

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. U17379EJ3V0AN00 (3rd edition)

Date Published September 2009 NS

 μPD78F9200 μPD78F9500
 μPD78F9201 μPD78F9501
 μPD78F9202 μPD78F9502
 μPD78F9210 μPD78F9510
 μPD78F9211 μPD78F9511
 μPD78F9212 μPD78F9512
 μPD78F9221
 μPD78F9222

μPD78F9224
 μPD78F9232
 μPD78F9234

78K0S/Kx1+
8-Bit Single-Chip Microcontrollers

Application Note

EEPROMTM Emulation

 2005

Printed in Japan

Application Note U17379EJ3V0AN 2

[MEMO]

Application Note U17379EJ3V0AN 3

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected

wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH
(MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the
device when the input level is fixed, and also in the transition period when the input level passes through the
area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS
devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and according to related specifications
governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction
of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of
static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control
must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators
that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work benches
and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with
mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device.
Immediately after the power source is turned ON, devices with reset functions have not yet been initialized.
Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not
initialized until the reset signal is received. A reset operation must be executed immediately after power-on
for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for
each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while
the device is not powered. The current injection that results from input of such a signal or I/O pull-up power
supply may cause malfunction and the abnormal current that passes in the device at this time may cause
degradation of internal elements. Input of signals during the power off state must be judged separately for
each device and according to related specifications governing the device.

Application Note U17379EJ3V0AN 4

EEPROM is a trademark of NEC Electronics Corporation.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the

United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

• The information in this document is current as of September, 2009. The information is subject to change without notice. For

actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date

specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with

an NEC Electronics sales representative for availability and additional information.

• No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC

Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

• NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the

use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual

property rights of NEC Electronics or others.

• Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in

semiconductor product operation and application examples. The incorporation of these circuits, software and information in

the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes

no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and

information.

• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree

and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property

or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient

safety measures in their design, such as redundancy, fire-containment and anti-failure features.

• NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The

"Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality

assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its

quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in

a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual

equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-

crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and

medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data

sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC

Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness

to support a given application.

(Note 1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined

above).

(M8E0909)

Application Note U17379EJ3V0AN 5

INTRODUCTION

Target readers This application note is intended for users who understand the functions of the

78K0S/Kx1+ with on-chip flash memory and who will use this product to design

application systems.

Purpose The purpose of this application note is to inform users concerning the use of the

78K0S/Kx1+ flash memory self programming functions, and the method for storing data

(writing constant data using application) during EEPROM emulation of flash memory.

Organization This manual is generally organized into the following sections.

 • EEPROM emulation function

 • EEPROM emulation program

How to read this manual It is assumed that the reader of this manual has general knowledge in the fields of

electrical engineering, logic circuits, and microcontrollers.

 To learn more about the 78K0S/Kx1+’s hardware functions:

 → See the user’s manual of each 78K0S/Kx1+ product.

 To learn more about the 78K0S/Kx1+’s flash memory self programming functions:

 → See the flash memory chapter in the user’s manual for each 78K0S/Kx1+ product.

 To gain a general understanding of functions:

 → Read this manual in the order of the CONTENTS. The mark “<R>” shows major

revised points. The revised points can be easily searched by copying an “<R>” in

the PDF file and specifying it in the “Find what:” field.

Convention Data significance: Higher digits on the left and lower digits on the right

 Active low representation: xxx (overscore over pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeral representation: Binary..................xxxx or xxxxB

 Decimalxxxx

 HexadecimalxxxxH

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

78K0/KB1+ User’s Manual U17446E

78K0/KA1+ User’s Manual U16898E

78K0/KY1+ User’s Manual U16994E

78K0/KU1+ User’s Manual U18172E

78K0S/Kx1+ EEPROM Emulation Application Note This manual

78K/0S Series Instructions User’s Manual U11047E

Application Note U17379EJ3V0AN 6

CONTENTS

CHAPTER 1 OVERVIEW OF FLASH MEMORY SELF PROGRAMMING.. 8

1.1 Self-Programmable Flash Memory Area.. 8

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)............ 9

2.1 Main Specifications for EEPROM Emulation... 9
2.1.1 EEPROM emulation data block.. 11
2.1.2 Data structure .. 11
2.1.3 Valid and invalid flags .. 14

2.2 EEPROM Emulation Program Execution Conditions ... 17
2.3 How to Get the Sample Program .. 17

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD,
ASSEMBLYLANGUAGE).. 18

3.1 Configuration of EEPROM Emulation Program .. 18
3.2 Resources Used by EEPROM Emulation Program... 18
3.3 Use of EEPROM Emulation Program ... 19

3.3.1 Initial values for user settings... 19
3.3.2 Calling of user processing for EEPROM emulation.. 20

3.4 Description of EEPROM Emulation Program .. 22
3.4.1 User access processing for EEPROM emulation... 22
3.4.2 EEPROM emulation control processing (for internal processing) .. 24
3.4.3 Flash memory control processing .. 26

3.5 Flowchart of EEPROM Emulation Program... 29
3.5.1 Flowcharts of EEPROM emulation access processings .. 29
3.5.2 Flowcharts of EEPROM emulation control processings... 31

3.6 List of EEPROM Emulation Processings... 36

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD) 37

4.1 Main Specifications for EEPROM Emulation... 37
4.1.1 EEPROM emulation data block.. 39
4.1.2 Data structure .. 39
4.1.3 Valid and invalid flags .. 42

4.2 EEPROM Emulation Program Execution Conditions ... 45
4.3 How to Get the Sample Program .. 45

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD,
ASSEMBLY LANGUAGE)... 46

5.1 Configuration of EEPROM Emulation Program .. 46
5.2 Resources Used by EEPROM Emulation Program... 46
5.3 Use of EEPROM Emulation Program ... 47

5.3.1 Initial values for user settings... 47
5.3.2 Calling of user processing for EEPROM emulation.. 48

5.4 Description of EEPROM Emulation Program .. 50

Application Note U17379EJ3V0AN 7

5.4.1 User access processing for EEPROM emulation..50
5.4.2 EEPROM emulation control processing (for internal processing) ...52
5.4.3 Flash memory control processing ...54

5.5 Flowchart of EEPROM Emulation Program... 57
5.5.1 Flowcharts of EEPROM emulation access processings ...57
5.5.2 Flowcharts of EEPROM emulation control processings..59

5.6 List of EEPROM Emulation Processings... 65

APPENDIX A REVISION HISTORY .. 66

A.1 Major Revisions in This Edition... 66
A.2 Revision History of Preceding Editions.. 67

Application Note U17379EJ3V0AN 8

CHAPTER 1 OVERVIEW OF FLASH MEMORY SELF PROGRAMMING

The 78K0S/Kx1+ enables writing from an application program to flash memory (i.e., “flash memory self

programming”).

This application note describes how to store (reading or writing as with EEPROM) any data to the flash memory by

using the self programming function.

Remark For a more detailed description of flash memory self programming, see the flash memory chapter in the

user’s manual for each 78K0S/Kx1+ products.

1.1 Self-Programmable Flash Memory Area

The area that is used for erasing, blank checks, and verification during flash memory control operations is specified

in block units. The block numbers that can be specified are listed in Figure 1-1.

Caution Any areas other than the product’s flash memory area cannot be accessed.

Figure 1-1. Allocation of Block Numbers

1F00H
1E00H
1D00H
1C00H
1B00H
1A00H
1900H
1800H
1700H
1600H
1500H
1400H
1300H
1200H
1100H
1000H
0F00H
0E00H
0D00H
0C00H
0B00H
0A00H
0900H
0800H
0700H
0600H
0500H
0400H
0300H
0200H
0100H
0000H

Block 31 (256 bytes)
Block 30 (256 bytes)
Block 29 (256 bytes)
Block 28 (256 bytes)
Block 27 (256 bytes)
Block 26 (256 bytes)
Block 25 (256 bytes)
Block 24 (256 bytes)
Block 23 (256 bytes)
Block 22 (256 bytes)
Block 21 (256 bytes)
Block 20 (256 bytes)
Block 19 (256 bytes)
Block 18 (256 bytes)
Block 17 (256 bytes)
Block 16 (256 bytes)
Block 15 (256 bytes)
Block 14 (256 bytes)
Block 13 (256 bytes)
Block 12 (256 bytes)
Block 11 (256 bytes)
Block 10 (256 bytes)
Block 9 (256 bytes)
Block 8 (256 bytes)
Block 7 (256 bytes)
Block 6 (256 bytes)
Block 5 (256 bytes)
Block 4 (256 bytes)
Block 3 (256 bytes)
Block 2 (256 bytes)
Block 1 (256 bytes)
Block 0 (256 bytes)

0F00H
0E00H
0D00H
0C00H
0B00H
0A00H
0900H
0800H
0700H
0600H
0500H
0400H
0300H
0200H
0100H
0000H

Block 15 (256 bytes)
Block 14 (256 bytes)
Block 13 (256 bytes)
Block 12 (256 bytes)
Block 11 (256 bytes)
Block 10 (256 bytes)
Block 9 (256 bytes)
Block 8 (256 bytes)
Block 7 (256 bytes)
Block 6 (256 bytes)
Block 5 (256 bytes)
Block 4 (256 bytes)
Block 3 (256 bytes)
Block 2 (256 bytes)
Block 1 (256 bytes)
Block 0 (256 bytes)

0700H
0600H
0500H
0400H
0300H
0200H
0100H
0000H

8 KB4 KB2 KB1 KB

Block 7 (256 bytes)
Block 6 (256 bytes)
Block 5 (256 bytes)
Block 4 (256 bytes)
Block 3 (256 bytes)
Block 2 (256 bytes)
Block 1 (256 bytes)
Block 0 (256 bytes)

0300H
0200H
0100H
0000H

Block 3 (256 bytes)
Block 2 (256 bytes)
Block 1 (256 bytes)
Block 0 (256 bytes)

Application Note U17379EJ3V0AN 9

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

2.1 Main Specifications for EEPROM Emulation

EEPROM emulation is a function that is used to use a portion of the flash memory as rewritable data ROM, by

using the self programming function of the flash memory. The sample program can be used in combination with a

user program to perform read or write processing, as with EEPROM.

Note that the data length and number of rewrites is restricted, because the internal flash memory can only be

rewritten a limited number of times. Next, the basic specifications of the sample program and how to calculate the

number of rewrites is described.

Basic specifications of the sample program and how to calculate the number of rewrites

 Data format for saving

Data (2 bytes) Delimiter (1 byte)

 ↑ ↑

Remark The data size can be set, starting from 1 byte. The upper size limit depends on the RAM size.

 Number of flash memory block rewrites

 (256 − 2) / 3 = 84 times (rounded to the nearest integer)

 Number of blocks to be used as the EEPROM area

 Two blocks (MIN.) are used.

 Remark These blocks are required to prevent data losses due to problems, such as power cut-off and power

interruption during block erasure.

 Number of erasures of one block

 1,000 times

 Maximum number of rewrites

 84 2 1,000 = 168,000 times

Any data Indicates the write status. Used for data search.

Data size

Valid or invalid flag (see 2.1.3)

Memory size of one block

Number of block erasures

Number of blocks to be used

Number of rewrites of one block

<R>

<R>

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

Application Note U17379EJ3V0AN 10

In the sample program, data is handled in 2-byte units, and 84 rewrites can be performed per block (256 bytes), in

combination with a delimiter (1 byte) that indicates the end of data. Furthermore, since an area of at least two

consecutive blocks is required to avoid losses caused, for example, by an unexpected power supply voltage drop, a

total of 168 rewrites can be performed when two blocks are used. In addition, since a block can be erased up to

1,000 times in the sample program, data can be rewritten up to 168,000 times when two blocks are used.

At least two consecutive blocks must be secured to allocate the flash memory for storing data. These blocks can

be set freely by the user.

Figure 2-1 shows a memory map and data structure example in which the program size is 3.5 KB and blocks 14

and 15 are set to be used for EEPROM emulation.

Figure 2-1. Memory Map and Data Structure Example

(When Program Size Is 3.5 KB and Blocks 14 and 15 Are Set as Data Area for Use EEPROM Emulation)

0000H

Special function register (SFR)

Internal high-speed RAM

User program
+

EEPROM emulation
program

Can support up to
3.5 KB total

Block 13

Block 15 Block 15

Block 14

Reserved

Block 14

Block 9

Block 10

Block 11

Block 12

Block 4

Block 0

Block 1

Block 2

Block 3

:

Valid

Invalid

Valid/invalid flag
Not used

1 byte

2 bytes 1 byte

1 byte

Delimiter

Data Data Data DataNote

DataNote

Data 1 Data 2

FFFFH

F F 0 0 H
FEFFH

FE00H
FDFFH

1 0 0 0 H
0FFFH 0FFFH

0 F 1 0 H
0 F 0 0 H

0 E 1 0 H
0 E 0 0 H

0 E 0 0 H
0DFFH

FFHFFH

FFH00H

00H00H

0F00H 0F01H

0E03H 0E05H0E04H

0 F 0 0 H
0EFFH

Data

Note Data is stored successively.

Remark Data structure in Figure 2-1 shows the example when used the sample program.

<R>

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

Application Note U17379EJ3V0AN 11

2.1.1 EEPROM emulation data block

The EEPROM emulation program requires at least two consecutive blocks for storing data.

As long as these blocks do not overlap the user program area, they can be freely set by the user.

2.1.2 Data structure

Data that is stored as part of EEPROM emulation consists of data (1-byte unit) and a delimiter (1 byte).

Figure 2-2. Data Structure

1-byte unit

Data

1 byte

Delimiter

(1) Data

Any value from 00H to FFH can be set. The size can be set, starting from 1 byte. Note, however, that, the

larger the size, the more the number of rewrites will decrease.

(2) Delimiter

The delimiter’s value is fixed as 00H. Delimiters are written to enable detection of unsuccessful data writing,

such as in cases where power interruptions or other problems occurred during a data write operation.

Whether data writing has completed normally is judged by writing a delimiter area last. If a delimiter (00H)

cannot be read correctly, it is likely that a problem will occur when writing data, so the corresponding data is

not used.

If a search finds an abnormal delimiter in the latest data, the data written before that data, having a normal

delimiter, is read as the latest data.

(3) Normal flow of data storage and search operations

The normal flow of the data storage and search operations are described below (in this example, the blocks

specified for EEPROM emulation are blocks 14 and 15).

(Status 1) Block 14 is set as a valid block.

+0

00H

FFH

FFH

Block 14

Valid flag

Invalid flag

Data

0E00H

0E01H

0E02H

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

Application Note U17379EJ3V0AN 12

(Status 2) Data (11H and 22H) is written.

+0

00H

FFH

11H

FFH

Block 14

Valid flag

Invalid flag

Data

:

0E00H

0E01H

0E02H

0E06H

+1

22H

+2

00H

(Status 3) Data (22H and 33H) is written.

+0

00H

FFH

11H

22H

FFH

Block 14

Valid flag

Invalid flag

Data

Data

:

0E00H

0E01H

0E02H

0E06H

0E0AH

+1

22H

33H

+2

00H

00H

(Status 4) Data (20H and 30H) is written.

+0

00H

FFH

11H

22H

20H

FFH

+1

22H

33H

30H

+2

00H

00H

00H

Block 14

Valid flag

Invalid flag

Data

Data

Data

:

0E00H

0E01H

0E02H

0E06H

0E0AH

0E0EH

(Status 5) Data (20H and 30H) is read.

+0

00H

FFH

11H

22H

20H

FFH

FFH

+1

22H

33H

30H

+2

00H

00H

00H

Block 14

Valid flag

Invalid flag

Data a

Data b

Data c

Data d

Erase status

0E00H

0E01H

0E02H

0E06H

0E0AH

0E0EH

0EFEH

How to read

<1> Since data a has a different data number, the operation goes to the next data.

<2> Since data b has a matching data number, its delimiter is checked, and since the delimiter value is 00H

(normal), data of 2 bytes is stored as the latest data, and the operation goes to the next data.

<3> Since data c has a matching data number, its delimiter is checked, and since the delimiter value is 00H

(normal), data of 2 bytes is stored as the latest data, and the operation goes to the next data.

<4> Check whether the block has been erased to the end.

<5> The read value therefore becomes the latest stored data (data c).

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

Application Note U17379EJ3V0AN 13

The following describes the flow of operations when a problem such as a power interruption occurs while

storing data (in this example, the blocks specified for EEPROM emulation are blocks 14 and 15).

(Status 1) Block 14 is set as a valid block.

+0

00H

FFH

FFH

Block 14

Valid flag

Invalid flag

Data

0E00H

0E01H

0E02H

(Status 2) Data number 1 (for data values 11H, 22H) is written.

+0

00H

FFH

11H

FFH

Block 14

Valid flag

Invalid flag

Data

:

0E00H

0E01H

0E02H

0E06H

+1

22H

+2

00H

(Status 3) Power interruption occurs while data number 1 (for data values 22H, 33H) is being written and

delimiter cannot be written correctly (value other than 00H is written)

+0

00H

FFH

11H

22H

FFH

Block 14

Valid flag

Invalid flag

Data

Data

:

0E00H

0E01H

0E02H

0E06H

0E0AH

+1

22H

33H

+2

00H

01H

(Status 4) Data number 1 is read.

+0

00H

FFH

11H

22H

FFH

FFH

+1

22H

33H

+2

00H

01H

Block 14

Valid flag

Invalid flag

Data a

Data b

Data c

Erase status

0E00H

0E01H

0E02H

0E06H

0E0AH

0EFEH

How to read

<1> Since data a has a matching data number, its delimiter is checked, and since the delimiter value is 00H

(normal), data of 2 bytes is stored as the latest data, the operation goes to the next data.

<2> Since data b has a matching data number, its delimiter is checked, and since the delimiter value is 01H

(abnormal), the operation goes to the next data.

<3> Check whether the block has been erased to the end.

<4> The read value therefore becomes the latest stored data (data a).

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

Application Note U17379EJ3V0AN 14

2.1.3 Valid and invalid flags

Valid and invalid flags are placed at the start of the block as a total of 2 bytes of data specified in 1-byte units. As

such, valid and invalid flags indicate the valid or invalid status of data stored in the corresponding block.

When the valid flag’s value is 00H and the invalid flag’s value is FFH, the corresponding block is valid. In all other

cases, the block is invalid.

Data is stored sequentially to a valid block, and if that block becomes full, the valid/invalid flag setting makes the

next block valid and the previously valid block invalid. In the event that the next block becomes full or a power

interruption or other problem occurs while transferring data to the next block, this procedure enables the data up to

that point to be saved in order to prevent loss of data.

The operation flow of valid and invalid flags is described below.

(Status 1) Initial status

Valid flag

Invalid flag

Data

:

Data

Block n

FFH

FFH

FFH

:

FFH

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

FFH

:

FFH

(Status 2) Write 00H to valid flag for block n

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

FFH

:

FFH

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

FFH

:

FFH

(Status 3) Write data to block n

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

Data

:

FFH

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

FFH

:

FFH

(Status 4) Data is full in block n

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

FFH

:

FFH

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

Application Note U17379EJ3V0AN 15

(Status 5) Write latest data to block n + 1

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

Data

:

FFH

(Status 6) Write 00H to valid flag for block n + 1

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

00H

FFH

Data

:

FFH

(Status 7) Write 00H to invalid flag for block n

Valid flag

Invalid flag

Data

:

Data

Block n

00H

00H

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

00H

FFH

Data

:

FFH

(Status 8) Data is full in block n + 1

Valid flag

Invalid flag

Data

:

Data

Block n

00H

00H

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

00H

FFH

Data

:

Data

(Status 9) Erase block n

Valid flag

Invalid flag

Data

:

Data

Block n

FFH

FFH

FFH

:

FFH

Valid flag

Invalid flag

Data

:

Data

Block n + 1

00H

FFH

Data

:

Data

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

Application Note U17379EJ3V0AN 16

(Status 10) Write latest data to block n

Block n + 1

00H

FFH

Data

:

Data

Block n

FFH

FFH

Data

:

FFH

Valid flag

Invalid flag

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

(Status 11) Write 00H to valid flag for block n

Block n + 1

00H

FFH

Data

:

Data

Block n

00H

FFH

Data

:

FFH

Valid flag

Invalid flag

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

(Status 12) Write 00H invalid flag for block n + 1

Block n + 1

00H

00H

Data

:

Data

Block n

00H

FFH

Data

:

FFH

Valid flag

Invalid flag

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

Application Note U17379EJ3V0AN 17

2.2 EEPROM Emulation Program Execution Conditions

Be sure to meet all of the conditions listed in Table 2-1 before executing the EEPROM emulation program.

Table 2-1. Conditions for EEPROM Emulation Operations

Item Description

Secure stack area

(Assembly language: 22 bytes)

During EEPROM emulation program operations, the stack used by the user program is

inherited and used. In addition, the stack area described on the left starting from the stack

address at the start of EEPROM emulation program execution is required. See 3.2 Resources

Used by EEPROM Emulation Program for further description of this stack.

EEPROM emulation program

RAM

(Assembly language: 8 bytes)

The area must be secured as RAM dedicated to EEPROM emulation, where read and write

data are stored temporarily. Secure the area described on the left in the internal high-speed

RAM as a data buffer.

Operation of watchdog timer

(WDT)

Since no instruction can be executed while flash memory control processing is being

performed during execution of the EEPROM emulation program, flash memory control

processing clears the WDT counter. At this time, set the overflow time to 10 ms or longer so

that no overflow occurs in WDT.

Prohibit reset Do not reset this microcontroller during EEPROM emulation program operations. When a reset

occurs, any data in the flash memory being accessed becomes undefined.

Prohibit power cut-off or

interruption

Be sure to apply a stable voltage to the microcontroller during EEPROM emulation program

operations. When a power cut-off or interruption occurs, any data in the flash memory being

accessed becomes undefined.

Cautions 1. All interrupts are disabled during write processing of the EEPROM emulation program. After

completion of EEPROM emulation program write processing, the interrupt mask status

returns to the status before the EEPROM emulation program write processing, and interrupts

are enabled.

2. When using the on-chip debug function, do not allocate areas such as the EEPROM

emulation data area to the area where the monitor program for debugging is allocated.

Example: Allocating a 2-block data area in a 4 KB flash memory product

Blocks 14 and 15 are used for the on-chip debug function, so allocate the data area to

flash memory area other than blocks 14 and 15.

Remark For details on the watchdog timer operation and prohibitions on power cut-off or interruption, refer to

Cautions on self programming function in the flash memory chapter in the user’s manual for each

78K0S/Kx1+ product.

 For details on the on-chip debug function, refer to the on-chip debug function chapter in the user’s

manual for each 78K0S/Kx1+ product.

2.3 How to Get the Sample Program

Download the sample program from the URL below.

http://www.necel.com/micro/en/designsupports/sampleprogram/78k0s/low_pin_count/index.html

<R>

<R>

<R>

Application Note U17379EJ3V0AN 18

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD,
ASSEMBLYLANGUAGE)

This is an application program that uses the self programming function of the flash memory in order to use the

flash memory as EEPROM memory for storing data, etc.

3.1 Configuration of EEPROM Emulation Program

Table 3-1 lists the files that comprise this program.

Table 3-1. File Configuration

File Name Function Type

EEPROM.asm EEPROM emulation processing

This processing includes not only read and write operations for EEPROM

emulation but also data search and block transfer processing.

Assembler

source

3.2 Resources Used by EEPROM Emulation Program

The resources used by this program are listed in Table 3-2 below.

Table 3-2. Resources

Resource Description

RAM for EEPROM emulation 8 bytes

Stack 22 bytes

EEPROM write processing 22 bytes

RAM

EEPROM read processing 12 bytes

EEPROM emulation processing 295 bytes

Flash memory control processing 177 bytes

ROM

Total 472 bytes

<R>

<R>

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 19

3.3 Use of EEPROM Emulation Program

EEPROM emulation described in this chapter uses at least two blocks of flash memory. Two bytes of data can be

referred and updated to flash memory during EEPROM emulation.

When this EEPROM emulation program is embedded in the user application, the conditions are met (see 2.2

EEPROM Emulation Program Execution Conditions), and the specified program is executed, EEPROM emulation

can be performed.

The following explains how the “fixed-length data method, assembly language” program can be used to perform

EEPROM emulations.

3.3.1 Initial values for user settings

The user must set the following items as initial values for the EEPROM emulation program.

• The first block number used as EEPROM

• The number of blocks used as EEPROM

These initial value items are included in EEPROM.asm.

(1) Block numbers used as EEPROM

Specify the block numbers to be used for EEPROM emulation. The set blocks must be consecutive for more

than 2 blocks. Set the blocks so that they do not overlap the user program area.

The number of EEPROM rewrite cycles can be increased by increasing the number of blocks used as

EEPROM. Regardless of the amount of data used for EEPROM emulation, we recommend that any area that

is not being used as a program area should be set for use in EEPROM emulation.

Example 1. When using two blocks (blocks 14 and 15) as EEPROM blocks

EEPROM_BLOCK EQU (14)

EEPROM_BLOCK_NO EQU (2)

 2. When using four blocks (blocks 12, 13, 14, and 15) as EEPROM blocks

EEPROM_BLOCK EQU (12)

EEPROM_BLOCK_NO EQU (4)

(2) Data length used by user

The data length to be stored in the EEPROM must be set by the user.

Set the data length with the data size and the delimiter (1 byte), because EEPROM emulation requires a

delimiter.

Example When the data to be stored is 2 bytes

LENG EQU (3) ; Data length (including the delimiter)

(3) Number of erase retrials

The number of retrials is set in accordance with the time (MAX. value) required for the number of flash

memory block erasures performed.

In the sample program of this manual, it is set (4.9 seconds) under the conditions, TA = −40 to +85°C, 4.5 V ≤

VDD ≤ 5.5 V, and NERASE ≤ 1,000 times.

To set it under different conditions, set it larger than the block erasure time divided by 8.5 ms. The time for

one erase is 8.5 ms.

<R>

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 20

3.3.2 Calling of user processing for EEPROM emulation

Two types of processing are provided for use when performing EEPROM emulations in a user program: EEPROM

read and write processing.

<EEPROM read and write processing>

EEPROM read and write processing facilitates EEPROM emulation by setting and calling a specific argument of a

data address.

The assembler version and C language version of EEPROM read and write processing is included in main.asm

and main.c, respectively.

The following variable and structure (RAM) are used both for reading and writing in EEPROM emulation.

For main.asm (assembler version), use the variable EEPROM_DATA defined below.

EEPROM_DATA: DS 2 ; Data

EEPROM_DELIMITER: DS 1 ; Delimiter

For main.c (C language version), use the structure eeprom_data defined below.

Struct eeprom_data{

unsigned char uc_eeprom_data[2] ; Data

unsigned char uc_delimiter ; Delimiter

};

(1) EEPROM read processing (__eeprom_read): Reads from the EEPROM area the data of the set size.

For main.asm (assembler version)

• Argument:

 Store the EEPROM_DATA address to the AX register and execute subroutine call the _eeprom_read

function.

• Return value (CY flag):

 The return value is either CY=0 indicating normal completion of data read or CY=1 indicating abnormal

completion. If the result is an abnormal completion, an error will occur if data with the specified number is

not written even once.

For main.c (C language version)

• Argument:

 Execute the _eeprom_read function by using the address to the eeprom_data structure as the argument.

• Return value (error flag):

 The return value is either return value=0 indicating normal completion of data read or return value =1

indicating abnormal completion. If the result is an abnormal completion, an error will occur if data with the

specified number is not written even once.

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 21

(2) EEPROM write processing (EEPROMWrite): Writes to the EEPROM area the data of the set size.

For main.asm (assembler version)

• Argument:

 Store the EEPROM_DATA address to the AX register and execute the _eeprom_write function after

setting the data to be written to EEPROM_DATA and the delimiter to EEPROM_DELIMITER.

• Return value (CY flag):

 The return value is either CY=0 indicating normal completion of data write or CY=1 indicating abnormal

completion. If the result is an abnormal completion, an error will occur if data with the specified number is

not written even once.

For main.c (C language version)

• Argument:

 Execute the _eeprom_write function by using the address to the eeprom_data structure as the argument.

• Return value (error flag):

 The return value is either return value=0 indicating normal completion of data write or return value =1

indicating abnormal completion.

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 22

3.4 Description of EEPROM Emulation Program

3.4.1 User access processing for EEPROM emulation

Tables 3-3 and 3-4 list the processing that is accessed by users and used to perform read and write operations as

part of EEPROM emulation.

Table 3-3. EEPROM Read Processing

(a) Assembler version

Processing name __eeprom_read (user access function)

ROM size 29 bytes

Stack size 5 levels (10 bytes)

Input AX: Address of variable

Return value Normal completion: CY=0

Abnormal completion: CY=1

Description of

operation

The latest data at the specified address is read from the EEPROM to the storage address.

1: Searches for blocks used as EEPROM.

2: Searches for address of latest data from valid blocks.

3: Reads latest data from searched addresses.

(b) C language version

Processing name _eeprom_read (user access function)

ROM size 29 bytes

Stack size 5 levels (10 bytes)

Input AX: Pointer of structure

Return value Normal completion: error flag=0

Abnormal completion: error flag=1

Description of

operation

The latest data at the specified address is read from the EEPROM to the storage address.

1: Searches for blocks used as EEPROM.

2: Searches for address of latest data from valid blocks.

3: Reads latest data from searched addresses.

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 23

Table 3-4. EEPROM Write Processing

(a) Assembler version

Processing name __eeprom_write (user access function)

ROM size 58 bytes

Stack size 11 levels (22 bytes)

Input AX: Address of variable

Return value Normal completion: CY=0

Abnormal completion: CY=1

Description of

operation

The data is written from to the storage address the EEPROM.

1: Searches for blocks used as EEPROM.

2: Sets as valid the block specified first, if there are no valid blocks.

3: Searches for addresses of valid blocks which can be written.

4: Performs an operation to shift to the next block, if the valid blocks are full and cannot be written.

5: Creates write data.

6: Writes to valid blocks.

(b) C language version

Processing name _eeprom_write (user access function)

ROM size 58 bytes

Stack size 11 levels (10 bytes)

Input AX: Pointer of structure

Return value Normal completion: error flag=0

Abnormal completion: error flag=1

Description of

operation

The data is written from the storage address to the EEPROM.

1: Searches for blocks used as EEPROM.

2: Sets as valid the block specified first, if there are no valid blocks.

3: Searches for addresses of valid blocks which can be written.

4: Performs an operation to shift to the next block, if the valid blocks are full and cannot be written.

5: Creates write data.

6: Writes to valid blocks..

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 24

3.4.2 EEPROM emulation control processing (for internal processing)

Tables 3-5 to 3-9 list the processing used to control emulation as part of EEPROM emulation.

Table 3-5. EEPROM Block Search Processing

Processing name EEPROMUseBlockSearch

ROM size 28 bytes

Stack size 2 levels (4 bytes)

Input None

Output Normal completion: CY=0, A=Block table number (01H to FEH)

Abnormal completion: CY=1, A=The next end block

Registers used A

Description of

operation

Searches for currently used blocks in flash memory allocated as EEPROM.

Table 3-6. EEPROM Block Initialize Processing

Processing name EEPROMBlockInit

ROM size 17 bytes

Stack size 6 levels (12 bytes)

Input None

Output Normal completion: CY=0

Abnormal completion: CY=1

Registers used A, X, B, C, D, E

Description of

operation

If there are no valid blocks among the blocks specified for EEPROM, the first specified block is set as

currently being used (valid).

Returns with CY = 0 if secured normally.

Returns with CY = 1 if not secured normally.

Table 3-7. EEPROM Block Change Processing

Processing name EEPROMUseBlockChange

ROM size 59 bytes

Stack size 6 levels (12 bytes)

Input A=Currently used block number

Output Normal completion: CY=0, C=Block table number (02H to FEH), Zero flag (Z)=1

Abnormal completion: CY=1, Zero flag (Z)=0

Registers used A, X, B, C, D, E

Description of

operation

If the currently used blocks are full of data, this function searches for the next block to be used and copies

data to that block.

1: Sets block to be used next.

2: Erases block to be used next.

3: Transfers the latest data from a valid block to the next block.

4: Sets the next block to be used as valid.

5: Sets currently valid blocks as invalid.

6: Stores to the new block number “CurrentB_No”.

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 25

Table 3-8. EEPROM Block Data Write Top Search Processing

Processing name EEPROMWriteTopSearch

ROM size 44 bytes

Stack size 3 levels (6 bytes)

Input A: Currently searched block table number

Output Successful search: CY = 0, sets the write address to AX.

Search failure: CY = 1

Registers used A, X, B, D, E

Description of

operation

Searches for specified block’s write address.

Completes normally only if the data area fits within the block at 0FFH.

Table 3-9. EEPROM Latest Data Search Processing

Processing name EEPROMDataSearch

ROM size 33 bytes

Stack size 3 levels (6 bytes)

Input A: Currently used block table number

Output Normal completion: CY=0, DE=Address of the latest data

Abnormal completion: CY=1, E=0

Registers used A, X, D, E

Description of

operation

Reads the storage address of the latest data.

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 26

3.4.3 Flash memory control processing

Tables 3-10 to 3-17 list the processing used to control the flash memory as part of EEPROM emulation.

Table 3-10. Block Erase

Processing name SelfFlashBlockErase

ROM size 29 bytes

Stack size 3 levels (6 bytes)

Input A: Number of block to be erased

Output Normal completion: CY=0

Abnormal completion: CY=1

Registers used B

Description of

operation

Erases the specified block and performs a blank check.

Table 3-11. Mode Transition Processing (from Self Programming Mode to Normal Mode)

Processing name SelfFlashModeOff

ROM size 31 bytes

Stack size 1-level (2 bytes)

Input None

Output None

Registers used A, X

Description of

operation

Releases self programming mode.

Table 3-12. Mode Transition Processing (from Normal Mode to Self Programming Mode)

Processing name SelfFlashModeOn

ROM size 35 bytes

Stack size 1-level (2 bytes)

Input None

Output None

Registers used A, X

Description of

operation

Sets self programming mode.

<R>

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 27

Table 3-13. Block Erase Processing

Processing name FlashBlockErase

ROM size 15 bytes

Stack size 1-level (2 bytes)

Input A: Block number

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used A

Description of

operation

Erases the specified block.

Table 3-14. Flash Self Programming Function Calling Processing

Processing name SubFlashSelfPrg

ROM size 12 bytes

Stack size 1-level (2 bytes)

Input None

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used A

Description of

operation

Calls flash self programming function.

Table 3-15. Block Blank Check Processing

Processing name FlashBlockBlankCheck

ROM size 17 bytes

Stack size 1 level (2 bytes)

Input A: Specified block number

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used A

Description of

operation

Performs a blank check of the specified block.

Table 3-16. Processing for Setting Block as Valid

Processing name SetValid

ROM size 9 bytes

Stack size 1 level (2 bytes)

Input A: Block number

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used A, X, B, C, D, E

Description of

operation

Sets as valid the block used.

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 28

Table 3-17. EEPROM Data Write Processing

Processing name FlashEEPROMWrite

ROM size 56 bytes

Stack size 5 levels (10 bytes)

Input DE: Write start address

C: Write data count

AX: Write data storage address

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used D, E

Description of

operation

Writes data to EEPROM and internally verifies the data.

<R>

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 29

3.5 Flowchart of EEPROM Emulation Program

3.5.1 Flowcharts of EEPROM emulation access processings

Figures 3-1 and 3-2 show flowcharts of access processings called by users to perform read or write operations as

part of EEPROM emulation.

Figure 3-1. Flowchart of EEPROM Read Processing

[Overview]

The data defined with the structure is read from specified storage address.

__eeprom_read

Searches for currently used blocks
(EEPROMUseBlockSearch)

Searches for currently used blocks
(EEPROMUseBlockSearch)

Block found?

Searches for latest data
(EEPROMDataSearch)
Searches for latest data
(EEPROMDataSearch)

RET

No

Yes

No

Yes

CY = 0
(read successful)

Data found?

CY = 1
(read failure)

Store latest data
to specified address

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 30

Figure 3-2. Flowchart of EEPROM Write Processing

 [Overview]

The data of the specified number is written to a valid block from the storage address.

__eeprom_write

Shift to flash mode
(SelfFlashModeOn)
Shift to flash mode
(SelfFlashModeOn)

Search for latest block
(EEPROMUseBlockSearch)

Search for latest block
(EEPROMUseBlockSearch)

Block found?

Specify first valid block
(EEPROMBlockInit)

Specify first valid block
(EEPROMBlockInit)

Set smallest block number
to valid block

Write data to EEPROM area
(FlashEEPROMWrite)

Write data to EEPROM area
(FlashEEPROMWrite)

Write successful?

Release flash mode
(SelfFlashModeOff)
Release flash mode
(SelfFlashModeOff)

RET

A

No

Yes

No

Yes

A
Release flash mode
(SelfFlashModeOff)
Release flash mode
(SelfFlashModeOff)

CY = 0
(write successful)

CY = 1
(write failure)

Search writable area
(EEPROMWriteTopSearch)

Search writable area
(EEPROMWriteTopSearch)

Area found?

Change block because there is
no free area

(EEPROMUseBlockChange)

Change block because there is
no free area

(EEPROMUseBlockChange)

Block change
successful?

No

Yes

Yes

No

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 31

3.5.2 Flowcharts of EEPROM emulation control processings

Figures 3-3 to 3-7 show flowcharts of emulation control processings used during EEPROM emulation.

Figure 3-3. Flowchart of Currently Used EEPROM Block Search Function

[Overview]

The currently used blocks of the flash memory that is allocated as EEPROM is searched.

EEPROMUseBlockSearch

Valid block checked?

Set start block number

RET

No

Yes

No

Yes

Check valid or invalid flag of block

Move to next block

All set blocks completed?

Store valid block number
to CurentB_No

CY = 0
(search successful)

CY = 1
(search failure)

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 32

Figure 3-4. Flowchart of EEPROM Block Initialize Processing

[Overview]

If there are no valid blocks among the blocks specified for EEPROM, the first specified block is set as valid.

EEPROMBlockInit

Erase specified block
(SelfFlashBlockErase)
Erase specified block
(SelfFlashBlockErase)

Erased?

Set block as valid
(Setvalid)

Set block as valid
(Setvalid)

Valid flag set?

Initialize completion

No

Yes

No

Yes

Set start block number

CY = 0
(initialize successful)

CY = 1
(initialize failure)

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 33

Figure 3-5. Flowchart of EEPROM Use Block Change Processing

[Overview]

If the currently used blocks are full of data, this function searches for the next block to be used and copies data to new

block.

EEPROMUseBlockChange

Set block number of next block

Erase next block to be used
(SelfFlashBlockErase)

Erase next block to be used
(SelfFlashBlockErase)

Erased?

Write next block's data
Set start address

Write updated data to
start address of next block

(FlashEEPROMWrite)

Write updated data to
start address of next block

(FlashEEPROMWrite)

Write successful?

Set valid flag to new block
(Setvalid)

Set valid flag to new block
(Setvalid)

Is valid flag normal?

Set invalid flag to old block
(Setinvalid)

Set invalid flag to old block
(Setinvalid)

Is invalid flag normal?

RET

No

Yes

No

Yes

No

Yes

No

Yes
CY = 1

(update failure)
CY = 0

(update successful)

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 34

Figure 3-6. Flowchart of EEPROM Use Block Data Write Top Search Processing

[Overview]

Searches for specified block’s write area.

Completes normally only if the data area fits within the block at 0xFFH.

EEPROMWriteTopSearch

Set for specified block’s
start address.

Delimiter checked?

Check data erasure of
write area

Is data FF?

RET

Update address to be searched

End of block?

Delimiter≠ FFH

Delimiter = FFH

No

Yes

No

RET

Yes

CY = 0
(Search successful)

CY = 1
(Search failure)

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 35

Figure 3-7. Flowchart of EEPROM Latest Data Search Processing

[Overview]

Reads the storage address of the latest data.

EEPROMDataSearch

Set for specified block’s
start address.

Delimiter checked?

Copy address to DE register
(return value)

No

Block exceeded
by next address?

RET

CY = 0
(Search successful)

CY = 1
(Search failure)

Set address of data to be
checked next

Delimiter = 00H

Delimiter ≠ 00H

Search successful?

Yes

Yes

No

Update address to be searched

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

Application Note U17379EJ3V0AN 36

3.6 List of EEPROM Emulation Processings

A call tree of EEPROM emulation processings is shown below.

Figure 3-8. Call Tree

__eerom_read EEPROMUseBlockSearch

EEPROMUseBlockSearch

EEPROMBlockInit FlashBlockBlankCheck

FlashEEPROMWrite

FlashBlockErase

FlashEEPROMWrite

FlashEEPROMWrite

EEPROMDataSearch

SelfFlashBlockErase

SelfFlashBlockErase

EEPROMUseBlockChange

EEPROMWriteTopSearch

EEPROMDataSearch

FlashBlockBlankCheck

FlashBlockErase

__eeprom_write SelfFlashModeOn

SelfFlashModeOff

SetValid

SetInvalid

User access processings EEPROM emulation processings Flash memory control processings

Application Note U17379EJ3V0AN 37

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

4.1 Main Specifications for EEPROM Emulation

EEPROM emulation is a function that is used to use a portion of the flash memory as rewritable data ROM, by

using the self programming function of the flash memory. The sample program can be used in combination with a

user program to perform read or write processing, as with EEPROM.

Note that the data length and number of rewrites is restricted, because the internal flash memory can only be

rewritten a limited number of times. Next, the basic specifications of the sample program and how to calculate the

number of rewrites is described.

Basic specifications of the sample program and how to calculate the number of rewrites

 Data format for saving

Data number (1 byte) Data (2 bytes) Delimiter (1 byte)

 ↑

 Remark The data size can be set, starting from 1 byte. The upper size limit depends on the RAM size.

 Number of flash memory block rewrites

 (256 − 2) / 4 − 1 = 62 times (rounded to the nearest integer)

 Number of blocks to be used as the EEPROM area

 Two blocks (MIN.) are used.

 Remark These blocks are required to prevent data losses due to problems, such as power cut-off and power

interruption during block erasure.

 Number of erasures of one block

 1,000 times

 Maximum number of rewrites

 62 2 1,000 = 124,000 times

In the sample program, data is handled in 2-byte units, and 62 rewrites can be performed per block (256 bytes), in

combination with a delimiter (1 byte) that indicates the end of data. Furthermore, since an area of at least two

consecutive blocks is required to avoid losses caused, for example, by an unexpected power supply voltage drop, a

total of 124 rewrites can be performed when two blocks are used. In addition, since a block can be erased up to

1,000 times in the sample program, data can be rewritten up to 124,000 times when two blocks are used.

Number distinguishing the data to be saved (Two types of data numbers are used in the sample program.)

Data size

Valid or invalid flag (see 4.1.3)

Memory size of one block

Number of block erasures

Number of blocks to be used

Number of rewrites of one block

<R>

The number of data copied in the switching of block

<R>

<R>

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

Application Note U17379EJ3V0AN 38

If, however, the total number of bytes of all EEPROM storage data (data + delimiter) types is not sufficiently large

with respect to the storage block size (i.e., the total number of bytes of the data is larger than half the block size),

EEPROM emulation may not function correctly. In particular, the transfer of data between blocks may occur

frequently and the number of data rewrites may significantly decrease.

At least two consecutive blocks must be secured to allocate the flash memory for storing data. These blocks can

be set freely by the user.

Figure 4-1 shows a memory map and data structure example in which the user program size is 3.5 KB and blocks

14 and 15 are set to be used for EEPROM emulation.

Figure 4-1. Memory Map and Data Structure Example

(When User Program Size Is 3.5 KB and Blocks 14 and 15 Are Set as Data Area for Use EEPROM Emulation)

0000H

Special function register (SFR)

Internal high-speed RAM

User program
+

EEPROM emulation
program

Can support up to
3.5 KB total

Block 13

Block 15 Block 15

Block 14

Reserved

Block 14

Block 9

Block 10

Block 11

Block 12

Block 4

Block 0

Block 1

Block 2

Block 3

:

Valid

Invalid

Valid/invalid flag
Not used

1 byte

1 byte 2 bytes 1 byte

1 byte

Delimiter

Data Data Data DataNote

DataNote

Data No. Data 1 Data 2

FFFFH

F F 0 0 H
FEFFH

FE00H
FDFFH

1 0 0 0 H
0FFFH 0FFFH

0 F 1 0 H
0 F 0 0 H

0 E 1 0 H
0 E 0 0 H

0 E 0 0 H
0DFFH

FFHFFH

FFH00H

00H00H

0F00H 0F01H

0E02H 0E03H 0E05H0E04H

0 F 0 0 H
0EFFH

Note Data is stored successively.

Remark Data structure in Figure 2-1 shows the example when used the sample program.

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

Application Note U17379EJ3V0AN 39

4.1.1 EEPROM emulation data block

The EEPROM emulation program requires at least two consecutive blocks for storing data.

As long as these blocks do not overlap the user program area, they can be freely set by the user.

4.1.2 Data structure

Data that is stored as part of EEPROM emulation consists of a data number (1 byte), data (1-byte unit), and a

delimiter (1 byte).

Figure 4-2. Data Structure

1 byte

Data No.

1-byte unit

Data

1 byte

Delimiter

(1) Data number

Data numbers are used to distinguish data to be read or written. Any data number value from 00H to FEH is

valid.

The user should assign a data number to each particular type of data before using the data.

Basically, each time a write program is executed, data is written in 4-byte units, beginning from the start of the

block.

To read the latest data, search from the start of the block in 4-byte units to see whether or not the same data

number exists. If several instances of data having the same data number are found, the data that is closest to

the data end point is regarded as the latest data.

If the data number is FFH, it is judged as the data end point. After flash memory is erased, all data is

assigned the value FFH, so when FFH is read at the location of a data number, it is judged as the data end

point and the search is terminated. Accordingly, only data numbers from 00H to FEH are valid.

Remark Two types of data numbers are used in the sample program.

(2) Data

00H to FFH can be set by any value that is to be stored. The data size can be set, starting from 1 byte, but

the upper size limit depends on the RAM size that can be used. Note, however, that, the larger the size, the

more the number of rewrites will decrease. It is specified as 2 bytes (the data length (LENG) is defined as 4)

in the sample program.

(3) Delimiter

The delimiter’s value is fixed as 00H. Delimiters are written to enable detection of unsuccessful data writing,

such as in cases where power interruptions or other problems occurred during a data write operation.

Whether data writing has completed normally is judged by writing a delimiter area last. If a delimiter (00H)

cannot be read correctly, it is likely that a problem will occur when writing data, so the corresponding data is

not used.

If a search finds an abnormal delimiter in the latest data, the data written before that data (followed by the data

closest to the next end point), having a normal delimiter, is read as the latest data.

(4) Normal flow of data storage and search operations

The normal flow of the data storage and search operations are described below (in this example, the blocks

specified for EEPROM emulation are blocks 14 and 15).

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

Application Note U17379EJ3V0AN 40

(Status 1) Block 14 is set as a valid block.

+0

00H

FFH

FFH

Block 14

Valid flag

Invalid flag

Data

0E00H

0E01H

0E02H

(Status 2) Data number 1 (for data values 11H and 22H) is written.

+0

00H

FFH

01H

FFH

Block 14

Valid flag

Invalid flag

Data

:

0E00H

0E01H

0E02H

0E06H

+1

11H

+2

22H

+3

00H

(Status 3) Data number 2 (for data values 22H, 33H) is written.

+0

00H

FFH

01H

02H

FFH

Block 14

Valid flag

Invalid flag

Data

Data

:

0E00H

0E01H

0E02H

0E06H

0E0AH

+1

11H

22H

+2

22H

33H

+3

00H

00H

(Status 4) Data number 2 (for data values 20H, 30H) is written.

+0

00H

FFH

01H

02H

02H

FFH

+1

11H

22H

20H

+2

22H

33H

30H

+3

00H

00H

00H

Block 14

Valid flag

Invalid flag

Data

Data

Data

:

0E00H

0E01H

0E02H

0E06H

0E0AH

0E0EH

(Status 5) Data number 2 is read.

+0

00H

FFH

01H

02H

02H

FFH

+1

11H

22H

20H

+2

22H

33H

30H

+3

00H

00H

00H

Block 14

Valid flag

Invalid flag

Data a

Data b

Data c

Data d

0E00H

0E01H

0E02H

0E06H

0E0AH

0E0EH

<1> Since data a has a different data number, the operation goes to the next data.

<2> Since data b has a matching data number, its delimiter is checked, and since the delimiter value is 00H

(normal), data of 2 bytes is stored as the latest data, and the operation goes to the next data.

<3> Since data c has a matching data number, its delimiter is checked, and since the delimiter value is 00H

(normal), data of 2 bytes is stored as the latest data, and the operation goes to the next data.

<4> The data number for data d is FFH (end point), so the read operation is terminated.

<5> The read value therefore becomes the latest stored data (data c).

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

Application Note U17379EJ3V0AN 41

The following describes the flow of operations when a problem such as a power interruption occurs while

storing data (in this example, the blocks specified for EEPROM emulation are blocks 14 and 15).

(Status 1) Block 14 is set as a valid block.

+0

00H

FFH

FFH

Block 14

Valid flag

Invalid flag

Data

0E00H

0E01H

0E02H

(Status 2) Data number 1 (for data values 11H, 22H) is written.

+0

00H

FFH

01H

FFH

Block 14

Valid flag

Invalid flag

Data

:

0E00H

0E01H

0E02H

0E06H

+1

11H

+2

22H

+3

00H

(Status 3) Power interruption occurs while data number 1 (for data values 22H, 33H) is being written and

delimiter cannot be written correctly (value other than 00H is written)

+0

00H

FFH

01H

01H

FFH

Block 14

Valid flag

Invalid flag

Data

Data

:

0E00H

0E01H

0E02H

0E06H

0E0AH

+1

11H

22H

+2

22H

33H

+3

00H

01H

(Status 4) Data number 1 is read.

+0

00H

FFH

01H

01H

FFH

Block 14

Valid flag

Invalid flag

Data

Data

:

0E00H

0E01H

0E02H

0E06H

0E0AH

+1

11H

22H

+2

22H

33H

+3

00H

01H

How to read

<1> Since data a has a matching data number, its delimiter is checked, and since the delimiter value is 00H

(normal), data of 2 bytes is stored as the latest data, the operation goes to the next data.

<2> Since data b has a matching data number, its delimiter is checked, and since the delimiter value is 01H

(abnormal), the operation goes to the next data.

<3> The data number for data c is FFH (end point), so the read operation is terminated.

<4> The read value therefore becomes the latest stored data (data a).

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

Application Note U17379EJ3V0AN 42

4.1.3 Valid and invalid flags

Valid and invalid flags are placed at the start of the block as a total of 2 bytes of data specified in 1-byte units. As

such, valid and invalid flags indicate the valid or invalid status of data stored in the corresponding block.

When the valid flag’s value is 00H and the invalid flag’s value is FFH, the corresponding block is valid. In all other

cases, the block is invalid.

Data is stored sequentially to a valid block, and if that block becomes full, a search is executed to find blocks (at

least two blocks are required) for storing the subsequent data, after which data is transferred to those blocks (this data

is only the latest data for each data number). After the data transfer is completed, the valid/invalid flag setting makes

the next block valid and the previously valid block invalid. In the event that the next block becomes full or a power

interruption or other problem occurs while transferring data to the next block, this operation enables the data up to that

point to be saved in order to prevent loss of data.

The operation flow of valid and invalid flags is described below.

(Status 1) Initial status

Valid flag

Invalid flag

Data

:

Data

Block n

FFH

FFH

FFH

:

FFH

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

FFH

:

FFH

(Status 2) Write 00H to valid flag for block n

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

FFH

:

FFH

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

FFH

:

FFH

(Status 3) Write data to block n

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

Data

:

FFH

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

FFH

:

FFH

(Status 4) Data is full in block n

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

FFH

:

FFH

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

Application Note U17379EJ3V0AN 43

(Status 5) The latest data to be updated is written after the latest data whose data number has not been updated is

transferred to block n + 1.

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

FFH

FFH

Data

:

FFH

(Status 6) Write 00H to valid flag for block n + 1

Valid flag

Invalid flag

Data

:

Data

Block n

00H

FFH

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

00H

FFH

Data

:

FFH

(Status 7) Write 00H to invalid flag for block n

Valid flag

Invalid flag

Data

:

Data

Block n

00H

00H

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

00H

FFH

Data

:

FFH

(Status 8) Data is full in block n + 1

Valid flag

Invalid flag

Data

:

Data

Block n

00H

00H

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

Block n + 1

00H

FFH

Data

:

Data

(Status 9) Erase block n

Valid flag

Invalid flag

Data

:

Data

Block n

FFH

FFH

FFH

:

FFH

Valid flag

Invalid flag

Data

:

Data

Block n + 1

00H

FFH

Data

:

Data

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

Application Note U17379EJ3V0AN 44

(Status 10) The latest data to be updated is written after the latest data whose data number has not been updated

is transferred to block n.

Block n + 1

00H

FFH

Data

:

Data

Block n

FFH

FFH

Data

:

FFH

Valid flag

Invalid flag

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

(Status 11) Write 00H to valid flag for block n

Block n + 1

00H

FFH

Data

:

Data

Block n

00H

FFH

Data

:

FFH

Valid flag

Invalid flag

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

(Status 12) Write 00H invalid flag for block n + 1

Block n + 1

00H

00H

Data

:

Data

Block n

00H

FFH

Data

:

FFH

Valid flag

Invalid flag

Data

:

Data

Valid flag

Invalid flag

Data

:

Data

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

Application Note U17379EJ3V0AN 45

4.2 EEPROM Emulation Program Execution Conditions

Be sure to meet all of the conditions listed in Table 4-1 before executing the EEPROM emulation program.

Table 4-1. Conditions for EEPROM Emulation Operations

Item Description

Secure stack area

(Assembly language: 22 bytes)

During EEPROM emulation program operations, the stack used by the user program is

inherited and used. In addition, the stack area described on the left starting from the stack

address at the start of EEPROM emulation program execution is required. See 5.2 Resources

Used by EEPROM Emulation Program for further description of this stack.

EEPROM emulation program

RAM

(Assembly language: 11 bytes)

The area must be secured as RAM dedicated to EEPROM emulation, where read and write

data are stored temporarily. Secure the area described on the left in the internal high-speed

RAM as a data buffer. In addition to the RAM for the program described on the left, only the

stack area is used by the EEPROM emulation program.

Operation of watchdog timer

(WDT)

Since no instruction can be executed while flash memory control processing is being

performed during execution of the EEPROM emulation program, flash memory control

processing clears the WDT counter. At this time, set the overflow time to 10 ms or longer so

that no overflow occurs in WDT.

Prohibit reset Do not reset this microcontroller during EEPROM emulation program operations. When a reset

occurs, any data in the flash memory being accessed becomes undefined.

Prohibit power cut-off or

interruption

Be sure to apply a stable voltage to the microcontroller during EEPROM emulation program

operations. When a power cut-off or interruption occurs, any data in the flash memory being

accessed becomes undefined.

Cautions 1. All interrupts are disabled during write processing of the EEPROM emulation program. After

completion of EEPROM emulation program write processing, the interrupt mask status

returns to the status before the EEPROM emulation program write processing, and interrupts

are enabled.

2. When using the on-chip debug function, do not allocate areas such as the EEPROM

emulation data area to the area where the monitor program for debugging is allocated.

Example: Allocating a 2-block data area in a 4 KB flash memory product

Blocks 14 and 15 are used for the on-chip debug function, so allocate the data area to

flash memory area other than blocks 14 and 15.

Remark For details on the watchdog timer operation and prohibitions on power cut-off or interruption, refer to

Cautions on self programming function in the flash memory chapter in the user’s manual for each

78K0S/Kx1+ product.

 For details on the on-chip debug function, refer to the on-chip debug function chapter in the user’s

manual for each 78K0S/Kx1+ product.

4.3 How to Get the Sample Program

Download the sample program from the URL below.
http://www.necel.com/micro/en/designsupports/sampleprogram/78k0s/low_pin_count/index.html

<R>

<R>

<R>

Application Note U17379EJ3V0AN 46

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD,
ASSEMBLY LANGUAGE)

This is an application program that uses the self programming function of the flash memory in order to use the

flash memory as EEPROM memory for storing data, etc.

5.1 Configuration of EEPROM Emulation Program

Table 5-1 lists the files that comprise this program.

Table 5-1. File Configuration

File Name Function Type

EEPROM.asm EEPROM emulation processing

This processing includes not only read and write operations for EEPROM

emulation but also data search and block transfer processing.

Assembler

source

5.2 Resources Used by EEPROM Emulation Program

The resources used by this program are listed in Table 5-2 below.

Table 5-2. Resources

Resource Description

RAM for EEPROM emulation 11 bytes

Stack 22 bytes

EEPROM write processing 22 bytes

RAM

EEPROM read processing 12 bytes

EEPROM emulation processing 303 bytes

Flash memory control processing 177 bytes

ROM

Total 480 bytes

<R>
<R>

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 47

5.3 Use of EEPROM Emulation Program

EEPROM emulation described in this chapter uses at least two blocks of flash memory. Two bytes of data can be

referred and updated to flash memory during EEPROM emulation.

When this EEPROM emulation program is embedded in the user application, the conditions are met (see 4.2

EEPROM Emulation Program Execution Conditions), and the specified program is executed, EEPROM emulation

can be performed.

The following explains how the “fixed-length multiple-data method, assembly language” program can be used to

perform EEPROM emulations.

5.3.1 Initial values for user settings

The user must set the following items as initial values for the EEPROM emulation program.

• The first block number of blocks used as EEPROM (defined as constant EEPROM_BLOCK)

• The number of blocks used as EEPROM (defined as constant EEPROM_BLOCK_NO)

• Amount of data used by user, data length (defined as constant DATA_NO_MAX and LENG, respectively)

These initial value items are included in EEPROM.asm.

(1) The block numbers and the number of blocks used as EEPROM

Specify the block numbers of blocks to be used for EEPROM emulation. The set blocks must be consecutive

for more than 2 blocks. Set the blocks so that they do not overlap the user program area.

The number of EEPROM rewrite cycles can be increased by increasing the number of blocks used as

EEPROM. Regardless of the amount of data used for EEPROM emulation, we recommend that any area that

is not being used as a program area should be set for use in EEPROM emulation.

Example 1. When using two blocks (blocks 14 and 15) as EEPROM blocks

EEPROM_BLOCK EQU (14)

EEPROM_BLOCK_NO EQU (2)

 2. When using four blocks (blocks 12, 13, 14, and 15) as EEPROM blocks

EEPROM_BLOCK EQU (12)

EEPROM_BLOCK_NO EQU (4)

(2) Amount of data and data length used by user

The amount of data and data length to be stored in the EEPROM must be set by the user.

Set the data length with the data size, data number (1 byte), and the delimiter (1 byte), because EEPROM

emulation requires data number and a delimiter.

Example When using two types of 2 bytes data

DATA_NO_MAX EQU (2) ; When two units of data (data numbers 0 and 1) are to be used

LENG EQU (4) ; Data length (size including data number and delimiter

 (2 bytes, total))

(3) Number of erase retrials

The number of retrials is set in accordance with the time (MAX. value) required for the number of flash

memory block erasures performed.

In the sample program of this manual, it is set (4.9 seconds) under the conditions, TA = −40 to +85°C, 4.5 V ≤

VDD ≤ 5.5 V, and NERASE ≤ 1,000 times.

<R>

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 48

To set it under different conditions, set it larger than the block erasure time divided by 8.5 ms. The time for

one erase is 8.5 ms.

5.3.2 Calling of user processing for EEPROM emulation

Two types of processing are provided for use when performing EEPROM emulations in a user program: EEPROM

read and write processing.

<EEPROM read and write processing>

EEPROM read and write processing facilitates EEPROM emulation by calling address of variable or structure as

specific argument.

The assembler version and C language version of EEPROM read and write processing is included in main.asm

and main.c, respectively.

The following variable and structure (RAM) are used both for reading and writing in EEPROM emulation.

For main.asm (assembler version), use the variable EEPROM_DATA defined below.

EEPROM_DO: DS 1 ; Data number

EEPROM_DATA: DS 2 ; Data

EEPROM_DELIMITER: DS 1 ; Delimiter

For main.c (C language version), use the structure eeprom_data defined below.

Struct eeprom_data{

unsigned char uc_data_no ; Data number

unsigned char uc_eeprom_data[2] ; Data

unsigned char uc_delimiter ; Delimiter

};

(1) EEPROM read processing (__eeprom_read): Reads from the EEPROM area the data of the set size.

For main.asm (assembler version)

• Argument:

 Store the EEPROM_NO address to the AX register and call the __eeprom_read function as a subroutine,

after setting to EEPROM_NO the data number of the data to be read.

• Return value (CY flag):

 The return value is either CY=0 indicating normal completion of data read or CY=1 indicating abnormal

completion. If the result is an abnormal completion, be sure to check whether or not the data number is

within the set range. An error will occur if data with the specified number is not written even once.

For main.c (C language version)

• Argument:

 Execute the _eeprom_read function by using the address to the eeprom_data structure as the argument,

after setting to uc_data_no of eeprom_data structure the data number of the data to be read.

• Return value (error flag):

 The return value is either return value=0 indicating normal completion of data read or return value =1

indicating abnormal completion. If the result is an abnormal completion, be sure to check whether or not

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 49

the data number is within the set range. An error will occur if data with the specified number is not written

even once.

(2) EEPROM write processing (__eeprom_write): Writes to the EEPROM area the data of the set size.

For main.asm (assembler version)

• Argument:

 Store the EEPROM_NO address to the AX register and execute the __eeprom_write function, after

setting the data number of the data to be written, data, and delimiter to EEPROM_NO, EEPROM_DATA,

and EEPROM_DELIMITER, respectively.

• Return value (CY flag):

 The return value is either CY=0 indicating normal completion of data write or CY=1 indicating abnormal

completion. If the result is an abnormal completion, be sure to check whether or not the data number is

within the set range. An error will occur if data with the specified number is not written even once.

For main.c (C language version)

• Argument:

 Store the EEPROM_NO address to the AX register and execute the __eeprom_write function, after

setting the data number of the data to be written, data, and delimiter to uc_data_no eeprom_data

structure, uc_eeprom_data, and uc_delimiter, respectively.

• Return value (error flag):

 The return value is either return value=0 indicating normal completion of data write or return value =1

indicating abnormal completion.

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 50

5.4 Description of EEPROM Emulation Program

5.4.1 User access processing for EEPROM emulation

Tables 5-3 and 5-4 list the processing that is accessed by users and used to perform read and write operations as

part of EEPROM emulation.

Table 5-3. EEPROM Read Processing

(a) Assembler version

Processing name __eeprom_read (user access function)

ROM size 31 bytes

Stack size 6 levels (12 bytes)

Input AX: Address of variable

Return value Normal completion: CY=0

Abnormal completion: CY=1

Description of

operation

The latest data at the specified data number is read from the EEPROM to the storage address.

1: Searches for blocks used as EEPROM.

2: Searches for address of latest data from valid blocks.

3: Reads latest data from searched addresses.

 (b) C language version

Processing name _eeprom_read (user access function)

ROM size 31 bytes

Stack size 6 levels (12 bytes)

Input AX: Pointer of structure

Return value Normal completion: error flag=0

Abnormal completion: error flag=1

Description of

operation

The latest data at the specified data number is read from the EEPROM to the storage address.

1: Searches for blocks used as EEPROM.

2: Searches for address of latest data from valid blocks.

3: Reads latest data from searched addresses.

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 51

Table 5-4. EEPROM Write Processing

(a) Assembler version

Processing name __eeprom_write (user access function)

ROM size 63 bytes

Stack size 11 levels (22 bytes)

Input AX: Address of variable

Return value Normal completion: CY=0

Abnormal completion: CY=1

Description of

operation

The data of specified number is written from the storage address to the EEPROM.

1: Searches for blocks used as EEPROM.

2: Sets as valid the block specified first, if there are no valid blocks.

3: Searches for addresses of valid blocks which can be written.

4: Performs an operation to shift to the next block, if the valid blocks are full and cannot be written.

5: Creates write data.

6: Writes to valid blocks.

(b) C language version

Processing name _eeprom_write (user access function)

ROM size 63 bytes

Stack size 11 levels (10 bytes)

Input AX: Pointer of structure

Return value Normal completion: error flag=0

Abnormal completion: error flag=1

Description of

operation

The data of specified number is written from the storage address to the EEPROM.

1: Searches for blocks used as EEPROM.

2: Sets as valid the block specified first, if there are no valid blocks.

3: Searches for addresses of valid blocks which can be written.

4: Performs an operation to shift to the next block, if the valid blocks are full and cannot be written.

5: Creates write data.

6: Writes to valid blocks..

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 52

5.4.2 EEPROM emulation control processing (for internal processing)

Tables 5-5 to 5-10 list the processing used to control emulation as part of EEPROM emulation.

Table 5-5. EEPROM Parameter Acquisition Processing

Processing name getprara

ROM size 8 bytes

Stack size 1-level (2 bytes)

Input AX: pointer of structure

Output A=data number. Copies also to RQDATA_No.

HL=data address

Description of

operation

Reads from the argument (pointer) for the user to call a function, the content of its structure and acquires the

required parameters.

Table 5-6. EEPROM Block Search Processing

Processing name EEPROMUseBlockSearch

ROM size 27 bytes

Stack size 2-level (4 bytes)

Input None

Output Normal completion: CY=0, A=Block table number (01H to FEH)

Abnormal completion: CY=1, A=The next end block

Registers used A

Description of

operation

Searches for currently used blocks in flash memory allocated as EEPROM.

Table 5-7. EEPROM Block Initialize Processing

Processing name EEPROMBlockInit

ROM size 19 bytes

Stack size 6-level (12 bytes)

Input None

Output Normal completion: CY=0

Abnormal completion: CY=1

Registers used A, X, B, C, D, E

Description of

operation

If there are no valid blocks among the blocks specified for EEPROM, the first specified block is set as

currently being used (valid).

Returns with CY = 0 if secured normally.

Returns with CY = 1 if not secured normally.

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 53

Table 5-8. EEPROM Block Change Processing

Processing name EEPROMUseBlockChange

ROM size 88 bytes

Stack size 6 levels (12 bytes)

Input A=Currently used block number

Output Normal completion: CY=0

Abnormal completion: CY=1

Registers used A, X, B, C, D, E

Description of

operation

If the currently used blocks are full of data, this function searches for the next block to be used and copies

data to that block.

1: Sets block to be used next.

2: Erases block to be used next.

3: Transfers the latest data from a valid block to the next block.

4: Sets the next block to be used as valid.

5: Sets currently valid blocks as invalid.

6: Stores to the new block number “CurrentB_No”.

Table 5-9. EEPROM Block Data Write Top Search Processing

Processing name EEPROMWriteTopSearch

ROM size 26 bytes

Stack size 3 levels (6 bytes)

Input A: Currently searched block table number

Output Successful search: CY = 0, sets the write address to AX.

Search failure: CY = 1

Registers used A, AX

Description of

operation

Searches for specified block’s write address.

Completes normally only if the data area fits within the block at 0FFH.

Table 5-10. EEPROM Latest Data Search Processing

Processing name EEPROMDataSearch

ROM size 41 bytes

Stack size 2 levels (4 bytes)

Input A: Currently used block table number, X: Search data number 5

Output Normal completion: CY=0, DE=Address of the latest data

Abnormal completion: CY=1, E=0

Registers used A, D, E

Description of

operation

Reads the storage address of the latest data corresponding to the specified number.

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 54

5.4.3 Flash memory control processing

Tables 5-11 to 5-18 list the processing used to control the flash memory as part of EEPROM emulation.

Table 5-11. Block Erase

Processing name SelfFlashBlockErase

ROM size 29 bytes

Stack size 3 levels (8 bytes)

Input A: Number of block to be erased

Output Normal completion: CY=0

Abnormal completion: CY=1

Registers used B

Description of

operation

Erases the specified block and performs a blank check.

Table 5-12. Mode Transition Processing (from Self Programming Mode to Normal Mode)

Processing name SelfFlashModeOff

ROM size 31 bytes

Stack size 1 level (2 bytes)

Input None

Output None

Registers used A, X

Description of

operation

Releases self programming mode.

Table 5-13. Mode Transition Processing (from Normal Mode to Self Programming Mode)

Processing name SelfFlashModeOn

ROM size 35 bytes

Stack size 1 level (2 bytes)

Input None

Output None

Registers used A, X

Description of

operation

Sets self programming mode.

<R>

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 55

Table 5-14. Block Erase Processing

Processing name FlashBlockErase

ROM size 15 bytes

Stack size 1 level (2 bytes)

Input A: Block number

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used A

Description of

operation

Erases the specified block.

Table 5-15. Flash Self Programming Function Calling Processing

Processing name SubFlashSelfPrg

ROM size 12 bytes

Stack size 1 level (2 bytes)

Input None

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used A

Description of

operation

Calls flash self programming function.

Table 5-16. Block Blank Check Processing

Processing name FlashBlockBlankCheck

ROM size 17 bytes

Stack size 1 level (2 bytes)

Input A: Specified block number

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used A

Description of

operation

Performs a blank check of the specified block.

Table 5-17. Processing for Setting Block as Valid

Processing name SetValid

ROM size 9 bytes

Stack size 1 level (2 bytes)

Input A: Block number

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used A, X, C, D, E

Description of

operation

Sets as valid the block used.

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 56

Table 5-18. EEPROM Data Write Processing

Processing name FlashEEPROMWrite

ROM size 56 bytes

Stack size 5 levels (10 bytes)

Input DE: Write start address

C: Write data count

AX: Write data storage address

Output Normal completion: Zero flag (Z)=1

Abnormal completion: Zero flag (Z)=0

Registers used D, E

Description of

operation

Writes data to EEPROM and internally verifies the data.

<R>

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 57

5.5 Flowchart of EEPROM Emulation Program

5.5.1 Flowcharts of EEPROM emulation access processings

Figures 5-1 and 5-2 show flowcharts of access processings called by users to perform read or write operations as

part of EEPROM emulation.

Figure 5-1. Flowchart of EEPROM Read Processing

[Overview]

The data defined with the structure is read from specified storage address.

__eeprom_read

Searches for currently used blocks
(EEPROMUseBlockSearch)

Searches for currently used blocks
(EEPROMUseBlockSearch)

Block found?

Searches for latest data
(EEPROMDataSearch)
Searches for latest data
(EEPROMDataSearch)

RET

No

Yes

No

Yes

CY = 0
(read successful)

Data found?

CY = 1
(read failure)

Store latest data to specified
data area of structure

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 58

Figure 5-2. Flowchart of EEPROM Write Processing

 [Overview]

The data of the specified number is written to a valid block from the storage address.

__eeprom_write

Shift to flash mode
(SelfFlashModeOn)
Shift to flash mode
(SelfFlashModeOn)

Search for latest block
(EEPROMUseBlockSearch)

Search for latest block
(EEPROMUseBlockSearch)

Block found?

Specify first valid block
(EEPROMBlockInit)

Specify first valid block
(EEPROMBlockInit)

Set smallest block number
to valid block

Write data to EEPROM area
(FlashEEPROMWrite)

Write data to EEPROM area
(FlashEEPROMWrite)

Write successful?

Release flash mode
(SelfFlashModeOff)
Release flash mode
(SelfFlashModeOff)

RET

A

No

Yes

No

Yes

A
Release flash mode
(SelfFlashModeOff)
Release flash mode
(SelfFlashModeOff)

CY = 0
(write successful)

CY = 1
(write failure)

Search writable area
(EEPROMWriteTopSearch)

Search writable area
(EEPROMWriteTopSearch)

Area found?

Change block because there is
no free area

(EEPROMUseBlockChange)

Change block because there is
no free area

(EEPROMUseBlockChange)

Block change
successful?

No

Yes

Yes

No

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 59

5.5.2 Flowcharts of EEPROM emulation control processings

Figures 5-3 to 5-7 show flowcharts of emulation control processings used during EEPROM emulation.

Figure 5-3. Flowchart of Currently Used EEPROM Block Search Function

[Overview]

The currently used blocks of the flash memory that is allocated as EEPROM is searched.

EEPROMUseBlockSearch

Valid block checked?

Set start block number

RET

No

Yes

No

Yes

Check valid or invalid flag of block

Move to next block

All set blocks completed?

Store valid block number
to CurentB_No

CY = 0
(search successful)

CY = 1
(search failure)

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 60

Figure 5-4. Flowchart of EEPROM Block Initialize Processing

[Overview]

If there are no valid blocks among the blocks specified for EEPROM, the first specified block is set as valid.

EEPROMBlockInit

Erase specified block
(SelfFlashBlockErase)
Erase specified block
(SelfFlashBlockErase)

Erased?

Set block as valid
(Setvalid)

Set block as valid
(Setvalid)

Valid flag set?

Initialize completion

No

Yes

No

Yes

Set start block number

CY = 0
(initialize successful)

CY = 1
(initialize failure)

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 61

Figure 5-5. Flowchart of EEPROM Use Block Change Processing (1/2)

[Overview]

If the currently used blocks are full of data, this function searches for the next block to be used and copies data to new

block.

EEPROMUseBlockChange

Set block number of
next block

Erase next block to be used
(SelfFlashBlockErase)

Erase next block to be used
(SelfFlashBlockErase)

Erased?

Write next block's data
Set start address

No

Yes

1

2

No

Yes

Initialize data number

Data number
to be written?

Search latest data
(EEPROMDataSearch)

Search latest data
(EEPROMDataSearch)

Latest data detected?

Set write data

Yes

No

3

4

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 62

Figure 5-5. Flowchart of EEPROM Use Block Change Processing (2/2)

Write target data
to next block

(FlashEEPROMWrite)

Write target data
to next block

(FlashEEPROMWrite)

Write successful?

Set valid flag to new block
(Setvalid)

Set valid flag to new block
(Setvalid)

Is valid flag normal?

Set invalid flag to old block
(Setinvalid)

Set invalid flag to old block
(Setinvalid)

Is invalid flag normal?

RET

No

Yes

No

Yes
CY = 1

(update failure)
CY = 0

(update successful)

3

All data complete?

Set data to be written
next and address

2

4

Yes

1

No

No

Yes

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 63

Figure 5-6. Flowchart of EEPROM Use Block Data Write Top Search Processing

[Overview]

Searches for specified block’s write area.

Completes normally only if the data area fits within the block at 0xFFH.

EEPROMWriteTopSearch

Set specified block’s
start address.

Check data number

Is data FF?

RET

Update address to be searched

End of block?

No

Yes

No

RET

Yes

CY = 0
(Search successful)

CY = 1
(Search failure)

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 64

Figure 5-7. Flowchart of EEPROM Latest Data Search Processing

[Overview]

Reads the storage address of the latest data.

EEPROMDataSearch

Set data number of
EEPROM area

Delimiter checked?

Copy address to DE register
(return value)

No

Data number matched?

RET

CY = 0
(Search successful)

CY = 1
(Search failure)

Delimiter = 00H

Delimiter ≠ 00H

Search successful ?

Yes

Yes

No

Update address to be searched

Is data FF?

No

Yes

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

Application Note U17379EJ3V0AN 65

5.6 List of EEPROM Emulation Processings

A call tree of EEPROM emulation processings is shown below.

Figure 5-8. Call Tree

__eerprom_read

EEPROMUseBlockSearch

EEPROMUseBlockSearch

EEPROMBlockInit FlashBlockBlankCheck

FlashEEPROMWrite

FlashBlockErase

FlashEEPROMWrite

FlashEEPROMWrite

EEPROMDataSearch

SelfFlashBlockErase

SelfFlashBlockErase

EEPROMUseBlockChange

EEPROMWriteTopSearch

EEPROMDataSearch

FlashBlockBlankCheck

FlashBlockErase

__eeprom_write

SelfFlashModeOn

SelfFlashModeOff

SetValid

SetInvalid

getpara

getpara

User access processings EEPROM emulation processings Flash memory control processings

Application Note U17379EJ3V0AN 66

APPENDIX A REVISION HISTORY

A.1 Major Revisions in This Edition

Page Description

p. 66 in
old edition

Deletion of APPENDIX A SAMPLE PROGRAM LIST (FIXED-LENGTH SINGLE-DATA METHOD) from old
edition

p. 84 in
old edition

Deletion of APPENDIX B SAMPLE PROGRAM LIST (FIXED-LENGTH MULTIPLE-DATA METHOD) from old
edition

CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)

pp. 9, 10 Modification of the number of erasures of one block, and the maximum number of rewrites in 2.1 Main
Specifications for EEPROM Emulation

p. 17 Addition of caution 2 to, and modification of Remark in Table 2-1 Conditions for EEPROM Emulation
Operations

p. 17 Addition of 2.3 How to Get the Sample Program

CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)

p. 18 Modification of Table 3-2 Resources

p. 19 Modification of 3.3.1 (3) Number of erase retrials

pp. 26, 28 Modification of Table 3-10 Block Erase and Table 3-17 EEPROM Data Write Processing

CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)

p. 37 Modification of the number of erasures of one block, and the maximum number of rewrites in 4.1 Main
Specifications for EEPROM Emulation

p. 45 Addition of caution 2 to, and modification of Remark in Table 4-1 Conditions for EEPROM Emulation
Operations

p. 45 Addition of 4.3 How to Get the Sample Program

CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)

p. 46 Modification of Table 5-2 Resources

p. 47 Modification of 5.3.1 (3) Number of erase retrials

pp. 54, 56 Modification of Table 5-11 Block Erase and Table 5-18 EEPROM Data Write Processing

APPENDIX A REVISION HISTORY

p. 67 Addition of A.2 Revision History of Preceding Editions

APPENDIX A REVISION HISTORY

User’s Manual U17379EJ3V0AN 67

A.2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.

Edition Description Chapter

CHAPTER 2 EEPROM EMULATION FUNCTION

(FIXED-LENGTH SINGLE-DATA METHOD)

Full modification of chapter.

CHAPTER 3 EEPROM EMULATION PROGRAM

(FIXED-LENGTH SINGLE-DATA METHOD,

ASSEMBLYLANGUAGE)

CHAPTER 4 EEPROM EMULATION FUNCTION

(FIXED-LENGTH MULTIPLE-DATA METHOD)

Addition of chapter.

CHAPTER 5 EEPROM EMULATION PROGRAM

(FIXED-LENGTH MULTIPLE-DATA METHOD,

ASSEMBLY LANGUAGE)

Full modification of chapter. APPENDIX A SAMPLE PROGRAM LIST (FIXED-

LENGTH SINGLE-DATA METHOD)

APPENDIX B SAMPLE PROGRAM LIST (FIXED-

LENGTH MULTIPLE-DATA METHOD)

2nd Edition

Addition of chapter.

APPENDIX C RIVISION HISTORY

<R>

Published by: NEC Electronics Corporation (http://www.necel.com/)

Contact: http://www.necel.com/support/

	COVER
	INTRODUCTION
	CHAPTER 1 OVERVIEW OF FLASH MEMORY SELF PROGRAMMING
	1.1 Self-Programmable Flash Memory Area

	CHAPTER 2 EEPROM EMULATION FUNCTION (FIXED-LENGTH SINGLE-DATA METHOD)
	2.1 Main Specifications for EEPROM Emulation
	2.1.1 EEPROM emulation data block
	2.1.2 Data structure
	2.1.3 Valid and invalid flags

	2.2 EEPROM Emulation Program Execution Conditions
	2.3 How to Get the Sample Program

	CHAPTER 3 EEPROM EMULATION PROGRAM (FIXED-LENGTH SINGLE-DATA METHOD, ASSEMBLYLANGUAGE)
	3.1 Configuration of EEPROM Emulation Program
	3.2 Resources Used by EEPROM Emulation Program
	3.3 Use of EEPROM Emulation Program
	3.3.1 Initial values for user settings
	3.3.2 Calling of user processing for EEPROM emulation

	3.4 Description of EEPROM Emulation Program
	3.4.1 User access processing for EEPROM emulation
	3.4.2 EEPROM emulation control processing (for internal processing)
	3.4.3 Flash memory control processing

	3.5 Flowchart of EEPROM Emulation Program
	3.5.1 Flowcharts of EEPROM emulation access processings
	3.5.2 Flowcharts of EEPROM emulation control processings

	3.6 List of EEPROM Emulation Processings

	CHAPTER 4 EEPROM EMULATION FUNCTION (FIXED-LENGTH MULTIPLE-DATA METHOD)
	4.1 Main Specifications for EEPROM Emulation
	4.1.1 EEPROM emulation data block
	4.1.2 Data structure
	4.1.3 Valid and invalid flags

	4.2 EEPROM Emulation Program Execution Conditions
	4.3 How to Get the Sample Program

	CHAPTER 5 EEPROM EMULATION PROGRAM (FIXED-LENGTH MULTIPLE-DATA METHOD, ASSEMBLY LANGUAGE)
	5.1 Configuration of EEPROM Emulation Program
	5.2 Resources Used by EEPROM Emulation Program
	5.3 Use of EEPROM Emulation Program
	5.3.1 Initial values for user settings
	5.3.2 Calling of user processing for EEPROM emulation

	5.4 Description of EEPROM Emulation Program
	5.4.1 User access processing for EEPROM emulation
	5.4.2 EEPROM emulation control processing (for internal processing)
	5.4.3 Flash memory control processing

	5.5 Flowchart of EEPROM Emulation Program
	5.5.1 Flowcharts of EEPROM emulation access processings
	5.5.2 Flowcharts of EEPROM emulation control processings

	5.6 List of EEPROM Emulation Processings

	APPENDIX A REVISION HISTORY
	A.1 Major Revisions in This Edition
	A.2 Revision History of Preceding Editions

