

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ05B0584-0101/Rev.1.01 March 2005 Page 1 of 84

740 Family
740 Family Sample Programs Collection

Contents

1. Distinctive Features of 740 Family Instruction Set.. 2

2. Effective use of 740 Family MCU Distinctive Instructions .. 3
2.1 Memory-to-Memory Operations.. 3
2.2 Bit Branch Instructions .. 5
2.3 Bit Managing (Set/Reset).. 7
2.4 Rotate Shift ... 8

3. Basic Processing Program Example .. 11
3.1 RAM Clear... 11
3.2 Data Transfer (RAM)... 13
3.3 Data Transfer (ROM address fixed).. 15
3.4 Data Transfer (ROM address variable)... 17
3.5 Data Sort ... 20
3.6 16-Bit Data Add (Binary) ... 25
3.7 16-Bit Data Subtract (Binary) .. 27
3.8 16-Bit Data Add (BCD).. 28
3.9 16-Bit Subtract (BCD) ... 31
3.10 16-Bit Data Multiply (Binary) ... 33
3.11 16-Bit Data Divide (Binary) ... 37

4. Application Program Example... 42
4.1 File Handling (transfer) ... 42
4.2 File Handling (exchange) .. 44
4.3 Code Conversion (packed BCD →unpacked BCD).. 47
4.4 Code Conversion (unpacked BCD →packed BCD).. 51
4.5 Code Conversion (BIN →BCD)... 55
4.6 Code Conversion (BCD →BIN)... 60
4.7 SGN Function ... 65
4.8 BCD 12-digit Floating Point Arithmetic Calculations... 66

5. Substitute Instruction .. 77
5.1 Swap Accumulator .. 77
5.2 Counter Bit Accumulator ... 78
5.3 Memory Set Bit ... 79
5.4 Memory Clear Bit .. 80
5.5 Memory Bit Reversal... 81

6. Program Usage Notes .. 82

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 2 of 84

1. Distinctive Features of 740 Family Instruction Set
The 740 Family instruction set offers the following distinctive features.

(1) An efficient instruction set with many addressing modes allowing the effective use of user program area.
(2) The same bit set/clear, bit test, and branch instructions can be applied for Accumulator, Memory and I/O area.
(3) Multiple interrupts allow a variety of servicing of periodic or non-periodic events.
(4) Powerful indexed addressing performs various byte and table-reference operations.
(5) Decimal mode does not require any software correction for decimal operations.
(6) Accumulator does not need to be used in operations using memories and/or I/Os.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 3 of 84

2. Effective use of 740 Family MCU Distinctive Instructions

2.1 Memory-to-Memory Operations
(1) Addition (mnemonic ADC)

When X Modified Operation Mode Flag T is “1”, the ADC instruction adds the contents of M (X), Memory M and
Carry Flag C and stores the results in M (X) and Carry Flag C. At this point, the contents of Accumulator A remain
the same, but the status flags are changed. In this case, M (X) represents the contents of the memory at the address
indicated by Index Register X.

Example:

CLC (a)

SET (b)

LDX #ADDATA (c)

ADC $10, X (d)

CLT (e)

Explanation:

(a) Set Carry Flag C to “0”.

(b) Set X Modified Operation Mode Flag T to “1”.

(c) Load #ADDATA (example: 70H) to Index Register X.

(d) Add the contents of the memory at address 70H, contents of address 80H (70H + 10H) and contents of Carry Flag
C; store the results in address 70H and Carry Flag C.

Address 70H + Address (70H + 10H) + CAddress 70H

(e) Set X Modified Operation Mode Flag T to “0”.

For example, if the contents of address 70H are 53H and the contents of address 80H are 21H, the contents of
address 70H will be 74H and Carry Flag C will be “0” after execution of the instructions in steps (a) to (e).

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 4 of 84

(2) Subtraction (mnemonic SBC)
When X Modified Operation Mode Flag T is “1”, the SBC instruction subtracts the value of Memory M and the
complement of Carry Flag C from the contents of M (X), and stores the results in M (X) and Carry Flag C. At this
point, the contents of Accumulator A remain the same, but the status flags are changed. In this case, M (X)
represents the contents of the memory at the address indicated by Index Register X.

Example:

SEC (a)

SET (b)

LDX #SBDATA (c)

SBC $10, X (d)

CLT (e)

Explanation:

(a) Set Carry Flag C to “1”.

(b) Set X Modified Operation Mode Flag T to “1”.

(c) Load #SBDATA (example: $80) to Index Register X.

(d) Subtract the contents of address 90H (80H + 10H) and the complement of Carry Flag C from the contents of the
memory at address 80H; store the results in address 80H and Carry Flag C.

Address 80H – Address (80H + 10H) – C complementAddress 80H

(e) Set X Modified Operation Mode Flag T to “0”.

For example, if the contents of address 80H are 53H and the contents of address 90H are 21H, the contents of
address 80H will be 32H and Carry Flag C will be “1” after execution of the instructions in steps (a) to (e).

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 5 of 84

2.2 Bit Branch Instructions
(1) Branch On Bit Set (mnemonic BBS)

The BBS instruction tests the designated bit i of Accumulator A or Memory M. If the bit is “1”, the program
branches to the specified address. The branch address is specified by a relative address.
If the bit is “0”, the next instruction is executed.

Example:
BBS 0 , P 0 , START

START:

Process B

Process A

Explanation:
If bit 0 of Port P0 is “1”, the program branches to START. If bit 0 of Port P0 is “0”, the program continues on the
next instruction.

Is Port P00 YES

level "H"

?

NO

Process A

Process B

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 6 of 84

(2) Branch On Bit Clear (mnemonic BBC)
The BBC instruction tests the designated bit i of Accumulator A or Memory M. If the bit is “0”, the program
branches to the specified address. The branch address is specified by a relative address.
If the bit is “1”, the next instruction is executed.

Example:
RESET:

BBC 7, P1, RESET

Process B

Process A

Explanation:
If bit 7 of Port P1 is “0”, the program branches to RESET. If bit 7 of Port P1 is “1”, the program continues on the
next instruction.

Process A

Is Port P17 YES

level "L"

?

NO

Process B

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 7 of 84

2.3 Bit Managing (Set/Reset)
(1) Set Bit (mnemonic SEB)

The SEB instruction sets the contents of the designated bit i of Accumulator A or Memory M to “1”.
Example:
 SEB 7, P0

Explanation:
The contents of bit 7 of Port P0 are set to “1”.

7 6 0

1

P0

For example, if the contents of Port P0 are 53H, the contents will be D3H after the instruction is executed.

(2) Clear Bit (mnemonic CLB)
The CLB instruction sets the contents of the designated bit i of Accumulator A or Memory M to “0”.

Example:
 CLB 6, P1

Explanation:
The contents of bit 6 of Port P1 are set to “0”.

7 6 5 0

0

P1
For example, if the contents of Port P1 are 53H, the contents will be 13H after the instruction is executed.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 8 of 84

2.4 Rotate Shift
(1) Rotate One Bit Left (mnemonic ROL)

The ROL instruction puts the contents of Accumulator A or Memory M and Carry Flag C together as a 9-bit row
and rotates the contents one bit to the left. Then, the contents of Carry Flag C are stored in bit 0 of Accumulator A
or Memory M, and the contents of bit 7 of Accumulator A or Memory M are stored in Carry Flag C.

Example:
 ROL P0

Explanation:
Port P0 is connected to Carry Flag C and their contents are rotated one bit to the left.

7 0

CP0

For example, if the contents of Port P0 are 53H and Carry Flag C is “1”, the contents of Port P0 will be A7H and
Carry Flag C will be “0” after the instruction is executed.

(2) Arithmetic Shift Left (mnemonic ASL)
The ASL instruction shifts all bits of Accumulator A or Memory M one bit to the left. In this case, bit 0 of
Accumulator A or Memory M will be “0”, and the contents of bit 7 of Accumulator A or Memory M are stored in
Carry Flag C.

Example:
 ASL P0

Explanation:
All Port P0 bits are shifted one bit to the left.

7 0

C P0 0

For example, if the contents of Port P0 are 53H and Carry Flag C is “1”, the contents of Port P0 will be A6H and
Carry Flag C will be “0” after the instruction is executed.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 9 of 84

(3) Rotate One Bit Right (mnemonic ROR)
The ROR instruction puts the contents of Accumulator A or Memory M and Carry Flag C together as a 9-bit row
and rotates the contents one bit to the right. Then, the contents of Carry Flag C are stored in bit 7 of Accumulator A
or Memory M, and the contents of bit 0 of Accumulator A or Memory M are stored in Carry Flag C.

Example:
 ROR P1

Explanation:
Port P1 and Carry Flag C are connected and their contents are rotated one bit to the right.

7 0

C P1

For example, if the contents of Port P1 are 53H and Carry Flag C is “1”, the contents of Port P1 will be 29H and
Carry Flag C will remain as “1” after the instruction is executed.

(4) Logical Shift Right (mnemonic LSR)
The LSR instruction shifts all bits of Accumulator A or Memory M one bit to the right. In this case, bit 7 of
Accumulator A or Memory M will be “0”, and the contents of bit 0 of Accumulator A or Memory M are stored in
Carry Flag C.

Example:
 LSR P1

Explanation:
All bits of Port P1 are shifted one bit to the right.

7 0

0 CP1

For example, if the contents of Port P1 are 53H and Carry Flag C is “1”, the contents of Port P1 will be 29H and
Carry Flag C will remain as “1” after the instruction is executed.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 10 of 84

(5) Rotate Right of Four Bits (mnemonic RRF)
The RRF instruction rotates the contents of Memory M four bits to the right. As a result, the contents of the upper-
order and lower-order four bits of Memory M are reversed, but the order of the respective four bits does not change.

Example:
 RRF P2

Explanation:
The contents of the upper-order and lower-order four bits of Port P2 are reversed.

7 4 3 0

P2 upper P2 lower

For example, if the contents of Port P2 are 53H, the contents will be 35H after the instruction is executed.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 11 of 84

3. Basic Processing Program Example

3.1 RAM Clear
(1) Description

This program sets the area and clears the RAM.

(2) Explanation
The program clears LENGTH Bytes of RAM from RAM address SAVEPT.

RAM

SAVEPT

LENGTH Clear

Bytes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 12 of 84

(3) Flowchart

RAM_CLR

(X) ← LENGTH

(A) ← 0

(SAVEPT – 1 + (X)) ← (A)

(X) ← (X) – 1

NO
(X) = 0

?

YES

RETURN

(4) Program List
;***
;
; RAM clear routine
;
;***
;
RAM_CLR:
 LDX #LENGTH ;RAM length
 LDA #$00
RAMCL1: STA SAVEPT-1,X ;Clear from SAVEPT
 DEX ; -to SAVEPT+LENGTH-1
 BNE RAMCL1 ;Clear end ?
 RTS ;Yes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 13 of 84

3.2 Data Transfer (RAM)
(1) Description

Data is transferred within the RAM area.

(2) Explanation
LENGTH Bytes of data are transferred from RAM address LOADPT to addresses starting at SAVEPT.

RAM
LOADPT

LENGTH

Bytes

Transfer

SAVEPT

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 14 of 84

(3) Flowchart

TR1_DAT

(X) ← LENGTH

(A) ← (LOADPT – 1 + (X))

(SAVEPT – 1 + (X)) ← (A)

(X) ← (X) – 1

NO
(X) = 0

?

YES

RETURN

(4) Program List
;***
;
; RAM data transfer routine
;
;***
;
TR1_DAT:
 LDX #LENGTH ;RAM length
TR1_01: LDA LOADPT-1,X ;Transfer data from LOADPT
 STA SAVEPT-1,X ; -to SAVEPT
 DEX
 BNE TR1_01 ;Transfer end ?
 RTS ;Yes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 15 of 84

3.3 Data Transfer (ROM address fixed)
(1) Description

Data (address fixed) is transferred from the ROM area.

(2) Explanation
LENGTH Bytes of data are transferred from ROM address LOADDT to continuous RAM addresses, starting at
SAVEPT.

RAM

SAVEPT

Transfer

ROM

LOADDT

LENGTH

Bytes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 16 of 84

(3) Flowchart

TR2_DAT

(X) ← LENGTH

(A) ← (LOADDT – 1 + (X))

(SAVEPT – 1 + (X)) ← (A)

(X) ← (X) – 1

NO
(X) = 0

?

YES

RETURN

(4) Program List
;***
;
; ROM data transfer routine(address fixed)
;
;***
;
TR2_DAT:
 LDX #LENGTH ;ROM length
TR2_01: LDA LOADDT-1,X ;Transfer data from LOADDT
 STA SAVEPT-1,X ; -to SAVEPT
 DEX
 BNE TR2_01 ;Transfer end ?
 RTS ;Yes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 17 of 84

3.4 Data Transfer (ROM address variable)
(1) Description

Data (address variable) is transferred from the ROM area.

(2) Explanation
LENGTH Bytes of data are transferred to continuous RAM addresses, starting at SAVEPT, from the ROM address
+1 specified in the contents of RAM address ADDRPT +1 and ADDRPT.

RAM
SAVEPT

ADDRPT Data I

ADDRPT + 1 Data II Transfer

ROM
Address + 1

LENGTH

Bytes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 18 of 84

(3) Flowchart

TR3_DAT

(ADDRPT) ← DAT_ADL

(ADDRPT + 1) ← DAT_ADH

(X) ← SAVEPT – 1 + LENGTH

(Y) ← LENGTH

(T) ← 1

(M (X)) ← ((ADDRPT + 1) (ADDRPT) + (Y))

(X) ← (X) – 1

(Y) ← (Y) – 1

(Y) = 0

?

(T) ← 0

RETURN

YES

NO

Note: M (X) represents the memory of the address indicated by Index Register X.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 19 of 84

(4) Program List
;***
;
; ROM data transfer routine(address float)
;
;***
;
TR3_DAT:
 LDM #DAT_ADL,ADDRPT
 LDM #DAT_ADH,ADDRPT+1
;-------------------------------
 LDX #SAVEPT-1+LENGTH
 LDY #LENGTH ;ROM length
 SET ;Transfer data from
TR3_01: LDA (ADDRPT),Y ; -(ADDRPT+1)(ADDRPT)+1
 DEX ; -to SAVEPT
 DEY ;
 BNE TR3_01 ;Transfer end ?
 CLT ;Yes
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 20 of 84

3.5 Data Sort
(1) Description

The data in the RAM area is sorted in descending order.

(2) Explanation
LENGTH bytes of data are sorted in descending order from RAM address SAVEPT.
(a) First, the memory contents of the highest address to be sorted are stored in Accumulator A.

RAM

SAVEPT 1EH

62H

LENGTH

Bytes 05H

10H

F1H F1H A

(b) Next, the memory contents of the next lower address are compared with the contents of Accumulator A. At this
time, if the contents of Accumulator A are equal to or larger than the contents of the lower address, the contents
of the memory and the Accumulator A are switched.

RAM

SAVEPT 1EH

62H

LENGTH

Bytes 05H

F1H 10H A

F1H

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 21 of 84

(c) The contents of the next lower address are compared with the contents of Accumulator A. At this time, if the
contents of Accumulator A are equal to or larger than the contents of the memory, the contents of the memory
and the Accumulator A are switched again.

RAM

SAVEPT 1EH

62H

LENGTH

Bytes 10H 05H A

F1H

F1H

(d) This process is repeated until it reaches the lowest address and the contents of its memory are sorted, after which
the lowest value will be stored in Accumulator A. The contents of this Accumulator A will be sent to the highest
address in the memory.

RAM

SAVEPT 1EH

62H

LENGTH

Bytes 10H

F1H

05H 05H A

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 22 of 84

(e) Steps (a) through (d) are executed on the sorted area of which the highest address has been decreased,
(LENGTH bytes - 1 byte) from SAVEPT.

RAM

SAVEPT 1EH

62H

LENGTH – 1

Bytes

10H

F1H F1H A

05H

(f) Again, steps (a) through (d) are executed on the sorted area of which the highest address has been decreased,
(LENGTH bytes - 2 bytes) from SAVEPT.

RAM

SAVEPT 1EH

62H

LENGTH – 2

Bytes

F1H F1H A

10H

05H

(g) In this manner, steps (a) through (d) are executed until the order of the contents is sorted into descending order,
decreasing the highest address until it reaches the lowest address.

In addition, in steps (b) through (c), if the contents are switched when the contents of Accumulator A are smaller
than those of the memory, the contents can be sorted into ascending order.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 23 of 84

(3) Flowchart

SRT_DAT

(X) ← LENGTH

(WORK00) ← (X)

(A) ← (SAVEPT – 1 + (X))

NO

(A) ≥ (SAVEPT – 1 + (X))

?

YES

(Y) ← (SAVEPT – 1 + (X))

(SAVEPT – 1 + (X)) ← (A)

(A) ← (Y)

(X) ← (X) – 1

NO

(X) = 0 ?

YES

(X) ← (WORK00)

(SAVEPT – 1 + (X)) ← (A)

(X) ← (X) – 1

NO

(X) = 0 ?

YES

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 24 of 84

(4) Program List
;***
;
; Sort routine
;
;***
;
SRT_DAT:
 LDX #LENGTH ;Data length
SRT_01: STX WORK00
 LDA SAVEPT-1,X ;SAVEPT<-->SAVEPT-1+WORK00
SRT_02: CMP SAVEPT-1,X ;If use(BCS)
 BCC SRT_03 ; -then negative
 LDY SAVEPT-1,X
 STA SAVEPT-1,X
 TYA ;Minimum data set
SRT_03: DEX ; -to A&Y
 BNE SRT_02
 LDX WORK00
 STA SAVEPT-1,X ;Minimum data set
 DEX ;Next area
 BNE SRT_01 ;Sort end ?
 RTS ;Yes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 25 of 84

3.6 16-Bit Data Add (Binary)
(1) Description

Addition of 16-bit binary data is performed.

(2) Explanation
The contents of WORK00 +1 and WORK00 are added to the contents of WORK01 +1 and WORK01, respectively;
and the results are stored to WORK00 +1 and WORK00, respectively.
When X Modified Operation Mode Flag T is set to “1”, the data is added without destroying the contents of
Accumulator A.

Lower WORK00 WORK01 WORK00

+ →

Upper WORK00 + 1 WORK01 + 1 WORK00 + 1

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 26 of 84

(3) Flowchart

ADD_16

(X) ← WORK00

(C) ← 0

(T) ← 1

(M (X)) ← (M (X)) + (WORK01) + (C)

(X) ← (X) + 1

(M (X)) ← (M (X)) + (WORK01 + 1) + (C)

(T) ← 0

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

(4) Program List
;***
;
; 16 bits BIN. data addition routine
;
;***
;
ADD_16:
 LDX #WORK00
 CLC ;C flag clear
 SET ;T flag set
 ADC WORK01
 INX ;(WORK00+1)(WORK00)+
 ADC WORK01+1 ;(WORK01+1)(WORK01)
 CLT ;T flag clear
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 27 of 84

3.7 16-Bit Data Subtract (Binary)
(1) Description

Subtraction of 16-bit binary data is performed.

(2) Explanation
The contents of WORK01 +1 and WORK01 are subtracted from the contents of WORK00 +1 and WORK00,
respectively, and the results are stored to WORK00 +1 and WORK00, respectively.
When X Modified Operation Mode Flag T is set to “1”, the data is subtracted without destroying the contents of
Accumulator A.

Lower WORK00 WORK01 WORK00

– →

Upper WORK00 + 1 WORK01 + 1 WORK00 + 1

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 28 of 84

(3) Flowchart

SUB_16

(X) ← WORK00

(C) ← 1

(T) ← 1

(M (X)) ← (M (X)) – (WORK01) – Complement of (C)

(M (X)) ← (M (X)) – (WORK01 + 1) – Complement of (C)

(T) ← 0

(X) ← (X) + 1

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

(4) Program List
;***
;
; 16 bits BIN. data subtraction routine
;
;***
;
SUB_16:
 LDX #WORK00
 SEC ;C flag set
 SET ;T flag set
 SBC WORK01
 INX ;(WORK00+1)(WORK00)-SBC
 WORK01+1 ;(WORK01+1)(WORK01)
 CLT ;T flag clear
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 29 of 84

3.8 16-Bit Data Add (BCD)
(1) Description

Addition of 16-bit BCD data is performed.

(2) Explanation
The contents of WORK00 +1 and WORK00 are added to the contents of WORK01 +1 and WORK01, respectively,
and the results are stored to WORK00 +1 and WORK00, respectively.
By setting Decimal Mode Flag D to “1”, the ADC instruction can use decimal arithmetic. However, this will delay
determination of Carry Flag C, so that make sure the SEC, CLC, and CLD instructions are not executed right after
the ADC instruction.
When X Modified Operation Mode Flag T is set to “1”, the data is added without destroying the contents of
Accumulator A.

Lower WORK00 WORK01 WORK00

+ →

Upper WORK00 + 1 WORK01 + 1 WORK00 + 1

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 30 of 84

(3) Flowchart

ADD_16D

(X) ← WORK00

(C) ← 0

(T) ← 1

(D) ← 1

(M (X)) ← (M (X)) + (WORK01) + (C)

(X) ← (X) + 1

(M (X)) ← (M (X)) + (WORK01 + 1) + (C)

(T) ← 0

(D) ← 0

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

(4) Program List
;***
;
; 16 bits BCD data addition routine
;
;***
ADD_16D:
 LDX #WORK00
 CLC ;C flag reset
 SET ;T flag set
 SED ;Decimal mode set
 ADC WORK01
 INX ;(WORK00+1)(WORK00)+
 ADC WORK01+1 ;(WORK01+1)(WORK01)
 CLT ;T flag reset
 CLD ;Decimal mode clear
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 31 of 84

3.9 16-Bit Subtract (BCD)
(1) Description

Subtraction of 16-bit BCD data is performed.

(2) Explanation
The contents of WORK01 +1 and WORK01 are subtracted from the contents of WORK00 +1 and WORK00,
respectively, and the results are stored to WORK00 +1 and WORK00, respectively.
By setting Decimal Mode Flag D to “1”, the SBC instruction can use decimal arithmetic. However, this will delay
determination of Carry Flag C, so that make sure the SEC, CLC, and CLD instructions are not executed right after
the SBC instruction.
When X Modified Operation Mode Flag T is set to “1”, the data is subtracted without destroying the contents of
Accumulator A.

Lower WORK00 WORK01 WORK00

– →

Upper WORK00 + 1 WORK01 + 1 WORK00 + 1

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 32 of 84

(3) Flowchart

SUB_16D

(X) ← WORK00

(C) ← 1

(T) ← 1

(D) ← 1

(M (X)) ← (M (X)) – (WORK01) – Complement of (C)

(X) ← (X) + 1

(M (X)) ← (M (X)) – (WORK01 + 1) – Complement of (C)

(T) ← 0

(D) ← 0

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

 (4) Program List
;***
;
; 16 bits BCD data subtraction routine
;
;***
SUB_16D:
 LDX #WORK00
 SEC ;C flag set
 SET ;T flag set
 SED ;Decimal mode set
 SBC WORK01
 INX ;(WORK00+1)(WORK00)-
 SBC WORK01+1 ;(WORK01+1)(WORK01)
 CLT ;T flag reset
 CLD ;Decimal mode reset
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 33 of 84

3.10 16-Bit Data Multiply (Binary)
(1) Description

Multiplication of 16-bit binary data is performed.

(2) Explanation
The contents of WORK02 +1 and WORK02 are multiplied by the contents of WORK01 +1 and WORK01,
respectively, and the results are stored to WORK01 +1, WORK01, WORK00 +1 and WORK00.
When X Modified Operation Mode Flag T is set to “1”, the data is multiplied without destroying the contents of
Accumulator A.

WORK00 Lowest

address

Lower
WORK02 WORK01 WORK00 + 1

× →

Upper WORK02 + 1 WORK01 + 1 WORK01

WORK01 + 1 Highest

address

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 34 of 84

(3) Flowchart

MUL_16

(X) ← WORK00 + 1

(T) ← 1

(M (X)) ← 00H

(X) ← (X) – 1

(M (X)) ← 00H

(Y) ← 16

1

(C) ← 0

Connect (WORK01 + 1) to (C) and rotate one bit to the left.

Connect (WORK00) to (C) and rotate one bit to the left.

Connect (WORK00 + 1) to (C) and rotate one bit to the left.

Connect (WORK01) to (C) and rotate one bit to the left.

NO
(C) = 1 ?

YES

2 3

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 35 of 84

3

(C) ← 0

(M (X)) ← (M (X)) + (WORK02) + (C)

(X) ← (X) + 1

2

(M (X)) ← (M (X)) + (WORK02 + 1) + (C)

(X) ← (X) – 1

NO
(C) = 1 ?

YES

(WORK01) ← (WORK01) + 1

NO

(WORK01) = 0 ?

YES

(WORK01 + 1) ← (WORK01 + 1) + 1

(Y) ← (Y) – 1

NO

(Y) = 0 ? 1

YES

(T) ← 0

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 36 of 84

(4) Program List
;***
;
; 16 bits BIN. data multiplication routine
;
;***
;
MUL_16:
 LDX #WORK00+1 ;Product L addr. set
 SET ;T flag set
 LDA #$00 ;Clear product L
 DEX
 LDA #$00
 LDY #16 ;Bit counter set
;-------------------------------
MUL_01: CLC
 ROL WORK00 ;Rotate product L
 ROL WORK00+1
 ROL WORK01 ;Rotate product H
 ROL WORK01+1
 BCC MUL_02 ;C flag 1 ?
 CLC ;Yes
 ADC WORK02 ;Multiplicand + product L
 INX
 ADC WORK02+1
 DEX
 BCC MUL_02 ;Over flow ?
 INC WORK01 ;Yes
 BNE MUL_02 ;Over flow ?
 INC WORK01+1 ;Yes
;-------------------------------
MUL_02: DEY
 BNE MUL_01 ;Multiple end ?
 CLT ;Yes
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 37 of 84

3.11 16-Bit Data Divide (Binary)
(1) Description

Division of 16-bit binary data is performed.

(2) Explanation
The contents of WORK00 +1 and WORK00 are divided by the contents of WORK02 +1 and WORK02.
The quotients are stored to WORK00 +1, and WORK00; and the surpluses are stored to WORK01 +1 and
WORK01.
When X Modified Operation Mode Flag T is set to “1”, the data is divided without destroying the contents of
Accumulator A.

Lower WORK00 WORK02 WORK00

÷ →

Upper WORK00 + 1 WORK02 + 1 WORK00 + 1

Lower WORK01

Surplus

Upper WORK01 + 1

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 38 of 84

(3) Flowchart

DIV_16

(X) ← WORK00 + 1

(Y) ← 16

(T) ← 1

(M (X)) ← 00H

(X) ← (X) + 1

(M (X)) ← 00H

(C) ← 0

1

Connect (WORK01 + 1) to (C) and rotate one bit to the left.

Connect (WORK00) to (C) and rotate one bit to the left.

Connect (WORK00 + 1) to (C) and rotate one bit to the left.

Connect (WORK01) to (C) and rotate one bit to the left.

NO

(C) = 0 ?

YES

2 3

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 39 of 84

3

NO

(M (X)) ≥ (WORK02 + 1)

?

2 YES

NO

(M (X)) = (WORK02 + 1)

?

YES

(X) ← (X) – 1

(M (X)) – (WORK02)

(X) ← (X) + 1

NO

(C) = 1 ?

YES

(X) ← (X) – 1

(M (X)) ← (M (X)) – (WORK02) – Complement of (C)

(X) ← (X) + 1

(M (X)) ← (M (X)) – (WORK02 + 1) – Complement of (C)

(C) ← 1

4

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 40 of 84

4

(Y) ← (Y) – 1

NO
(Y) = 0 ? 1

YES

(T) ← 0

Connect (WORK00) to (C) and rotate one bit to the left.

Connect (WORK00 + 1) to (C) and rotate one bit to the left.

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 41 of 84

(4) Program List
;***
;
; 16 bits BIN. data division routine
;
;***
;
DIV_16:
 LDX #WORK01 ;Surplus addr. set
 LDY #16 ;Bit counter set
 SET ;T flag set
 LDA #$00 ;Clear surplus
 INX
 LDA #$00
 CLC
DIV_01: ROL WORK00 ;Rotate quotient
 ROL WORK00+1
 ROL WORK01 ;Rotate surplus
 ROL WORK01+1
 BCS DIV_02 ;C flag 1 ?
;-------------------------------
 CMP WORK02+1 ;No
 BCC DIV_03 ;Cannot divide ?
 BNE DIV_02 ;No
 DEX
 CMP WORK02
 INX
 BCC DIV_03 ;Cannot divide ?
;-------------------------------
DIV_02: DEX ;No
 SBC WORK02 ;Surplus - divisor
 INX
 SBC WORK02+1
 SEC
DIV_03: DEY
 BNE DIV_01 ;Divide end ?
;-------------------------------
 CLT ;Yes
 ROL WORK00 ;Rotate quotient
 ROL WORK00+1
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 42 of 84

4. Application Program Example

4.1 File Handling (transfer)
(1) Description

This operation recognizes a part of the zero page RAM as the file memory and executes the data transfer process
from one location to another.

(2) Explanation
LENGTH bytes of file memory data are transferred from the zero page RAM address SAVEPT + OFFSET to
continuous zero page RAM addresses starting at SAVEPT.
X Modified Operation Mode Flag T is set, and then the data is transferred between memories. The pointer is set to
single pointer + OFFSET, not double pointer (source/target).

Zero Page

RAM

SAVEPT

OFFSET

Transfer

LENGTH

Bytes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 43 of 84

(3) Flowchart

TRN_FIL

(A) ← LENGTH

(X) ← SAVEPT

(T) ← 1

(M (X)) ← (OFFSET + (X))

(X) ← (X) + 1

(A) ← (A) – 1

NO

(A) = 0

?

YES

(T) ← 0

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

(4) Program List
;***
;
; File handling (transfer)
;
;***
TRN_FIL:
 LDA #LENGTH ;File length
 LDX #SAVEPT
 SET ;T flag set
TRN_01:
 LDA OFFSET,X ;Transfer data from
 INX ; -SAVEPT+OFFSET
 DEC A ; -to SAVEPT
 BNE TRN_01 ;Transfer end ?
 CLT ;Yes
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 44 of 84

4.2 File Handling (exchange)
(1) Description

This operation recognizes a part of the zero page RAM as the file memory and executes the data exchange process
from one location to another.

(2) Explanation
LENGTH bytes of file memory data from the zero page RAM address EXCHPT + OFFSET are exchanged with the
data from zero page RAM address EXCHPT.
X Modified Operation Mode Flag T is set, and then the data is transferred between memories. The pointer is set to
single pointer + OFFSET, not double pointer (source/target).

Zero Page

RAM

EXCHPT

OFFSET

Exchange

LENGTH

Bytes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 45 of 84

(3) Flowchart

EXC_FIL

(A) ← LENGTH

(X) ← EXCHPT

(Y) ← (0 + (X))

(T) ← 1

(M (X)) ← (OFFSET + (X))

(T) ← 0

(OFFSET + (X)) ← (Y)

(X) ← (X) + 1

(A) ← (A) – 1

NO

(A) = 0

?

YES

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 46 of 84

(4) Program List
;***
;
; File handling (exchange)
;
;***
;
EXC_FIL:
 LDA #LENGTH ;File length
 LDX #EXCHPT
EXC_01:
 LDY 0,X ;Exchange data of
 SET ; -EXCHPT+OFFSET
 LDA OFFSET,X ; -with EXCHPT
 CLT
 STY OFFSET,X
 INX
 DEC A
 BNE EXC_01 ;Exchange end ?
 RTS ;Yes

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 47 of 84

4.3 Code Conversion (packed BCD → unpacked BCD)
(1) Description

Packed BCD data is converted to unpacked BCD data.

(2) Explanation
The packed BCD data at zero page RAM address ADDRPT is converted to the unpacked BCD data and stored at
ADDRPT and ADDRPT + 1.
A packed BCD consists of two decimal digits in one byte. But packed-to-unpacked conversion results in two
unpacked BCD bytes. Each unpacked BCD byte has one digit in the lower four bits and zero filling the upper four
bits.

0 B ADDRPT

ADDRPT A B →

0 A ADDRPT + 1

Packed BCD Unpacked BCD

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 48 of 84

(3) Flowchart

PTOUP

(X) ← ADDRPT

(A) ← (0 + (X))

(T) ← 1

(M (X)) ← (M (X)) ∧ 0FH

(T) ← 0

(A) ← (A) ∧ F0H

(X) ← (X) + 1

SWAPA

(0 + (X)) ← (A)

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 49 of 84

SWAPA

(T) ← 0

(D) ← 0

(Y) ← 4

Shift (A) one bit to the left.

(A) ← (A) + 0 + (C)

(Y) ← (Y) – 1

NO
(Y) = 0

?

YES

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 50 of 84

(4) Program List
;***
;
; Packed BCD -> unpacked BCD
;
;***
;
PTOUP:
 LDX #ADDRPT
 LDA 0,X ;Get packed BCD data
 SET ;T flag set
 AND #0FH ;Unpacked BCD data L
 CLT ;T flag clear
 AND #0F0H
 INX
 JSR SWAPA ;Swap A
 STA 0,X ;Unpacked BCD data H
 RTS
;***
;
; Swap A register
;
;***
;
SWAPA:
 CLT ;T flag clear
 CLD ;Decimal mode clear
 LDY #4
SWAPA1:
 ASL A
 ADC #0
 DEY
 BNE SWAPA1
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 51 of 84

4.4 Code Conversion (unpacked BCD → packed BCD)
(1) Description

Unpacked BCD data is converted to packed BCD data.

(2) Explanation
The unpacked BCD data at zero page RAM address ADDRPT +1 and ADDRPT are converted to the packed BCD
data and stored at ADDRPT.
A packed BCD consists of two decimal digits in one byte. But packed-to-unpacked conversion results in two
unpacked BCD bytes. Each unpacked BCD byte has one digit in the lower four bits and zero filling the upper four
bits.

ADDRPT

ADDRPT

ADDRPT + 1

Unpacked BCD Packed BCD

0 B

A B→

0 A

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 52 of 84

(3) Flowchart

UPTOP

(X) ← ADDRPT

(X) ← (X) + 1

(A) ← (0 + (X))

SWAPA

(X) ← (X) – 1

(A) ← (A) ∨ (0 + (X))

(0 + (X)) ← (A)

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 53 of 84

SWAPA

(T) ← 0

(D) ← 0

(Y) ← 4

Shift (A) one bit to the left.

(A) ← (A) + 0 + (C)

(Y) ← (Y) – 1

NO

(Y) = 0

?

YES

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 54 of 84

(4) Program List
;***
;
; Unpacked BCD -> packed BCD
;
;***
;
UPTOP:
 LDX #ADDRPT
 INX
 LDA 0,X ;Get unpacked BCD data H
 JSR SWAPA ;Swap A
 DEX
 ORA 0,X ;Packed BCD data
 STA 0,X
 RTS
;***
;
; Swap A register
;
;***
;
SWAPA:
 CLT ;T flag clear
 CLD ;Decimal mode clear
 LDY #4
SWAPA1:
 ASL A
 ADC #0
 DEY
 BNE SWAPA1
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 55 of 84

4.5 Code Conversion (BIN → BCD)
(1) Description

4-byte BIN data is converted to 5-byte BCD data.

(2) Explanation
The 4-byte BIN data at zero page RAM address BINDAT, BINDAT +1, BINDAT +2, and BINDAT +3 are
converted to 5-byte BCD data and stored at BCDDAT, BCDDAT +1, BCDDAT +2, BCDDAT +3 and BCDDAT
+4, respectively.

Highest

byte

BINDAT BCDDAT Highest

byte

BINDAT + 1 BCDDAT + 1

→

BINDAT + 2 BCDDAT + 2

Lowest

byte

BINDAT + 3 BCDDAT + 3

BCDDAT + 4 Lowest

byte

Example: If the BIN data is FFFFFFFFH, the BCD data will be 4294967295.

BINDAT FF16 4210 BCDDAT

FF16 9410

→

FF16 9610

FF16 7210

9510

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 56 of 84

(3) Flowchart

BTOD

(T) ← 1

(D) ← 1

(BCDDAT + 4) ← 0

(BCDDAT + 3) ← 0

(BCDDAT + 2) ← 0

(BCDDAT + 1) ← 0

(BCDDAT) ← 0

(Y) ← 32

SFT_BIN

ADD_BCD

(Y) ← (Y) – 1

NO
(Y) = 0 ?

YES

(D) ← 0

(T) ← 0

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 57 of 84

SFT_BIN

(C) ← 0

(X) ← 3

Connect (BINDAT + (X)) to (C) and rotate one bit to the left.

(X) ← (X) – 1

NO

(X) underflow

?

YES

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 58 of 84

ADD_BCD

(X) ← BCDDAT + 4

(M (X)) ← (M (X)) + (0 + (X)) + (C)

(X) ← (X) – 1

(M (X)) ← (M (X)) + (0 + (X)) + (C)

(X) ← (X) – 1

(M (X)) ← (M (X)) + (0 + (X)) + (C)

(X) ← (X) – 1

(M (X)) ← (M (X)) + (0 + (X)) + (C)

(X) ← (X) – 1

(M (X)) ← (M (X)) + (0 + (X)) + (C)

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 59 of 84

(4) Program List
;***
;
; BIN -> BCD
;
;***
BTOD:
 SET ;T flag set
 SED ;Decimal mode set
 LDM #0,BCDDAT+4 ;Clear BCD result area
 LDM #0,BCDDAT+3
 LDM #0,BCDDAT+2
 LDM #0,BCDDAT+1
 LDM #0,BCDDAT
 LDY #32 ;Yes
BTOD_01:
 JSR SFT_BIN ;Left shift BIN data
 JSR ADD_BCD ;2*(BCD)+C -> (BCD)
 DEY
 BNE BTOD_01 ;Convert end ?
 CLD ;Yes
 CLT ;T flag clear
 RTS
;***
;
; Left shift BIN data
;
;***
SFT_BIN:
 CLC ;C flag clear
 LDX #3
SFT_01:
 ROL BINDAT,X
 DEX
 BPL SFT_01 ;Shift end ?
 RTS ;Yes
;***
;
; 2*(BCD)+C -> (BCD)
;
;***
ADD_BCD:
 LDX #BCDDAT+4
 ADC 0,X
 DEX
 ADC 0,X
 DEX
 ADC 0,X
 DEX
 ADC 0,X
 DEX
 ADC 0,X
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 60 of 84

4.6 Code Conversion (BCD → BIN)
(1) Description

4-byte BCD data is converted to 4-byte BIN data.

(2) Explanation
The 4-byte BCD data at zero page RAM addresses BCDDAT, BCDDAT +1, BCDDAT +2, and BCDDAT +3 are
converted to 4-byte BIN data and stored at BINDAT, BINDAT +1, BINDAT +2, and BINDAT +3, respectively.

Highest

byte

Highest

byte

→

Lowest

byte

Lowest

byte

BINDAT

BINDAT + 1

BINDAT + 2

BINDAT + 3

BCDDAT

BCDDAT + 1

BCDDAT + 2

BCDDAT + 3

Example: If the BCD data is 99999999, the BIN data will be 05F5E0FFH.

BCDDAT BINDAT

→

05169910

F5169910

E0169910

FF169910

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 61 of 84

(3) Flowchart

DTOB

(Y) ← 32

(C) ← 0

(X) ← BCDDAT

SFT_DAT

(X) ← BINDAT

SFT_DAT

MOD_BCD

(Y) ← (Y) – 1

NO

(Y) = 0

?

YES

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 62 of 84

SFT_DAT

(A) ← 4

Connect (0 + (X)) to (C) and rotate one bit to the right.

(X) ← (X) + 1

(A) ← (A) – 1

NO

(A) = 0

?

YES

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 63 of 84

MOD_BCD

(X) ← 3

(A) ← (BCDDAT + (X))

NO

Bit 7 of (A) = 1

?

YES

(C) ← 1

(A) ← (A) – 30H – Complement of (C)

NO

Bit 3 of (A) = 1

?

YES

(C) ← 1

(A) ← (A) – 3 – Complement of (C)

(BCDDAT + (X)) ← (A)

(X) ← (X) – 1

NO

(X) underflow

?

YES

RETURN

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 64 of 84

(4) Program List
;***
;
; BCD -> BIN
;
;***
DTOB:
 LDY #32
DT0B_01:
 CLC
 LDX #BCDDAT ;Point to BCDDAT
 JSR SFT_DAT ;Right shift BCD data
 LDX #BINDAT ;Point to BINDAT
 JSR SFT_DAT ;Right shift BIN data
 JSR MOD_BCD ;Get modified BCD data
 DEY
 BNE DT0B_01 ;Shift end ?
 RTS ;Yes !
;***
;
; Right shift data
;
;***
SFT_DAT:
 LDA #4
SFT_02:
 ROR 0,X
 INX
 DEC A
 BNE SFT_02
 RTS
;***
;
; Modify BCD data
;
;***
MOD_BCD:
 LDX #3
MOD_01:
 LDA BCDDAT,X
 BBC 7,A,MOD_02
 SEC
 SBC #30H
MOD_02:
 BBC 3,A,MOD_03
 SEC
 SBC #3
MOD_03:
 STA BCDDAT,X
 DEX
 BPL MOD_01
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 65 of 84

4.7 SGN Function
(1) Description

This is the SGN function for Accumulator A.

(2) Explanation
The SGN value for the contents of Accumulator A is figured and stored into Accumulator A. Bit 7 of Accumulator
A is a sign bit. The SGN function for this operation is as follows:

When (A) > 0, SGN (A) = 1

When (A) = 0, SGN (A) = 0

When (A) < 0, SGN (A) = –1

(3) Flowchart

SGNA

NO

Bit 7 of (A) = 0

?

YES

YES

(A) = 0 (A) ← FFH

?

NO RETURN

(A) ← 1

RETURN

(4) Program List
;***
;
; SGN(A)
;
;***
;
SGNA:
 BBS 7,A,SGN_01
 CMP #0
 BEW SGN_02
 LDA #1
SGN_02:
 RTS
SGN_01:
 LDA #$FF
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 66 of 84

4.8 BCD 12-digit Floating Point Arithmetic Calculations
(1) Description

Arithmetic calculations for BCD 12-digit floating point numbers are performed.

(2) Explanation
The data format, as shown below, consists of two sections: the mantissa (7 bytes: 1 byte of sign bit, 6 bytes of data)
and the exponent (one byte). “0” indicates a positive mantissa sign; “1” indicates a negative mantissa sign. The
mantissa section data consists of 12 digits of valid numerical numbers (BCD). The exponent section can only
handle values ranging from 00H to 0CH; the results of the calculation cannot be guaranteed for values ranging from
0DH to FFH.

Sign Data

Mantissa Section Exponent

Section

1234 0 1 2 3 4 0 0

1.234 0 1 2 3 4 0 3

– 15000 1 1 5 0 0 0 0 0

– 0.999999999999 1 9 9 9 9 9 9 9 9 9 9 9 9 0 C

The following are examples of numbers expressed in this format.

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 67 of 84

This format is used by the following three files in the zero page RAM area: W1, W2, and W3.

+ 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7

W 1

W 2

W 3

Mantissa Section Exponent

Section

Bit 0 of F16

• W1: Stores the number to be operated and the results.
• W2: Stores the operand. Address is W2 = W1 + 8.
• W3: Uses as a work file for multiply and divide operations. Address is W3 = W2 + 8.
• Bit 0 of F16: Goes to “1” when error occurs.

The following shows the calling sequence for each arithmetic operation. Note that add and subtract are determined by
the value in bit 3 of W2.

• Multiply:
(a) Set the number to be operated in W1.
(b) Set the operand in W2.
(c) JSR MULT

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 68 of 84

• Divide:
Steps (a) & (b) are the same as those in the Multiply operation.
(c) JSR DIV

• Add:
Steps (a) & (b) are the same as those in the Multiply operation.

(c) JSR ADSB
• Subtract:

Steps (a) & (b) are the same as those in the Multiply operation.
(c) Set bit 3 of W2 to “1”.
(d) JSR ADSB

After these processes are executed, the results can be checked for errors with the data in bit 0 of zero page RAM
address F16. If bit 0 of F16 = “1”, an error has occurred. Errors that may occur in these operations are described below.

Operation Error
Add When the result exceeds 999999999999

Subtract When the result exceeds – 999999999999
Multiply When the result exceeds ± 999999999999
Divide • When it is divided by 0

• When the result exceeds ± 999999999999

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 69 of 84

(3) Program List
;***
;
; 12 digits BCD number addition,subtraction
; ,multiplication,division
;
;***
;
;
; RAM ASSIGN
;
; 0 1 2 3 4 5 6 7
;W1:SIGN MSD<----------------------------LSD INDX
;W2:SIGN MSD<----------------------------LSD INDX
;W3:SIGN MSD<----------------------------LSD INDX
;
;
;***
;
; W1 <- W1/W2
;
;***
;
DIVI:
 JSR BFITL ;W3<-W1 copy,W1<-0
 SBC 8,X ;D=0,T=1,W1 INDX<-W1 INDX-W2 INDX
 AND #0FH ;W1 INDX MSD clear
 SEB 0,F16
 BCC DIV1 ;W1 INDX<W2 INDX?
 CLB 0,F16 ;No
DIV1: CLT ;T<-0
 SED ;Decimal mode
 JSR SUB0 ;W1<-W1-W2
 BCS DIV2 ;Borrow arise ?
 TST W1 ;Yes,then test W1
 BEQ DIV3
 DEC W1
DIV2: CLD ;Binary mode
 RRF W3+6
 CLC
 LDA W3+6
 ADC #10H
 STA W3+6 ;W3 LSD<-W3 LSD+1
 RRF W3+6
 BCC DIV1 ;W3 LSD>=15 ?
ERROR: SEB 0,F16 ;0 Division error
 CLD ;Decimal mode clear
 RTS
;
DIV3: JSR ADD0 ;W1<-W1+W2,add back
 LDA W3+7
 CMP #12
 BCS DIV6
 INC W3+7

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 70 of 84

; ;W1 MSD<--W1 LSD<--W3 MSD<--W3 LSD
DIV4: LDY #4 ;4 bits left rotate
DIV5: LDX #6
 CLC
DIV51: ROL W3,X
 DEX
 BNE DIV51
 LDX #6
 LDA #7
DIV52: ROL W1,X
 DEX
 DEC A
 BNE DIV52
 DEY
 BNE DIV5 ;Rotate end ?
 INX
 SET ;T flag set
 AND #0FH
 BRA DIV1
;
DIV6: LDA W3+1
 AND #0F0H
 BNE DIV10
 BBS 0,F16,DIV7
 LDA W1+7
 CMP #12
 BCS DIV10
DIV7: INC W1+7
 BBC 4,W1+7,DIV41
 CLB 4,W1+7
 CLB 0,F16
DIV41:
 BRA DIV4
ERROR1:
 BRA ERROR
;
DIV10: BBS 0,F16,ERROR ;Over flow error
 LDA W1+7
 CMP #13
 BCS ERROR ;Under flow error
DIV12: LDY #7 ;W1<-W3 copy
 LDX #W1
 SET ;T<-1
DIV15: LDA 16,X
 INX
 DEY
 BNE DIV15
;

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 71 of 84

 CLT ;T<-0
 JSR INDX ;"0" condense
 CLD ;Decimal mode clear
 CLC
 LDA W1
 ADC W2
 STA W1 ;Get sign bit
 CLB 0,F16 ;Normal return
 RTS
;***
;
; W1 <- W1*W2
;
;***
;
MULT:
 JSR BFITL ;W3 <- W1 copy,W1 clear
 CLC ;C flag clear
 ADC 8,X ;W1_INDX <- W1_INDX+W2_INDX
 CLB 0,F16
 BBC 4,W1+7,MULT2 ;W1_INDX <- W_INDX+W2_INDX
 SEB 0,F16 ;Yes
 CLB 4,W1+7
MULT2:
 CLT ;T flag clear
MULT7:
 LDA W3+6
 AND #$0F
 BNE MULT3
 INC W3+7 ;W1_MSD -> W1_LSD -> W3_MSD -> W3_LSD
MULT9:
 LDY #4
MULT6:
 LDX #0
 LDA #7
 CLC
MULT4:
 ROR W1,X
 INX
 DEC A
 BNE MULT4
 LDX #1
 LDA #6
MULT5:
 ROR W3,X
 INX
 DEC A
 BNE MULT5
 DEY
 BNE MULT6 ;4 bits right rotate end ?
 LDA W3+7
 CMP #12
 BCC MULT7
 BBS 0,F16,MULT8
 LDX #W1+1 ;W1 "0" test

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 72 of 84

MULT81:
 LDA 0,X
 BNE MULT8
 INX
 CPX #W1+7
 BNE MULT81
 BRA DIV12 ;Get result (to division routine)
MULT8:
 LDA W1+7
 BNE MULT10
 BBC 0,F16,ERROR1 ;Overflow error
 CLB 0,F16
MULT10:
 DEC W1+7
 LDA W1+7
 AND #$0F
 STA W1+7
 BRA MULT9
MULT3:
 DEC W3+6
 SED
 JSR ADD0
 BCC MULT31
 INC W1
MULT31:
 BRA MULT2
;***
;
; W1 <- W1-W2
;
;***
;
SUB0:
 SEC
 LDA #6
 LDX #W1+6
 SET ;T flag set
SUB01:
 SBC 8,X
 DEX
 DEC A
 BNE SUB01
 CLT ;T flag clear
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 73 of 84

;***
;
; W1 <- W1+W2
;
;***
;
ADD0:
 CLC
 LDA #6
 LDX #W1+6
 SET ;T flag set
ADD01:
 ADC 8,X
 DEX
 DEC A
 BNE ADD01
 CLT ;T flag clear
 RTS

;
; Following "0" condense,then modify INDX and data
;
;***
;
INDX:
 TST W1+7 ;Test W1 INDX
 BEQ INDX1
 LDA W1+6
 AND #$0F
 BNE INDX1 ;Valid data remain ?
 LDX #W1 ;No
 JSR SFR4 ;Condense to LSB direction
 DEC W1+7 ;Modify INDX
 BRA INDX ;again
INDX1:
 RTS
;***
;
; W1 -> W3 ,and 0 -> W1
;
;***
;
BFITL:
 CLT
 LDX #W1

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 74 of 84

BFITL1:
 LDA 0,X
 STA 16,X
 LDA #0
 STA 0,X
 INX
 CPX #W1+7
 BNE BFITL1
 LDM #0,W3+7 ;W3_INDX initial
 CLD ;Decimal mode clear
 SET ;T flag set
 RTS
;***
;
; WN 4 bits left shift
;
;***
;
SFL4:
 LDA #4
SFL41:
 ASL 6,X
 ROL 5,X
 ROL 4,X
 ROL 3,X
 ROL 2,X
 ROL 1,X
 DEC A
 BNE SFL41
 RTS
;***
;
; WN 4 bits right shift
;
;***
;
SFR4:
 LDA #4
SFR41:
 LSR 1,X
 ROR 2,X
 ROR 3,X
 ROR 4,X
 ROR 5,X
 ROR 6,X
 DEC A
 BNE SFR41
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 75 of 84

;***
;
; Adjust INDX to W1 to W2
;
;***
;
ADIX:
 LDA W1+7
 CMP W2+7
 BEQ ADIX1
 BCC ADIX23
ADIX22:
 LDX #W2
ADIX2:
 LDA 1,X
 AND #$F0
 BEQ ADIX21
 CPX #W1
 BEQ ADIX51
 LDX #W1
ADIX5:
 JSR SFR4
 DEC 7,X
 BRA ADIX
ADIX23:
 LDX #W1
 BRA ADIX2
ADIX51:
 LDX #W2
 BRA ADIX5
ADIX21:
 JSR SFL4
 INC 7,X
 BRA ADIX
ADIX1:
 RTS
;***
;
; Execute addition,subtraction
;
;***
;
ADSB:
 SED ;Decimal mode set
 CLT ;T flag clear
 JSR ADIX ;Adjust INDX
ADSB1:
 BBS 3,W2,ADSB6
 BBS 0,W1,ADSB7
 BBS 0,W2,ADSB10

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 76 of 84

ADSB9:
 JSR ADD0 ;W2 <- W1+W2
 BCC ADD2 ;C arise ?
 SEB 0,F16 ;Yes
 JSR SFR4 ;1 digit right shift
 DEC W1+7 ;INDX -1
 BMI ADD3 ;FF ?
 CLC ;No
 LDA W1+1
 ADC #$10
 STA W1+1
ADD2:
 CLB 0,F16
 JSR INDX
ADD3:
 CLD ;Decimal mode clear
 RTS
ADSB7:
 BBS 0,W2,ADSB9
ADSB10:
 JSR SUB0 ;W1 <- W1-W2
 BCS SUB2
 INX
SUB3:
 LDA #$99
 SEC
 SBC 0,X
 STA 0,X ;Get 99-X
 INX
 CPX #W1+7
 BNE SUB3
 DEX
 SET
 LDY #6 ;C=1
SUB4:
 ADC #0
 DEX
 DEY
 BNE SUB4
 CLT ;Get 100's complement
 COM W1 ;Get sign bit in bit0
SUB2:
 CLB 0,F16
 JSR INDX
 CLD ;Decimal mode clear
 RTS
ADSB6:
 BBS 0,W1,ADSB11
 BBS 0,W2,ADSB9
 BRA ADSB10
ADSB11:
 BBS 0,W2,ADSB10
 BRA ADSB9

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 77 of 84

5. Substitute Instruction

5.1 Swap Accumulator
(1) Description

Accumulator A’s upper four bits are swapped with the lower four bits.

(2) Flowchart

SWAPA

(T) ← 0

(D) ← 0

(Y) ← 4

Shift (A) one bit to the left.

(A) ← (A) + 0 + (C)

(Y) ← (Y) – 1

NO

(Y) = 0

?

YES

RETURN

(3) Program List
;***
;
; Swap A register
;
;***
;
SWAPA:
 CLT ;T flag clear
 CLD ;Decimal mode clear
 LDY #4
SWAPA1:
 ASL A
 ADC #0
 DEY
 BNE SWAPA1
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 78 of 84

5.2 Counter Bit Accumulator
(1) Description

The order of Accumulator A’s bit data is reversed, using one byte of the work memory specified by Index Register
X.

(2) Flowchart

CTBA

(Y) ← 8

Connect (A) to (C) and rotate one bit to the left.

Connect (0 + (X)) to (C) and rotate one bit to the right.

(Y) ← (Y) – 1

NO

(Y) = 0

?

YES

(A) ← (0 + (X))

RETURN

(3) Program List
;***
;
; Counter bit A register
;
;***
;
CTBA:
 LDY #8
CTBA1:
 ROL A
 ROR 0,X
 DEY
 BNE CTBA1
 LDA 0,X
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 79 of 84

5.3 Memory Set Bit
(1) Description

Bit 0 of the memory specified by Index Register X is set to “1”.

(2) Flowchart

SEBM

(T) ← 1

(M (X)) ← (M (X)) ∨ 01H

(T) ← 0

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

(3) Program List
;***
;
; Set bit 0 of M(X)
;
;***
;
SEBM:
 SET ;T flag set
 ORA #1 ;Bit 0 set
 CLT ;T flag clear
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 80 of 84

5.4 Memory Clear Bit
(1) Description

Bit 0 of the memory specified by Index Register X is set to “0”.

(2) Flowchart

CLBM

(T) ← 1

(M (X)) ← (M (X)) ∧ FEH

(T) ← 0

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

(3) Program List
;***
;
; Clear bit 0 of M(X)
;
;***
;
CLBM:
 SET ;T flag set
 AND #$FE ;Bit 0 clear
 CLT ;T flag clear
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 81 of 84

5.5 Memory Bit Reversal
(1) Description

Bit 0 of the memory specified by Index Register X is reversed.

(2) Flowchart

CMBM

(T) ← 1

(M (X)) ← (M (X)) ∀ 01H

(T) ← 0

RETURN

Note: M (X) represents the memory of the address indicated by Index Register X.

(3) Program List
;***
;
; Complement bit 0 of M(X)
;
;***
;
CMBM:
 SET ;T flag set
 EOR #1 ;Bit 0 complement
 CLT ;T flag clear
 RTS

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 82 of 84

6. Program Usage Notes
The following usage notes apply to 740 Family products, in addition to all the instructions provided in the 740 Family
Software Manual.

(1) The user must always perform thorough system evaluations.
(2) The program automatically handles X Modified Operation Mode Flag T and Decimal Mode Flag D as “0”. Do not

call up this routine with either flag set to “1”.
(3) When executing the ADC or SBC instructions in the decimal mode (D = “1”), the processor status register’s

Negative Flag N, Overflow Flag V and Zero Flag Z become invalid. In addition, Carry Flag C is set to “1” when the
results of the operation generate a “carry”, and cleared to “0” when the results generate a “borrow”.

(4) In the decimal mode (D = “1”) and after execution of the ADC or SBC instruction, execute another instruction
before execution of the SEC, CLC or CLD instruction.

7. Reference
Software Manual

740 Family Software Manual

Before using this material, please visit our website to verify that this is the most updated document available.

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

E-mail: support_apl@renesas.com

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 83 of 84

Revision Record
Description

Rev.

Date Page Summary

1.00 Feb.21.01 — Issue as sample programs collection
1.01 Mar.18.05 — Change to application note format and issue

740 Family
740 Family Sample Programs Collection

REJ05B0584-0101/Rev.1.01 March 2005 Page 84 of 84

1. These materials are intended as a reference to assist our customers in the selection of the Renesas

Technology Corp. product best suited to the customer's application; they do not convey any license

under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or

a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-

party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or

circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and

algorithms represents information on products at the time of publication of these materials, and are

subject to change by Renesas Technology Corp. without notice due to product improvements or

other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or

an authorized Renesas Technology Corp. product distributor for the latest product information

before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising

from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means,

including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,

diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total

system before making a final decision on the applicability of the information and products. Renesas

Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the

information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or

system that is used under circumstances in which human life is potentially at stake. Please contact

Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when

considering the use of a product contained herein for any specific purposes, such as apparatus or

systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in

whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must

be exported under a license from the Japanese government and cannot be imported into a country

other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the

country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products

contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and

more reliable, but there is always the possibility that trouble may occur with them. Trouble with

semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate

measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or

(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Contents
	1. Distinctive Features of 740 Family Instruction Set
	2. Effective use of 740 Family MCU Distinctive Instructions
	2.1 Memory-to-Memory Operations
	2.2 Bit Branch Instructions
	2.3 Bit Managing (Set/Reset)
	2.4 Rotate Shift

	3. Basic Processing Program Example
	3.1 RAM Clear
	3.2 Data Transfer (RAM)
	3.3 Data Transfer (ROM address fixed)
	3.4 Data Transfer (ROM address variable)
	3.5 Data Sort
	3.6 16-Bit Data Add (Binary)
	3.7 16-Bit Data Subtract (Binary)
	3.8 16-Bit Data Add (BCD)
	3.9 16-Bit Subtract (BCD)
	3.10 16-Bit Data Multiply (Binary)
	3.11 16-Bit Data Divide (Binary)

	4. Application Program Example
	4.1 File Handling (transfer)
	4.2 File Handling (exchange)
	4.3 Code Conversion (packed BCD →unpacked BCD)
	4.4 Code Conversion (unpacked BCD → packed BCD)
	4.5 Code Conversion (BIN →BCD)
	4.6 Code Conversion (BCD →BIN)
	4.7 SGN Function
	4.8 BCD 12-digit Floating Point Arithmetic Calculations

	5. Substitute Instruction
	5.1 Swap Accumulator
	5.2 Counter Bit Accumulator
	5.3 Memory Set Bit
	5.4 Memory Clear Bit
	5.5 Memory Bit Reversal

	6. Program Usage Notes
	7. Reference
	Keep safety first in your circuit designs!
	Notes regarding these materials

