id_t const msgid,

 struct sample128_val_ind const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 18 of 53 © 2022 Renesas Electronics

Figure 17: Database created handler

/**

 **

 * @brief Handles Sample128 profile database creation confirmation.

 *

 * @param[in] msgid Id of the message received.

 * @param[in] param Pointer to the parameters of the message.

 * @param[in] dest_id ID of the receiving task instance .

 * @param[in] src_id ID of the sending task instance.

 *

 * @return If the message was consumed or not.

 **

 */

int sample128_create_db_cfm_handler(ke_msg_id_t const msgid,

 struct sample128_create_db_cfm const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id)

{

 // If state is not idle, ignore the message

 if (ke_state_get(dest_id) == APP_DB_INIT)

 {

 // Inform the Application Manager

 struct app_module_init_cmp_evt *cfm = KE_MSG_ALLOC(APP_MODULE_INIT_CMP_EVT,

 TASK_APP, TASK_APP,

 app_module_init_cmp_evt);

 cfm->status = param->status;

 ke_msg_send(cfm);

 }

 return (KE_MSG_CONSUMED);

}

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 19 of 53 © 2022 Renesas Electronics

The handler, as implemented above, sends another message to the application task, indicating that
the database has been created.

We will leave the other two handlers empty for now. We will implement them just below
the“sample128_create_db_cfm_handler()” function, near the end of “app_custom_proj.c”:

Figure 18: Service disabled handler and Char1 value changed handler

Both handlers will simply return the fact that the kernel message has been consumed.

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 20 of 53 © 2022 Renesas Electronics

 By this time, you should be able to build the application and load it onto your DVK.

5.4 Trying it out

Using LightBlue for iOS or BlueLoupe for Android (Version 4.3 or later) should allow you to connect
to the DVK and confirm that the custom service is provided. You may have to turn Bluetooth on your
smart device off and back on to force a fresh service discovery. Both Android and iOS have a
tendency to suppress service discovery for devices that they have previously been connected to.

A screenshot from BlueLoupe is shown below. The DVK exposes the custom service and the two
characteristics that the service consists of. You can write to the first characteristic and see that the
value changes. If you disconnect from the device, the value of the characteristic defaults back to
0x01 as specified in the function “app_sample128_enable()”. No other functionality is enabled at this
point. We will add some simple functionality in the following section.

/**

 **

 * @brief Handles disable indication from Sample128 profile.

 *

 * @param[in] msgid Id of the message received.

 * @param[in] param Pointer to the parameters of the message.

 * @param[in] dest_id ID of the receiving task instance.

 * @param[in] src_id ID of the sending task instance.

 *

 * @return If the message was consumed or not.

 **

 */

int sample128_disable_ind_handler(ke_msg_id_t const msgid,

 struct sample128_disable_ind const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id)

{

 return (KE_MSG_CONSUMED);

}

/**

 **

 * @brief Handles write of 1st characteristic event indication from sample128 profile

 *

 * @param[in] msgid Id of the message received.

 * @param[in] param Pointer to the parameters of the message.

 * @param[in] dest_id ID of the receiving task instance (TASK_GAP).

 * @param[in] src_id ID of the sending task instance.

 *

 * @return If the message was consumed or not.

 **

 */

int sample128_val_ind_handler(ke_msg_id_t const msgid,

 struct sample128_val_ind const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id)

{

 return (KE_MSG_CONSUMED);

}

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 21 of 53 © 2022 Renesas Electronics

Figure 19: GATT discovery using BlueLoupe

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 22 of 53 © 2022 Renesas Electronics

6 Using sample128

In the previous section, we implemented all the functionality required to expose the sample128
service. We were able to write to one of the two characteristics using a smartphone or tablet, but
none of that was really tied to the application. In this section we will implement some code that allows
us to use Bluetooth Notify to monitor when the application changes the value of characteristic 2. We
will also make use of the value that a user writes to characteristic 1 via a smartphone or tablet. Here
is an overview of what we will implement:

Start

Device Idle

(Advertising)

Char2_value=1

Start Timer

Device

Connected

Char2_value++

Restart Timer

Char2_value = Char1_value

Central connects

Central disconnects

Timer times out

Client device writes to Characteristic 1

Figure 20: Sample128 tutorial functionality

We will implement and start a timer which will time out after 500 ms. The timer will be started when a
central device connects. At timeout, we will increment the value of characteristic 2 and restart the
timer. If a user writes to characteristic 1, we will set the value of characteristic 2 to match the new
value of characteristic 1 and let the timer function increment it from there.

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 23 of 53 © 2022 Renesas Electronics

6.1 Implementing a kernel timer

In order to use the kernel timer from the application, we will need to define a new primitive to
reference the timer. The primitive can be defined in the APP_MSG enumeration in “app_api.h”:

Figure 21: Adding a message primitive

We will have to implement a handler function to handle the event of the timer timing out. In
“app_task_handlers.h”, add the following code:

Figure 22: Adding a message handler

Finally, we will implement the timer handler in “app_custom_proj.c” and a reference to it in
“app_custom_proj.h”. First the reference:

Figure 23: Timer handler prototype

{APP_SAMPLE128_TIMER, (ke_msg_func_t)sample128_timer_handler},

#if (BLE_SAMPLE128)

 APP_SAMPLE128_TIMER,

#endif //(BLE_SAMPLE128)

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 24 of 53 © 2022 Renesas Electronics

And in “app_custom_proj.c” we will implement the handler function:

Figure 24: Timer handler implementation

/**

 **

 * @brief Handles timer timeout

 * @return If the message was consumed or not.

 **

 */

int sample128_timer_handler(ke_msg_id_t const msgid,

 struct gapm_cmp_evt const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id)

{

 return (KE_MSG_CONSUMED);

}

/**

 **

 * @brief Handles timer timeout

 * @return If the message was consumed or not.

 **

 */

int sample128_timer_handler(ke_msg_id_t const msgid,

 struct gapm_cmp_evt const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 25 of 53 © 2022 Renesas Electronics

We will start the timer whenever a central device connects. In the “app_connection_func()” function of
“app_custom_proj.c”, add the following:

Figure 25: Starting our kernel timer

At this time you should be able to successfully build the code. The timer will start as soon as a
central connects, but you still need to actually do something useful when the timer times out.

6.2 Adding some functionality

We are going to need a placeholder variable with a global scope. In this tutorial, we will simply
declare a global variable. This works well as long as we don’t implement deep sleep. If we were to
actually use deep sleep, we would need to store the placeholder variable in retention memory in
order for it to be retained.

In “app_custom_proj.c”, declare the octet sample128_placeholder just above the function definitions:

Figure 26: Declaring a global variable

When a user writes to characteristic 1 using a smartphone/tablet, we will load the written value into
the placeholder variable. Every time the timer times out, we will increment the placeholder value and
load it into characteristic 2.

uint8_t sample128_placeholder = 0;

ke_timer_set(APP_SAMPLE128_TIMER,TASK_APP,50);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 26 of 53 © 2022 Renesas Electronics

In the timer handler, add the following code:

Figure 27: Timer functionality implementation

The implementation above restarts the timer, increments the placeholder variable and sends a kernel
message to the sample128 service task to update the value of characteristic 2. A Bluetooth Notify will
automatically be sent to the smartphone/tablet every time the value is updated if Notify is enabled for
characteristic 2 via the smartphone/tablet.

Finally, we wanted to use the value written to characteristic 1 to reload the value of characteristic 2.
This is a simple implementation in “sample128-val_ind_handler()” of “app_custom_proj.c”:

Figure 28: Write event implementation

sample128_placeholder = param->val;

ke_timer_set(APP_SAMPLE128_TIMER,TASK_APP,50);

sample128_placeholder++;

struct sample128_upd_char2_req *req = KE_MSG_ALLOC(

 SAMPLE128_UPD_CHAR2_REQ,

 TASK_SAMPLE128,

TASK_APP,

 sample128_upd_char2_req

);

req->val = sample128_placeholder;

req->conhdl = app_env.conhdl;

ke_msg_send(req);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 27 of 53 © 2022 Renesas Electronics

You should be able to build and run the application at this time. Use LightBlue or BlueLoupe to
verify that it all works. Set characteristic 2 to Notify in order to see the automatic updates.

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 28 of 53 © 2022 Renesas Electronics

7 Modifying sample128

In this section we will dig a little further into the sample128 service to see how it is constructed and to
modify parts of it. The application implemented in the previous sections of this document will be used
as a foundation upon which all further modifications will be based.

7.1 The basics of sample128

In the Bluetooth domain, a service consists of a collection of attributes or data chunks that are
exposed to a connected client. These attributes are arranged in a database or table that is commonly
referred to as the GATT database. A client device can explore (or discover) this database and
determine the kind of attributes that are available and which methods can be used to interact with the
database entries. A device will implement a GATT database which covers all the services that it
provides.

The sample128 service contains just two characteristics. The first characteristic is one byte wide and
facilitates read and write access to the client. The second characteristic, also one byte wide,
facilitates read and notify access. When notification is activated for a characteristic, any change to
the value data, will cause a Bluetooth Notify to be sent to the client device.

The database format is defined by the BT SIG. The database of Sample128, consisting of a total of 6
attributes, is structured as shown below:

Table 1: The GATT database of sample128

Handle

(16-bit)

Attribute
Declaration

Type

Attribute
Declaration

Type ID

Size of
Declaration

Attribute
Type ID

[Bits]

Data Data

size

[Bytes]

Start
Primary Service

Declaration
0x2800 16 0x0F0E0D0C0B0A0… 16

Start+1
Characteristic

Declaration
0x2803 16 0x<RD|WR><start+2>1F1E1D… 19

Start+2
Characteristic value

declaration
0x1F1E1D… 128 0x00 1

Start+3
Characteristic

Declaration
0x2803 16 0x<RD|NTFY><start+4>2F2E… 19

Start+4
Characteristic value

declaration
0x2F2E2D… 128 0x00 1

Start+5
Client configuration

declaration
0x2902 16 0x0000 2

As illustrated in the table above, there are a total of six attributes that each are associated with a 16-
bit (2 bytes) handle. Sample128 only contains 4 different declaration types (colour coded in the table
above):

• One primary service declaration (sample128 service)

• Two characteristic declarations (one for each characteristic)

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 29 of 53 © 2022 Renesas Electronics

• Two characteristic value declarations (one for each characteristic)

• One client configuration declaration (enables notifications for the second characteristic)

7.1.1 The primary service declaration attribute

The primary service declaration attribute has a BT SIG assigned declaration type identifier of 0x2800
(16-bit) as shown in Table 1: The GATT database of sample128. The data component of a primary
service is the UUID of the service, and because our service is custom (as in not specified by the BT
SIG) it is 128-bit (16 bytes) wide. The value is specified in “sample128.c” as follows:

Figure 29: UUID of sample128 service

This translates to a UUID of 0x0F0E0D0C0B0A09080706050403020100. This UUID was completely
randomly selected, hoping that it wouldn’t be used by somebody else. The only way to completely
prevent this from happening would be to register a service UUID with the BT SIG – Note that such a
UUID would be 16-bit; not 128-bit. There is a charge for BT SIG registration of a UUID.

7.1.2 The characteristic declaration attribute

Each of the two characteristics of sample128 is declared with a characteristic declaration type of
0x2803. The data component of a characteristic declaration consists of three pieces of information:

1. The properties bit field, that specifies how a client can access the characteristic (Read,
Write, Notify, Indicate, Write without response etc.). The properties bit field is 1 byte wide.

2. The 2-byte handle to the value declaration of the characteristic. This enables a client device
to access the value of a characteristic by referencing the handle directly.

3. The UUID of the characteristic. Any BT SIG assigned characteristic UUID would be 2 bytes
wide, a custom UUID is 16 bytes wide.

The total size of a custom characteristic declaration’s data field is therefore 1 + 2 + 16 = 19 bytes.

The declaration of characteristic 1 can be found in “sample128.c”:

Figure 30: Characteristic 1 declaration

Note: The handle {0,0} is a placeholder that will be populated when the service database is created
at runtime.

7.1.3 The characteristic value declaration attribute

Both characteristics of the sample128 service are custom types and therefore use UUIDs of 128 bits.
The characteristics were defined as being able to contain data of only one byte each (we will modify
the size of one of them later in this section.)

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 30 of 53 © 2022 Renesas Electronics

7.1.4 The client configuration declaration attribute

The final type is the client configuration attribute type. It is required only for characteristic 2 because
only characteristic 2 enables notifications. A client device will write to the data component of this
attribute in order to subscribe to notifications. A client configuration attribute is identified by the type
number (Attribute type UUID) of 0x2902. The data component is a 2-byte wide bit field (one bit
specifies whether notification is active or not)

7.1.5 Summarizing the components of sample128

Table 1 can be used to detail some important information about sample128. We can deduce that
there are 6 attributes in total. Two of the attributes use type IDs of 128 bits and the remaining four
use only 16-bit type IDs. This information is used in “sample128_task.c”:

Figure 31: Different sized declaration type IDs

We can also calculate the total required size of the service database (from “sample128_task.c”):

Figure 32: Adding service128 to the database

Understanding how we got to the numbers in the above code snippets (Figure 31 and Figure 32)
based on the data in Table 1 allows us to start modifying sample128. Without this understanding, you
could be in for a rough ride.

7.2 Modifying the data size of characteristic 1

In this section, we will modify the data size of characteristic 1 from one byte to an array of 8 bytes. To
do this we will need to do the following:

• Define our new data type of 8-bytes and initialize a variable of this type

• Recalculate the size of the data in the GATT database

• Modify the value attribute to reflect the increased size

• Modify the messages that are sent between the application and sample128 and modify the
functions that are involved.

7.2.1 Defining our new data type of 8 bytes

Defining a new variable type for our 8-byte characteristic value allows us later to modify its size in a
single step. “sample128.h” is an appropriate place to define this new type

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 31 of 53 © 2022 Renesas Electronics

Figure 33: Defining a new type

We then initialize a new global variable of this type in “app_custom.proj.c”, as follows:

Figure 34: Initialization of a global variable

7.2.2 Recalculating the size of the database

This is not really a challenge. The data chunk that previously was 1 byte wide is now 8 bytes, so we
should simply adjust the total size upwards by 7. We can thus change the size of 58 to the new value
of 65:

Figure 35: Changes to the database size

Just change the numbers in “sample128_task.c”” as highlighted above.

7.2.3 Modifying the value attribute

This is another simple fix. We need to accommodate 8 bytes or sizeof(my_mew_t) instead of just one
byte of data. In “sample128_task.c”, make the highlighted changes:

my_new_t sample128_my_new = {0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38};

typedef unsigned char my_new_t[8];

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 32 of 53 © 2022 Renesas Electronics

Figure 36: Changing the value attribute

7.2.4 Modifying messages between sample128 and the application

Two different structures, both carrying the value of characteristic 1, are used for sending messages
between the application and the sample128 service. Both structures are defined in “sample128-
task.h” and must be changed. The first structure, used when the service is enabled, should be
changed as shown here:

Figure 37: The sample128_enable_req structure

The other structure, in the same file, is used to indicate to the application when a connected client
device is changing the value of characteristic 1. Modify the type of the value as shown below:

Figure 38: The sample128_val_ind structure

sizeof(my_new_t), // Data size = 8 Bytes

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 33 of 53 © 2022 Renesas Electronics

The value of characteristic 1 is used twice in the “app_custom_proj.c” file. The first time is when the
sample128 service is enabled. Make the changes as highlighted below:

Figure 39: Setting the default value via memcpy

The second use of the characteristic 1 value in “app_custom_proj.c” is when we receive an indication
that a remote client has changed the value. We load the new value into our global value as shown
below:

Figure 40: Retrieving the value of characteristic 1

The function “sample128_send_val()” defined in “sample128.c” is responsible for sending the above
indication to the application. This function must also be changed. In “sample128.h” we will change
the prototype of the function:

memcpy(&sample128_my_new,¶m->val,sizeof(my_new_t));

memcpy(&req->sample128_1_val,&sample128_my_new,sizeof(my_new_t)); // default

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 34 of 53 © 2022 Renesas Electronics

Figure 41: The sample128_send_val prototype

And in “sample128.c” we need to make the following changes:

Figure 42: Changes to sample128_send_val

The above function is called by “gattc_write_cmd_ind_handler()” defined in “sample128_task.c”. In
this function we will need to make the following change:

memcpy(&ind->val,val,sizeof(my_new_t));

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 35 of 53 © 2022 Renesas Electronics

Figure 43: Changes to gattc_write_cmd_ind_handler

And finally we have to make the same change in the “sample128_enable_req_handler()” function,
also defined in “sample128_task.c”

sample128_send_val((uint8_t *)¶m->value[0]);

sizeof(my_new_t);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 36 of 53 © 2022 Renesas Electronics

Figure 44: Changes to sample128_enable_req_handler

You should now be able to build and download the modified code.

7.3 Adding a new characteristic to the service

In this section, we will add a completely new custom characteristic to the service. We will enable read
and notification access to the characteristic and allow it to carry a total of 10 bytes.

The tasks ahead of us are as follows:

• Make another type definition, to make it easier to change the size if we decide to do so at
some point.

• Recalculate the number of 128-bit declaration type IDs and recalculate the size of the data
in the GAP database.

• Build the new database.

• Implement new functionality in sample128 that allows us to change the value of the new
characteristic.

7.3.1 Defining our new data type of 10 bytes

As with our previously created data type, we will place our new type in “sample128.h”

Figure 45: Defining a new data type in sample128.h

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 37 of 53 © 2022 Renesas Electronics

7.3.2 Calculating the size of the new database

The database table must be changed. We are going to need another 3 attributes for our new
characteristic. Note that we have also changed the data size for characteristic 2, according to our
modifications in the previous section.

Table 2: The new GATT table

Handle

(16-bit)

Attribute

Declaration

Type

Attribute

Declaration

Type ID

Size of

Declaration

Attribute

Type ID

[Bits]

Data Data size

[Bytes]

Start Primary Service

Declaration

0x2800 16 0x0F0E0D0C0B0A0… 16

Start+1 Characteristic

Declaration

0x2803 16 0x<RD|WR><start+2>1F1E1D… 19

Start+2 Characteristic

value declaration

0x1F1E1D… 128 0x00 8!!!

Start+3 Characteristic

Declaration

0x2803 16 0x<RD|NTFY><start+4>2F2E… 19

Start+4 Characteristic

value declaration

0x2F2E2D… 128 0x00 1

Start+5 Client

configuration

declaration

0x2902 16 0x0000 2

Start+6 Characteristic

Declaration

0x2803 16 0x<RD|NTFY><start+7>3F3E… 19

Start+7 Characteristic

value declaration

0x3F3E3D… 128 0x00 10

Start+8 Client

configuration

declaration

0x2902 16 0x0000 2

As can be seen in Table 2, we are adding three attributes. Two of the attributes are referenced using
a 16-bit type ID and one is referenced with a 128-bit type ID. We can also see that we are adding 19
+ 10 + 2 = 31 data bytes to the database. This information allows us to make the following code
changes to “sample128_task.c”:

typedef unsigned char my_newer_t[10];

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 38 of 53 © 2022 Renesas Electronics

Figure 46: Database changes

7.3.3 Building the new database

Adding the three new attributes to the database can be done by copying and slightly modifying the
sequence from characteristic 2. In “sample128_task.c”, add the following:

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 39 of 53 © 2022 Renesas Electronics

//Characteristic 3:

//

// Add characteristic declaration attribute to database

status = attmdb_add_attribute(sample128_env.sample128_shdl,

ATT_UUID_128_LEN + 3, //Data size = 19

 ATT_UUID_16_LEN,//Size of declaration type ID

 (uint8_t*) &att_decl_char, // 0x2803

 PERM(RD, ENABLE),// Permissions

 &(char_hdl) // Handle to the characteristic declaration

);

// Add characteristic value declaration attribute to database

status = attmdb_add_attribute(sample128_env.sample128_shdl,

 sizeof(my_newer_t), //Data size = 10 Bytes

 ATT_UUID_128_LEN,// Size of custom type ID = 128-bit

 (uint8_t*)&sample128_3_val.uuid, // UUID

 PERM(RD, ENABLE) | PERM(NTF, ENABLE),// Permissions

 &(val_hdl) // Handle to the value attribute

);

// Store the value handle for characteristic 3

memcpy(sample128_3_char.attr_hdl, &val_hdl, sizeof(uint16_t));

// Set initial value of characteristic 3

status = attmdb_att_set_value(char_hdl,

 sizeof(sample128_3_char),

 (uint8_t *)&sample128_3_char

);

// Add client configuration declaration attribute to database (Facilitates Notify)

status = attmdb_add_attribute(sample128_env.sample128_shdl,

 sizeof(uint16_t), // Data size 2bytes (16-bit)

 ATT_UUID_16_LEN, // Size of client configuration type ID

 (uint8_t*) &att_decl_cfg, // 0x2902 UUID

 PERM(RD, ENABLE) | PERM(WR, ENABLE), // Permissions

 &(val_hdl) // Handle to value attribute

);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 40 of 53 © 2022 Renesas Electronics

We need to define the attribute values of the new characteristic. This is done in “sample128.c” as
follows:

Figure 47: Defining attribute values

We need to be able to reference the three new attributes. This is achieved by enumerating them in
“sample128.h”:

const struct att_uuid_128 sample128_3_val = {{0x30, 0x31, 0x32, 0x33, 0x34, 0x35,

0x36, 0x37,

 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D,

0x3E, 0x3F}};

struct att_char128_desc sample128_3_char = {ATT_CHAR_PROP_RD | ATT_CHAR_PROP_NTF,

 {0,0},

 {0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36,

0x37,

 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E,

0x3F}};

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 41 of 53 © 2022 Renesas Electronics

Figure 48: Indexing the 3 new attributes

In “sample128.h”, we make the following changes to accommodate the new characteristic:

Figure 49: Changes to sample128.h

// sample128_3 - Characteristic

extern struct att_char128_desc sample128_3_char;

/// sample128_3 - Value

extern const struct att_uuid_128 sample128_3_val;

 SAMPLE128_3_IDX_CHAR,

 SAMPLE128_3_IDX_VAL,

 SAMPLE128_3_IDX_CFG,

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 42 of 53 © 2022 Renesas Electronics

You should now be able to build the modified code. You can also load it to your DVK and use
Light Blue (iOS) or BlueLoupe (Android) to see that the new characteristic shows up. Note: you may
have to turn Bluetooth on your smart device off and back on to see the change:

Figure 50: The new characteristic is exposed (BlueLoupe)

7.3.4 Initializing the characteristic value

At this point we have successfully built the new and expanded GATT data base, and it is time to start
actually using it. The first thing to do is to initialise the value of the new characteristic. In this tutorial,
we will simply define a global variable in “app_custom_proj.c”:

Figure 51: Initialization of a global variable

Note: As mentioned earlier, these global variables will not be retained if deep sleep is enabled. Use
retention RAM to store these types of variables if you plan to use deep sleep.

We need to modify the structure used when we enable the service, in order to allow us to initialize the
database upon client connection. The structure, defined in “sample128_task.h”, must be modified as
follows:

my_newer_t sample128_my_newer = {0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A};

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 43 of 53 © 2022 Renesas Electronics

Figure 52: Modifying the enable structure

We are ready to initialize the new characteristic where we enable the service in “sample128_task.c”:

/// characteristic 3 value

my_newer_t sample128_3_val;

/// char 3 Ntf property status

uint8_t feature3;

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 44 of 53 © 2022 Renesas Electronics

Figure 53: Initialization of the characteristic value

7.3.5 Setting the default value of characteristic 3

We will have to set the default value of the new characteristic when the service is enabled. In
“app_custom_proj.c”, add the following line:

Figure 54: Default value of characteristic 3

memcpy(&req->sample128_3_val,&sample128_my_newer,sizeof(my_newer_t)); // default

// Set characteristic 3 to specified value

attmdb_att_set_value(sample128_env.sample128_shdl + SAMPLE128_3_IDX_VAL,

 sizeof(my_newer_t), (uint8_t *)¶m->sample128_3_val);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 45 of 53 © 2022 Renesas Electronics

7.3.6 Updating the characteristic value from the application

We also need a new structure for updating the value of our new characteristic from the application.
We will define this structure in “sample128_task.h”:

Figure 55: New characteristic update structure

We will need a couple of new message primitives to be able to update the characteristic. In
“sample128_task.h” add these two primitives:

Figure 56: New message primitives

/// Parameters of the @ref SAMPLE128_UPD_CHAR3_REQ message

struct sample128_upd_char3_req

{

 /// Connection handle

 uint16_t conhdl;

 /// Characteristic Value

 my_newer_t val;

};

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 46 of 53 © 2022 Renesas Electronics

We.also need to implement a new handler for sample128 to manage the value update. The handler
must be implemented among the connected state handlers of sample128 defined in
“sample128_task.c”:

Figure 57: Implementing a new handler

Finally, we must implement the handler function itself. We will just copy the handler function for
characteristic 2, and make appropriate adjustments. Place this code in “sample128_task.c” just below
the “sample128_upd_char2_req_handler()” function.

Note: We are reusing the “sample128_upd_char2_cfm_send()” function. Our application doesn’t act
on the confirmation anyway.

At this time we are ready to change the value of characteristic 3 from the application. We will simple
reuse our timer handler and change the first byte of the characteristic value every time the timer
times out. Make the following changes to the timer handler function in “app_custom_proj.c”:

static int sample128_upd_char3_req_handler(ke_msg_id_t const msgid,

 struct sample128_upd_char3_req const *param,

 ke_task_id_t const dest_id,

 ke_task_id_t const src_id)

{

 uint8_t status = PRF_ERR_OK;

 // Check provided values

 if(param->conhdl == gapc_get_conhdl(sample128_env.con_info.conidx))

 {

 // Update value in database

 attmdb_att_set_value(sample128_env.sample128_shdl + SAMPLE128_3_IDX_VAL,

 sizeof(my_newer_t), (uint8_t *)¶m->val);

 if((sample128_env.feature3 & PRF_CLI_START_NTF))

 // Send notification through GATT

 prf_server_send_event((prf_env_struct *)&sample128_env, false,

 sample128_env.sample128_shdl + SAMPLE128_3_IDX_VAL);

 }

 else

 {

 status = PRF_ERR_INVALID_PARAM;

 }

 if (status != PRF_ERR_OK)

 {

 sample128_upd_char2_cfm_send(status);

 }

 return (KE_MSG_CONSUMED);

}

{SAMPLE128_UPD_CHAR3_REQ, (ke_msg_func_t) sample128_upd_char3_req_handler},

///Update value of characteristic 3

SAMPLE128_UPD_CHAR3_REQ,

///Confirm the update of value of characteristic 3

SAMPLE128_UPD_CHAR3_CFM,

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 47 of 53 © 2022 Renesas Electronics

Figure 58: Change the first byte of characteristic 3

7.3.7 Implementing support for GATT notify

A connected client subscribes to notification of changes to the characteristic value by writing to the
client configuration attribute value of the characteristic. We will need a way to distinguish the different
write actions from each other. An enumeration is used for this purpose, and we will have to add our
new characteristic’s client configuration to the enumeration in “sample128.h”.

struct sample128_upd_char3_req *req3 = KE_MSG_ALLOC(

 SAMPLE128_UPD_CHAR3_REQ,

 TASK_SAMPLE128,

 TASK_APP,

 sample128_upd_char3_req

);

memcpy(&req3->val,&sample128_my_newer,sizeof(my_newer_t));

memcpy(&req3->val,&sample128_placeholder,1);

req3->conhdl = app_env.conhdl;

ke_msg_send(req3);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 48 of 53 © 2022 Renesas Electronics

Figure 59: Adding the new characteristic’s client configuration to sample128.h

In order to keep track of whether notifications are activated for the individual characteristic, we will
add a parameter to the environment structure of the service. This must be done in “sample128.h”:

Figure 60: Changing the service environment structure

When we enable the service, we must remember to specify whether notifications are set for the
characteristic. Near the bottom of the “sample128_enable_req_handler()” function in
“sample128_task.c” add the following:

 // Notification property status characteristic 3

 uint8_t feature3;

SAMPLE128_3_CFG,

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 49 of 53 © 2022 Renesas Electronics

Figure 61: Initializing notification

Finally, we will have to set a flag when a connected client subscribes or unsubscribes to notifications.
A client will write a 1 to our client configuration attribute to subscribe and a 0 to unsubscribe. In
“sample128_enable_req_handler” of “sample128_task. c” add the following:

sample128_env.feature3 = param->feature3;

if (!sample128_env.feature3)

{

 temp = 0;

}

else temp=1;

attmdb_att_set_value(sample128_env.sample128_shdl + SAMPLE128_3_IDX_CFG,

 sizeof(uint16_t), (uint8_t *)&temp);

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 50 of 53 © 2022 Renesas Electronics

Figure 62: Handling notification subscriptions

And we must change the last “else if” statement in the same function so that it can also handle
notification subscriptions to characteristic 3. Replace the entire “else if” block with the following:

if (param->handle == sample128_env.sample128_shdl + SAMPLE128_3_IDX_CFG)

{

 char_code = SAMPLE128_3_CFG;

}

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 51 of 53 © 2022 Renesas Electronics

You should be able to build the project, download it to your DVK and run it. Using LightBlue or
BlueLoupe should allow you to see the new characteristic, read the value and set up notifications to
receive an updated value every 500ms.

else if ((char_code == SAMPLE128_2_CFG)||(char_code == SAMPLE128_3_CFG))

{

 // Written value

 uint16_t ntf_cfg;

 //Extract value before check

 ntf_cfg = co_read16p(¶m->value[0]);

 // Only update configuration if value for stop or notification enable

 if ((ntf_cfg == PRF_CLI_STOP_NTFIND) || (ntf_cfg == PRF_CLI_START_NTF))

 {

 //Save value in DB

 attmdb_att_set_value(param->handle, sizeof(uint16_t), (uint8_t *)¶m->value[0]);

 // Conserve information in environment

 if (ntf_cfg == PRF_CLI_START_NTF)

 {

 // Ntf cfg bit set to 1

 if(char_code == SAMPLE128_2_CFG)

 sample128_env.feature |= PRF_CLI_START_NTF;

 else

 sample128_env.feature3 |= PRF_CLI_START_NTF;

 }

 else

 {

 // Ntf cfg bit set to 0

 if(char_code == SAMPLE128_2_CFG)

 sample128_env.feature &= ~PRF_CLI_START_NTF;

 else

 sample128_env.feature3 &= ~PRF_CLI_START_NTF;

 }

 status = PRF_ERR_OK;

 }

}

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 52 of 53 © 2022 Renesas Electronics

8 Revision history

Revision Date Description

1.1 19-Jan-2022 Updated logo, disclaimer, copyright.

1.0 25-April-2015 Initial version.

AN-B-029

Developing a DA14580 Bluetooth Profile Using
Sample128

Company confidential

Application Note Revision 1.1 19-Jan-2022

CFR0074 53 of 53 © 2022 Renesas Electronics

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

RoHS Compliance

Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our
suppliers are available on request.

	Abstract
	Contents
	Figures
	Tables
	1 Terms and definitions
	2 References
	3 Introduction
	4 Building a project that includes the sample128 service
	4.1 Creating a new project based on the template_fh sample application
	4.2 Add the sample128 service to the project
	4.2.1 Adding the sample128 path to the project Include Paths
	4.2.2 Adding the sample128 source code to the project
	4.2.3 Including sample128

	5 Interfacing your application with sample128
	5.1 Creating the service database
	5.2 Enabling the service
	5.3 Implementing message handlers
	5.4 Trying it out

	6 Using sample128
	6.1 Implementing a kernel timer
	6.2 Adding some functionality

	7 Modifying sample128
	7.1 The basics of sample128
	7.1.1 The primary service declaration attribute
	7.1.2 The characteristic declaration attribute
	7.1.3 The characteristic value declaration attribute
	7.1.4 The client configuration declaration attribute
	7.1.5 Summarizing the components of sample128

	7.2 Modifying the data size of characteristic 1
	7.2.1 Defining our new data type of 8 bytes
	7.2.2 Recalculating the size of the database
	7.2.3 Modifying the value attribute
	7.2.4 Modifying messages between sample128 and the application

	7.3 Adding a new characteristic to the service
	7.3.1 Defining our new data type of 10 bytes
	7.3.2 Calculating the size of the new database
	7.3.3 Building the new database
	7.3.4 Initializing the characteristic value
	7.3.5 Setting the default value of characteristic 3
	7.3.6 Updating the characteristic value from the application
	7.3.7 Implementing support for GATT notify

	8 Revision history

