

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Printed in Japan

Document No. U18914EJ2V0AN00 (2nd edition)
Date Published September 2008 NS

78K0S/Kx1+

Sample Program (Serial Interface UART6)

Full-Duplex Communication Using Receive Ring Buffer

Application Note

 2007

Target devices
78K0S/KA1+ microcontroller
78K0S/KB1+ microcontroller

This document describes an operation overview of the sample program and how to use it, as well as how to set and use

serial interface UART6. In the sample program, the baud rate is set to 9,600 bps, serial communication is performed,

and 4-character data is transmitted in accordance with the reception of 1-character data. Similarly, in the case of a

reception error, 4-character data is transmitted in accordance with the error.

 CONTENTS

CHAPTER 1 OVERVIEW... 3
 1.1 Main Contents of the Initial Settings.. 3
 1.2 Contents Following the Main Loop.. 4
CHAPTER 2 CIRCUIT DIAGRAM ... 5
 2.1 Circuit Diagram ... 5
CHAPTER 3 SOFTWARE .. 6
 3.1 File Configuration .. 6
 3.2 Internal Peripheral Functions to Be Used ... 7
 3.3 Initial Settings and Operation Overview .. 7
 3.4 Flow Charts ... 9
CHAPTER 4 SETTING METHODS.. 11
 4.1 Setting Serial Interface UART6 ... 11
 4.2 Receive Data or Reception Error Content and Transmit Data 25
CHAPTER 5 OPERATION CHECK USING THE DEVICE 27
 5.1 Building the Sample Program ... 27
 5.2 Operation with the Device ... 30
CHAPTER 6 RELATED DOCUMENTS... 33
APPENDIX A PROGRAM LIST... 34
APPENDIX B REVISION HISTORY .. 52

Application Note U18914EJ2V0AN 2

Windows and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United

States and/or other countries.

The information in this document is current as of July, 2008. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

Application Note U18914EJ2V0AN 3

CHAPTER 1 OVERVIEW

This sample program presents an example of using serial interface UART6 that can perform full-duplex

communication. The baud rate is set to 9,600 bps, serial communication is performed, and 4-character data is

transmitted in accordance with the reception of 1-character data. Similarly, in the case of a reception error, 4-

character data is transmitted in accordance with the error.

1.1 Main Contents of the Initial Settings

The main contents of the initial settings are as follows.

• Selecting the crystal or ceramic oscillation clock as the system clock sourceNote

• Stopping watchdog timer operation

• Setting VLVI (low-voltage detection voltage) to 4.3 V ±0.2 V

• Generating an internal reset (LVI reset) signal when it is detected that VDD is less than VLVI, after VDD (power

supply voltage) becomes greater than or equal to VLVI

• Setting the CPU clock frequency to 8 MHz

• Setting the I/O ports

• Setting serial interface UART6

• Baud rate: 9,600 bps

• Data character length: 7 bits

• Parity specification: Even parity

• Number of stop bits: 1 bit

• Start bit specification: LSB first

• TxD6 output: Normal output

• Generating INTSRE6 as the interrupt upon error occurrence

• Enabling internal operation clock operation

• Enabling transmit operation

• Enabling receive operation

Note This is set by using the option byte.

[Column] What is full-duplex communication?

Full-duplex communication is a type of communication in which a transmit operation and a receive

operation can be individually performed at the same time. Serial interface UART6 supports full-duplex

communication, enabling transmission and reception to be used at the same time.

CHAPTER 1 OVERVIEW

Application Note U18914EJ2V0AN 4

1.2 Contents Following the Main Loop

After completion of the initial settings, receive operation of serial communication is started by data input from the

RxD6 pin. In this sample program, transmission and reception of ASCII codes are assumed, and 4-character data is

transmitted in accordance with the reception of 1-character data. Similarly, in the case of a reception error, 4-

character data is transmitted in accordance with the error.

78K0S/Kx1+
microcontroller

“T” is input.

<Input example> <Output example>

“OK (line feed)” is output.

OK
_

54H is received.

Transmitted in the order of
4FH, 4BH, 0DH, 0AH

An area of 50 bytes (= 1 byte (1 data) × 50) is secured in the RAM area as a buffer for storing receive data.

Receive data can be received successively, because it is stored into the buffer when an interrupt is serviced, and is

sequentially stored from the start of the buffer area. Furthermore, to configure the buffer as a ring buffer, after the

receive data has reached the end of the buffer area, the receive data is stored from the start of the buffer area again.

The receive data is stored into the buffer when free space is available in the buffer, but it is discarded instead of being

stored when no free space is available.

Caution For cautions when using the device, refer to the user’s manual of each product (78K0S/KA1+,

78K0S/KB1+).

[Column] What is a ring buffer?

A ring buffer is a method to control a transmit or receive buffer. It prepares a fixed buffer area, processes

the data in the order it is transferred to the buffer, and controls the buffer so that the address following the

end of the buffer area becomes the start address. It is called a ring buffer because the buffer is used as a

ring.

[Column] What is an ASCII code?

An ASCII code is a character code that represents a 1-character (alphabetic character, number, symbol,

control character) by using seven bits.

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U16898*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446*

Application Note U18914EJ2V0AN 5

CHAPTER 2 CIRCUIT DIAGRAM

This chapter describes a circuit diagram to be used in this sample program.

2.1 Circuit Diagram

A circuit diagram is shown below.

VDD

VDD
Note

VSS

X1

RESET

TxD6

VDD

78K0S/Kx1+
microcontroller

X2
RxD6

Transmit data

Receive data

Note Use this in a voltage range of 4.5 V ≤ VDD ≤ 5.5 V.

Cautions 1. Connect the AVREF pin directly to VDD.

 2. Connect the AVSS pin directly to GND (only for the 78K0S/KB1+ microcontroller).

 3. Leave all unused pins open (unconnected), except for the pins shown in the circuit diagram

and the AVREF and AVSS pins.

Application Note U18914EJ2V0AN 6

CHAPTER 3 SOFTWARE

This chapter describes the file configuration of the compressed file to be downloaded, internal peripheral functions

of the microcontroller to be used, and initial settings and operation overview of the sample program, and shows a flow

chart.

3.1 File Configuration

The following table shows the file configuration of the compressed file to be downloaded.

Compressed (*.zip) File Included File Name Description

main.asm

(Assembly language

version)

main.c

(C language version)

Source file for hardware initialization processing and main

processing of microcontroller

Note Note

op.asm Assembler source file for setting the option byte (sets the

system clock source)

uart6.prw Work space file for integrated development environment PM+

uart6.prj Project file for integrated development environment PM+

Note “main.asm” is included with the assembly language version, and “main.c” with the C language version.

Remark : Only the source file is included.

 : The files to be used with integrated development environment PM+ are included.

CHAPTER 3 SOFTWARE

Application Note U18914EJ2V0AN 7

3.2 Internal Peripheral Functions to Be Used

The following internal peripheral functions of the microcontroller are used in this sample program.

• Serial communication: Serial interface UART6

• VDD < VLVI detection: Low-voltage detector (LVI)

• Data input and output: RxD6 and TxD6

3.3 Initial Settings and Operation Overview

In this sample program, initial settings including the setting of the low-voltage detection function, selection of the

clock frequency, setting of the I/O ports, and setting of serial interface UART6 are performed.

After completion of the initial settings, receive operation of serial communication is started by data input from the

RxD6 pin. In this sample program, transmission and reception of ASCII codes are assumed, and 4-character data is

transmitted in accordance with the reception of 1-character data. Similarly, in the case of a reception error, 4-

character data is transmitted in accordance with the error.

An area of 50 bytes (= 1 byte (1 data) × 50) is secured in the RAM area as a buffer for storing receive data.

Receive data can be received successively, because it is stored into the buffer when an interrupt is serviced, and is

sequentially stored from the start of the buffer area. Furthermore, to configure the buffer as a ring buffer, after the

receive data has reached the end of the buffer area, the receive data is stored from the start of the buffer area again.

The receive data is stored into the buffer when free space is available in the buffer, but it is discarded instead of being

stored when no free space is available.

CHAPTER 3 SOFTWARE

Application Note U18914EJ2V0AN 8

The details are described in the status transition diagram shown below.

 Initial settings 1

Reset source check

 Initial settings 2

Setting VLVI to 4.3 V ±0.2 V and
starting low-voltage detection

operation

Setting so that an internal reset
signal is generated when VDD < VLVI

VDD ≥ VLVI

Reset other than by LVI

LVI reset

Reception count = 0

200 s wait

Initializing the write
address and read address

to the buffer start

Clearing invalid interrupt
requests

INTSRE6
(reception error interrupt)
generation

Saving the AX
register data

Reading (discarding) the
receive data from the

RXB6 register

Incrementing the
reception count by 1

Incrementing the write
address by 1

Initializing the write
address to the buffer start

Write address not
found within buffer

Restoring the AX
register data

Write address found
within buffer

Reading the error status
from the ASIS6 register,

setting 1 to bit 7

INTSR6
(receive interrupt)
generation

Saving the AX register
data

Reading the receive data
from the RXB6 register

Reception count <
Buffer size

Incrementing the
reception count by 1

Storing the receive
data into the buffer

Initializing the write
address to the buffer start

Write address not
found within buffer

Write address found
within buffer

Restoring the AX
register data

Reception count ≥
Buffer size

Reception count <
Buffer size

Reception count ≥
Buffer size

Waiting for an receive
interrupt

Reception count > 0

Reading the receive
data from the buffer

Decrementing the
reception count by 1

Bit 7 of receive
data = 0

Bit 7 of receive
data = 1

Receive data
identification

Receive
data = “T”

Receive
data = “t”

Receive data =
Other than
“T” and “t”

Transmitting
“ok”

Parity error identification

Transmitting
“UC”

Parity error

Transmitting
“OK”

Transmitting
“PE”

Transmitting
“FE”

Framing error

Transmitting
“OE”

Overrun error

Incrementing the read
address by 1

Initializing the read
address to the buffer start

Read address not
found within buffer

Read address found
within buffer

Framing error
identification

Overrun error
identification

Not parity
error

Not framing
error

Not overrun
error

From receive data read operation to data transmission

• Referencing the option byte
• Selecting the crystal or ceramic oscillation

clock as the system clock source
• The low-speed internal oscillator can be

stopped by software
• Using the P34/RESET pin as the RESET pin

• Stack pointer setting
• Stopping watchdog timer operation
• Setting the CPU clock frequency to 2 MHz

μ
• Setting the CPU clock frequency to 8 MHz
• I/O port setting

• Setting P43/TxD6 as an output port, setting
the output latch to high level

• Setting P44/RxD6 as an input port
• UART6 setting

• Baud rate: 9,600 bps
• Data character length: 7 bits
• Parity specification: Even parity
• Number of stop bits: 1 bit
• Start bit: LSB first
• TxD6 output: Normal output
• Generating INTSRE6 interrupt upon error

occurrence
• Enabling internal operation clock operation
• Enabling transmit operation
• Enabling receive operation

Enabling INTSR6 and
INTSRE6 (interrupts)

Incrementing the write
address by 1

Storing the error status
into the buffer

CHAPTER 3 SOFTWARE

Application Note U18914EJ2V0AN 9

3.4 Flow Charts

The flow charts for the sample program are shown below.

<Processing after reset release>

Reset start

Stopping watchdog
timer operation

Stack pointer setting

I/O port setting

Referencing the option
byteNote

Setting the CPU clock
frequency to 2 MHz

Reset source
LVI reset

Reset other than by LVI

Setting VLVI = 4.3 V ±0.2 V

200 s wait

VDD ≥ VLVI ?

Setting the CPU clock
frequency to 8 MHz

Yes

No

Setting so that an internal
reset signal is generated

when VDD < VLVI

Enabling internal operation
clock operation

Enabling transmit operation

Enabling receive operation

Initial settings

Reception count > 0?

Yes

No

Bit 7 of receive
data = 0?

No

Yes

1

Initializing the write address
to the buffer start

Initializing the read address
to the buffer start

Enabling INTSR6 and
INTSRE6 (interrupts)

2

3

Is the read address
within the buffer?

Initializing the read address
to the buffer start

No

Yes

Reception count = 0

Clearing invalid interrupt
requests

Reading the receive data
from the buffer

Decrementing the reception
count by 1

Incrementing the read
address by 1

1

Receive data =
54H (T)?

Transmitting 4FH (O)

Transmitting 4BH (K)

Transmitting 0DH (“CR”)

Transmitting 0AH (“LF”)

3

Receive data =
74H (t)?

Transmitting 6FH (o)

Transmitting 6BH (k)

Transmitting 0DH (“CR”)

Transmitting 0AH (“LF”)

3

Transmitting 50H (U)

Transmitting 45H (C)

Transmitting 0DH (“CR”)

Transmitting 0AH (“LF”)

3

No

Yes

No

Yes

2

Parity error?

Transmitting 50H (P)

Transmitting 45H (E)

Transmitting 0DH (“CR”)

Transmitting 0AH (“LF”)

Framing error?

Transmitting 46H (F)

Transmitting 45H (E)

Transmitting 0DH (“CR”)

Transmitting 0AH (“LF”)

No

Yes

No

Yes

Overrun error?

Transmitting 4FH (O)

Transmitting 45H (E)

Transmitting 0DH (“CR”)

Transmitting 0AH (“LF”)

3

No

Yes

μ

UART6 setting
• Baud rate: 9,600 bps
• Data character length: 7 bits
• Parity specification:

Even parity
• Number of stop bits: 1 bit
• Start bit: LSB first
• TxD6 output: Normal output
• Generating INTSRE6

interrupt upon error
occurrence

* "'CR' + 'LF'" is a line feed code.
* The above-mentioned function calls a subroutine for serial data transmission.

Note Referencing the option byte is automatically performed by the microcontroller after reset release. In this

sample program, the following contents are set by referencing the option byte.

 • Using the crystal or ceramic oscillation clock as the system clock source

 • The low-speed internal oscillator can be stopped by using software

 • Using the P34/RESET pin as the RESET pin

Remark The flow charts of <Vector interrupt INTSR6>, <Vector interrupt INTSRE6>, and <Serial data

transmission subroutine> are shown on the next page.

CHAPTER 3 SOFTWARE

Application Note U18914EJ2V0AN 10

<Vector interrupt INTSR6>

Reading the receive data
from the RXB6 register

Saving the AX register data

Reception count value <
Buffer size?

Incrementing the reception
count by 1

Is the write address
within the buffer?

Restoring the AX register data

Yes

No

Yes

No

Vector interrupt INTSR6
start

Storing the receive data
into the buffer

Incrementing the write
address by 1

Initializing the write address
to the buffer start

Return

<Vector interrupt INTSRE6>

Reading (discarding) the
receive data from the

RXB6 register

Saving the AX register data

Reception count value
< Buffer size?

Incrementing the reception
count by 1

Is the write address
within the buffer?

Restoring the AX register data

Yes

No

Yes

No

Vector interrupt INTSRE6
start

Storing the error status
into the buffer

Incrementing the write
address by 1

Initializing the write address
to the buffer start

Return

Reading the error status
from the ASIS6 register,

setting 1 to bit 7

<Serial data transmission subroutine>

Reading the transmission
status

Can data be written
to the TXB6 register?

Transferring data to the
TXB6 register

Yes

No

Serial data transmission
subroutine start

Return

* Assembly language: Subroutine
C language: Function

Application Note U18914EJ2V0AN 11

CHAPTER 4 SETTING METHODS

This chapter describes the setting of serial interface UART6.

For other initial settings, refer to the 78K0S/Kx1+ Sample Program (Initial Settings) LED Lighting Switch

Control Application Note. For interrupt, refer to the 78K0S/Kx1+ Sample Program (Interrupt) External Interrupt

Generated by Switch Input Application Note. For low-voltage detection (LVI), refer to the 78K0S/Kx1+ Sample

Program (Low-Voltage Detection) Reset Generation During Detection at Less than 2.7 V Application Note.

For how to set registers, refer to the user’s manual of each product (78K0S/KA1+, 78K0S/KB1+).

For assembler instructions, refer to the 78K/0S Series Instructions User’s Manual.

4.1 Setting Serial Interface UART6

Serial interface UART6 uses the following eleven types of registers.

• Clock selection register 6 (CKSR6)

• Baud rate generator control register 6 (BRGC6)

• Asynchronous serial interface operation mode register 6 (ASIM6)

• Asynchronous serial interface control register 6 (ASICL6)

• Transmit buffer register 6 (TXB6)

• Receive buffer register 6 (RXB6)

• Asynchronous serial interface transmission status register 6 (ASIF6)

• Asynchronous serial interface reception error status register 6 (ASIS6)

• Input switch control register (ISC)

• Port mode register x (PMx)Note 1

• Port register x (Px)Note 1

Notes 1. Set the pins to be used with serial interface UART6 as follows.

Pin Function POWER6 TXE6 RXE6 PM43 P43 PM44 P44 UART6

Operation TxD6/INTP1/P43 RxD6/P44

0 0 0 ×
Note 2

 ×
Note 2

 ×
Note 2

 ×
Note 2

 Stop P43 P44

0 1 ×
Note 2

 ×
Note 2

 1 × Reception P43 RxD6

1 0 0 1 ×
Note 2

 ×
Note 2

 Transmission TxD6 P44

1

1 1 0 1 1 × Transmission

and reception

TxD6 RxD6

 2. This can be used set as a port function.

Remark ×: don’t care

POWER6: Bit 7 of the ASIM6 register

TXE6: Bit 6 of the ASIM6 register

RXE6: Bit 5 of the ASIM6 register

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18752*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18752*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18812*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18812*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18821*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18821*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U16898*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U11047*

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 12

<Example of the procedure for setting the basic operation of serial interface UART6>

<1> Using the CKSR6 register to set the base clock (fXCLK6) of UART6

<2> Using the BRGC6 register to set the division value of the base clock (fXCLK6) of UART6

<3> Using the ASIM6 register to set the parity, character length, stop bit, and error interrupt

<4> Using the ASICL6 register to set the start bit and enable or disable TxD6 output reversal

<5> Setting (1) POWER6: Enabling internal operation clock operation

<6> Setting (1) TXE6: Enabling transmit operation

<7> Setting (1) RXE6: Enabling receive operation

Cautions 1. To start transmission, wait for at least one clock of the base clock (fXCLK6) of UART6 to elapse

and write the transmit data to the TXB6 register, after step <6>.

 2. A receive enable status is entered after one clock of the base clock (fXCLK6) of UART6 has

elapsed, after step <7>.

 3. Set the PMx register and Px register by taking the relation with the other party of

communication into consideration. To use the TxD6 pin, set PM43 to 0 (output) after having

set P43 to 1, in order to avoid the generation of unintended start bits (falling signal).

(1) CKSR6 register setting

This register selects the base clock (fXCLK6) of serial interface UART6.

Figure 4-1. Format of Clock Selection Register 6 (CKSR6)

Caution Rewrite TPS63 to TPS60 after having set POWER6 to 0.

Remarks 1. The CKSR6 register can be refreshed (writing the same value) by using software during a

communication operation (POWER6 = 1 and TXE6 = 1, or POWER6 = 1 and RXE6 = 1).

 2. fXP: Oscillation frequency of the clock supplied to peripheral hardware

Baud rate setting

CKSR6

0 0 0 0 TPS63 TPS62 TPS61 TPS60

Base clock (fXCLK6) selection

0 0 0 0 fXP

0 0 0 1 fXP/2

0 0 1 0 fXP/22

0 0 1 1 fXP/23

0 1 0 0 fXP/24

0 1 0 1 fXP/25

0 1 1 0 fXP/26

0 1 1 1 fXP/27

1 0 0 0 fXP/28

1 0 0 1 fXP/29

1 0 1 0 fXP/210

1 0 1 1 fXP/211

Other than the above Setting prohibited

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 13

(2) BRGC6 register setting

This register selects the division value of the base clock (fXCLK6) of serial interface UART6.

Figure 4-2. Format of Baud Rate Generator Control Register 6 (BRGC6)

Cautions 1. Rewrite MLD67 to MLD60 after having set both TXE6 and RXE6 to 0.

 2. The baud rate value is the 8-bit counter output clock divided by 2.

 • Baud rate =
fXCLK6

2 × k [bps]

Remarks 1. The BRGC6 register can be refreshed (writing the same value) by using software during a

communication operation (POWER6 = 1 and TXE6 = 1, or POWER6 = 1 and RXE6 = 1).

 2. fXCLK6: Frequency of the base clock selected by using TPS63 to TPS60

 3. k: Value set by using MLD67 to MLD60 (k = 8, 9, 10, ..., 255)

 4. ×: don’t care

BRGC6

MLD67 MLD66 MLD65 MLD64 MLD63 MLD62 MLD61 MLD60

 k 8-bit counter output clock selection

0 0 0 0 0 x x x x Setting prohibited

0 0 0 0 1 0 0 0 8 fXCLK6/8

0 0 0 0 1 0 0 1 9 fXCLK6/9

0 0 0 0 1 0 1 0 10 fXCLK6/10

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1 1 1 1 1 1 0 0 252 fXCLK6/252

1 1 1 1 1 1 0 1 253 fXCLK6/253

1 1 1 1 1 1 1 0 254 fXCLK6/254

1 1 1 1 1 1 1 1 255 fXCLK6/255

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 14

(3) ASIM6 register setting

This register controls the serial communication operation of serial interface UART6.

Figure 4-3. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6)

Remark The ASIM6 register can be refreshed (writing the same value) by using software during a communication

operation (POWER6 = 1 and TXE6 = 1, or POWER6 = 1 and RXE6 = 1).

(Notes and Cautions are given on the next page.)

ASIM6

POWER6 TXE6Note 1 RXE6Note 2 PS61 PS60 CL6 SL6 ISRM6

Interrupt specification upon error occurrence

0 INTSRE6

1 INTSR6 (same interrupt as that generated upon

receive completion)

Specification of number of stop bits of transmit data

0 Number of stop bits = 1

1 Number of stop bits = 2

Specification of character lengths of transmit and receive

data

0 Data character length = 7 bits

1 Data character length = 8 bits

Parity bit specification

 Transmit operation Receive operation

0 0 Does not output

parity bit.

Reception without

parity

0 1 0 parity output Reception as 0

parityNote 3

1 0 Odd-parity output Judges as odd

parity.

1 1 Even-parity output Judges as even

parity.

Enabling or disabling receive operation

0 Disables receive operation (synchronously resets
the receive circuit).

1 Enables receive operation.

Enabling or disabling transmit operation

0 Disables transmit operation (synchronously resets
the transmit circuit).

1 Enables transmit operation.

Enabling or disabling internal operation clock operation

0Note 4 Disables internal operation clock operation (fixes
to low level) and asynchronously resets the

internal circuitNote 5.

1Note 6 Enables internal operation clock operation.

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 15

Notes 1. TXE6 is synchronized by the base clock (fXCLK6) set by the CKSR6 register. To re-enable transmit

operation, set TXE6 to 1 after having set TXE6 to 0 and one clock of the base clock (fXCLK6) has elapsed.

If TXE6 is set to 1 before one clock of the base clock (fXCLK6) has elapsed, the transmit circuit may not

able to be initialized.

 2. RXE6 is synchronized by the base clock (fXCLK6) set by the CKSR6 register. To re-enable receive

operation, set RXE6 to 1 after having set RXE6 to 0 and one clock of the base clock (fXCLK6) has elapsed.

If RXE6 is set to 1 before one clock of the base clock (fXCLK6) has elapsed, the receive circuit may not be

able to be initialized.

 3. If “Reception as 0 parity” is selected, the parity is not judged. Therefore, the PE6 flag of the ASIS6

register is not set and no error interrupt occurs.

 4. The output of the TxD6 pin goes to high level and the input from the RxD6 pin is fixed to high level when

POWER6 is set to 0 during a transmission.

 5. The ASIS6 register, the ASIF6 register, SBRF6 and SBRT6 of the ASICL6 register, and the RXB6

register are reset.

 6. A base clock (fXCLK6) is supplied as the internal operation clock when POWER6 is set to 1 and one clock

of the base clock (fXCLK6) has elapsed.

Cautions 1. At startup, transmit operation is started by setting TXE6 to 1 after having set POWER6 to 1,

then setting the transmit data to the TXB6 register after having waited for at least one clock of

the base clock (fXCLK6) to elapse. To stop transmit operation, set POWER6 to 0 after having set

TXE6 to 0.

 2. At startup, a reception enable status is entered after having set POWER6 to 1, then setting

RXE6 to 1, and one clock of the base clock (fXCLK6) has elapsed. To stop receive operation, set

POWER6 to 0 after having set RXE6 to 0.

 3. Set POWER6 = 1 → RXE6 = 1 in a state where a high level has been input to the RxD6 pin. If

POWER6 = 1 → RXE6 = 1 is set during low-level input, reception is started and correct data

will not be received.

 4. Clear TXE6 and RXE6 to 0 before rewriting PS61, PS60, and CL6.

 5. Fix PS61 and PS60 to 0 when the interface is used in LIN communication operation.

 6. Rewrite SL6 after having set TXE6 to 0. Reception is not affected by the SL6 setting value,

because it is always performed with “Number of stop bits = 1”.

 7. Rewrite ISRM6 after having set RXE6 to 0.

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 16

(4) ASICL6 register setting

This register controls the serial communication operation of serial interface UART6.

Figure 4-4. Format of Asynchronous Serial Interface Control Register 6 (ASICL6)

Remark The ASICL6 register can be refreshed (writing the same value) by using software during a

communication operation (POWER6 = 1 and TXE6 = 1, or POWER6 = 1 and RXE6 = 1), if 0 data has

been written to ASICL6 by SBRT6 and SBTT6.

(Cautions are given on the next page.)

ASICL6

SBRF6 SBRT6 SBTT6 SBL62 SBL61 SBL60 DIR6 TXDLV6

Enabling or disabling TxD6 output reversal

0 Normal TxD6 output

1 Reverse TxD6 output

Start bit specification

0 MSB first

1 LSB first

SBF transmission output width control

1 0 1 Outputs SBF with 13-bit length.

1 1 0 Outputs SBF with 14-bit length.

1 1 1 Outputs SBF with 15-bit length.

0 0 0 Outputs SBF with 16-bit length.

0 0 1 Outputs SBF with 17-bit length.

0 1 0 Outputs SBF with 18-bit length.

0 1 1 Outputs SBF with 19-bit length.

1 0 0 Outputs SBF with 20-bit length.

SBF transmission trigger

0 −

1 SBF transmission trigger

SBF reception trigger

0 −

1 SBF reception trigger

SBF reception status flag (read-only)

0 If POWER6 and RXE6 are set to 0 or if SBF

reception is completed correctly

1 SBF reception in progress

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 17

Cautions 1. SBF transmission and SBF reception are used to use the interface in LIN communication

operation. For details of SBF transmission and SBF reception, refer to the user’s manual

of each product (78K0S/KA1+, 78K0S/KB1+).

 2. In the case of an SBF reception error, the operation is returned to the SBF reception mode

again. The status of the SBRF6 flag will be held (1).

 3. Set SBRT6 to 1 after having set POWER6 and RXE6 to 1. Furthermore, after having set

SBRT6 to 1, do not clear SBRT6 to 0 before SBF reception ends (an interrupt request

signal is generated).

 4. The read value of SBRT6 is always 0. SBRT6 is automatically cleared to 0 after SBF

reception has been correctly completed.

 5. Set SBTT6 to 1 after having set POWER6 and TXE6 to 1. Furthermore, after having set

SBTT6 to 1, do not clear SBTT6 to 0 before SBF transmission ends (an interrupt request

signal is generated).

 6. The read value of SBTT6 is always 0. SBTT6 is automatically cleared to 0 after SBF

transmission has been completed.

 7. Rewrite DIR6 and TXDLV6 after having cleared TXE6 and RXE6 to 0.

(5) TXB6 register operation

This buffer register is used to set the transmit data of serial interface UART6. Transmit operation is started by

writing transmit data to the TXB6 register.

If the data length is set to 7 bits:

• In LSB-first transmission, bits 0 to 6 of TXB6 are transferred, and the MSB of TXB6 is not transmitted.

• In MSB-first transmission, bits 7 to 1 of TXB6 are transferred, and the LSB of TXB6 is not transmitted.

Figure 4-5. Format of Transmit Buffer Register 6 (TXB6)

Cautions 1. To start transmission, write transmit data to TXB6, after having set TXE6 to 1 and having
waited for at least one clock of the base clock (fXCLK6) to elapse.

 2. Do not write data to the TXB6 register when TXBF6 of the ASIF6 register is 1.
 3. Do not refresh (writing the same value) the TXB6 register by using software during a

communication operation (POWER6 = 1 and TXE6 = 1, or POWER6 = 1 and RXE6 = 1). To
output same values in successive transmission, be sure to confirm that TXBF6 is 0 before
writing the same values to the TXB6 register.

TXB6

MSB LSB

[Column] What is LIN?

LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol

intended to aid the cost reduction of an automotive network. Serial interface UART6 is supported with a
LIN-bus.

LIN communication is a single-master communication, and up to 15 slaves can be connected to one master.

The LIN slaves are used to control switches, actuators, and sensors, and these are connected to the LIN
master via the LIN network.

Normally, the LIN master is connected to a network such as CAN (Controller Area Network).

In addition, the LIN bus uses a single-wire method and is connected to each node via a transceiver that
complies with ISO9141.

In the LIN protocol, the master transmits a frame appended with baud rate information. A slave receives the

frame and corrects the error in the baud rate with respect to the master. The baud rate can be corrected if
the error among the master and slave is ±15% or less.

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U16898*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446*

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 18

(6) RXB6 register operation

This buffer register is used to store the receive data of serial interface UART6.

Each time 1 byte of data is received, new receive data is transferred.

If the data length is set to 7 bits:

• In LSB-first reception, the receive data is transferred to bits 0 to 6 of RXB6 and the MSB of RXB6 is

always 0.

• In MSB-first reception, the receive data is transferred to bits 7 to 1 of RXB6 and the LSB of RXB6 is

always 0.

If an overrun error (OVE6) occurs, the receive data is not transferred to RXB6.

Figure 4-6. Format of Receive Buffer Register 6 (RXB6)

Cautions 1. A reception enable status is entered, after having set RXE6 to 1 and one clock of the base

clock (fXCLK6) has elapsed.

 2. Be sure to read the RXB6 register, even if a reception error occurs. Otherwise, an overrun

error will occur when the next data is received, and the reception error status will persist.

(7) ASIF6 register operation

This read-only register indicates the status of transmission by serial interface UART6.

Transmission can be continued without disruption even during an interrupt period, by confirming the data

transfer of the TXB6 register by using the ASIF6 register, and writing the next data to the TXB6 register.

Figure 4-7. Format of Asynchronous Serial Interface Transmission Status Register 6 (ASIF6)

Cautions 1. To transmit data successively, write the first transmit data (first byte) to the TXB6 register.

Be sure to write the next transmit data (second byte) to the TXB6 register after having

confirmed that TXBF6 is “0”. If data is written to the TXB6 register while TXBF6 is “1”, the

transmit data cannot be guaranteed.

 2. To initialize the transmission unit upon completion of successive transmission, be sure

to confirm that TXSF6 is “0” after a transmission completion interrupt has been generated.

If initialization is executed while TXSF6 is “1”, the transmit data cannot be guaranteed.

RXB6

MSB LSB

ASIF6

0 0 0 0 0 0 TXBF6 TXSF6

Transmission status

0 Transmission completed

1 Transmission in progress

Writing to the TXB6 register

0 Writing enabled

1 Writing disabled

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 19

(8) ASIS6 register operation

This read-only register indicates an error status on completion of reception by serial interface UART6.

Figure 4-8. Format of Asynchronous Serial Interface Reception Error Status Register 6 (ASIS6)

Cautions 1. The operation of PE6 varies, depending on the setting values of PS61 and PS60 of the
ASIM6 register.

 2. Only the first stop bit of the receive data is checked, regardless of the number of stop
bits.

 3. If an overrun error occurs, the next receive data is discarded instead of being written to
the RXB6 register.

 4. Be sure to read the ASIS6 register before reading the RXB6 register.

(9) ISC register setting

This register is to be set when receiving a status signal transmitted from the master during LIN reception. Input

signals from the RxD6 pin can be input to an external interrupt (INTP0) and to 16-bit timer/event counter 00 by

setting the ISC register.

Figure 4-9. Format of Input Switch Control Register (ISC)

Caution For details of LIN transmission and LIN reception, refer to the user’s manual of each product

(78K0S/KA1+, 78K0S/KB1+).

ASIS6

0 0 0 0 0 PE6 FE6 OVE6

Status flag indicating overrun error

0 If POWER6 = 0 and RXE6 = 0, or if ASIS6 register
is read

1 If receive data is set to the RXB6 register and the
next receive operation is completed before the
data is read (overrun error)

Status flag indicating framing error

0 If POWER6 = 0 and RXE6 = 0, or if ASIS6 register
is read

1 If the stop bit is not detected on completion of
reception (framing error)

Status flag indicating parity error

0 If POWER6 = 0 and RXE6 = 0, or if ASIS6 register
is read

1 If the parity of transmit data does not match the
parity bit on completion of reception (parity error)

ISC

0 0 0 0 0 0 ISC1 ISC0

INTP0 input source selection

0 INTP0 (P30)

1 RxD6 (P44)

TI000 input source selection

0 TI000 (P30)

1 RxD6 (P44)

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U16898*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446*

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 20

[Example] Starting serial transmit and receive operation by setting serial interface UART6 as follows

• Baud rate: 9,600 bps

• Data character length: 7 bits

• Parity bit specification: Even parity

• Number of stop bits: 1 bit

• Start bit: LSB first

• TxD6 output: Normal output

• Interrupt generated upon error occurrence: INTSRE6

(Oscillation frequency of the clock supplied to peripheral hardware (fXP) = 8 MHz, not performing LIN

communication)

(Same contents as in this sample program source)

(1) Register settings

<1> CKSR6

• Base clock (fXCLK6) = fXP/2 = 8 MHz/2 = 4 MHz

<2> BRGC

• Baud rate =
fXCLK6

2 × k [bps] =
4 MHz
2 × 208 [bps] =

2 × 208 [bps] ≅ 9,600 [bps]

0 0 0 0 0 0 0 1

Base clock (fXCLK6) selection

0 0 0 1 fXP/2

1 1 0 1 0 0 0 0

 k 8-bit counter output clock selection

 208 fXCLK6/208

4,000,000

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 21

<3> ASIM6

<4> ASICL6: Used as set by default (start bit: LSB first, TxD6 output: normal output)

<5> PMx, Px
Pin Function PM43 P43 PM44 P44 UART6

Operation TxD6/INTP1/P43 RxD6/P44

0 1 1 × Transmission

and reception

TxD6 RxD6

Remark ×: don’t care

POWER6 TXE6 RXE6 1 1 0 0 0

Interrupt specification upon error occurrence

0 INTSRE6

Specification of number of stop bits of transmit data

0 Number of stop bits = 1

Specification of character lengths of transmit and receive

data

0 Data character length = 7 bits

Parity bit specification

 Transmit operation Receive operation

1 1 Even-parity output Judges as even

parity.

Enabling or disabling receive operation

0 Disables receive operation (synchronously resets
the receive circuit).

1 Enables receive operation.

Enabling or disabling transmit operation

0 Disables transmit operation (synchronously resets
the transmit circuit).

1 Enables transmit operation.

Enabling or disabling internal operation clock operation

0 Disables internal operation clock operation (fixes
to low level) and asynchronously resets the
internal circuit.

1 Enables internal operation clock operation.

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 22

P4.3 = 1;

PM4.3 = 0;

PM4.4 = 1;

CKSR6 = 1;

BRGC6 = 208;

ASIM6 = 0b00011000;

POWER6 = 1;

TXE6 = 1;

RXE6 = 1;

(2) Sample program

<1> Assembly language

<2> C language

SET1 P4.3

CLR1 PM4.3

SET1 PM4.4

MOV CKSR6 #1

MOV BRGC6 #208

MOV ASIM6, #00011000B

SET1 POWER6

SET1 TXE6

SET1 RXE6

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 23

XMAIN CSEG UNIT
IRESET:

•
•
•

MOV CKSR6, #1 ; Set the baud rate to 9600 bps
MOV BRGC6, #208 ; (Same as the above)
MOV ASIM6, #00011000B ; Even-parity output, 7-bit character length, 1

stop bit
 ; INTSRE6 is generated as interrupt upon error

occurrence
SET1 POWER6 ; Enable internal operation clock operation
SET1 TXE6 ; Enable transmit operation
SET1 RXE6 ; Enable receive operation

MMAINLOOP:
•
•
•

MOV IF0, #00H ; Clear invalid interrupt requests in advance
CLR1 SRMK6 ; Enable the INTSR6 (serial reception) interrupt
CLR1 SREMK6 ; Enable the INTSRE6 (reception error) interrupt
EI ; Enable vector interrupt

•
•
•

IINTSR6:
 PUSH AX ; Save the AX register data to the stack
 MOV A, RXB6 ; Read the serial receive data

•
•
•

IINTSRE6:
 PUSH AX ; Save the AX register data to the stack
 MOV A, ASIS6 ; Read the error status
 SET1 A.7 ; Set the reception error flag to bit 7
 XCH A, X ; Save the error information
 MOV A, RXB6 ; Read (discard) the serial receive data
 XCH A, X ; Restore the error information

•
•
•

JTXS100:
 MOV A, ASIF6
 BT A.1, $JTXS100 ; Wait for transmission to be enabled
 XCH A, X ; Restore the transmit data from the X register
 MOV TXB6, A ; Serial transmission

•
•
•

[Excerpt from this sample program source]

An excerpt from APPENDIX A PROGRAM LIST, which is related to the serial interface UART6 function, is shown

below (same contents as in [Example] mentioned above).

(1) Assembly language

Setting the baud
rate

Setting the
communication format

and error interrupt

Enabling operation
clock operation

Enabling transmit
operation

Enabling receive
operation

Enabling INTSRE6
(reception error)

interrupt servicing

Enabling INTSR6
(reception) interrupt

servicing

Reading the receive
data from the RXB6

register

Reading the receive data from the
RXB6 register after reading the

error status from the ASIS6
register

Writing transmit
data to the TXB6 register
when the TXBF6 flag is 0
(transmission enabled) →

Data transmission

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 24

void hdwinit(void){
 unsigned char ucCnt200us; /* 8-bit variable for 200 us wait */

•
•
•

 CKSR6 = 1; /* Set the baud rate to 9600 bps */
BRGC6 = 208; /* (Same as the above) */
ASIM6 = 0b00011000; /* Even-parity output, 7-bit character length, 1 stop bit

*/
 /* INTSRE6 is generated as interrupt upon error occurrence

*/
POWER6 = 1; /* Enable internal operation clock operation */
TXE6 = 1; /* Enable transmit operation */
RXE6 = 1; /* Enable receive operation */
return;

}

void main(void)
{

•
•
•

IF0 = 0x00; /* Clear invalid interrupt requests in advance */
SRMK6 = 0; /* Enable the INTSR6 (serial reception) interrupt */
SREMK6 = 0; /* Enable the INTSRE6 (reception error) interrupt */
EI(); /* Enable vector interrupt */

•
•
•

}

__interrupt void fn_intsr6()
{
 unsigned char ucData;
 ucData = RXB6; /* Read the serial receive data */

•
•
•

}

__interrupt void fn_intsre6()
{
 unsigned char ucData;
 unsigned char ucTemp;
 ucData = ASIS6 | 0b10000000; /* Store the error information by setting the error
flag to bit 7 */
 ucTemp = RXB6; /* Read (discard) the serial receive data */

•
•
•

}

void fn_uart_send(unsigned char ucTxData)
{
 g_ucAsif6 = ASIF6; /* Read the transmission status */
 while (g_ucAsif6.1) /* Wait for transmission to be enabled */
 {
 g_ucAsif6 = ASIF6; /* Read the transmission status */
 }
 TXB6 = ucTxData; /* Serial transmission */
 return;
}

 (2) C language

Setting the baud
rate

Setting the communication format and error interrupt

Enabling
operation clock

operation
Enabling
transmit

operation

Enabling receive
operation

Enabling INTSRE6
(reception error)

interrupt servicing
Enabling

INTSR6 (reception)
interrupt servicing

Reading the receive
data from the RXB6

register

Reading the receive data from the
RXB6 register after reading the

error status from the ASIS6
register

Writing transmit data
to the TXB6 register when

the TXBF6 flag is 0
(transmission enabled) →

Data transmission

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 25

4.2 Receive Data or Reception Error Content and Transmit Data

In this sample program, serial communication is performed by using serial interface UART6 and data is transmitted

in accordance with the data received or the reception error content. The receive data assumes a 1-character ASCII

code and the transmit data assumes a 4-character ASCII code.

When reception has been completed normally, the bits of the receive data are sequentially transferred to bit 0 of

the receive buffer register (RXB6), from the start bit and up to bit 6, because the data character length was set to 7

bits and the start bit to LSB first. At this time, bit 7 (MSB) is always 0. The receive data of the RXB6 register is stored

into the buffer during interrupt (INTSR6) servicing.

When a reception error occurs, the error status of the ASIS6 register is stored into bits 0 to 6 of the buffer and bit 7

is set to 1 during interrupt (INTSRE6) servicing.

Consequently, the contents of the data of bits 0 to 6 are identified after the data of bits 0 to 6 are identified by bit 7

as being receive data or error statuses when the buffer is read.

The transmit data corresponding to the receive data read or the reception error content are as follows.

 Normal reception (bit 7 is 0)

1-Character Receive Data

(Hexadecimal Data)

4-Character Transmit Data

(Hexadecimal Data)

T (54H) O (4FH) K (4BH) “CR” (0DH) “LF” (0AH)

t (74H) o (6FH) k (6BH) “CR” (0DH) “LF” (0AH)

Other than the above U (55H) C (43H) “CR” (0DH) “LF” (0AH)

 Error reception (bit 7 is 1)

Reception Error Content

(ASIS6 Register Flag Value)

4-Character Transmit Data

(Hexadecimal Data)

Parity error (PE6 is 1) P (50H) E (45H) “CR” (0DH) “LF” (0AH)

Framing error (FE6 is 1) F (46H) E (45H) “CR” (0DH) “LF” (0AH)

Overrun error (OVE6 is 1) O (4FH) E (45H) “CR” (0DH) “LF” (0AH)

Remark “CR” and “LF” are control characters. Combining “CR” and “LF” forms a line feed code.

CHAPTER 4 SETTING METHODS

Application Note U18914EJ2V0AN 26

[Column] Macro and subroutine
In this assembly language sample program, a macro and a subroutine are used to simplify descriptions.

The maintenance of the program can be facilitated by using a macro and a subroutine, because only one

revision has to be made in the processing program and the program can be easily understood.
<1> Macro

Using a macro facilitates simplifying descriptions by defining names to processing programs that are

frequently used and using these names. The program execution time can be shortened, because the
program codes that have been defined by the macro are expanded into the macro references without

being interrupted by redundant instructions, such as CALL, CALLT, and RET instructions.

Furthermore, similar processing programs can be easily defined by simply changing the parameters,
because the parameters can be defined.

<2> Subroutine

Using a subroutine helps to simplify descriptions by cutting out a unified processing program so that it
can be referenced from the main routine.

<Excerpt from this sample program source>

_SEROUT MACRO RTXDATA
PUSH AX ; Save the AX register data to the stack
MOV A, RTXDATA ; Store provisional parameter RTXDATA to
 ; the A register
CALLT [ZTXSUB] ; Execute the UART transmission subroutine
POP AX ; Restore the AX register data
ENDM

•
•
•

XCALT CSEG CALLT0
ZTXSUB: DW STXSUB ; UART transmission subroutine

•
•
•

MMAINLOOP:
•
•
•

LMLP200:
CMP A, #'T' ; Compare the receive data with T (54H)
BNZ $LMLP210 ; Branch if the receive data is not T (54H)
_SEROUT #'O' ; Transmit O (4FH)
_SEROUT #'K' ; Transmit K (4BH)
_SEROUT #0DH ; Transmit line feed code “CR”
_SEROUT #0AH ; Transmit line feed code “LF”
BR !LMLP400 ; Branch to LMLP400

•
•
•

STXSUB:
 XCH A, X ; Save the transmit data to the X register

JTXS100:
 MOV A, ASIF6
 BT A.1, $JTXS100 ; Wait for transmission to be enabled
 XCH A, X ; Restore the transmit data from the X
 ; register
 MOV TXB6, A ; Serial transmission
 RET ; Return from the subroutine

Macro definition of macro
name “_SEROUT” and provisional

parameter “RTXDATA”

Ending macro
definition

Macro
execution
contents

Referencing
the macro

(The above-
mentioned

four lines are
expanded.)

Referencing the
subroutine

Actual
parameters

Subroutine

Returning
to the main

routine

Subroutine
processing
contents

Registering address
“ZTXSUB” to the CALLT
instruction table area so

that subroutine “STXSUB”
can be called by using

the CALLT
instruction

Application Note U18914EJ2V0AN 27

CHAPTER 5 OPERATION CHECK USING THE DEVICE

This chapter describes the flow from building to the operation check using the device, using the downloaded

sample program.

5.1 Building the Sample Program

This section describes how to build sample programs, using the sample program (source files + project file)

downloaded by clicking the icon. For how to build other downloaded programs, refer to the 78K0S/Kx1+

Sample Program Startup Guide Application Note.

For the details of how to operate PM+, refer to the PM+ Project Manager User’s Manual.

[Column] Build errors

Change the compiler option setting according to the following procedure when the error message “A006 File

not found ‘C:\NECTOOLS32\LIB78K0S\s0sl.rel’” or “*** ERROR F206 Segment ‘@@DATA’ can’t allocate to

memory - ignored.” is displayed, when building with PM+.

<1> Select [Compiler Options] from the [Tool] menu.

<2> The [Compiler Options] dialog box will be displayed. Select the [Startup Routine] tab.

<3> Uncheck the [Using Fixed Area of Standard Library] check box. (Leave the other check boxes as they are.)

A RAM area of 118 bytes that has been secured as a fixed standard library area will be enabled for use when

the [Using Fixed Area of Standard Library] check box is unchecked; however, the standard libraries (such as

the getchar function and malloc function) will be disabled for use.

The [Using Fixed Area of Standard Library] check box is unchecked by default when the file that has been

downloaded by clicking the icon is used in this sample program.

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18787*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18787*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?title=PM%2b%2a

CHAPTER 5 OPERATION CHECK USING THE DEVICE

Application Note U18914EJ2V0AN 28

(1) Start PM+.

(2) Select “uart6.prw” by clicking [Open Workspace] from the [File] menu and click [Open]. A workspace into

which the source file will be automatically read will be created.

(3) Select [Project Settings] from the [Project] menu. When the [Project Settings] window opens, select the name

of the device to be used (the device with the largest ROM or RAM size will be selected by default), and click

[OK].

Remark Screenshots of the Sample Program (Initial Settings) LED Lighting Switch Control are shown below.

Click

This will be displayed

when the device name

is changed.

Click

Click

CHAPTER 5 OPERATION CHECK USING THE DEVICE

Application Note U18914EJ2V0AN 29

(4) Click ([Build] button). When the source files are built normally, the message “I3500: Build completed

normally.” will be displayed.

(5) Click the [OK] button in the message dialog box. A HEX file for flash memory writing will be created.

Remark Screenshots of the Sample Program (Initial Settings) LED Lighting Switch Control are shown below.

Click

A HEX file for flash memory writing will be generated.

Click

CHAPTER 5 OPERATION CHECK USING THE DEVICE

Application Note U18914EJ2V0AN 30

5.2 Operation with the Device

This section describes an example of an operation check using the device.

The HEX file generated by executing build can be written to the flash memory of the device.

For how to write to the flash memory of the device, refer to the Flash Programming Manual (Basic) MINICUBE2

version of each product (78K0S/KA1+, 78K0S/KB1+).

An example of how to connect the device and peripheral hardware to be used is shown below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16

(VSS)VDD
(VDD)

VDD

(RESET)

78K0S/KB1+
microcontroller

(X1)
(X2)

(RxD6)

(TxD6)

UART-USB
conversion

PC

An operation example of when the device to which this sample program has been written is connected as shown

above, and Hyper Terminal which is a standard tool provided with WindowsTM 2000 and Windows XPTM is used is

shown next.

(1) Connect the device to which this sample program has been written as shown above and start Hyper Terminal

by using the following procedure.

• Windows 2000: Select in the order of [Start], [Programs], [Accessories], [Communications], and [Hyper

Terminal].

• Windows XP: Select in the order of [Start], [All programs], [Accessories], [Communications], and [Hyper

Terminal].

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18844*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U19224*

CHAPTER 5 OPERATION CHECK USING THE DEVICE

Application Note U18914EJ2V0AN 31

(2) The [Connection Description] dialog box will be opened. Enter an arbitrary name (“UART6” in the example

below), select an icon (the leftmost icon in the example below), and click the [OK] button.

(3) A new dialog box will be opened. Select the port to which the USB cable is connected (“COM3” in the example

below) for the connection method and click the [OK] button.

 <3> Click

<1> Enter a name

<2> Select an icon

 <2> Click

<1> Select the port

CHAPTER 5 OPERATION CHECK USING THE DEVICE

Application Note U18914EJ2V0AN 32

(4) The [xxxx Properties] dialog box (xxxx: Port name set in step (3), [COM3 Properties] in the example below) will

be opened. Set the communication protocol of the port as shown below and click the [OK] button.

(5) The [yyyy - Hyper Terminal] window (yyyy: Name of the communication set in step (2), [UART6 - Hyper

Terminal] in the example below) will be opened. The characters that will be displayed on the window are as

follows, depending on the characters entered by using the keyboard.

Keyboard Entry Display

T OK + “line feed”

t ok + “line feed”

Other than the above UC + “line feed”

<2> Click

<1> Set the communication protocol of
the port

Input “T”
Input “t”
Input other than “T” and “t”

Application Note U18914EJ2V0AN 33

CHAPTER 6 RELATED DOCUMENTS

Document Name Japanese/English

78K0S/KA1+ User’s Manual PDF

78K0S/KB1+ User’s Manual PDF

78K/0S Series Instructions User’s Manual PDF

Language PDF RA78K0S Assembler Package User’s Manual

Operation PDF

Language PDF CC78K0S C Compiler User’s Manual

Operation PDF

PM+ Project Manager User’s Manual PDF

SM+ System Simulator Operation User’s Manual PDF

78K0S/KA1+ PDF Flash Programming Manual (Basic) MINICUBE2 version

78K0S/KB1+ PDF

Sample Program Startup Guide PDF

Sample Program (Initial Settings) LED Lighting Switch Control PDF

Sample Program (Interrupt) External Interrupt Generated by Switch Input PDF

78K0S/Kx1+
Application Note

Sample Program (Low-Voltage Detection) Reset Generation During

Detection at Less than 2.7 V

PDF

<R>

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U16898*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U11047*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=RA78K0S&title=language&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=RA78K0S&title=operation&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=CC78K0S&title=language&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=CC78K0S&title=operation&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?title=PM%2b%2a
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=SM%2a&title=SM%2b%2aoperation
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18844*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U19224*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18787*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18752*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18812*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18821*

Application Note U18914EJ2V0AN 34

APPENDIX A PROGRAM LIST

As a program list example, the 78K0S/KB1+ microcontroller source program is shown below.

 main.asm (Assembly language version)

;***
;
; NEC Electronics 78K0S/KB1+
;
;***
; 78K0S/KB1+ Sample program
;***
; Serial interface UART6
;***
;<<History>>
; 2007.8.-- Release
;***
;
;<<Overview>>
;
;This sample program presents an example of using serial interface UART6.
;Serial communication at a baud rate of 9600 bps is performed by using a
;crystal or ceramic oscillation clock of 8 MHz as the system clock source.
;Transmission and reception of ASCII codes are assumed and 4-character data
;is transmitted in accordance with the reception of 1-character data.
;When a reception error occurs, 4-character data is transmitted in
;correspondence with the error, also.
;
;
; <Principal setting contents>
;
; - Stop the watchdog timer operation
; - Set the low-voltage detection voltage (VLVI) to 4.3 V +-0.2 V
; - Generate an internal reset signal (low-voltage detector) when VDD < VLVI
after VDD >= VLVI
; - Set the CPU clock to 8 MHz
; - Set the clock supplied to the peripheral hardware to 8 MHz
; - Set serial interface UART6
; - Use the DE and HL registers for interrupt servicing (similarly as a
global variable)
;
;
; <Serial communication protocol>
;
; - Baud rate: 9600 bps
; - Data character length: 7 bits
; - Parity specification: Even parity
; - Number of stop bits: 1 bit
; - Start bit specification: LSB first
;
;
; <Receive data>
;
; The data character length is set to 7 bits and LSB first is set, because
; the reception of ASCII codes is assumed. The receive data is therefore
; transferred to bits 0 to 6 of the RXB6 register and bit 7 (MSB) is always

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 35

; 0. Furthermore, when a reception error occurs, bit 7 of the reception
; error information is set to 1 and stored into the buffer into which the
; receive data is also stored. As a result, the data is identified by bit
; 7 whether it is receive data or reception error information, when the
; buffer is read.
;
;
; <Successive reception>
;
; Successive reception can be performed, because the receive data is stored
; into the buffer by using an interrupt, and the receive data is sequentially
; accumulated from the start of the buffer. Furthermore, the buffer is
; configured as a ring buffer and the receive data is stored from the start
; of the buffer again after the end of the buffers has been reached. At
; this time, a buffer that has been read will store the receive data, but
; an unread buffer (when the unread data has reached the buffer size) will
; discard the receive data instead of storing it. The receive data will be
; stored as soon as the buffer data is read. The buffer size is defined by
; CBUFFSIZE and is 50 bytes by default.
;
;
; <Command specifications>
;
; - Normal reception
; +--+
; | Receive Data | 4-Character Transmit Data |
; | (Hex Data) | (Hex Data) |
; |--|
; | T | O | K | "CR" | "LF" |
; | (54H) | (4FH) | (4BH) | (0DH) | (0AH) |
; |--|
; | t | o | k | "CR" | "LF" |
; | (74H) | (6FH) | (6BH) | (0DH) | (0AH) |
; |--|
; | Other data | U | C | "CR" | "LF" |
; | | (55H) | (43H) | (0DH) | (0AH) |
; +--+
; # "CR" + "LF" is a line feed code.
;
; - Error reception
; +--+
; | Error Reception| 4-Character Transmit Data |
; | Information | (Hex Data) |
; |--|
; | Parity error | P | E | "CR" | "LF" |
; | | (50H) | (45H) | (0DH) | (0AH) |
; |--|
; | Framing error | F | E | "CR" | "LF" |
; | | (46H) | (45H) | (0DH) | (0AH) |
; |--|
; | Overrun error | O | E | "CR" | "LF" |
; | | (4FH) | (45H) | (0DH) | (0AH) |
; +--+
; # "CR" + "LF" is a line feed code.
;
;
;<<I/O port settings>>
;
; Input: P44

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 36

; Output: P00-P03, P20-P23, P30-P33, P40-P43, P45-P47, P120-P123, P130
; # All unused ports are set as the output mode.
;
;***

;===
;
; Define the symbol
;
;===
CBUFFSIZE EQU 50 ; Buffer size of the receive data

;+++
;
; Define the macro
;
; UART transmission processing defines a macro to simplify descriptions.
;
;+++
_SEROUT MACRO RTXDATA

 PUSH AX ; Save the AX register data to the stack
 MOV A, RTXDATA ; Store provisional parameter RTXDATA to the A
register
 CALLT [ZTXSUB] ; Execute the UART transmission subroutine
 POP AX ; Restore the AX register data

 ENDM

;===
;
; Vector table
;
;===
XVCT CSEG AT 0000H
 DW IRESET ;(00) RESET
 DW IRESET ;(02) --
 DW IRESET ;(04) --
 DW IRESET ;(06) INTLVI
 DW IRESET ;(08) INTP0
 DW IRESET ;(0A) INTP1
 DW IRESET ;(0C) INTTMH1
 DW IRESET ;(0E) INTTM000
 DW IRESET ;(10) INTTM010
 DW IRESET ;(12) INTAD
 DW IRESET ;(14) --
 DW IRESET ;(16) INTP2
 DW IRESET ;(18) INTP3
 DW IRESET ;(1A) INTTM80
 DW IINTSRE6 ;(1C) INTSRE6
 DW IINTSR6 ;(1E) INTSR6
 DW IRESET ;(20) INTST6

;===
;
; CALLT table
;
; The instruction code of a frequently called subroutine can be shortened

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 37

;by using the CALLT instruction that is a 1-byte call instruction. Here,
;an address is registered to the table by using the DW pseudo instruction,
;so that UART transmission subroutine STXSUB can be used by using the CALLT
;instruction. The use of the subroutine will be enabled by using the address
;(ZTXSUB) and describing CALLT [ZTXSUB].
;
;===
XCALT CSEG CALLT0
ZTXSUB: DW STXSUB ; UART transmission subroutine

;===
;
; Define the RAM
;
;===
DRAM1 DSEG UNIT
RRXBUFTOP: DS CBUFFSIZE ; Receive data buffer
RRXBUFEND:

DRAM2 DSEG SADDR
RRXCNT: DS 1 ; Reception count variable

;===
;
; Define the memory stack area
;
;===
DSTK DSEG AT 0FEE0H
RSTACKEND: DS 20H ; Memory stack area = 32 bytes
RSTACKTOP: ; Start address of the memory stack area = FF00H

;***
;
; Initialization after RESET
;
;***
XMAIN CSEG UNIT
IRESET:
;---
; Initialize the stack pointer
;---
 MOVW AX, #RSTACKTOP
 MOVW SP, AX ; Set the stack pointer

;---
; Initialize the watchdog timer
;---
 MOV WDTM, #01110111B ; Stop the watchdog timer operation

;---
; Detect low-voltage + set the clock
;---

;----- Set the clock <1> -----
 MOV PCC, #00000000B ; The clock supplied to the CPU (fcpu) = fxp (=
fx/4 = 2 MHz)
 MOV LSRCM, #00000001B ; Stop the oscillation of the low-speed
internal oscillator

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 38

;----- Check the reset source -----
 MOV A, RESF ; Read the reset source
 BT A.0, $HRST300 ; Omit subsequent LVI-related processing and go
to SET_CLOCK during LVI reset

;----- Set low-voltage detection -----
 MOV LVIS, #00000000B ; Set the low-voltage detection level (VLVI) to
4.3 V +-0.2 V
 SET1 LVION ; Enable the low-voltage detector operation

 MOV A, #40 ; Assign the 200 us wait count value
;----- 200 us wait -----
HRST100:
 DEC A
 BNZ $HRST100 ; 0.5[us/clk] x 10[clk] x 40[count] = 200[us]

;----- VDD >= VLVI wait processing -----
HRST200:
 NOP
 BT LVIF, $HRST200 ; Branch if VDD < VLVI

 SET1 LVIMD ; Set so that an internal reset signal is
generated when VDD < VLVI

;----- Set the clock <2> -----
HRST300:
 MOV PPCC, #00000000B ; The clock supplied to the peripheral hardware
(fxp) = fx (= 8 MHz)
 ; -> The clock supplied to the CPU (fcpu) = fxp
= 8 MHz

;---
; Initialize the port 0
;---
 MOV P0, #00000000B ; Set output latches of P00-P03 as low
 MOV PM0, #11110000B ; Set P00-P03 as output mode

;---
; Initialize the port 2
;---
 MOV P2, #00000000B ; Set output latches of P20-P23 as low
 MOV PM2, #11110000B ; Set P20-P23 as output mode

;---
; Initialize the port 3
;---
 MOV P3, #00000000B ; Set output latches of P30-P33 as low
 MOV PM3, #11110000B ; Set P30-P33 as output mode

;---
; Initialize the port 4
;---
 MOV P4, #00001000B ; Set output latches of P40-P42 and P44-P47 as
low, output latch of P43 as high (setting for serial transmission)
 MOV PM4, #00010000B ; Set P40-P43 and P45-P47 as output mode, P44 as
input mode

;---
; Initialize the port 12

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 39

;---
 MOV P12, #00000000B ; Set output latches of P120-P123 as low
 MOV PM12, #11110000B ; Set P120-P123 as output mode

;---
; Initialize the port 13
;---
 MOV P13, #00000001B ; Set output latch of P130 as high

;---
; Set UART6
;---
 MOV CKSR6, #1 ; Set the baud rate to 9600 bps
 MOV BRGC6, #208 ; (Same as the above)
 MOV ASIM6, #00011000B ; Even-parity output, 7-bit character
length, 1 stop bit
 ; INTSRE6 is generated as interrupt upon error
occurrence
 SET1 POWER6 ; Enable internal operation clock operation
 SET1 TXE6 ; Enable transmit operation
 SET1 RXE6 ; Enable receive operation

;***
;
; Main loop
;
;***
MMAINLOOP:

;----- Initialize the RAM and general-purpose register -----
 MOV RRXCNT, #0 ; Reception count = 0
 MOVW HL, #RRXBUFTOP ; Initialize the write address to the buffer
start
 MOVW DE, #RRXBUFTOP ; Initialize the read address to the buffer
start

;----- Set the interrupts -----
 MOV IF0, #00H ; Clear invalid interrupt requests in advance
 CLR1 SRMK6 ; Enable the INTSR6 (serial reception) interrupt
 CLR1 SREMK6 ; Enable the INTSRE6 (reception error) interrupt
 EI ; Enable vector interrupt

;----- Wait for a reception interrupt -----
LMLP100:
 CMP RRXCNT, #0
 BZ $LMLP100 ; Branch if the reception count is 0

 MOV A, [DE] ; Read the data
 DEC RRXCNT ; Decrement the reception count by 1

 BT A.7, $LMLP300 ; Branch to processing when a reception error
occurs if bit 7 is 1

;----- Processing during normal reception -----
LMLP200:
 CMP A, #'T' ; Compare the receive data with T (54H)
 BNZ $LMLP210 ; Branch if the receive data is not T (54H)
 _SEROUT #'O' ; Transmit O (4FH)
 _SEROUT #'K' ; Transmit K (4BH)

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 40

 _SEROUT #0DH ; Transmit line feed code "CR"
 _SEROUT #0AH ; Transmit line feed code "LF"
 BR !LMLP400 ; Branch to LMLP400

LMLP210:
 CMP A, #'t' ; Compare the receive data with t (74H)
 BNZ $LMLP220 ; Branch if the receive data is not t (74H)
 _SEROUT #'o' ; Transmit o (6FH)
 _SEROUT #'k' ; Transmit k (6BH)
 _SEROUT #0DH ; Transmit line feed code "CR"
 _SEROUT #0AH ; Transmit line feed code "LF"
 BR !LMLP400 ; Branch to LMLP400

LMLP220:
 _SEROUT #'U' ; Transmit U (55H)
 _SEROUT #'C' ; Transmit C (43H)
 _SEROUT #0DH ; Transmit line feed code "CR"
 _SEROUT #0AH ; Transmit line feed code "LF"
 BR !LMLP400 ; Branch to LMLP400

;----- Processing when a reception error occurs -----
LMLP300:
 BF A.2, $LMLP310 ; Branch if not a parity error
 _SEROUT #'P' ; Transmit P (50H)
 _SEROUT #'E' ; Transmit E (45H)
 _SEROUT #0DH ; Transmit line feed code "CR"
 _SEROUT #0AH ; Transmit line feed code "LF"

LMLP310:
 BF A.1, $LMLP320 ; Branch if not a framing error
 _SEROUT #'F' ; Transmit F (46H)
 _SEROUT #'E' ; Transmit E (45H)
 _SEROUT #0DH ; Transmit line feed code "CR"
 _SEROUT #0AH ; Transmit line feed code "LF"

LMLP320:
 BF A.0, $LMLP400 ; Branch if not an overrun error
 _SEROUT #'O' ; Transmit O (4FH)
 _SEROUT #'E' ; Transmit E (45H)
 _SEROUT #0DH ; Transmit line feed code "CR"
 _SEROUT #0AH ; Transmit line feed code "LF"

;----- Update the read address -----
LMLP400:
 INCW DE ; Increment the read address by 1
 MOVW AX, DE
 CMPW AX, #RRXBUFEND
 BC $LMLP450 ; Branch if the read address is within the
buffer
 MOVW DE, #RRXBUFTOP ; Initialize the read address to the buffer
start
LMLP450:
 BR !LMLP100 ; Branch to LMLP100

;***
;
; Serial reception interrupt INTSR6
;
;***

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 41

IINTSR6:
 PUSH AX ; Save the AX register data to the stack

;----- Read the receive data -----
 MOV A, RXB6 ; Read the serial receive data

;----- Check the free buffer space -----
 CMP RRXCNT, #CBUFFSIZE ; Compare the reception count with the
buffer size
 BNC $HSR100 ; Do not store the data if no free space is
available in the buffer
 INC RRXCNT ; Increment the reception count by 1

;----- Save the data and update the write address -----
 MOV [HL], A ; Store the receive data
 INCW HL ; Increment the write address by 1
 MOVW AX, HL
 CMPW AX, #RRXBUFEND
 BC $HSR100 ; Branch if the write address is within the
buffer
 MOVW HL, #RRXBUFTOP ; Initialize the write address to the buffer
start

HSR100:
 POP AX ; Restore the AX register data
 RETI ; Return from interrupt servicing

;***
;
; Reception error interrupt INTSRE6
;
;***
IINTSRE6:
 PUSH AX ; Save the AX register data to the stack

;----- Read the error status -----
 MOV A, ASIS6 ; Read the error status
 SET1 A.7 ; Set the reception error flag to bit 7
 XCH A, X ; Save the error information
 MOV A, RXB6 ; Read (discard) the serial receive data
 XCH A, X ; Restore the error information

;----- Check the free buffer space -----
 CMP RRXCNT, #CBUFFSIZE ; Compare the reception count with the
buffer size
 BNC $HSRE100 ; Do not store the data if no free space is
available in the buffer
 INC RRXCNT ; Increment the reception count by 1

;----- Save the data and update the write address -----
 MOV [HL], A ; Store the error status
 INCW HL ; Increment the write address by 1
 MOVW AX, HL
 CMPW AX, #RRXBUFEND
 BC $HSR100 ; Branch if the write address is within the
buffer
 MOVW HL, #RRXBUFTOP ; Initialize the write address to the buffer
start

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 42

HSRE100:
 POP AX ; Restore the AX register data
 RETI

;===
; Subroutine for serial data transmission
;
; This subroutine is used to transmit serial data.
; 1-byte data indicated with #DATA can be transmitted by setting the
; subroutine as follows.
;
; MOV A, #DATA ; Store DATA to the A register
; CALL !STXSUB ; Transmit DATA
;===
STXSUB:
 XCH A, X ; Save the transmit data to the X register

;----- Wait for transmission to be enabled -----
JTXS100:
 MOV A, ASIF6
 BT A.1, $JTXS100 ; Wait for transmission to be enabled

;----- Transmit the data -----
 XCH A, X ; Restore the transmit data from the X register
 MOV TXB6, A ; Serial transmission

 RET ; Return from the subroutine

end

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 43

 main.c (C language version)

/***

 NEC Electronics 78K0S/KB1+

**
 78K0S/KB1+ Sample program
**
 Serial interface UART6
**
<<History>>
 2007.8.-- Release
**

<<Overview>>

This sample program presents an example of using serial interface UART6.
Serial communication at a baud rate of 9600 bps is performed by using a
crystal or ceramic oscillation clock of 8 MHz as the system clock source.
Transmission and reception of ASCII codes are assumed and 4-character data
is transmitted in accordance with the reception of 1-character data.
When a reception error occurs, 4-character data is transmitted in
correspondence with the error, also.

 <Principal setting contents>

 - Declare a function run by an interrupt: INTSR6 -> fn_intsr6()
 - Declare a function run by an interrupt: INTSRE6 -> fn_intsre6()
 - Stop the watchdog timer operation
 - Set the low-voltage detection voltage (VLVI) to 4.3 V +-0.2 V
 - Generate an internal reset signal (low-voltage detector) when VDD < VLVI
after VDD >= VLVI
 - Set the CPU clock to 8 MHz
 - Set the clock supplied to the peripheral hardware to 8 MHz
 - Set serial interface UART6

 <Serial communication protocol>

 - Baud rate: 9600 bps
 - Data character length: 7 bits
 - Parity specification: Even parity
 - Number of stop bits: 1 bit
 - Start bit specification: LSB first

 <Receive data>

 The data character length is set to 7 bits and LSB first is set, because
 the reception of ASCII codes is assumed. The receive data is therefore
 transferred to bits 0 to 6 of the RXB6 register and bit 7 (MSB) is always
 0. Furthermore, when a reception error occurs, bit 7 of the reception
 error information is set to 1 and stored into the buffer into which the
 receive data is also stored. As a result, the data is identified by bit
 7 whether it is receive data or reception error information, when the
 buffer is read.

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 44

 <Successive reception>

 Successive reception can be performed, because the receive data is stored
 into the buffer by using an interrupt, and the receive data is sequentially
 accumulated from the start of the buffer. Furthermore, the buffer is
 configured as a ring buffer and the receive data is stored from the start
 of the buffer again after the end of the buffers has been reached. At
 this time, a buffer that has been read will store the receive data, but
 an unread buffer (when the unread data has reached the buffer size) will
 discard the receive data instead of storing it. The receive data will be
 stored as soon as the buffer data is read. The buffer size is defined by
 BUFF_SIZE and is 50 bytes by default.

 <Command specifications>

 - Normal reception
 +--+
 | Receive Data | 4-Character Transmit Data |
 | (Hex Data) | (Hex Data) | | | |
|---|---|---|---|---|
 | T | O | K | "CR" | "LF" |
 | (54H) | (4FH) | (4BH) | (0DH) | (0AH) |
 |--|
 | t | o | k | "CR" | "LF" |
 | (74H) | (6FH) | (6BH) | (0DH) | (0AH) |
 |--|
 | Other data | U | C | "CR" | "LF" |
 | | (55H) | (43H) | (0DH) | (0AH) |
 +--+
 # "CR" + "LF" is a line feed code.

 - Error reception
 +--+
 | Error Reception| 4-Character Transmit Data |
 | Information | (Hex Data) | | | |
|---|---|---|---|---|
 | Parity error | P | E | "CR" | "LF" |
 | | (50H) | (45H) | (0DH) | (0AH) |
 |--|
 | Framing error | F | E | "CR" | "LF" |
 | | (46H) | (45H) | (0DH) | (0AH) |
 |--|
 | Overrun error | O | E | "CR" | "LF" |
 | | (4FH) | (45H) | (0DH) | (0AH) |
 +--+
 # "CR" + "LF" is a line feed code.

<<I/O port settings>>

 Input: P44
 Output: P00-P03, P20-P23, P30-P33, P40-P43, P45-P47, P120-P123, P130
 # All unused ports are set as the output mode.

***/

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 45

/*==

 Preprocessing directive (#pragma)

==*/
#pragma SFR /* SFR names can be described at the C
source level */
#pragma EI /* EI instructions can be described at the
C source level */
#pragma NOP /* NOP instructions can be described at
the C source level */
#pragma interrupt INTSR6 fn_intsr6 /* Interrupt function declaration:INTSR6
*/
#pragma interrupt INTSRE6 fn_intsre6/* Interrupt function declaration:INTSRE6
*/

#define BUFF_SIZE 50 /* Buffer size of the receive data */

/*==

 Function prototype declaration

==*/
void fn_uart_send(unsigned char ucTxData); /* Function for serial data
transmission */

/*==

 Define the global variables

==*/
static unsigned char g_ucRxBuff[BUFF_SIZE]; /* Receive data buffer table
*/
sreg unsigned char g_ucRxCnt; /* 8-bit variable for reception count */
sreg unsigned char g_ucStoreAddr; /* 8-bit variable for write address */
sreg unsigned char g_ucReadAddr; /* 8-bit variable for read address */
sreg unsigned char g_ucRxData; /* 8-bit variable for identifying the
receive data */
sreg unsigned char g_ucAsif6; /* 8-bit variable for identifying the
transmission status */

/***

 Initialization after RESET

***/
void hdwinit(void){
 unsigned char ucCnt200us; /* 8-bit variable for 200 us wait */

/*--
 Initialize the watchdog timer + detect low-voltage + set the clock
--*/
 /* Initialize the watchdog timer */
 WDTM = 0b01110111; /* Stop the watchdog timer operation */

 /* Set the clock <1> */
 PCC = 0b00000000; /* The clock supplied to the CPU (fcpu) =
fxp (= fx/4 = 2 MHz) */

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 46

 LSRCM = 0b00000001; /* Stop the oscillation of the low-speed
internal oscillator */

 /* Check the reset source */
 if (!(RESF & 0b00000001)){ /* Omit subsequent LVI-related processing
during LVI reset */

 /* Set low-voltage detection */
 LVIS = 0b00000000; /* Set the low-voltage detection level
(VLVI) to 4.3 V +-0.2 V */
 LVION = 1; /* Enable the low-voltage detector operation */

 for (ucCnt200us = 0; ucCnt200us < 9; ucCnt200us++){ /* Wait of
about 200 us */
 NOP();
 }

 while (LVIF){ /* Wait for VDD >= VLVI */
 NOP();
 }

 LVIMD = 1; /* Set so that an internal reset signal is
generated when VDD < VLVI */
 }

 /* Set the clock <2> */
 PPCC = 0b00000000; /* The clock supplied to the peripheral hardware
(fxp) = fx (= 8 MHz)
 -> The clock supplied to the CPU (fcpu) = fxp
= 8 MHz */

/*--
 Initialize the port 0
--*/
 P0 = 0b00000000; /* Set output latches of P00-P03 as low */
 PM0 = 0b11110000; /* Set P00-P03 as output mode */

/*--
 Initialize the port 2
--
*/
 P2 = 0b00000000; /* Set output latches of P20-P23 as low */
 PM2 = 0b11110000; /* Set P20-P23 as output mode */

/*--
 Initialize the port 3
--*/
 P3 = 0b00000000; /* Set output latches of P30-P33 as low */
 PM3 = 0b11110000; /* Set P30-P33 as output mode */

/*--
 Initialize the port 4
--*/
 P4 = 0b00001000; /* Set output latches of P40-P42 and P44-P47 as
low, output latch of P43 as high (setting for serial transmission) */
 PM4 = 0b00010000; /* Set P40-P43 and P45-P47 as output mode, P44
as input mode */

/*--

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 47

 Initialize the port 12
--*/
 P12 = 0b00000000; /* Set output latches of P120-P123 as low */
 PM12 = 0b11110000; /* Set P120-P123 as output mode */

/*--
 Initialize the port 13
--*/
 P13 = 0b00000001; /* Set output latch of P130 as high */

/*--
 Set UART6
--*/
 CKSR6 = 1; /* Set the baud rate to 9600 bps */
 BRGC6 = 208; /* (Same as the above) */
 ASIM6 = 0b00011000; /* Even-parity output, 7-bit character length, 1
stop bit */
 /* INTSRE6 is generated as interrupt upon error
occurrence */
 POWER6 = 1; /* Enable internal operation clock operation */
 TXE6 = 1; /* Enable transmit operation */
 RXE6 = 1; /* Enable receive operation */

 return;
}

/***

 Main loop

***/
void main(void)
{
 g_ucRxCnt = 0; /* Reception count = 0 */
 g_ucStoreAddr = 0; /* Initialize the write address to the buffer
start */
 g_ucReadAddr = 0; /* Initialize the read address to the buffer
start */
 IF0 = 0x00; /* Clear invalid interrupt requests in advance
*/
 SRMK6 = 0; /* Enable the INTSR6 (serial reception)
interrupt */
 SREMK6 = 0; /* Enable the INTSRE6 (reception error)
interrupt */
 EI(); /* Enable vector interrupt */

 while (1)
 {
 while (g_ucRxCnt == 0) /* Wait for a reception interrupt */
 {
 NOP();
 }

 while (g_ucRxCnt > 0) /* Processing when the reception count > 0
*/
 {
 g_ucRxData = g_ucRxBuff[g_ucReadAddr]; /* Read the data
*/

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 48

 g_ucRxCnt -= 1; /* Decrement the reception count by
1 */

 if (!g_ucRxData.7) /* Processing during normal
reception */
 {
 switch (g_ucRxData)
 {
 case 'T' : /* When receiving T (54H) */

 fn_uart_send('O'); /* Transmit O
(4FH) */
 fn_uart_send('K'); /* Transmit K
(4BH) */
 fn_uart_send(0x0D); /* Transmit line
feed code "CR" */
 fn_uart_send(0x0A); /* Transmit line
feed code "LF" */
 break;

 case 't' : /* When receiving t (74H) */

 fn_uart_send('o'); /* Transmit o
(6FH) */
 fn_uart_send('k'); /* Transmit k
(6BH) */
 fn_uart_send(0x0D); /* Transmit line
feed code "CR" */
 fn_uart_send(0x0A); /* Transmit line
feed code "LF" */
 break;

 default : /* When receiving other data */

 fn_uart_send('U'); /* Transmit U
(55H) */
 fn_uart_send('C'); /* Transmit C
(43H) */
 fn_uart_send(0x0D); /* Transmit line
feed code "CR" */
 fn_uart_send(0x0A); /* Transmit line
feed code "LF" */
 break;
 }
 }

 else /* Processing when receiving an error */
 {
 if (g_ucRxData.2) /* When a parity error occurs */
 {
 fn_uart_send('P'); /* Transmit P (50H) */
 fn_uart_send('E'); /* Transmit E (45H) */
 fn_uart_send(0x0D); /* Transmit line feed
code "CR" */
 fn_uart_send(0x0A); /* Transmit line feed
code "LF" */
 }

 if (g_ucRxData.1) /* When a framing error occurs */

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 49

 {
 fn_uart_send('F'); /* Transmit F (46H) */
 fn_uart_send('E'); /* Transmit E (45H) */
 fn_uart_send(0x0D); /* Transmit line feed
code "CR" */
 fn_uart_send(0x0A); /* Transmit line feed
code "LF" */
 }

 if (g_ucRxData.0) /* When an overrun error occurs */
 {
 fn_uart_send('O'); /* Transmit O (4FH) */
 fn_uart_send('E'); /* Transmit E (45H) */
 fn_uart_send(0x0D); /* Transmit line feed
code "CR" */
 fn_uart_send(0x0A); /* Transmit line feed
code "LF" */
 }
 }
 g_ucReadAddr += 1; /* Increment the read address
by 1 */

 if (g_ucReadAddr >= BUFF_SIZE) /* When the read address
is outside the buffer */
 {
 g_ucReadAddr = 0; /* Initialize the read address
to the buffer start */
 }
 }
 }
}

/***

 Serial reception interrupt INTSR6

***/
__interrupt void fn_intsr6()
{
 unsigned char ucData;

 ucData = RXB6; /* Read the serial receive data */

 if (g_ucRxCnt < BUFF_SIZE) /* When the write address is within the
buffer */
 {
 g_ucRxCnt += 1; /* Increment the reception
count by 1 */
 g_ucRxBuff[g_ucStoreAddr] = ucData; /* Save the receive data */

 g_ucStoreAddr += 1; /* Increment the write address
by 1 */

 if (g_ucStoreAddr >= BUFF_SIZE) /* When the write address is
outside the buffer */
 {
 g_ucStoreAddr = 0; /* Initialize the write
address to the buffer start */
 }

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 50

 }

 return;
}

/***

 Reception error interrupt INTSRE6

***/
__interrupt void fn_intsre6()
{
 unsigned char ucData;
 unsigned char ucTemp;

 ucData = ASIS6 | 0b10000000; /* Store the error information by setting
the error flag to bit 7 */
 ucTemp = RXB6; /* Read (discard) the serial receive data
*/

 if (g_ucRxCnt < BUFF_SIZE) /* When the write address is within the
buffer */
 {
 g_ucRxCnt += 1; /* Increment the reception
count by 1 */
 g_ucRxBuff[g_ucStoreAddr] = ucData; /* Save the receive data */

 g_ucStoreAddr += 1; /* Increment the write address
by 1 */

 if (g_ucStoreAddr >= BUFF_SIZE) /* When the write address is
outside the buffer */
 {
 g_ucStoreAddr = 0; /* Initialize the write
address to the buffer start */
 }
 }

 return;
}

/*==
 Function for serial data transmission

 This function is used to transmit serial data.
 1-byte data indicated with Data can be transmitted by using the function
 as follows.

 fn_uart_send(Data);
==*/
void fn_uart_send(unsigned char ucTxData)
{
 g_ucAsif6 = ASIF6; /* Read the transmission status */

 while (g_ucAsif6.1) /* Wait for transmission to be enabled */
 {
 g_ucAsif6 = ASIF6; /* Read the transmission status */
 }
 TXB6 = ucTxData; /* Serial transmission */

APPENDIX A PROGRAM LIST

Application Note U18914EJ2V0AN 51

 return;
}

 op.asm (Common to assembly language and C language versions)

;===
;
; Option byte
;
;===
OPBT CSEG AT 0080H
 DB 10011000B ; Option byte area
; || ||||
; || |||+---------- Low-speed internal oscillator can be
stopped by software
; || |++----------- Crystal or ceramic oscillation clock is
used
; || +------------- P34/RESET pin is used as RESET pin
; ++--------------- Oscillation stabilization time when turning
power on or after reset release = 2^10/fx

 DB 11111111B ; Protect byte area (for the self programming
mode)
; ||||||||
; ++++++++---------- All blocks can be written or erased

end

Application Note U18914EJ2V0AN 52

APPENDIX B REVISION HISTORY

The mark “<R>” shows major revised points. The revised points can be easily searched by copying an “<R>” in the

PDF file and specifying it in the “Find what.” field.

Edition Date Published Page Revision

1st edition December 2007 − −

pp.27 to 29 Modification of 5.1 Building the Sample Program 2nd edition September 2008

p.33 CHAPTER 6 RELATED DOCUMENTS

• Addition of Flash Programming Manual (Basic) MINICUBE2 version

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	CHAPTER 1 OVERVIEW
	1.1 Main Contents of the Initial Settings
	1.2 Contents Following the Main Loop

	CHAPTER 2 CIRCUIT DIAGRAM
	2.1 Circuit Diagram

	CHAPTER 3 SOFTWARE
	3.1 File Configuration
	3.2 Internal Peripheral Functions to Be Used
	3.3 Initial Settings and Operation Overview
	3.4 Flow Charts

	CHAPTER 4 SETTING METHODS
	4.1 Setting Serial Interface UART6
	4.2 Receive Data or Reception Error Content and Transmit Data

	CHAPTER 5 OPERATION CHECK USING THE DEVICE
	5.1 Building the Sample Program
	5.2 Operation with the Device

	CHAPTER 6 RELATED DOCUMENTS
	APPENDIX A PROGRAM LIST
	APPENDIX B REVISION HISTORY

