Introduction
This application note explains how to use the Clock Frequency Accuracy Measurement Circuit (CAC) to detect stopped oscillation.

Target Device
Renesas Synergy™ S7G2 MCU Group

Contents
1. Overview .. 2
2. Oscillation Stop Detection by CAC Frequency Error Interrupt (CAC_FERRI) 3
3. CAC Operation for Frequency Error Interrupt (CAC_FERRI) .. 3
 3.1 CAC Register Initial Setting .. 3
 3.2 CAC Operation Flow .. 4
4. Usage Notes ... 7
 4.1 Estimated maximum frequency error detection time ... 7
1. **Overview**

There are two ways to detect an oscillation stop:

1. Use the oscillation stop detection circuit (See the Oscillation Stop Detection function in the SSP User’s Manual)
2. Use the CAC frequency counter circuit and detect the clock oscillation stop through its error interrupt (CAC_FERRI)

This application note explains the second method. The CAC has a frequency error interrupt that can be used for oscillation stop detection.

In the CAC function, the target clock is the Main Oscillator, and the reference clock is MOCO or HOCO (see figure below).

Figure 1 Oscillation stop detection by CAC

Note 1. Interrupt Signal of CAC_FERRI. CAC_FERRI’s interrupt handler must set another clock.
2. Oscillation Stop Detection by CAC Frequency Error Interrupt (CAC_FERRI)

The CAC counts Main Oscillator clock pulses to check the frequency. If the MOSC’s frequency is irregular, it triggers the frequency error interrupt. The interrupt can be used for oscillation stop detection.

3. CAC Operation for Frequency Error Interrupt (CAC_FERRI)

3.1 CAC Register Initial Setting

Table 1 is an example of the CAC’s register initial settings. Section 3.2 shows the settings and data flow for CAC operation.

<table>
<thead>
<tr>
<th>Register name</th>
<th>Bit setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACR0</td>
<td>CFME = 1</td>
<td>Clock frequency measurement enable</td>
</tr>
<tr>
<td>CACR1</td>
<td>FMCS = 011b</td>
<td>Measurement target clock = MOSC</td>
</tr>
<tr>
<td>CACR2</td>
<td>RPS = 1</td>
<td>1 = Internal clock</td>
</tr>
<tr>
<td></td>
<td>RSCS = 011b or 010b</td>
<td>Measurement reference clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>011b = MOCO clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>010b = HOCO clock</td>
</tr>
<tr>
<td></td>
<td>RSDS = 10b</td>
<td>Measurement reference clock frequency division ratio select</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10b = 1/1024 clock*1</td>
</tr>
<tr>
<td>CAICR</td>
<td>FERRIE = 1</td>
<td>Frequency error interrupt request enable</td>
</tr>
<tr>
<td>CAULVR</td>
<td></td>
<td>In case of MOCO (8 MHz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAULVR = 1228d = 4cch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAULVR is set as 9.6 MHz</td>
</tr>
</tbody>
</table>

Figure 2 CAC frequency error interrupt for oscillation detection stop

Note 1.
In case of MOCO (8 MHz): Tref = 1/FMOCO * Frequency division ratio
In case of HOCO (16 MHz): Tref = 1/FHOCO * Frequency division ratio
Frequency division ratio is set by CACR2.RSDS.

Note 2. Estimated maximum frequency error detection time
See *1 in table 2
3.2 CAC Operation Flow

Figures 3 and 4, below show an example of the flow for the frequency error interrupt used for oscillation stop detection by CAC.

- Target clock is MOSC (8 MHz)
- The reference clock is MOCO (8 MHz) or HOCO (16 MHz) which is divided
- Use the Frequency error interrupt when MOSC is less than 4 MHz

In the Figure 3 and Figure 4, (3) – (7) are the initial settings for the CAC. After that, if the frequency error occurs at (8), flow passes to the interrupt handler of CAC_FERRI which sets another system clock by software.

Figure 3 shows the case of reference clock MOCO (8 MHz).

Figure 4 shows the case of reference clock HOCO (16 MHz).
Example of the oscillation stop detection by CAC

1. Set for the interrupt (CAC_FEERI)
 - IELSR20 = 00000087h
 - Enable the interrupt in NVIC

2. Clear the module stop bit for CAC
 MSTPCRC,MSTPC0 = 0

3. Set target clock to Main clock oscillator
 CACR1.FMCS = 000b

4. Set target reference clock and Measurement Reference Clock Frequency Division Ratio Select
 CACR2 = 27h
 - RPS = 1 = Internal clock
 - (RSCS = 011b = Reference is MOCO)
 - (RCD = 10b = 1/1024 clock)

5. CAULVR = 4CCh
 CALLVR = 200h

6. CAICR.FERRIE = 1

7. CACR0.CFME = 1

8.

<table>
<thead>
<tr>
<th>CASTR.FERRF = 1 ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

9. Interrupt handler for CAC_FEERI
 - Main OSC is stopped, so set another system clock here
 - CAICR.FERRF = 1
 (to clear FERRF)
 - IELSR20.IR = 0
 - CACR0.CFME = 0

Figure 3 CAC frequency error interrupt for oscillation stop detection
(Reference Clock is 8 MHz MOCO)
Example of the oscillation stop detection by CAC

1. Set for the interrupt (CAC_FEERI)
 - IELSR20 = 00000087h
 - Enable the interrupt in NVIC

2. Clear the module stop bit for CAC
 MSTPCR.MSTPC0 = 0

3. Set target clock to Main clock oscillator
 CACR1.FMCS = 000b

4. Set target reference clock and Measurement Reference Clock
 Frequency Division Ratio Select
 CACR2 = 25h
 (RPS = 1 = Internal clock)
 (RSCE = 010b = Reference is HOCO)
 (RCDS=10b = 1/1024 clock)

5. CAULVR = 266h
 CALLVR = 100h

6. CAICR.FERRIE = 1

7. CACRD.CFME = 1

8. CASTR.FERRF = 1?
 No
 Wait for the frequency error interrupt (CAC_FEERI)
 Yes

9. Interrupt handler for CAC_FEERI
 [1] Main OSC is stopped, so set another system clock here
 [2] CAICR.FERRF=1
 (To clear FERRF)
 [3] IELSR20.IR = 0
 [4] CACRD.CFME = 0

Figure 4 CAC Frequency Error Interrupt for Oscillation Stop Detection
(Reference Clock is 16 MHz HOCO)
4. Usage Notes

4.1 Estimated maximum frequency error detection time

Table 2 shows the estimated maximum frequency error detection time.

Table 2 CAC frequency error detection time

- Measurement clock: Main Oscillator Clock (MOSC) (8 MHz)
- Criteria for oscillation stopping: Main Oscillator Clock \(\leq 4 \) MHz

<table>
<thead>
<tr>
<th>Case</th>
<th>Reference clock (RSCS[2:0])</th>
<th>Division ratio (RCDS[1:0])</th>
<th>Estimated maximum frequency error detection time ((\mu s))*1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MOCO (8 MHz) x 3</td>
<td></td>
<td>20.9</td>
</tr>
<tr>
<td>2</td>
<td>MOCO (8 MHz) x 128</td>
<td></td>
<td>47.6</td>
</tr>
<tr>
<td>3</td>
<td>MOCO (8 MHz) x 1024</td>
<td></td>
<td>296.5</td>
</tr>
<tr>
<td>4</td>
<td>MOCO (8 MHz) x 8192</td>
<td></td>
<td>2287.5</td>
</tr>
<tr>
<td>5</td>
<td>HOCO (16 MHz) x 32</td>
<td></td>
<td>16.2</td>
</tr>
<tr>
<td>6</td>
<td>HOCO (16 MHz) x 128</td>
<td></td>
<td>28.5</td>
</tr>
<tr>
<td>7</td>
<td>HOCO (16 MHz) x 1024</td>
<td></td>
<td>144.0</td>
</tr>
<tr>
<td>8</td>
<td>HOCO (16 MHz) x 8192</td>
<td></td>
<td>1067.7</td>
</tr>
</tbody>
</table>

Note: See *2 in Figure 2.

The calculation formula is:

\[
\frac{1}{(F \times freq_accuracy) \times Division_ratio \times 2 + PCLKB \times 3}
\]

- \(F \) (clock frequency): MOCO (8 MHz), HOCO (16 MHz)
- \(freq_accuracy \) (frequency accuracy): MOCO (0.9), HOCO (0.97)
- \(PCLKB \times 3 = (1/8 \text{ MHz} \times 32) \times 3 = (125 \text{ ns} \times 32) \times 3 = 12 \text{ \(\mu s \)} \)
Website and Support

Support: https://synergygallery.renesas.com/support

Technical Contact Details:
- America: https://renesas.zendesk.com/anonymous_requests/new
- Europe: https://www.renesas.com/en-eu/support/contact.html
- Japan: https://www.renesas.com/ja-jp/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Jun 21, 2016</td>
<td>Initial version</td>
</tr>
<tr>
<td>1.01</td>
<td>Nov 18, 2016</td>
<td>Minor format changes</td>
</tr>
<tr>
<td>1.02</td>
<td>Jun 22, 2017</td>
<td>Minor format changes</td>
</tr>
<tr>
<td>1.04</td>
<td>Jul 6, 2017</td>
<td>Minor interrupt name changes</td>
</tr>
<tr>
<td>1.05</td>
<td>Jul 25, 2017</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

3. No license, express, implied, or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics.

4. You shall not alter, modify, or misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

- **Standard**: Computer, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home appliances, machine tools, personal electronics, medical equipment, and industrial robots etc.
- **High Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are not neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and underground repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundency, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the RoHS Directive carefully and sufficiently use Renesas Electronics products in compliance with all those applicable laws and regulations. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unguided aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security. and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or other party will or may use the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your reuse or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics product" means any product developed or manufactured by or for Renesas Electronics.

(Rv.3.0-1 November 2016)