To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Application Note

78K0S/Kx1+

RENESANS

Sample Program (8-bit Timer 80)

Interval Timer

number of switch inputs.

This document describes an operation overview of the sample program and how to use it, as well as how to set and use
the interval timer function of 8-bit timer 80. In the sample program, the LEDs are blinked at fixed cycles by using the
interval timer function of 8-bit timer 80. Furthermore, the blinking cycle of the LEDs is changed in accordance with the

Target devices
78K0S/KA1+ microcontroller
78K0S/KB1+ microcontroller

Document No. U18864EJ2VOANO0O (2nd edition)
Date Published September 2008 NS

© NEC Electronics Corporation 2007
Printed in Japan

CONTENTS
CHAPTER 1 OVERVIEW 3
1.1 Main Contents of the Initial Settingsccoceiiiiiiiiiiis 3
1.2 Contents Following the Main LOOP..........ccccueriiiiiinic i 4
CHAPTER 2 CIRCUIT DIAGRAM 5
2.1 Circuit DIagramcoceeiiiieeeieesie e 5
2.2 Peripheral Hardware............cccccoiiiiiiiiiiciesi s 5
CHAPTER 3 SOFTWARE 6
3.1 File ConfigUration..........coceeieerieiie ettt 6
3.2 Internal Peripheral Functions to Be Used...........cccceeeiiiiniiieniicc i, 7

3.3 Initial Settings and Operation OVerview............ccccveieriniinciiinciececee 7
3.4 Flow Chams.......ccciiiiiiiiii 9
CHAPTER 4 SETTING METHODS 10
4.1 Setting the Interval Timer Function of 8-bit Timer 80............cc.ccccveeurnene 10
4.2 Setting the LED Blinking Cycle and Chattering Detection Time 16
CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+.20
5.1 Building the Sample Programccccevcerierieeneenee e e esee e see e 20
5.2 Operation With SMHcoiiiiiieieee e 22
CHAPTER 6 RELATED DOCUMENTS 26
APPENDIX A PROGRAM LIST 27
APPENDIX B REVISION HISTORY 39

* The information in this document is current as of July, 2008. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

e No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

e NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

e Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

e While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.

o NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

M8E 02.11-1

Application Note U18864EJ2VOAN

CHAPTER 1 OVERVIEW

An example of using the interval timer function of 8-bit timer 80 is presented in this sample program. The LEDs are
blinked at fixed cycles and the blinking cycle of the LEDs is changed in accordance with the number of switch inputs.

Caution 8-bit timer 80 is not mounted with the 78K0S/KU1+ and 78K0S/KY1 microcontrollers.
1.1 Main Contents of the Initial Settings

The main contents of the initial settings are as follows.
e Selecting the high-speed internal oscillator as the system clock source™™
e Stopping watchdog timer operation
® Setting Vwvi (low-voltage detection voltage) to 4.3V +0.2V
e Generating an internal reset (LVI reset) signal when it is detected that Voo is less than Vv, after Voo (power
supply voltage) becomes greater than or equal to Vivi
e Setting the CPU clock frequency to 8 MHz
e Setting the 1/O ports
e Setting 8-bit timer 80
e Setting the count clock to fxp/2° (125 kHz)
o Setting the interval cycle to 2 ms (8 us x 250)
e Setting the valid edge of INTP1 (external interrupt) to the falling edge
e Enabling INTP1 and INTTM80 interrupts

Note This is set by using the option byte.

Application Note U18864EJ2VOAN 3

CHAPTER 1 OVERVIEW

1.2 Contents Following the Main Loop

The LEDs are blinked at fixed cycles by using the generation of an 8-bit timer 80 interrupt (INTTM80), after
completion of the initial settings.

An INTP1 interrupt is serviced when the falling edge of the INTP1 pin, which is generated by switch input, is
detected. Chattering is identified when INTP1 is at high level (switch is off), after 10 ms have elapsed since a fall of
the INTP1 pin was detected. The blinking cycle of the LEDs is changed in accordance with the number of switch
inputs when INTP1 is at low level (switch is on), after 10 ms have elapsed since an edge was detected.

Number of switch inputs: 0

<Output>
Blinks at cycles of
about 1 s.

/ \ Number of switch inputs: 1

Switch inputNete Switch input

S

Number of switch inputs: 3

<Output>
Blinks at cycles of
about 1/2 s.

<Output>
Blinks at cycles of
about 1/8 s.

~

Switch input

T~

Number of switch inputs: 2 /

Switch input

/

<Output>
Blinks at cycles of
about 1/4 s.

Note The blinking cycle from the zeroth switch input is repeated after the fourth switch input.

Caution For cautions when using the device, refer to the user’s manual of each product (78K0S/KA1+,
78K0S/KB1+).

N

[Column] Chattering
Chattering is a phenomenon in which the electric signal repeats turning on and off due to a mechanical

flip-flop of the contacts, immediately after the switch has been pressed.

Application Note U18864EJ2VOAN

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U16898*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446*

CHAPTER 2 CIRCUIT DIAGRAM

This chapter describes a circuit diagram and the peripheral hardware to be used in this sample program.
2.1 Circuit Diagram

A circuit diagram is shown below.

Vob
T e RESET j

7,/7.— Vss 78KOS/KX1+
microcontroller

78#0\3— INTP1/P43 P20

Note Use this in a voltage range of 4.5V <Vbb < 5.5 V.
Cautions 1. Connect the AVger pin directly to Voo.
2. Connect the AVss pin directly to GND (only for the 78K0S/KB1+ microcontroller).
3. Leave all unused pins open (unconnected), except for the pins shown in the circuit diagram
and the AVRreF and AVss pins.
2.2 Peripheral Hardware

The peripheral hardware to be used is shown below.

(1) Switch (SW)
A switch is used as an input to control the lighting of an LED.

(2) LED
An LED is used as an output corresponding to the interval timer function of 8-bit timer 80 and switch inputs.

Application Note U18864EJ2VOAN 5

CHAPTER 3 SOFTWARE

This chapter describes the file configuration of the compressed file to be downloaded, internal peripheral functions
of the microcontroller to be used, and initial settings and operation overview of the sample program, and shows a flow

chart.

3.1 File Configuration

The following table shows the file configuration of the compressed file to be downloaded.

File Name Description Compressed (*.zip) File Included
@ | ®
[=132]
main.asm Source file for hardware initialization processing and main o o
(Assembly language processing of microcontroller
version)
main.c
(C language version)
op.asm Assembler source file for setting the option byte (sets the ® L]
system clock source)
tm80.prw Work space file for integrated development environment PM+
tm80.prj Project file for integrated development environment PM+
tm80.pri Project files for system simulator SM+ for 78K0S/Kx1+ L4
tm80.prs
tm80.prm
tm800.pnl 1/0 panel file for system simulator SM+ for 78K0S/Kx1+ (used [
for checking peripheral hardware operations)
tm800.wvo Timing chart file for system simulator SM+ for 78K0S/Kx1+
(used for checking waveforms)

Note “main.asm”is included with the assembly language version, and “main.c” with the C language version.

Remark

: Only the source file is included.

: The files to be used with integrated development environment PM+ and 78K0S/Kx1+ system

simulator SM+ are included.

: The microcontroller operation simulation file to be used with system simulator SM+ for

78K0S/Kx1+ is included.

Application Note U18864EJ2VOAN

CHAPTER 3 SOFTWARE

3.2 Internal Peripheral Functions to Be Used

The following internal peripheral functions of the microcontroller are used in this sample program.

e Interval timer function: 8-bit timer 80

¢ VoD < Vivi detection: Low-voltage detector (LVI)
e Switch input: INTP1/P43 (external interrupt)
e LED output: P20 (output port)

3.3 Initial Settings and Operation Overview

In this sample program, initial settings including the setting of the low-voltage detection function, selection of the
clock frequency, setting of the 1/O ports, setting of 8-bit timer 80 (interval timer), and setting of interrupts are performed.

The LEDs are blinked at fixed cycles by using the generation of an 8-bit timer 80 interrupt (INTTM80), after
completion of the initial settings.

An INTP1 interrupt is serviced when the falling edge of the INTP1 pin, which is generated by switch input, is
detected. Chattering is identified when INTP1 is at high level (switch is off), after 10 ms have elapsed since a fall of
the INTP1 pin was detected. The blinking cycle of the LEDs is changed in accordance with the number of switch
inputs when INTP1 is at low level (switch is on), after 10 ms have elapsed since an edge was detected.

Application Note U18864EJ2VOAN 7

CHAPTER 3 SOFTWARE

The details are described in the status transition diagram shown below.

Initial settings 1

® Referencing the option byte
« Selecting the high-speed internal oscillator
as the system clock source
* The low-speed internal oscillator can be
stopped by software
* Using the P34/RESET pin as the RESET pin
® Stack pointer setting
® Stopping watchdog timer operation
(Setting the CPU clock frequency to 2 MHz /

Reset other than by LVI

Reset source check

LVI reset

/ Initial settings 2 \

® Setting the CPU clock frequency to 8 MHz
® |/O port setting
 Setting only P43/INTP1 as an input port,
and using an internal pull-up resistor
 Setting P20 as an output port, and setting
the output latch to high level (LED = off)
@ Initializing the number of INTTM80 interrupts
® 8-bit timer 80 setting
 Setting the count clock to fxp/2° (125 kHz)
o Setting the interval cycle to 2 ms
(8 s x 250)
« Starting timer operation
® Interrupt setting
o Setting the valid edge of INTP1 (external

\ interrupt) to the falling edge
.

Enabling INTP1 and INTTM80 interrupts

INTTMB8O interrupt generation

Setting Vivito 4.3V +0.2 V and
starting low-voltage detection
operation

'

200 us wait

* Vob > Vi

Setting so that an internal reset
signal is generated when Vob < Vivi

- ounting the number of

INTTM8O interrupt

Waiting for interrupt |

interrupt requests

since edge
detection <

Number of INTTM80 interrupts
' - 250

Initializing the number of

INTTMB8O interrupts

Reversing the LED output

generation
. i) Number of INTTMSO interrupts < 250 \———3enerations
INTP1 = High level INTP1 falling

(chattering edge detection

detection) ¥
Waiting for INTTM80
interrupt generation
A

Elapsed time| | Clearing INTTM80

about 10 ms

INTTM8O interrupt generation SUnTing The Tumber o
| INTTMBO interrupt
ﬁ Number of INTTMBO interrupts < 250 ———92nerations

Number of INTTM80 interrupts

Checking the wait time]=
(Lotecking the vt ime }

about 10 ms

Y

Clearing INTP1
interrupt requests

INTP1 = Low level
Stopping 8-bit timer
80 operation

/ Changing the interval cycle \

Interval cycle

No. of SW inputs

0 About 2 ms (8 us x 250)
1 About 1 ms (8 us x 125)
2 About 0.5 ms (8 us x 63)
3 About 0.25 ms (8 us x 32)

* The interval cycle from the zeroth
switch input is repeated after the
fourth switch input.

Starting 8-bit timer
80 operation

Initializing the number of
INTTMB8O interrupts

Elapsed time since edge detection >

y = 250

Initializing the number of
INTTMB8O interrupts

Reversing the LED output|

Application Note U18864EJ2VOAN

CHAPTER 3 SOFTWARE

3.4 Flow Charts

The flow charts for the sample program are shown below.

<Processing after reset release>

Reset start

l-— Referencing the option byteNte

Stack pointer setting
Stopping watchdog timer
operation
Setting the CPU clock

frequency to 2 MHz

LVI reset
Reset source

Reset other than by LVI

Vi=43V+02V
200 us wait
—————»

nitial - .
nitial settings Setting so that an internal reset

signal is generated when
oo _< Vi

|-——————————————
Setting the CPU clock
frequency to 8 MHz
1/O port setting
Initializing the number of
INTTMB8O interrupts
8-bit timer 80 setting
« Setting the count clock to
fxp/2° (125 kHz)

« Setting the interval cycle to
2ms (8 us x 250)

80 operation
———-
.

Note

<Vector interrupt INTTM80>

<Vector interrupt INTP1>

Vector interrupt INTP1 start

Vector interrupt INTTM80 start

INTTM80 interrupt
servicing

Saving the AX register data

<INTTMB8O0 interrupt servicing function>

INTTM8O interrupt servicing
start

Number of INTTM80

INTTM8O interrupt
servicing

Number of interrupts < 250

interrupts

Have at least 10 ms
elapsed?

Yes
Clearing INTP1 interrupt
requests

INTP1 pin level

Number of interrupts
=250

Initializing the number of
INTTM8O interrupts

Reversing the LED output
High level

Low level
Stopping 8-bit timer
80 operation

Reading the interval cycle
corresponding to the number
of SW inputs

‘ Return)

Changing the interval cycle
Starting 8-bit timer
80 operation
Initializing the number of
INTTMB8O interrupts
-~
Restoring the AX register data

Referencing the option byte is automatically performed by the microcontroller after reset release. In this

sample program, the following contents are set by referencing the option byte.

¢ Using the high-speed internal oscillation clock (8 MHz (TYP.)) as the system clock source
¢ The low-speed internal oscillator can be stopped by using software

« Using the P34/RESET pin as the RESET pin

Application Note U18864EJ2VOAN 9

CHAPTER 4 SETTING METHODS

This chapter describes the interval timer function of 8-bit timer 80.

For other initial settings, refer to the 78K0S/Kx1+ Sample Program (Initial Settings) LED Lighting Switch
Control Application Note. For interrupt, refer to the 78K0S/Kx1+ Sample Program (Interrupt) External Interrupt
Generated by Switch Input Application Note. For low-voltage detection (LVI), refer to the 78K0S/Kx1+ Sample
Program (Low-Voltage Detection) Reset Generation During Detection at Less than 2.7 V Application Note.

For how to set registers, refer to the user’s manual of each product (78 KOS/KA1+, 78K0S/KB1+).

For assembler instructions, refer to the 78K/0S Series Instructions User’s Manual.

4.1 Setting the Interval Timer Function of 8-bit Timer 80
The following two types of registers are set when using 8-bit timer 80.

 8-bit timer mode control register 80 (TMCB80)
¢ 8-bit compare register 80 (CR80)

(1) Setting regarding the operation mode of 8-bit timer 80

The count clock of 8-bit timer 80 is selected and operation is controlled by using 8-bit timer mode control
register 80 (TMC80).

10 Application Note U18864EJ2VOAN

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18752*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18752*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18812*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18812*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18821*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18821*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U16898*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U11047*

CHAPTER 4 SETTING METHODS

Figure 4-1. Format of 8-bit Timer Mode Control Register 80 (TMC80)

TMC80
TCESO| O 0 0 0 |TCLs01|TCL8OO| O
L1 Count clock selection
0 0 |fxe/2°
0 1 | fxef2®
1 0 |fxe2"
1 1 |fxe/2'®

Enabling of timer operation

0 Stops operation (clears the counter to 0).

1 Enables operation.

Caution Setting the TCL801 bit and TCL800 bit is prohibited when TCES80 is set to 1.

Remark fxp: Oscillation frequency of the clock supplied to peripheral hardware

(2) Interval time setting
The interval time is set by using 8-bit compare register 80 (CR80).

e Interval time = (N + 1)/fen

Remark N: CR8O0 setting value (00H to FFH)
fent: Count clock frequency of 8-bit timer 80

Figure 4-2. Format of 8-bit Compare Register 80 (CR80)

CR80

Caution Rewriting the CR80 register value during timer count operation is prohibited.

Application Note U18864EJ2VOAN

1

CHAPTER 4 SETTING METHODS

12

[Example 1] e Setting the count clock of 8-bit timer 80 to fxr/2° (fxr = 8 MHz)
o Setting the interval cycle to 2 ms, and starting timer operation
(Same content as in the sample program)

TMC80
TCE80 0 0 0 0 0 0 0

Count clock selection
o | o [per

Enabling of timer operation

0 Stops operation (clears the counter to 0).

1 Enables operation.

CR80 setting value (N): 249
« Count clock font = 8 MHz/2° = 0.125 MHz = 125 kHz
o Interval cycle 2 ms = (N + 1)/125 kHz
—>N=2ms x 125 kHz - 1 =249

Timer operation is started by setting 1 to TCE80 after setting “00000000” to TMC80 and “249” to
CR80.

o Assembly language

MOV TMC80, #00000000B
MOV CR80, #249
SET1 TCE80

¢ C language

TMC80 = 0Ob0O0O000000;
CR80 = 249;
TCE80 = 1;

Application Note U18864EJ2VOAN

CHAPTER 4 SETTING METHODS

[Example 2]

TMC80

o Setting the count clock of 8-bit timer 80 to fxr/2' (fxp = 8 MHz)
o Setting the interval cycle to 32 ms, and starting timer operation

TCE80 0

1

0

0

=

Count clock selection

1

| o [per”

Enabling of timer operation

0

Stops operation (clears the counter to 0).

CR80 setting value (N): 249

o Count clock fent = 8 MHz/2'° = 0.0078125 MHz = 7.8125 kHz

e Interval cycle 32 ms = (N + 1)/7.8125 kHz
—>N=32ms x 7.8125 kHz — 1 = 249

1

Enables operation.

Timer operation is started by setting 1 to TCE80 after setting “00000100” to TMC80 and “249” to

CR80.

o Assembly language

MOV TMC80, #00000100B
MOV CR80, #249

SET1 TCE8O

e C language

TMC80 = 0b00000100;
CR80 = 249;
TCE80 = 1;

Application Note U18864EJ2VOAN

13

CHAPTER 4 SETTING METHODS

e Assembly language program example (same contents as in [Example 1] mentioned above and the sample
program)

XMAIN CSEG UNIT
RESET_START: -

// T . (étting the count clock of SQ\J
w’gatting the interval @ ° /\\ timer 80 //
. R
J*’ MOV TMC80, #00000000B ; Count clock = fxp/2"6 = 125 kHz
MOV A, [HL] ; Read from the table the base time initial values for blinking the LEDs
/Clearlng thﬁ MOV CR80, A //Sta*;tflst*”;e;\\\ ; Initialize the.compare value.s
g INTTM80 \ SET1 TCE80 € .) ; Start the timer operation
—__ Operation //
nterrupt request I
flag /4 INTMO, #00000000B ; Set the valid edge of INTP1 to falling edge
IFO, #00H ; Clear invalid interrupt requests in advance
CLR1 PMK1 ; Unmask INTP1 interrupts
CLR1 TMMK80 — ; Unmask INTTM80 interrupts
Enabling
ET [INTTM80 interrupt] ; Enable vector interrupt
servicing
MAIN LOOP: —
NOP
BR SMAIN LOOP ; Go to the MAIN LOOP
a []
[]
[]
i CLR1 TCES80 ; Stop the timer operation
// \\<MOV A, L ; Read the lower 8 bits of the table address
‘ Setting the CR8 , INC A ; Increment the table address by 1
\ register after \\ AND A, #00000011B ; Mask bits other than bits 0 and 1
stopping timer / MOV L, A ; Write to the lower 8 bits of the table address
\Dperatlon MOV A, [HL] ; Read the table data
MOV CR80, A ; Change the LED blinking base time
[SET1 TCE80 ; Start the timer operation
/ o °
(Starting timer .
\\@eratif)ﬂ/ % .
INTERRUPT TM80:
CALL !SUB_INTERRUPT_TM80 ; Service the INTTM80 interrupt
— RETI ; Return from interrupt servicing
@rting interrupt °
‘ servicing by | °

\ INTTM8O interrupt
\generation

14 Application Note U18864EJ2VOAN

CHAPTER 4 SETTING METHODS

¢ C language program example (same contents as in [Example 1] mentioned above and the sample program)

void hdwinit(void){
unsigned char ucCnt200us; /* 8 b ity ariable for 200 us wait */

(\ -~ Settmg the count cIockof N
Setting the interval time ° ‘\\\ 8-bit timer 80 //‘
° — —
K””* TMC80 = 0b00000000; /* Count Clock = pr/2"6 = 125 kHz */
CR80 = 250-1; Initialize the LED blinking base time */
/C'ea”ng th\ TCE80 = 1; ,— Starting timer - /* Start the timer operation */
INTTM80 —“"\'(\\ operation >
interrupt requeSt‘ INTMO = Ob00000000; /* Set the valid edge of INTP1 to falling edge */
\\ flag A IFO = 0x00; /* Clear invalid interrupt requests in advance */
T PMK1 = 0; /* Unmask INTP1 interrupts */
TMMK80 = 0; /* Unmask INTTM80 interrupts */

return; —

} Enabling \
\\ INTTMS8O0 interrupt |

void main(void){ \ Servicing/

EI1Q; /* Enable vector interrupt */
while (1){
NOPQ);
NOPQ);
}
}
L]
) o
Setting the CR80 .
(register after —» TCE80 = 0; /* Stop the timer operation */
\\stopping timer —» CR80 = g ucCR80data]g ucSWcnt];
operation /* Change the LED blinking base time in accordance
With the number of swutch mputs */
- TCE80 = 1; /* Start the timer operation */
Ve " Starting timer \\‘/v .
. operaton .
— .
interrupt void fn inttm80(){
/ fn_subinttm80(); /* Service the INTTM80 interrupt */
@ng |nter® S
[servicing by \‘ ¢

INTTM8O0 interrupt /
\\generatlon ¢

Application Note U18864EJ2VOAN

15

CHAPTER 4 SETTING METHODS

4.2 Setting the LED Blinking Cycle and Chattering Detection Time
The LED blinking cycle and chattering detection time are set as follows in this sample program.

(1) Setting the LED blinking cycle
The LED output is reversed every 250 generations of 8-bit timer 80 interrupts (INTTM80) in this sample
program.

o Interrupt cycle (interval time) = (N + 1)/font
o LED output reversal cycle = Interrupt cycle x Number of interrupts
¢ LED blinking cycle = LED output reversal cycle x 2

Remark N: CRB8O0 register setting value
fen: Count clock frequency of 8-bit timer 80

Calculation example: The following values result when the CR80 register setting value is 249 (during operation
at fent = 125 kHz).
o Interrupt cycle (interval time) = (N + 1)/fcnt = (249 + 1)/125 kHz =2 ms
o LED output reversal cycle = Interrupt cycle x Number of interrupts = 2 ms x 250 = 500
ms
o LED blinking cycle = LED output reversal cycle x2=500ms x2=1s

Furthermore, the CR8O0 register setting value is changed in accordance with the number of switch inputs, and
the LED blinking cycle is changed.

16

Number of Switch Inputs"® | CR80 Register Setting Value Interrupt Cycle LED Blinking Cycle
0 249 About 2 ms About 1's

((249 + 1)/125 kHz) (about 2 ms x 250 x 2)
1 124 About 1 ms About 0.5 s

((124 + 1)/125 kHz) (about 1 ms x 250 x 2)
2 62 About 0.504 ms About 0.252 s

((62 + 1)/125 kHz) (about 504 s x 250 x 2)
3 31 About 0.256 ms About 0.128 s

((31 + 1)/125 kHz) (about 256 s x 250 x 2)

Note The blinking cycle from the zeroth switch input is repeated after the fourth switch input.

Application Note U18864EJ2VOAN

CHAPTER 4 SETTING METHODS

Figure 4-3. Timing Chart Example of the LED Blinking Cycle (When the LEDs Blink at a Cycle of About 1 s)

Count clock
(125 kHz)

TM80

CR80

TCE80

INTTM80

P20 output

Count clock
(125 kHz)

TM80

CR80

TCE80

INTTM80

P20 output

About 8 us

[I o

SR

X 249

o X 1 X X 249

Clear

249

Interval time: About 2 ms
(= About 8 us x 250)

[1

Number of interrupts: 1

Number of interrupts: 2

o X X

Xaao)\ o X

1 X X 249

0X1x:

Clear

Clear

Clear

249

[1

[

[1

Number of interrupts: 250 —
Clears the count for the number of interrupts.

Number of interrupts: 1

Number of interrupts: 250 —
Clears the count for the
number of interrupts.

LED output reversal cycle: About 0.5 s (=

About 2 ms x 250)

Remark The CR8O0 register setting value is 124, 62, and 31 when the LEDs blink at respective cycles of about
1/2s,1/4s,and 1/8 s.

Application Note U18864EJ2VOAN

17

CHAPTER 4 SETTING METHODS

18

(2) Setting the chattering detection time
The generation of 8-bit timer 80 interrupts (INTTM80) is counted to remove chattering of 10 ms or less, in order
to handle chattering during switch input (INTP1 interrupt generation) in this sample program.
INTTMBSO interrupts can be continuously counted even during chattering detection by using INTTM80 interrupts
for chattering detection. Consequently, offsets of the LED blinking cycle, which are caused by switch input, can
be suppressed.

¢ Chattering detection time (Tc) =T+ T x (M - 1)

Remark T: INTTMBS8O interrupt cycle
T’: Time from the start of INTP1 edge detection until the first INTTM80 is generated after INTP1
edge detection (0 < T <T)
M: Number of INTTM8O0 interrupts after INTP1 edge detection

When set such that T x (M - 1) = 10 ms,
Tc=T+10ms

0 < T’ <T, therefore,
10ms<Tc<T+10ms

2

Chattering detection time (Tc) > 10 ms

Calculation example: When the interrupt cycle (T) is 2 ms (refer to the calculation example in (1) Setting the
LED blinking cycle), and the number of INTTMB80 interrupts after INTP1 edge detection
(M) is 6
Tc=T+Tx(M-1)
=T+2msx(6-1)
=T +10ms
0 < T’ <2 ms, therefore,
10ms<Tc<12ms

\

Chattering detection time (Tc) > 10 ms

The following table shows the correspondence between the interrupt cycles during switch input and the
number of INTTM8O0 interrupts after INTP1 edge detection in this sample program.

LED Blinking Cycle Interrupt Cycle Number of INTTM80 Interrupts Chattering Detection Time
After INTP1 Edge Detection

About 1's About 2 ms 6 10ms <Tc<12ms

About 0.5 s About 1 ms 11 10ms<Tc<11ms

About 0.252 s About 0.504 ms 21 10.08 ms < Tc < 10.584 ms

About 0.128 s About 0.256 ms 41 10.24 ms < Tc < 10.496 ms

Application Note U18864EJ2VOAN

CHAPTER 4 SETTING METHODS

Figure 4-4. Timing Chart Example of Chattering Detection (When the LEDs Blink at Cycles of About 1 s
During Switch Input)

About 8 us

Count clock ‘

AR M U UL
TM80:X ‘ X 209 0 Lx X 249) o u X249‘X o X 1

CR80 249

TCES0 Interval time: About 2 ms

(= About 8 us x 250)

INTTM80 _| . _| _|

Number of interrupts after INTP1 Number of interrupts after INTP1 Number of interrupts after
edge detection: 1 edge detection: 2 INTP1 edge detection: 6

Variable for counting the (Decrement)

number of INTTM80
interrupts after INTP1 6 5 . 4 e X 0
edge detection

Chattering detection time: About 2 ms x 5 + Time until the first INTTM80 is generated after INTP1 edge detection (2 ms or less) > 10 ms

) -
INTP1 input | (@) ; (b)

Esg E&itugtrl:]tshi ;lrst INTTM8O is generated after INTP1 edge detection (2 ms or less) Check the status of the INTP1 pin.

« INTP1 = High level: Identified as chattering
« INTP1 = Low level: Identified that the switch is on

Remark The variable for counting the number of INTTMB80 interrupts after INTP1 edge detection depends on the
LED blinking cycle during switch input. The variable is 11, 21, and 41, when the LEDs blink at respective
cycles of about 1/2's, 1/4 s, and 1/8 s.

Application Note U18864EJ2VOAN 19

<R>

CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+

This chapter describes how the sample program operates with system simulator SM+ for 78K0S/Kx1+, by using the

assembly language file (source files + project file) that has been downloaded by selecting the icon.
] .
[=132

5.1 Building the Sample Program

To check the operation of the sample program by using system simulator SM+ for 78K0S/Kx1+ (hereinafter referred
to as “SM+”), SM+ must be started after building the sample program. This section describes how to build a sample

program by using the assembly language sample program (source program + project file) downloaded by clicking the

icon. See the 78K0S/Kx1+ Sample Program Startup Guide Application Note for how to build other
downloaded programs.

For the details of how to operate PM+, refer to the PM+ Project Manager User’s Manual.

‘IQ’ [Column] Build errors
Change the compiler option setting according to the following procedure when the error message “A006 File
not found ‘C:\NECTOOLS32\LIB78K0S\s0sl.rel” or “** ERROR F206 Segment ‘@ @DATA’ can’'t allocate to
memory - ignored.” is displayed, when building with PM+.

<1> Select [Compiler Options] from the [Tool] menu.
<2> The [Compiler Options] dialog box will be displayed. Select the [Startup Routine] tab.
<3> Uncheck the [Using Fixed Area of Standard Library] check box. (Leave the other check boxes as they are.)

A RAM area of 118 bytes that has been secured as a fixed standard library area will be enabled for use when
the [Using Fixed Area of Standard Library] check box is unchecked; however, the standard libraries (such as
the getchar function and malloc function) will be disabled for use.

The [Using Fixed Area of Standard Library] check box is unchecked by default when the file that has been

downloaded by clicking the ﬁ-&j icon is used in this sample program.
[

20 Application Note U18864EJ2VOAN

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18787*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?title=PM%2b%2a

CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+

(1) Start PM+.

(2) Select “tm80.prw” by clicking [Open Workspace] from the [File] menu and click [Open]. A workspace into which
the source file will be automatically read will be created.

(3) Select [Project Settings] from the [Project] menu. When the [Project Settings] window opens, select the name
of the device to be used (the device with the largest ROM or RAM size will be selected by default), and click
[OK].

Remark Screenshots of the Sample Program (Initial Settings) LED Lighting Switch Control are shown below.

Open Workspace @

Mew Chrl+r Lack jrv | 2 U18752E_TBKOSKBIP_ASM_PRI_0704 V1 ~| 4= (&) £F EE-
Qpen... Cerl+0 o=
Close
Mew Workspace. ..
Click \\A
File name: jmitial.prw I Open
Files of type: JWD[kSDaDE File[" priw) L} Cancel

Help

¢ PM+ - initial. prw [OutPut]
File Edit Find Layer Wiew NEGEWd Build Tool Window Help

i ~ Select Active Projet... A
- =l A el et Project Settings
|| Initialization - Initialization Ansei PrOect: oy = =
- Upd Project Information | Source File | Toal Version Settings
Project File Marme : initial.prj
1= Initialization - 1 Pry Falder : D:hdownload'\U18752E_78KOSKB1P_ASM_PRI_0704 %1
& ife
=@ Initialization - - |
{2188 Soirce Fie: | Expart Makefil ! Wiatkspace File Mame : Didownload\U1B752E_7BKOSKBTP_ASM_PRJ_0704_1%initial pris
[Include Files
[Project Felate
(2 Other Files Project Group : Initialization
Add Cther Files, .. Project Title:
]\nit\a\izat\nn
Microcontrollers Name : Device Name :
|78r0s ~| JuPo7sFszaz ~| Device Instal]
1 uPD7EF3212 -
uPD78FA221 3
Edit project settings uPD7BF9222 =3
uPD 4- - o

|
|
v

= 1
Click e i i
—
—-) (2405 The NEC Electronics tool ko be used was changed.
LY

This will be displam
WWhen these tools are changed, it is necessary bo compile all source files

when the device name
at the time of next build.

iS Changed . Are all object files deleted in order to compile all source Files at the time of next build?

Application Note U18864EJ2VOAN 21

CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+

(4) Click & ([Build] button). When the source files are built normally, the message “I3500: Build completed
normally.” will be displayed.
(5) Click the [OK] button in the message dialog box. A HEX file for flash memory writing will be created.

Remark Screenshots of the Sample Program (Initial Settings) LED Lighting Switch Control are shown below.

#2 PM+ - initial. prw [OutPut]
File Edit Find Laver Yew Project Buld Tool wWindow Help

DS H &R &% =]« 2= P
%W

4

|3

| Initialization - Initisization _~|[Debug Buid ~|

LOxl=ows 4 CEE
Files]Mem} - JEoF]
Initialization : 1 Project(s)
= @ Initialization
#-(11 Source Files Click

(22 Include Filss = =I5
(23 Proisct Related Files g E]['E‘@
(22 Otker Files "C:\Program Files\MEC Electronics Tools)RA7TS8KOS,WZ.00%bin\ra78k0s.exe” —fmain.pray -

PASS_OUTOBJ Starti
Assenbly complete, 0 error(s) and 0 warningis) found.+

"C:\Program Files\NEC Electronics Tools)RA7SKOS)W2.00Ybin)ra78k0s.exe" -fop.prat
PLSS OUTORJ Starti
Aszenbly complete,
"C:\Program Files\NE

+

Sk0s.exe"” —-fmain.plké
Link complete, a -

‘ :C”Pr"“gra’“ Files\NE _:!;) 13500: Build completed normally, [f8¥0s.exe” ~fa.poct

— Cbject Conversion Col

(3) found.+

- build Total errori(s

ot ol

Click

v

A HEX file for flash memory writing will be generated.

5.2 Operation with SM+

This section describes examples of checking the operation on the 1/0 panel window or timing chart window of SM+.
For the details of how to operate SM+, refer to the SM+ System Simulator Operation User’s Manual.

<R> (1) When SM+ for 78K0S/Kx1+ W1.02 (“SM+” hereafter) is used in the environment of PM+ Ver. 6.30, SM+ cannot
be selected as the debugger. In this case, start SM+ via method (a) or (b) described below, while keeping PM+
running after completing building a project.

(a) When starting SM+ in PM+
<1> Select [Register Ex-tool] from the [Tool] menu and register “SM+ for 78KOS/Kx1+".
<2> Select [Ex-tool Bar] from the [View] menu and add the SM+ icon to the PM+ toolbar.
<3> Click the SM+ icon and start SM+.
(See the PM+ help for details on how to register external tools.)

(b) When not starting SM+ in PM+
*Start SM+ from the Windows start menu.

292 Application Note U18864EJ2VOAN

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=SM%2a&title=SM%2b%2aoperation

CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+

(2) The following screen will be displayed when SM+ is started. (This is a sample screenshot of when an
assembly language source file downloaded by clicking the ey icon was used.)

%= SM+ for 78KO0S : tmB0.prj

Fle Edit Yiew Option Run Event Browse Jump Smulator Window Help

LA L L= A =L S @!ﬂi#&l‘]%]ﬁ&ﬂ '|W!’
'ﬁigl*.‘.:f_l $ B e—mm HES T I

e O | 2

[N DO C

Search.] << > | WalchJ Uu\ck.. Refresh Close

pe HOUY AX. HSTACKTOP
[132] HMouw §P. 4] 5 Set the stack poin

Initialize the watchdog timer

HOU WDTH. #01110111B i Stop the watchdeg

Detect low-voltage + set the clock

Set the clock <1> ———
HOU PCC, HOPRBAPRARAR ;5 The clock supplied
Mou LSRCH. #AABAOAO1E 5 Stop the oscillati

Check the reset source ———
HMou £ E! 5 Read the reset sou
BT A.B, $SET_CLOCK 5 Omit subsequent LV

Set low-voltage detection ————
- HOPBAPARAR ; Set the low—voltag,
SET1 LUION 5 Enable the low-vol

mymnm@,m

Pin Neme r

LED (P20)

SWi(P43)

. |

[main. asma# 131 --- o108 auta fns

(3) Click | ™ | ([Restart] button). The program will be executed after the CPU is reset and the following screen will
be displayed.

%= SM+ for 78K0S : tmB0.prj
File Edt Yiew Option Run Event Browse Jump Simdlator Window Help

@»l = | 1e] BiBiem Bt Qs B 9 zf@

Click $ B ﬁ*‘ﬂ\?l‘i\mn__l}zul\-’ﬂ
|k N OOCk S|ald

»» WalchJ Quick.. [

Mouu AR HETACKTOP
Mouy SP. AR ;5 Set the stack poin

Initialize the watchdog timer

Mou WDTM. #011160111B i Stop the watchdog

Detect lowwvoltage + set the clock LED bllnkS
o0 7 S Uooponann ; The clock suppliod repeatedly at fixed
cycles.

HOU LSRCH. HDOPOBOB1B 5 Stop the oscillati

Ghe[:k the reset source ————
Hou 5 Read the reset sou
BT ALl $SET_CLOCK ; Omit subsequent LU

Set low— uoltage detection ——— |
LUIS, #PEPAROAAR ; Set the low-voltag
SET1 LUION ; Enable the luw—unlj

[w !‘l—uuu v m @ Im

[Fin MName

This turns red during /
program execution.

Application Note U18864EJ2VOAN 23

CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+

(4) Click the [SW] button in the 1/0 panel window, during program execution.
Check that the blinking cycle of [LED] in the I/O panel window and the waveforms in the timing chart window
change, depending on the number of [SW] button inputs.

1/0 panel window Timing chart window
Blinks at cycles of - The reversal cycle of the LED (P20) is 500 ms.
about 1 s"*2,
rrrrrrr >
Y | 0.054000 ¥ | s00.064000 Y | 500.000000 2 | msec
|Pin Watne |
Do not click. 10
[ey LED (P20)
W (P43)
The reversal cycle of the LED (P20) is 250 ms.
Blinks at cycles of v
about 1/2 s™**2, CEb Y |3115.naunnn ¥ |3355.naunnn w | 250000000 55 | msec
|Pin Natme |
LED (P20)
Click once. —» ST (P43)
Note 1
The reversal cycle of the LED (P20) is 126 ms.
Blinks at cy;:l‘ezs of - A 4
about 1/4 s"°2. T|53m3.nannnu ?|51au.nannnu | & | 126000000 2 | msec
|Pin Natme | ?
LED (P20)
Click twice. —p [[78W] =0 (P43
) The reversal cycle of the LED (P20) is 64 ms.
Blinks at cycles of
about 1/8 "2, B h 4
Y |aaua.4uauun ¥ |aaa?.4uauun L& | 64.000000 §2 | msec
|Pin Narme | Y
Click three times. ——» LED (P20)
ST (P43)

Notes 1. The blinking cycle from the zeroth [SW] button input is repeated after the fourth [SW] button input.
2. This may differ from the actual blinking cycle, depending on the operation environment of the PC
used.

24 Application Note U18864EJ2VOAN

CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+

[Supplement] The [SW] button hold time can be set to less than 10 ms to check whether chattering is being
detected.

<1> Select on the toolbar.

<2> Right-click the [SW] button in the 1/O panel window and select [Properties].
<3> Enter “9” for the Hold Time and click the [OK] button.

== tmB00. pnl

Parts Button Properties

Cuk
Copy Button Connection 1 Shyle]
Paste
Delete Label]SW
Group] PinMame: P43/ TXDEANTP1 A
Order]
Active Level: ¢ LOW (" HIGH
Propetties

Type: @ Push (" Toggle © Group

Group Mame :

< |
- Hald Time : eer

Enter “9”, then clickthe —
[OK] button. -

A
I akK I Cancel yEply Help

<4> Select @ on the toolbar.

<5> Execute the program and click the [SW] button. Even if the [SW] button is clicked, chattering will be
identified and the LED blinking cycle will not change, because the button hold time is 9 ms.

Application Note U18864EJ2VOAN 25

<R>

26

CHAPTER 6 RELATED DOCUMENTS

Document Name

Japanese/English

78K0S/KA1+ User's Manual

PDF

78K0S/KB1+ User’'s Manual PDF
78K/0S Series Instructions User's Manual PDF
RA78K0S Assembler Package User's Manual Language PDF
Operation PDF

CC78K0S C Compiler User's Manual Language PDF
Operation PDF

PM+ Project Manager User's Manual PDF
SM+ System Simulator Operation User's Manual PDF
Flash Programming Manual (Basic) MINICUBE2 version 78KOS/KA1+ PDFE
78K0S/KB1+ PDF

78K0S/Kx1+ Sample Program Startup Guide PDF
Application Note Sample Program (Initial Settings) LED Lighting Switch Control PDF
Sample Program (Interrupt) External Interrupt Generated by Switch Input PDFE

Sample Program (Low-Voltage Detection) Reset Generation During PDF

Detection at Less than 2.7 V

Application Note U18864EJ2VOAN

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U16898*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U11047*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=RA78K0S&title=language&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=RA78K0S&title=operation&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=CC78K0S&title=language&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=CC78K0S&title=operation&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?title=PM%2b%2a
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=SM%2a&title=SM%2b%2aoperation
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18844*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U19224*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18787*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18752*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18812*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18821*

APPENDIX A PROGRAM LIST

As a program list example, the 78 KOS/KB1+ microcontroller source program is shown below.

@® main.asm (Assembly language version)

S AEEAEAEAEAEAAEAEAAAEAAAAAAAAAALAAAAXAAAAAAAAAAAXAAAXAAAXAAAXAAAXAAAXAAAXAAAXAAAXAAAXAAAXAAXALdx
’

: NEC Electronics 78KOS/KB1+

’
mAAAAAAAA A AR A A AR A AR A A AR A AR A AAA A AR A AARAAARAAAAAAAAAAAAAAAAAAAAAXAAAAAAAXAAAAAAAXAAK
L

; 78K0OS/KB1+ Sample program

AAXAXAAAAAAXAXAAAXAAAXAAAXAAAAKAAAXAAAAAAAAAAAAAAddddhk

’
; 8-bit timer 80

" AAEETEAAATAAAAAAAA A A A AT A AAAAAAAAAAAAAIAAAATAAAAAAAIAAIAAIAAAATAATAATRAAIAIAIAIAI AT AIAAIdIAdddddk
;<<History>>

: 2007.7.-- Release

LR R e R R e S S e R e R e R R e R e R e

;<<Overview>>

;This sample program presents an example of using the interval timer function
;of 8-bit timer 80. The LEDs are blinked by reversing the P20 pin output
;through the use of 8-bit timer 80 interrupts. The LED blinking cycle is
;changed by rewriting the compare register of the timer when a switch input
;interrupt is generated.

; <Principal setting contents>

; - Stop the watchdog timer operation

; - Set the low-voltage detection voltage (VLVI) to 4.3 V +-0.2 V

; - Generate an internal reset signal (low-voltage detector) when VDD < VLVI
after VDD >= VLVI

; - Set the CPU clock to 8 MHz

; - Set the clock supplied to the peripheral hardware to 8 MHz

; - Set the valid edge of external interrupt INTP1 to falling edge

; - Set the chattering detection time during switch input to 10 ms

; <8-bit timer 80 settings>
; - Count clock = fxp/27™6 (125 kHz)
; - Initial value of timer cycle = 2 ms (8[us/clk] x 250[count] = 2[ms])

; <Number of switch inputs and LED blinking cycles>

: e +
; | SW Inputs | LED Blinking]
; | (P43) | Cycle (P20) |
S T e —— |
; | 0 times | 1 second |
; | 1 time | 1/2 second |
; | 2 times | 1/4 second |
; | 3 times | 1/8 second |
; e +

Application Note U18864EJ2VOAN 27

APPENDIX A PROGRAM LIST

; # The blinking cycle from the zeroth switch input is repeated after the
fourth switch input.

;<<I/O port settings>>

; Input: P43

; Output: POO-PO3, P20-P23, P30-P33, P40-P42, P44-P47, P120-P123, P130
; # All unused ports are set as the output mode.

’
=S AEEAEEAEI A AAEAAAAAAAAAAAAAAAAAAAAAAA AR AA XA AXAAAXAAAAAAXAAAXAAAXAAAXAAIAXAAAXAAAXAIAXALXAhdd%
’

iVCT CSEG AT OOOO0H

DW RESET_START ;(00) RESET

DW RESET_START :(02) --

DW RESET_START :(04) --

DW RESET_START ;(06) INTLVI
DW RESET_START -(08) INTPO

DW INTERRUPT_P1 -(0A) INTP1

DW RESET_START :(0C) INTTMH1
DW RESET_START ;(OE) INTTMOOO
DW RESET_START ;(10) INTTMO10
DW RESET_START -(12) INTAD

DW RESET_START - (14) --

DW RESET_START :(16) INTP2

DW RESET_START ;(18) INTP3

DW INTERRUPT_TM80 :(1A) INTTM8O
DW RESET_START - (1C) INTSRE6
DW RESET_START - (1E) INTSR6
DW RESET_START :(20) INTST6

XROM CSEG AT 0100H
————— For setting the timer 80 cycle --—---

DB 250-1 ; 2 ms interval compare value

DB 125-1 ; 1 ms interval compare value

DB 63-1 ; 0.5 ms interval compare value

DB 32-1 ; 0.25 ms interval compare value
————— For handling chattering ----—-

DB 5+1 ; Count value for handling chattering (for 2 ms
interval)

DB 10+1 ; Count value for handling chattering (for 1 ms
interval)

DB 20+1 ; Count value for handling chattering (for 0.5 ms
interval)

DB 40+1 ; Count value for handling chattering (for 0.25 ms
interval)

28 Application Note U18864EJ2VOAN

APPENDIX A PROGRAM LIST

; Define the RAM

XRAM DSEG SADDR

CNT_TM80: DS 1 ; For counting INTTM80 interrupt
; Define the memory stack area

XSTK DSEG AT OFEEOH

STACKEND:
DS 20H ; Memory stack area = 32 bytes
STACKTOP: ; Start address of the memory stack area = FFOOH

R R e R R e S S e R e

Initialization after RESET

’
EAAAA A AAA A AR A AAA A AA A A AR A AR A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AR AAAAAAdhh*k

XMAIN CSEG UNIT
RESET START:

; Initialize the stack pointer
' MOVW AX, #STACKTOP

MOVW SP, AX ; Set the stack pointer
; Initialize the watchdog timer

MOV ~ WDTM, #01110111B ; Stop the watchdog timer operation

o
@
-
@
(@]
-
o
b
<
(e)
=
QD
«Q
D
+
]
D
-
-
>
D
¢)
o
0
=

j-———-— Set the clock <1> --—--

MoV PCC, #00000000B ; The clock supplied to the CPU (fcpu) = fxp (=
x/4 = 2 MHz)

MoV LSRCM, #00000001B ; Stop the oscillation of the low-speed
internal oscillator

;-———- Check the reset source -----

MOV A, RESF ; Read the reset source

BT A.0, S$SET CLOCK ; Omit subsequent LVI-related processing and go
to SET_CLOCK during LVI reset

j-———-— Set low-voltage detection ---—--
MoV LVIS, #00000000B ; Set the low-voltage detection level (VLVI) to
4.3V +-0.2 V

SET1 LVION ; Enable the low-voltage detector operation
MOV A, #40 ; Assign the 200 us wait count value

;————- 200 us wait -----

WAIT_200US:
DEC A

Application Note U18864EJ2VOAN 29

APPENDIX A PROGRAM LIST

BNZ $WAIT_200US ; 0.5[us/clk] x 10[clk] x 40[count] = 200[us]
————— VDD >= VLVI wait processing -----
WAIT_LVI:

NOP

BT LVIF, $WAIT_LVI ; Branch if VDD < VLVI

SET1 LVIMD ; Set so that an internal reset signal is
generated when VDD < VLVI
- Set the clock <2> --—-—-
SET_CLOCK:

MoV PPCC, #00000000B ; The clock supplied to the peripheral hardware
(fxp) = fx (= 8 MHz)
; -> The clock supplied to the CPU (fcpu) = Ffxp

MoV PO, #00000000B ; Set output latches of POO-P0O3 as low
MoV PMO, #11110000B ; Set P00-P03 as output mode

MOV P2, #00000001B ; Set output latches of P21-P23 as low, P20 as
high (turn off LED)
MOV PM2, #11110000B ; Set P20-P23 as output mode

MoV P3, #00000000B ; Set output latches of P30-P33 as low
MoV PM3, #11110000B ; Set P30-P33 as output mode

MoV P4, #00000000B ; Set output latches of P40-P47 as low

MOV PU4, #00001000B ; Connect on-chip pull-up resistor to P43

MOV PM4, #00001000B ; Set P40-P42 and P44-P47 as output mode, P43 as
input mode

MoV P12, #00000000B ; Set output latches of P120-P123 as low
MOV PM12, #11110000B ; Set P120-P123 as output mode

MoV P13, #00000001B ; Set output latch of P130 as high

MOV ~ CNT_TM80, #250 ; Initialize the number of INTTM80 interrupts

30 Application Note U18864EJ2VOAN

APPENDIX A PROGRAM LIST

MOVW HL, #0100H ; Specify the table address to HL (used for
INTP1 interrupt)

; Set 8-bit timer 80

MOV ~ TMCS8O0, #00000000B ; Count clock = fxp/276 = 125 kHz

MOV A, [HL] ; Read from the table the base time initial
values for blinking the LEDs

MOV ~ CR80, A ; Initialize the compare values

SET1 TCE8O ; Start the timer operation
; Set the interrupt

MoV INTMO, #00000000B ; Set the valid edge of INTP1 to falling
edge

MoV IFO, #0O0H ; Clear invalid interrupt requests in advance

CLR1 PMK1 ; Unmask INTP1 interrupts

CLR1 TMMK80 ; Unmask INTTM80 interrupts

El ; Enable vector interrupt
= A AAEAAAAAAAAAAAA A AR A AAAAAAAAAAAARAAAAAXAARAAAAAXAAAXAAAAXAAXAXAAAXAAAXAXAAAXAXAAXAAAA XA AA XX)NK
; Main loop
MAIN_LOOP:

NOP

BR $MAIN_LOOP ; Go to the MAIN_LOOP

EAEAEXEXAXEAAEITEAAXA KA AXA A AKX A AKX EAAXAAAXAAAXAAAXAAAXAAAXAXAXRAXAXAAXAAAXAAAXAAAXAAAXAAIAXAAIAXAAXAXAXTXALXAhx*k

External interrupt INTP1

;
;
;
;
- ook ek ek ek e ke ke ke e ke e e e e ke sk sk sk sk e sk stk ke sk ke sk e ke e ke e ke e ke e ke ek e sk e sk e sk ke sk ek e ke e ke e ke e ke e e e e ok
;

I

NTERRUPT_P1:

PUSH AX ; Save the AX register data to the stack
- 10 ms wait to handle chattering -----
MOV A, [HL+4] ; Read the count value corresponding to the
timer 80 cycle
WAIT_CHAT:
NOP
BF TMIF80, $SWAIT_CHAT ; Wait for the INTTM80 interrupt
CLR1 TMIF80 ; Clear the INTTM80 interrupt request flag
CALL 'SUB_INTERRUPT_TM80 ; Service the INTTM80 interrupt
DEC A ; Decrement the A register by 1
BNZ $WAIT_CHAT ; Branch if not A = 0
CLR1 PIF1 ; Clear the INTP1 interrupt request
————— Identification of chattering detection -----

BT P4.3, $END_INTP1 ; Branch if there is no switch input

;————— Change the TM80 interval cycle ---—--
CLR1 TCE8O ; Stop the timer operation

Application Note U18864EJ2VOAN 31

APPENDIX A PROGRAM LIST

MOV A, L ; Read the lower 8 bits of the table address

INC A ; Increment the table address by 1

AND A, #00000011B ; Mask bits other than bits 0 and 1

MOV L, A ; Write to the lower 8 bits of the table address

MOV A, [HL] ; Read the table data

MOV ~ CR80, A ; Change the LED blinking base time

SET1 TCE80 ; Start the timer operation

MOV ~ CNT_TM80, #250 ; Initialize the number of INTTM80 interrupts
END_INTP1:

POP AX ; Restore the AX register data

RETI ; Return from interrupt servicing

= AAEE A AR AAA A A A A AR AR A AR A A AR A AR AR A A A A AAA A AR A A A AAARAA AR A A A AAARAAARARAAAAAAAARAAAAAAAAA AKX
; Interrupt INTTM80
: AEAAIEAAAAAA A A A A AR A AR A A A A A A A AAA AR A A A AAAA AR A A AAAAAA AR AAAAAAARAAAAAAAAAAAAAAAAAAA K
INTERRUPT_TM80:

CALL 'SUB_INTERRUPT_TM80 ; Service the INTTM80 interrupt

RETI ; Return from interrupt servicing

SUB_INTERRUPT_TM80:

DBNZ CNT_TM80, $END_INTTM80 ; Branch if the number of INTTM80
interrupts < 250

MOV ~ CNT_TM80, #250 ; Initialize the number of INTTM80 interrupts

XOR P2, #00000001B ; Reverse the LED output

END_INTTM80:
RET ; Return from the subroutine

end

32 Application Note U18864EJ2VOAN

APPENDIX A PROGRAM LIST

® main.c (C language version)

/ nnnnnnnnnnnnnnnnn
NEC Electronics 78K0S/KB1+
nnn
78K0S/KB1+ Sample program
AAEEAAEAAAAAAAAAAAAAAAAAAAAAAATAAAAAAAAAAAAAAAAAATAATAAXAAXAIAAIAAAATAARAARAIAIAIAIAIAIAAIAAIAhAdd*k
8-bit timer 80
R o R S R R e R e R R R R R e R R R R e
<<History>>
2007 .7.-- Release
AAEEAAEEAAXEAAAAAAAAAAAAAAAAAAAAAAAAAATAAAAXAAXAAXAAAAATAATAIAXAIAXAIAIAAIAAIAAITAARIAIAIAIAIAIAAIAAIhhIhddk
<<Overview>>

This sample program presents an example of using the interval timer function
of 8-bit timer 80. The LEDs are blinked by reversing the P20 pin output
through the use of 8-bit timer 80 interrupts. The LED blinking cycle is
changed by rewriting the compare register of the timer when a switch input
interrupt is generated.

<Principal setting contents>

Declare a function run by an interrupt: INTP1 -> fn_intpl()
Declare a function run by an interrupt: INTTM80 -> fn_inttm80()
Stop the watchdog timer operation
Set the low-voltage detection voltage (VLVI) to 4.3 V +-0.2 V
- Generate an internal reset signal (low-voltage detector) when VDD < VLVI
after VDD >= VLVI
- Set the CPU clock to 8 MHz
- Set the clock supplied to the peripheral hardware to 8 MHz
- Set the valid edge of external interrupt INTP1 to falling edge
- Set the chattering detection time during switch input to 10 ms

<8-bit timer 80 settings>
- Count clock = fxp/276 (125 kHz)
- Initial value of timer cycle = 2 ms (8[us/clk] x 250[count] = 2[ms])

<Number of switch inputs and LED blinking cycles>

- +
| SW Inputs | LED Blinking]
| (P43) | Cycle (P20) |
e |- |
0 times	1 second
1 time	1/2 second
2 times	1/4 second
3 times	1/8 second
Ry gy +

The blinking cycle from the zeroth switch input is repeated after the
fourth switch input.

<<1/0 port settings>>

Application Note U18864EJ2VOAN 33

APPENDIX A PROGRAM LIST

Input: P43
Output: PO0-P0O3, P20-P23, P30-P33, P40-P42, P44-P47, P120-P123, P130
All unused ports are set as the output mode.

***/

[F===========

Preprocessing directive (#pragma)
oo */
#pragma SFR /* SFR names can be described at the C
source level */
#pragma El /* El instructions can be described at the
C source level */
#pragma NOP /* NOP instructions can be described at

the C source level */

#pragma interrupt INTP1 fn_intpl /* Interrupt function declaration:INTP1 */
#pragma interrupt INTTM80 fn_inttm80 /* Interrupt function

declaration: INTTM80 */

[F===========

Declare the function prototype
oo */
void fn_subinttm80(); /* INTTM80 interrupt subroutine */
[*===========

Define the global variables
=== ——== */
sreg unsigned char g ucSWecnt = 0; /* 8-bit variable for counting the number

of switch inputs */
sreg unsigned char g ucTM80cnt = 0; /* 8-bit variable for counting the number
of INTTM80 interrupts */

const unsigned char g ucChat[4] = {5+1,10+1,20+1,40+1}; /* 8-bit constant
table for removing chattering */
const unsigned char g _ucCR80data[4] = {250-1,125-1,63-1,32-1}; /* 8-bit

constant table for LED blinking base time */

i R

Initialization after RESET

nnn /
void hdwinit(void){
unsigned char ucCnt200us; /* 8-bit variable for 200 us wait */
S o
Initialize the watchdog timer + detect low-voltage + set the clock
__ */

/* Initialize the watchdog timer */
WDTM = 0b01110111; /* Stop the watchdog timer operation */

/* Set the clock <1> */

34 Application Note U18864EJ2VOAN

APPENDIX A PROGRAM LIST

PCC = 0b00000000; /* The clock supplied to the CPU (fcpu) =
xp (= /4 = 2 MHz) */
LSRCM = 0b00000001; /* Stop the oscillation of the low-speed

internal oscillator */

/* Check the reset source */

if (J}(RESF & 0b00000001)){ /* Omit subsequent LVI-related processing
during LVI reset */

/* Set low-voltage detection */

LVIS = 0b00000000; /* Set the low-voltage detection level
(VLV1) to 4.3 V +-0.2 V */
LVION = 1; /* Enable the low-voltage detector

operation */

for (ucCnt200us = 0; ucCnt200us < 9; ucCnt200us++){ /* Wait of
about 200 us */

NOPQ);
he
while (LVIF){ /* Wait for VDD >= VLVI */
NOPQ);
LVIMD = 1; /* Set so that an internal reset signal is
generated when VDD < VLVI */
}
/* Set the clock <2> */
PPCC = 0b00000000; /* The clock supplied to the peripheral

hardware (fxp) = fx (= 8 MHz)
-> The clock supplied to the CPU (fcpu)
= fxp = 8 MHz */

Y £
Initialize the port O

__ */
PO = 0b00000000; /* Set output latches of P0O0-P0O3 as low */
PMO = 0b11110000; /* Set P00-PO3 as output mode */

S
Initialize the port 2

__ */
P2 = 0b00000001 ; /* Set output latches of P21-P23 as low,

P20 as high (turn off LED) */
PM2 = 0b11110000; /* Set P20-P23 as output mode */

S o
Initialize the port 3

__ */
P3 = 0b0O0000000; /* Set output latches of P30-P33 as low */
PM3 = 0b11110000; /* Set P30-P33 as output mode */

S o
Initialize the port 4

__ */
P4 = 0b00000000; /* Set output latches of P40-P47 as low */
PU4 = 0b00001000; /* Connect on-chip pull-up resistor to P43

*/

Application Note U18864EJ2VOAN 35

APPENDIX A PROGRAM LIST

PM4 = 0b00001000; /* Set P40-P42 and P44-P47 as output mode,
P43 as input mode */
)

Initialize the port 12
__ */

P12 = 0b00000000; /* Set output latches of P120-P123 as low
*/

PM12 = 0b11110000; /* Set P120-P123 as output mode */
/)

Initialize the port 13
__ */

P13 = 0b00000001 ; /* Set output latch of P130 as high */
/)

Set 8-bit timer 80
__ */

TMC80 = 0b00000000; /* Count clock = fxp/276 = 125 kHz */

CR80 = 250-1; /* Initialize the LED blinking base time
*/

TCE80 = 1; /* Start the timer operation */
/)

Set the interrupt
__ */

INTMO = 0b0O0O000000; /* Set the valid edge of INTP1 to falling
edge */

1FO = 0x00; /* Clear invalid interrupt requests in
advance */

PMK1 = 0O; /* Unmask INTP1 interrupts */

TMMK80 = 0; /* Unmask INTTM80 interrupts */

return;
}
/***

Main loop

“““““““““ /

void main(void){

E1Q; /* Enable vector interrupt */

while (1){

NOPQ);
NOPQ);
}

}

/***

External interrupt INTP1

***/

__interrupt void fn_intpl(){
unsigned char ucChat; /* 8-bit variable for removing chattering */

36 Application Note U18864EJ2VOAN

APPENDIX A PROGRAM LIST

for (ucChat = g_ucChat[g_ucSWcnt] ; ucChat > 0 ; ucChat--){ /* Wait of
about 10 ms (for removing chattering) */
while (ITMIF80){ /* Wait for the INTTM80 interrupt request */

NOPQ);
}
TMIF80 = O; /* Clear the INTTM80 interrupt request
flag */
fn_subinttm80(); /* Service the INTTM80 interrupt */
}
PIF1 = O; /* Clear the INTP1 interrupt request */
it (1P4.3){ /* Processing performed if SW is on for 10 ms or more
*/

g_ucSWent = (g_ucSWent + 1) & 0b00000011; /* Increment the number
of switch inputs by 1 */

TCE80 = 0O; /* Stop the timer operation */
CR80 = g_ucCR80data[g_ucSWcnt]; /* Change the LED blinking
base time in accordance with the number of switch inputs */
TCE80 = 1; /* Start the timer operation */
g_ucTM80cnt = 0O; /* Clear the number of INTTM80 interrupts
*/
}
return;
}
/ nnn

Interrupt INTTM80

***/

__interrupt void fn_inttm80(){
fn_subinttm80(); /* Service the INTTM80 interrupt */

return;

void fn_subinttm80(){

if (++g_ucTM80cnt == 250){ /* Processing when the number of INTTM80
interrupts is 250 */
g_ucTM80cnt = 0; /* Clear the number of INTTM80 interrupts */
P2 ~= 0b00000001; /* Reverse the LED output */

}

return;

Application Note U18864EJ2VOAN 37

APPENDIX A PROGRAM LIST

® op.asm (Common to assembly language and C language versions)

OPBT CSEG AT 0080H
DB 100111008 ; Option byte area
; 111
: Inli+----------- Low-speed internal oscillator can be
stopped by software
; |++--——--—-———- High-speed internal oscillation clock (8
MHz) is selected for system clock source
; e P34/RESET pin is used as RESET pin
DB 11111111B ; Protect byte area (for the self programming
mode)
; I
; R I All blocks can be written or erased
end

38 Application Note U18864EJ2VOAN

APPENDIX B REVISION HISTORY

The mark “<R>" shows major revised points. The revised points can be easily searched by copying an “<R>" in the
PDF file and specifying it in the “Find what.” field.

Edition Date Published Page Revision
1st edition October 2007 - -
2nd edition September 2008 pp.20 to 22 Modification of 5.1 Building the Sample Program
p.22 5.2 Operation with SM+

o Addition of (1)

p.26 CHAPTER 6 RELATED DOCUMENTS

e Addition of Flash Programming Manual (Basic) MINICUBE2 version

Application Note U18864EJ2VOAN 39

For further information,
please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan

Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000

800-366-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10

40472 Dusseldorf, Germany

Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover

Tel: 0511 33402-0

Munich Office
Werner-Eckert-Strasse 9
81829 Miinchen

Tel: 08992 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 071199 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, UK.

Tel: 01908-691-133

Succursale Francaise

9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France

Tel: 01-3067-5800

Sucursal en Espaina
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Taby Centrum
Entrance S (7th floor)
18322 Taby, Sweden
Tel: 08 638 72 00

Filiale ltaliana

Via Fabio Filzi, 25/A
20124 Milano, ltaly
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6

5616 HS Eindhoven

The Netherlands

Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China

Tel: 010-8235-1155

http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower,

200 Yincheng Road Central,

Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400

http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048

Tel:0755-8282-9800

http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place,

193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318

http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.

Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,

#12-08 Novena Square,

Singapore 307684

Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea

Tel: 02-558-3737
http://www.kr.necel.com/

G0706

	COVER
	CHAPTER 1 OVERVIEW
	1.1 Main Contents of the Initial Settings
	1.2 Contents Following the Main Loop

	CHAPTER 2 CIRCUIT DIAGRAM
	2.1 Circuit Diagram
	2.2 Peripheral Hardware

	CHAPTER 3 SOFTWARE
	3.1 File Configuration
	3.2 Internal Peripheral Functions to Be Used
	3.3 Initial Settings and Operation Overview
	3.4 Flow Charts

	CHAPTER 4 SETTING METHODS
	4.1 Setting the Interval Timer Function of 8-bit Timer 80
	4.2 Setting the LED Blinking Cycle and Chattering Detection Time

	CHAPTER 5 OPERATION CHECK USING SYSTEM SIMULATOR SM+
	5.1 Building the Sample Program
	5.2 Operation with SM+

	CHAPTER 6 RELATED DOCUMENTS
	APPENDIX A PROGRAM LIST
	APPENDIX B REVISION HISTORY

