
White Paper – RX100 Microcontroller Family	 Page 1 of 15

White Paper – RX100 Microcontroller Family

Implementing Ultra-Low-Power
Design Techniques in
RX100 MCU-based Applications
Authors: Carmelo Sansone, Warren Miller (Wavefront Marketing)

Renesas Electronics America Inc.

June 2013

Abstract
The widespread initiative among electronic manufacturers to boost the power efficiency of their
products has spurred the development of new microcontrollers. Problem-solving system-design
solutions like Renesas’ RX100 MCUs save power while delivering strong performance, functions
and capabilities. These innovative chips wake up quickly from Sleep mode, consume less current
when running, and achieve outstanding overall performance advantages that system engineers
can use to create products offering sales-enhancing benefits in world markets.

This white paper highlights the low-power capabilities of 32-bit RX100 MCUs and shows how
system engineers can apply them to design battery-powered products within extremely tight
power dissipation limits. Topics covered include the RX100 architecture’s power-efficient Run
mode; its power-controlled High-Speed, Medium-Speed and Low-Speed modes; and its low-power
Sleep, Deep Sleep and Software Standby modes. Noteworthy features of on-chip peripheral
functions are also discussed.

To provide design perspective for minimizing average power consumption, this paper presents
two example applications in which it is essential to provide the longest possible battery lifetime:
a flow meter and a remote control device. Each takes advantage of a different set of RX100
features and capabilities. The power-saving design methods and options described are useful in
a wide range of battery-powered and eco-friendly applications.

Introduction
Demand continues to rise dramatically for electronic products that do more and perform better
while consuming less power. Manufacturers serving consumer, home, industrial, office, and
medical markets, among others, are striving to produce new battery-based, very low power
designs with wireless connectivity that are smaller and more portable and provide new
capabilities and features – yet also require less-frequent battery recharges and replacements.

The key enablers of such progress are a new generation of microcontrollers (MCUs) that are much
more power-efficient, devices like those in the Renesas 32-bit RX100 MCU family. These chips
are designed and fabricated specifically to meet the low-power mandates of the vast range of
power-constrained applications that exist today and are anticipated in the future.

White Paper – RX100 Microcontroller Family	 Page 2 of 15

RX100 Low-power Features
Renesas RX100 chips are the industry’s first 32-bit MCUs to combine a breakthrough power-control
technology – our True Low Power™ capability – with exceptional features such as fast wake-up
times, zero-wait-state flash, multiple safety functions, integrated USB 2.0 host/device support and
OTG support. These new MCUs extend the True Low Power advantages previously introduced in
our RL78 MCUs, moving them up to the 32-bit architecture level to give system engineers a broader
range of device scalability.

RX100 MCUs deliver optimized combinations of ultra-low-power consumption, on-chip
connectivity and superior performance at price points that are ideal for high-volume embedded
systems. Especially, these microcontrollers are the best choices for low-end 32-bit applications like
mobile healthcare devices, smart meters, and security systems, as well as sensors, detectors and
other elements of industrial-control systems and building-automation equipment.

Major low-power features and characteristics of Renesas RX100 MCUs include the following:

•	 Exceptional RUN-mode power efficiency: 100µA/MHz

•	 Ultra-fast wake-up time: 4.8µs

•	 Superior architecture: 3.08 Coremarks/MHz performance

•	 Six operating modes, plus numerous other design options for saving power

•	 Standard and advanced on-chip peripherals: ADC, LVD, RTC, USB, and more.

32-bit Architecture with ‘True Low Power’ Technology
The upgraded True Low Power capability in RX100 MCUs covers all on-chip peripherals and the
Flash memory, allowing the smallest possible power consumption over the devices’ entire
temperature and voltage range. System design flexibility is maximized across diverse applications
via multiple active and power-down modes.

All aspects of MCU design and fabrication are addressed in Renesas’ power-saving system
solutions, giving customers applying RX100 chips big advantages for meeting power-budget
challenges. For example, these 32-bit devices are built with the 130nm low-leakage process
technology Renesas has used so successfully in RL78 MCUs.

Multiple power-controlled Run modes (High-Speed, Middle-Speed, and Low-Speed) minimize
power consumption when different CPU speeds are needed for various application tasks.

Additionally, three Low-Power modes (Sleep, Deep Sleep and Software Standby), in combination
with the short wake-up times from these modes, let system engineers fine-tune the power supply
current to specific application requirements.

Other power-saving features are also noteworthy. The Zero-Wait-State Flash memory technology
built into RX100 MCUs decreases power consumption because the CPU doesn’t have to remain idle
while waiting for data fetched from nonvolatile storage. Also, every on-chip peripheral module can
be powered off individually, so that those not being used don’t waste power.

The advanced clock system incorporated into the RX100 architecture allows the speed of the clocks
driving the peripherals to be reduced while the CPU operates at up to its maximum frequency.
Moreover, there is a choice of oscillators (HOCO or LOCO) for waking up the CPU, and extra power
reductions can be obtained in some situations by utilizing those clocks to replace the Phase-Lock
Loop (PLL) main clock.

Importantly, the CPU design and RX architecture are extremely compute-efficient, achieving the
highest possible number of instructions per mW. Interrupt latency is only 5 cycles and processing
performance is rated at 1.54 DMIPS/MHz and 3.08 Coremarks/MHz.

White Paper – RX100 Microcontroller Family	 Page 3 of 15

The architecture’s large number of parallel busses makes possible simultaneous movements of
data between the CPU core, Flash, SRAM and peripherals. This design feature ensures that no
bottlenecks are present when the CPU wakes up from a power-down mode.

It’s significant that Renesas employs a truly holistic approach to producing power-saving MCUs
(see Figure 1). We are the only microcontroller supplier to do so. By maintaining direct control of
all the elements of MCU development and manufacture, our semiconductor technology experts
enable the production of high-quality, optimized system-design solutions that customers can apply
to implement ultra-low-power products and systems.

Efficient RX
Architecture

Advanced
Clock System

Module Power
Shut-off

Zero-wait-state
Flash

Multiple Run
Modes

Multiple Power
Modes

Low Leakage
Process

Figure 1: Renesas’ holistic
approach to obtaining
low-power operation
and fast wake-up times

Power-controlled Run Modes
With an RX100 MCU, system engineers can tailor the available processing capability and the
chip’s power consumption to match the computational requirements of diverse application tasks.
As previously mentioned, the CPU has three power-controlled Run modes: High-Speed,
Middle-Speed and Low-Speed.

Each of these modes makes available a different set of on-chip peripheral modules. Some
restrictions apply, though. The availability of some oscillators, the PLL, Flash memory
programming and certain peripheral clock frequencies depends on the Run mode selected.

By contrast, the MCU’s supply voltage requirements aren’t affected by the power-controller Run
modes. Operation is always allowed over the device’s full 1.8V to 3.6V range. However, the clock
frequencies usable in the High-, Middle-, and Low-Speed modes do depend on the supply voltage
(see Table 1).

Table 1: RX100’s power-controlled Run modes

Power-
controlled
Operating
Mode

Operating
Voltage
Range

Operating Frequency Range

ICLK FCLK PCLKD PCLKB

High-Speed

3.6 to 2.7V Up to 32MHz Up to 32MHz Up to 32MHz Up to 32MHz

2.7 to 2.4V Up to 16MHz Up to 16MHz Up to 16MHz Up to 16MHz

2.4 to 1.8V Up to 8MHz Up to 8MHz Up to 8MHz Up to 8MHz

Middle-Speed 3.6 to 1.8V Up to 8MHz Up to 8MHz Up to 8MHz Up to 8MHz

Low-Speed 3.6 to 1.8V
Up to
32.768kHz

Up to
32.768kHz

Up to
32.768kHz

Up to
32.768kHz

White Paper – RX100 Microcontroller Family	 Page 4 of 15

Table 2 lists the clock sources that can be used in each of the three Run modes.

Table 2: Clock sources usable in the power-controlled Run modes

Mode PLL HOCO LOCO Main Osc. Sub Clock

High-Speed Usable* Usable Usable Usable Usable

Middle-Speed Usable* Usable Usable Usable Usable

Low-Speed Not Usable Not Usable Not Usable Not Usable Usable

* VCC ≥ 2.4V

Low-power Operating Modes
Besides the three Power-Controlled operating modes, RX100 MCUs also offer the previously
mentioned Low-Power operating modes: Sleep, Deep Sleep and Software Standby. In each of
them, different MCU functions are stopped and/or powered down, saving various amounts of
current. Here are the details:

Sleep mode: The CPU is stopped with data retained. This reduces the CPU’s dynamic current
consumption, which is a significant contributor to the MCU’s overall operating current. The CPU
wakes up from Sleep mode into the Run mode in only 0.21µs at 32MHz.

Deep Sleep mode: The CPU, RAM and Flash memory are stopped, with data retained. At 32MHz
with multiple peripherals active, the typical operating current is only 4.6mA. It takes just 2.24µs for
the CPU to wake up from Deep Sleep mode and enter Run mode.

Software Standby mode: The PLL and all the oscillators except the sub-clock and IWDT are
stopped. Almost all of the RX100’s modules – CPU, SRAM, Flash, DTC and peripheral blocks – are
stopped, with data retained. The Power-on-Reset (POR) circuit remains operational, though, and if
necessary, the IWDT, RTC, and LVD modules can be operated. Current consumption in this mode
is from 350nA to 790nA, depending on whether or not the LVD and RTC functions are used. When
waking up in the 4MHz Run mode, CPU operation begins after a 4.8µs delay. When waking up in
the fast 32MHz Run mode, the wait time extends to 40µs.

Table 3 shows the power consumption levels and wake-up times for the RX111 MCU.

Table 3: RX111 power consumption levels and wake-up times

MCU Configuration

Wake-up
Time

Current Consumption
(25C, 3.3V)

Power
Mode

CPU
Clock

Peripheral
Clocks Mode Regulator LVD HS OCO HS Ext

Osc PLL LS OCO
32KHz

Ext Osc
(RTC)

RAM
State

I/O Pin
State

Code
Source at
Wake-up

Wake-up
Sources Frequency Min

(mA)
Typ

(mA)

Active
(Run) ON ON/OFF

High ON (NVHC)

ON Clock ON
(32MHz) OFF OFF Clock OFF ON Active Active Flash

Any
Interrupt,
LVD, POR,
Ext Reset

 –

32MHz 3.2 10.6

High ON (NVHC) 8MHz 1.7 3.7

Middle ON (LVHC)

8MHz 1.32 3.5

4MHz – 2.15

1MHz 0.74 1.2

Low ON (LVLC) 32KHz 0.00396 –

Sleep OFF ON/OFF

High ON (NVHC)

ON Clock ON
(32MHz) OFF OFF

Clock OFF

ON Active Active Flash

Any
Interrupt,
LVD, POR,
Ext Reset

0.21µs 32MHz 1.8 6.4

Middle ON (LVHC) Clock OFF 0.875µs 8MHz 0.9 2.2

Low ON (LVHC) Clock OFF 7µs 1MHz 0.7 1

Deep
Sleep OFF ON/OFF

High ON (NVHC)

ON Clock ON
(32MHz) OFF OFF

Clock OFF

ON Active Active Flash

Any
Interrupt,
LVD, POR,
Ext Reset

2.24µs 32MHz 1.2 4.6

Middle ON (LVHC) Clock OFF 3.55µs 8MHz 0.7 1.8

Low ON (LVHC) Clock OFF 15.80µs 1MHz 0.6 0.9

Software
Standby OFF OFF Standby ON (LVLC)

ON
Power

OFF
Clock
OFF

OFF

Power
ON

Clock
OFF

Power
On

Clock
OFF

ON

Retain Retain
Flash

(Powered
On)

Any
External
Interrupt
Pin, POR,

RTC Alarm,
Wake-up,
Ext Reset

4.80µs
(4MHz)

40µs
(32MHz)

790nA

OFF 450nA

OFF

ON 690nA

OFF 350nA

Min: Peripheral clocks all stop, CPU NOOP-Loop, Flash access 25%, Peripheral modules all stop							
Typ: Peripheral clocks all running no divider, CPU all command operation, Peripherals modules on – DTC/RSPI 1 channel, MTU 1 channel, CMT 1 channel	

White Paper – RX100 Microcontroller Family	 Page 5 of 15

Additional RX100 Power-saving Capabilities
Although the Sleep, Deep Sleep and Software Standby modes of RX100 MCUs are very helpful for
decreasing the current the chips consume, system engineers can use other techniques to achieve
further power reductions. For instance, they can set various clock-signal frequency-division ratios
individually. This capability applies to the system clock, peripheral module clock, S12AD clock and
Flash clock. It’s a valuable design option when application requirements differ between function
blocks.

Also, each peripheral module has a separate Stop control bit. This feature allows software to
exercise individual control of the MCU’s on-chip functions to further reduce dynamic current.

Application Examples
The remainder of this white paper presents two typical example applications that utilize specific
low-power features of RX100 MCUs: a flow meter and a remote control device. Both of these
designs are similar in that they employ serial interfaces. However, they differ fundamentally in the
MCU characteristics needed to fulfill their application’s operational requirements, making them
useful for exploring and explaining various ultra-low-power system-design techniques.

Each application discussion tells what the system does and describes its low-power/battery-
lifetime requirements. Then it highlights appropriate low-power design techniques and/or options,
and explains how to best apply key features of RX100 MCUs. Performance data are used to
calculate the example design’s average current usage and show the resulting battery-lifetime.

To reduce duplication, MCU features and design techniques described in the remote control
example build upon technical issues discussed in the flow meter section. So maximum insight is
gained by reading both examples in sequence.

Battery-lifetime computations focus on the current contributed by the RX100 MCU. For clarity and
brevity, the current drain of external components isn’t considered in the examples. Various design
techniques are helpful for applications in which external devices must be considered; however,
they are beyond the scope of this white paper.

One additional system-design issue must be mentioned here: All charged batteries eventually
lose their charge through their internal resistance, even without an external load. The application
discussions in this white paper don’t take into account the self-discharge phenomenon. System
engineers should incorporate relevant data supplied by the battery’s manufacturer into
comprehensive battery-lifetime calculations.

Flow Meters
Modern flow meters are evolving from simple, manually read mechanical units to microcontroller-
based electronic versions with wireless connectivity. Fancier designs offer flexible monitoring and
data communications, allowing control by the utility company’s central control system. Such
advanced features must be implemented despite the fact that the meter is always on. Therefore,
the electronics must consume only miniscule amounts of power on average. Battery operation
is the norm, since AC power seldom is available to run the meter’s MCU-based circuits. Typical
design specifications mandate a battery lifetime of over 20 years.

The primary low-power requirements of an electronic flow meter can be grouped according to
the major functions the unit performs. Most of the time, the meter’s MCU operates in a low-power
mode, with just the Real-Time Clock (RTC) and Low Voltage Detector (LVD) running. Also, it’s
generally recommended that the SRAM be kept active so that it can store intermediate processing
results, eliminating the need to continually write data to the Flash memory.

White Paper – RX100 Microcontroller Family	 Page 6 of 15

Periodically the meter wakes up and makes a flow measurement. Key metrics (used for billing)
are saved in non-volatile memory so they won’t be lost if power is interrupted. Communications
with the central control system are implemented via the serial transceiver whenever data has to
be collected or updates implemented. Additionally, the voltage levels of the battery are checked
regularly to manage the MCU’s operating modes.

Example Flow Meter Design
The following discussion of a typical flow meter design looks in detail at key aspects of its
operation to obtain information essential for estimating battery lifetime. For this example, the data
are derived from an implementation based on an RX111 chip (see Figure 2).

Multiple
Segment

LCD Display

Power/Battery
Management

Flow
Sensor

Serial Port
to Central
Controller

Processor &
Memory

SPI ADC

LVD

RTC

RX111 MCU

SPI

Figure 2: Flow meter example application

The RX111 processor, memory and peripherals integrate most of the flow meter’s functions. The
main peripherals used are the Analog-to-Digital Converter (ADC) that measures the output of the
flow sensor, an SPI port that connects to the central controller that collects data from a variety of
meters, and another SPI port that drives the LCD that shows flow-usage data and system status.
Additionally, the MCU’s RTC keeps accurate track of the time each measurement is made, and the
Low-Voltage Detector (LVD) continuously monitors the voltage of the meter’s battery.

Functional Description
In order to estimate the power use and battery lifetime of the flow meter, it’s necessary to identify
key facts: the main functions that the meter’s MCU has to execute, what modules are utilized in
performing the tasks, how often the functions are performed, how long it takes to execute those
functions, and the current the MCU uses in handling those tasks. Some of the MCU’s on-chip
peripherals, like the RTC and LVD, operate continuously, while others, like the ADC or SPI ports,
are needed for only short periods of time. Details of the example flow meter’s functions are
described below:

Battery Monitor: This function checks the voltage level of the battery, producing information that’s
included in the operational-status data sent periodically to the central control system. The battery
monitor can also perform a tamper-detection task to determine whether or not the meter has been
subjected to an attack.

White Paper – RX100 Microcontroller Family	 Page 7 of 15

The measured battery voltage (and its variation over time) is used to adjust the frequency of
operation of various meter functions, because by extending the time between operations as the
battery level drops, battery lifetime can be extended.

When battery voltage gets too low, the monitor can initiate a ‘going off air’ signal that causes vital
flow-usage and system data to be stored in Flash memory for later retrieval and diagnostics. This
operation is seldom needed, though, so it isn’t included in the battery lifetime calculation. (System
engineers are urged to set the battery monitor’s low-level warning trip-point high enough to
ensure that sufficient power remains for the MCU to execute any ‘last gasp’ data collection,
security and safety tasks.)

Flow Monitor: The MCU’s ADC reads the output of the sensor to accurately measure the flow rate.
The data it provides subsequently must be processed to determine actual billable metrics. The
requisite computations are well within the processing capability of the RX111 MCU.

Send Update: This function communicates key data (flow rate, battery level, quality of service,
etc.) to the central control system. The time between Send and Receive transmissions can be
extended as the battery runs down in order to conserve battery power.

Receive Update: The flow meter receive function is activated on an as-needed basis by the central
controller. When the meter receives update data, its MCU has to be able to quickly perform
important housekeeping functions before executing the update.

A basic function table, like the one shown below in Table 4, is a convenient way to organize these
basic operating functions. It shows the active peripherals associated with each meter function,
how often the task is performed, and how long it takes the MCU to execute each function.

Table 4: Characteristics of main functions of the example flow meter

Function
Operational Characteristics

Peripherals Active Avg. Number of
Executions per Minute

Processing Time
Estimate

Flow Monitor RTC, LVD, ADC 60 (1s interval) 15μs

Battery Monitor RTC, LVD 1 (1 min. interval) 30μs

Send Update RTC, LVD, SPI 0.1 (10 min. interval) 1000μs

Receive Update RTC, LVD, SPI 0.1 (10 min. interval) 2000μs

The data in Table 4 are estimated values for the MCU processing time required for each function,
instead of measured values, because the functions weren’t actually implemented. Still, they are
‘best conservative guesses’ based on similar functions designed in other applications and are
valid for this paper’s power-use calculations.

Implementation Options and Low-power Design Techniques
Several implementation options typically exist when designing a low-power MCU-based system.
One common software option is to place the system in a power-down mode, and then turn it on
after a specified time interval has elapsed. This option is called a Periodic Wake-up.

Applying the Periodic Wake-up approach to the example flow meter design, the following
operational schedule was specified: Software wakes up the CPU every second. The MCU has to
execute the Send Update function at each 10-minute interval, perform the Battery Monitor task at
each 1-minute interval and activate the Flow Monitor function at each 1-second interval.

The Receive Update function is different, though. It’s an exception to the operational schedule
because it executes asynchronously to the MCU’s time-base whenever the central control system
requests it. For the purposes of this application example, the worst case is that the Receive Update
function is performed about once every 10 minutes. Thus, for the meter’s current-consumption

White Paper – RX100 Microcontroller Family	 Page 8 of 15

calculations, Receive Update is considered to be a regular function with a 10-minute interval. Here
are more details about the main tasks the meter’s microcontroller performs:

Generating Periodic Wakeups: Because the Real-Time Clock operates continuously in this meter
design, it provides a convenient, power-efficient method for generating the 1-second periodic
wake-up signal. The 128-Hz clock that drives the RTC is derived from the Sub-clock (XCIN)
32.768-kHz input. Counters in the RTC produce accurate time signals (year, month, week, day, hour,
minute and second) for up to 99 years, making automatic leap-year corrections. The MCU’s Alarm
mode (ALM) can generate an interrupt on the year, month, date, day-of-week, hour, minute or
second.

Another interrupt source, the Periodic Interrupt (PRD), is convenient for initiating shorter time
periods because it can generate an interrupt every 2 seconds, 1 second, 1/2 second, 1/4 second,
1/8 second, 1/16 second, 1/32 second 1/64 second or 1/256 second. The example flow meter design
utilizes the 1-second PRD interrupt for operational timing.

Monitoring Flow: Once every second, the MCU’s ADC converts the output of the external Flow
Sensor to produce digital flow data. The ADC converter is turned on via software prior to each
measurement. This keeps power dissipation low, since the converter adds 0.66mA to the current
consumption when the MCU is running at 32MHz. At that clock speed, the ADC has to be enabled
for 3µs to make a measurement: 1µs to enable the A/D, 1µs to perform conversion, and a 1µs delay
before the converter is subsequently disabled. At 32MHz, the RX111’s wake-up time into the Run
mode is 40µs. This time must be added to the 15µs it takes the CPU to process the flow data from
the ADC.

Measuring Battery Level: The Low Voltage Detector in RX100 MCUs has two separate voltage
detection circuits. The LVD1 circuit measures the battery voltage (VCC). It can compare this voltage
to ten different voltage ‘steps’, ranging from 1.86V to 3.1V. By contrast, the LVD2 circuit can
compare an external voltage source to four different voltage ‘steps’, ranging from 1.8V to 2.9V.

In this flow meter design, VCC is checked every minute to monitor its condition using the LVD1
module to get the most accurate measurement. It generates an interrupt if the level begins to
approach the RX111’s specified lower voltage limit of 2.7V for 32MHz operation. The MCU stores
the measured battery voltage and, if necessary, sends an alert to the utility’s central control system
during the next Send Update operation. The battery measurement function can run at 1MHz, so its
associated wake-up time is only 4.8µs. Its processing time (at 1MHz) is estimated to be
approximately 35µs. Thus, the total active time for this function is about 40µs.

Sending Updates: Every 10 minutes, the Send Update command uses the SPI peripheral to
transmit data to the central control system. To calculate the energy used by the meter design, an
engineering assumption is made that it requires 1000µs to process and transfer the data.

Receiving updates: Every 10 minutes, the Receive Update command uses the SPI peripheral to
receive data from the central control system. It is assumed that 2000µs is needed to wake, receive
and process the data.

Average MCU Current Consumption Calculation
Figure 5 shows the execution time and current drain of each of the flow meter’s functions. The
10.6mA current consumption number (High-Speed Run mode; Table 3) is used here because the
RX111 MCU’s CPU is active and some of the chip’s built-in peripheral functions may also be active.
When the ADC is active, it adds 0.66mA to the current consumption.

White Paper – RX100 Microcontroller Family	 Page 9 of 15

Table 5: Function characteristics for flow meter example design

Function

Battery Lifetime Estimate (RX111, typ.) for Example Flow Meter

MCU
Mode

Execute
Period

Execute
Time
(µs)

% Cycle
Active

Peripherals
Active

Current
Drain
(mA)

Average
Current
(µA)

Wait
Software
Standby

1sec NA 100% RTC, LVD 0.00079 0.7900

Flow
Monitor

Run,
32MHz

1sec
3 0.000300%

RTC, LVD,
ADC

11.3 0.0339

55 0.005500% RTC, LVD 10.6 0.5830

Battery
Monitor

Run,
1MHz

1min 40 0.00007% RTC, LVD 1.2 0.0008

Send
Update

Run,
32MHz

10min 1000 0.000167%
RTC, SPI,
LVD

10.6 0.0177

Receive
Update

Run,
32MHz

10min 2000 0.000333%
RTC, SPI,
LVD

10.6 0.0353

Total 1.4607

To determine the meter’s battery lifetime, the individual average current for each function is
calculated by multiplying the Current Drain by the Percent Cycle Active. Results are shown in the
right-hand column in Table 5. The sum of these contributions is the total average MCU current
(ICC): 1.46µA.

Of the major contributors to the meter’s average current consumption, the Software Standby
mode current, 0.79µA, accounts for about 54% of the 1.46µA total, while the Flow Monitor function
consumes 0.62µA, or approximately 42% of the total.

In applications like this that have relatively long periods of inactivity, the current consumed in the
Software Standby and Run modes generally accounts for most of the average MCU current. Thus,
it’s important that the MCU used in the design has excellent low-power characteristics in both of
these modes.

Battery Lifetime Calculation
For this example application, the meter’s battery pack is assumed to have a capacity of 300mAh
and provides approximately 3V for most of its life. Given that information, the battery lifetime is
computed by dividing the average MCU current into the battery capacity, as indicated below:

300,000µAh/1.46µA = 206,243 hours, or 23.5 years.

The calculation reveals that the battery lifetime of the RX111-based flow meter exceeds the
specified 20-year requirement. This result clearly demonstrates the system design advantages
gained by applying the exceptional low-power characteristics of an RX100 MCU.

Summary
•	 The advanced low-power characteristics of RX100 MCUs make them excellent solutions for flow

meters and similar applications that require battery operation. Among the device features most
helpful in such uses are the following:

– The power-efficient Run mode

– Very low Software Standby current

– The fast wake-up time from Software Standby mode

– Low power dissipation for RTL and LVD peripherals

– Power-efficient processing at slower clock frequencies

White Paper – RX100 Microcontroller Family	 Page 10 of 15

Remote Control Device
Handheld remote control devices for consumer electronics products, garage door openers,
industrial lighting systems and automotive applications have to run on batteries for as long as
possible. Typically, the goal is to have them operate for four years before the batteries must be
replaced. As a result, reducing power consumption is a major system design concern. Also,
higher-end remote control devices have touch-sensitive displays with full-featured user interfaces.
They apply intelligent power management to achieve long battery life.

A typical microcontroller-based handheld remote control unit uses an RF interface to communicate
with the controlled equipment. Its multiple-segment display provides user feedback and
conveniently shows the current time. The device’s electronic circuits respond to commands
entered via a keypad.

Battery-lifetime related issues dominate the implementation of a remote control unit. Major
system-design factors are the amount of time the application spends in the active mode and
the amount of time the MCU spends in its low-power mode. Those factors, along with the
corresponding MCU’s current-drain characteristics, determine battery lifetime.

The remote control unit’s MCU waits in a low-power mode for interrupts from three sources: the
RTC (to update the time on the display), the keypad (to respond to a button being pressed) and a
battery voltage monitor (to check the status of its power supply).

After the MCU exits from the low-power mode, it manages the display and keypad activity used
for executing user commands. It sets a ‘Battery Low’ indication in the display after receiving a
power-low interrupt. If the battery level drops too low, the MCU shuts down the remote control
function to avoid sending incorrect commands to the equipment being controlled.

Example Remote Control Device Design
The remote control design described in this example application uses a 32-bit RX100-series device
as the main controller – again, the RX111. That MCU connects to an external multiple-segment
display, a keypad and an RF transceiver, per the block diagram shown in Figure 3.

Multiple
Segment

LCD Display

Power/Battery
Management

Keypad

RF
Transceiver

Processor &
Memory

SPC Keyboard
Interface

LVD

RTC

RX111 MCU

UART

Multiple
Segment

LCD Display

Power/Battery
Management

Keypad

RF
Transceiver

Processor &
Memory

SPI Keyboard
Interface

LVD

RTC

RX111 MCU

UART

Figure 3: Remote control unit (example application #2)

The RX111’s CPU, memory and peripheral modules perform most of the remote control unit’s
functions. The main on-chip peripherals used are the Keypad Interface that monitors keypad
activity, the UART that handles communications with the RF transceiver, and the SPI that sends
information to the multiple segment display. Additionally, the Real Time Clock (RTC) keeps
accurate track of the time, and the Low Voltage Detector (LVD) monitors the battery voltage.

White Paper – RX100 Microcontroller Family	 Page 11 of 15

Most of the time, the MCU remains in its Software Standby mode, in which the CPU and most of
the clocks and peripherals are disabled. The chip idles when waiting for an interrupt to wake the
CPU and begin some activity.

Two different software design approaches can be applied in this remote control. They’re described
in the discussion that follows, and data on the resulting battery lifetimes they produce is
presented. In one implementation, the CPU wakes up from Software Standby mode into a low-
frequency Run mode state. In the other, the CPU wakes up into a full-speed (32MHz) Run mode.

The discussion below aims to answer the following question: At what point does the higher cur-
rent drain – but reduced active time – of a faster processing mode result in a lower average MCU
current than the lower current drain – but longer active time – of a slower power-saving mode?

Functional Description
In order to estimate the power use and battery lifetime of the remote control design, important
timing and power components of the remote control unit’s functions must be determined. A
detailed understanding of a typical user’s activity model and usage requirements has identified
and quantified the application parameters explained below:

Time Update: The display is updated 120 times a minute; i.e., once every half-second.

Battery Voltage Monitor: The Low Voltage Detector operates all of the time. It wakes up the CPU
when the battery level falls too low, but this operation happens so infrequently that its active
current component can be ignored. Nevertheless, the LVD’s current drain is included in the Soft-
ware Standby current drain during the time when the MCU is waiting for a battery-low interrupt.

Keypad Operation: The keypad function manages the keypad and determines which equipment
control function the user wants to manipulate and in what way. The design assumption here is
that the keypad is pressed at an average rate that doesn’t exceed 60 key presses per minute over
the course of a full day. Application software checks for stuck keys and other obvious keypad
errors, reducing the chance of accidental operation that would unnecessarily drain the batteries.

RF Operation: This function enables RF transmission whenever the remote control unit has to
execute a user command. The remote control design assumes that this occurs no more than 60
times a minute on average (based on the keypad operation assumptions).

Table 6 summarizes these functions. It shows the active peripherals associated with each
function, along with the number of times the function must be executed per minute. The target
design requirements for the processing time for each function are based on previous experience
with similar functions. They’re needed for power-use calculations.

Table 6: Remote control function characteristics

Function

Operation Characteristics

Peripherals Active
Avg. Number of
Executions per
Minute

Processing Time
Design Requirement

Wait (with Battery
Voltage Monitor
active)

RTC, LVD NA NA

Time Update RTC, LVD 120 40μs

Keypad Operation RTC, LVD, Keypad 60 60μs

RF Operation RTC, LVD, UART 60 4000μs

White Paper – RX100 Microcontroller Family	 Page 12 of 15

Implementation Options and Low-Power Design Techniques
A common system-design method for saving power in battery-based products is to optimize the
CPU’s operating frequency. In some cases, it’s best to run the CPU at the fastest possible speed in
order to reduce the amount of time that active-mode current is required. In other situations, it is
best to run the CPU at a slower speed to minimize the active-mode current drain.

To illustrate the design tradeoffs involved in these very different strategies, both of these options
are examined in this example design. As mentioned previously, the objective is to determine the
situations in which one approach is typically better than the other.

Table 7 shows the RX111 MCU’s current drain at various CPU operating frequencies measured at
25°C with a 3.3V supply. The ‘CPU Current Drain’ column is for simple CPU operations, while the
‘CPU and Peripheral’ column shows the current drain when operations require a combination of
CPU and on-chip peripherals.

Table 7: RX100 current drain vs. CPU operating frequency

CPU Operating
Frequency

Minimum
Operating
Voltage

Current Drain
(CPU)

Effective
Current Drain
(CPU)

Current Drain
(CPU and
Peripheral)

32MHz 2.7V 3.2mA 3.2mA 10.6mA

8MHz (High-Speed) 2.4V 1.7mA 6.8mA 3.7mA

8MHz (Middle-Speed) 1.8V 1.32mA 5.28mA 3.5mA

1MHz (Middle-Speed) 1.6V 0.74mA 23.7mA 1.2mA

32kHz (Low-Speed) 1.8V 3.96µA 3.96µA –

One important fact revealed by Table 7’s data is that, for purely compute-bound routines, using
the higher frequency always results in a lower effective current drain. Faster processing requires
more current, but tasks are completed in less time. For example, the current drain at 8MHz
(High-Speed) is only 1.7mA, but a computation requires 4x the time when compared to 32MHz.
The effective current drain is thus 6.8mA (or 4x 1.7mA). Similar comparisons of Effective Current
Drain show the benefit or running the CPU faster for improved power efficiency for compute-
bound routines.

In general, with an RX100-type MCU the most power-efficient strategy is to execute compute-
intensive routines with the CPU running at 32MHz. Similarly, if performance is limited by battery
voltage, it’s usually best to run the CPU at the maximum frequency allowed.

Another system-design issue should be considered though: The wake-up times from Software
Standby mode must be added to the processing times. When those delays are taken into account,
a power-usage analysis may reveal that in some cases it is more efficient to wake up into a lower-
frequency Run mode that has a shorter wake time.

Compare, for instance, the 40µs it takes to wake up into a 32MHz Run mode to the 4.8µs needed to
wake up into a 4MHz Run mode. Be aware that during that 35.2µs difference in wake-up times, the
CPU could be executing application tasks.

For applications that don’t spend much time doing computations – like those that depend on the
timing of external signals – the CPU is likely to spend a lot of time in a low-power Run mode with
little to do. For example, the UART might be running at rates slow enough that the CPU is usually
just waiting for serial data to be received. In such cases, excess power is consumed unless a
significant amount of processing can be overlapped during the time spent waiting for data
reception. Typical processing tasks that might be handled include error checking and other
communications overhead chores. The main functions performed by the MCU in the example
remote control device are described below:

Making RF transmissions: The UART connected to the RF transmitter is assumed to operate at
a 128Kbit/sec rate using an 8-bit word, so a complete command transmission takes 12,000µs.

White Paper – RX100 Microcontroller Family	 Page 13 of 15

A word has to be presented to the UART at greater than a 1MHz rate to satisfy the transmitter’s
bandwidth. Additionally, there must be sufficient CPU computing capability to process the
message data during transmission.

This design assumes that the CPU is running during the entire transmission time in order to
process data. Significantly, the RX111’s CPU could operate at a clock rate as slow as 8MHz
and still provide sufficient processing bandwidth. Therefore, it is clocked at that speed in the
Middle-Speed power-controlled Run mode and consumes only 1.32mA, as shown in the CPU
column of Table 7. This design choice is appropriate because only simple CPU operations are
being performed and a minimum number of peripheral blocks are enabled. The 1.32mA current
consumption at 8MHz is about 60% lower than the 3.2mA that the CPU would consume if it were
running at 32MHz.

Additionally, as Table 7 indicates, at 8MHz the RX111 MCU can operate down to 1.8V. This allows
a longer battery lifetime compared to 32MHz operation because the 32MHz speed requires a
minimum operating voltage of 2.7V. The current consumed by the example remote control when
the CPU runs at 8MHz and 32MHz are calculated later in this section.

Updating the Time display: Every half-second, the MCU updates the display with the time,
operating mode status and other user-interface data. The RTC generates an interrupt twice every
second and wakes-up the CPU if it’s in the Software Standby low-power mode. As previously
pointed out, the RX111 transitions from that mode into the 32MHz Run mode in 40µs. At that
speed, the CPU needs 60µs processing time for updating the display. Thus, at 32MHz, the total
current drain is 3.2mA for 100µs (40µs wake-up time plus 60µs processing time).

By contrast, if the CPU is operating with a slower clock, the display processing time will be longer,
but the current drain will be less. At 8MHz, the RX111’s total current drain is 1.32mA for 245µs
(4.8µs wake-up time plus 240µs processing time), since processing takes 4 times as long at 8MHz
as it does at 32MHz.

Calculations of the average current consumption in both operating conditions reveals that the
CPU’s 320mAµs consumption for updating the display when running at 32MHz is slightly less than
its 323mAµs contribution when operating at 8MHz. (A minor simplification made here is that the
current drain during the wake-up period is the same as it is in the Run mode.)

Handling keypad inputs: The design for this example remote control unit assumes that a key press
occurs on average 60 times a minute. The keypad routine can be executed in 100µs when the
CPU is running at 32MHz. Given that the wake-up time from the Software Standby mode into the
32MHz Run mode is 40µs and the Run mode operating current at that speed is 3.2mA, the total
current consumption of the keypad routine at 32MHz is 448mAµs.

However, the wake-up time into the 8MHz Run mode is only 4.8µs. At that CPU speed, the keypad
routine executes in 400µs and the operating current is 1.1mA. For the keyboard routine, then, the
CPU consumes 445mAµs running at 8MHz, just slightly lower than the 448mAµs it consumes at
32MHz.

Average MCU Current Consumption Calculation
Requirements for the execution time and the current drain for each function of the example
remote control unit are shown in Table 8 on the next page. Data for CPU operation at 32MHz and
8MHz allow a comparison of those design options.

White Paper – RX100 Microcontroller Family	 Page 14 of 15

Table 8: Function characteristics for remote control example design

Function

Battery Lifetime Estimates (RX111, typ.) for Remote Control Device

MCU
Mode

Per
1 min
Cycle

Active
Time (µs)

% Cycle
Active

Peripherals
Active

Current
Drain
(mA)

Average
Current
Contribution
(µA)

Wait Stop NA NA 100% RTC, LVD 0.00079 0.7900

Time
Update

32MHz
120

100 0.02000% RTC, LVD 3.2 0.6400

8MHz 245 0.04900% RTC, LVD 1.32 0.6468

Keypad
Update

32MHz
60

140 0.01400% RTC, LVD 3.2 0.4480

8MHz 404.9 0.04049% RTC, LVD 1.32 0.5345

RF Trans-
mission

32MHz
60 12000 1.20%

RTC, UART,
LVD

3.2 38.4000

8MHz 1.32 15.8400

Total
32MHz 1.23% Run cycle time 40.28

8MHz 1.29% Run cycle time 17.81

Battery
Life

32MHz
1200mAh

3.4 years

8MHz 7.7 years

Battery Lifetime Calculations
Each function in Table 8 shows the computation at both the 32MHz CPU operating frequency and
the 8MHz operating frequency. The number of times the function is executed per minute and the
estimated active times are combined to create the ‘% Cycle Active’ numbers. Multiplying those
data by the current drain yields the contribution by each routine to the average current consumed
during the 1-minute cycle.

Subsequently, those contributions are summed to generate the MCU’s total average µA/sec.
Finally, the total averages are divided into the battery capacity to obtain the battery lifetime.
(The 1200mAh capacity listed assumes that the remote control uses two 680mAh batteries, and it
includes an allowance for the battery’s self-discharge current.)

The computations reveal that when operating at 8MHz, the battery lifetime achieved by the
RX111-based example remote control design is about 2.3 times what it is when the CPU is
operating at 32MHz. Clearly, slower is better in this case, because the application is not
compute-intensive.

Interestingly, the RF Transmission function makes by far the largest contribution to the battery
lifetime difference shown in Table 8. Because this function is I/O bound, the execution time
depends on the serial transmission of data. If the lower operating frequency can handle the
required data rate, that option can provide a big power-efficiency advantage.

This example design shows that by identifying opportunities to save power by running at a
reduced CPU frequency, it’s possible to extend battery life in many I/O-oriented products.

White Paper – RX100 Microcontroller Family	 Page 15 of 15

Summary
•	 The advanced low-power characteristics of RX100 MCUs make the devices excellent solutions

for handheld Remote Control units and similar products that are battery-based because these
Renesas chips offer the following features:

– A power-efficient Run mode

– An ultra-low Software Standby current

– Low power consumption at slower Run frequencies

– Fast wake-up times

– Low power operation of RTC and LVD peripherals

•	 The lower-frequency Run modes of RX100 MCUs allow longer battery lifetimes if the primary
application routines have a fixed execution time; i.e., one that’s not determined solely by CPU
performance.

Conclusion
The MCUs in the Renesas RX100 series deliver outstanding performance coupled with advanced
power-saving features to better address the design requirements of applications that have limited
power budgets. This white paper has highlighted the low-power modes these chips provide
and explained some of the design options they offer for reducing current consumption. These
impressive 32-bit devices give system engineers exciting opportunities to produce new products
that stretch battery lifetimes to lengths previously impossible to achieve.

The current-consumption reduction techniques described herein facilitate the design of eco-friendly
products that banish frequent battery replacements or recharges.

‘True Low Power’ is a trademark of Renesas Electronics America, Inc.

References and Resources
RX111 Group Datasheet:
http://documentation.renesas.com/doc/products/mpumcu/doc/rx_family/r01uh0365ej0100_rx111.pdf

RX100 User Hardware Manual:
http://www.am.renesas.com/rx100

RX100 Home Page (Americas):
http://www.am.renesas.com/rx100

RX100 Family Brochure: 	
http://www.am.renesas.com/media/products/mpumcu/rx/rx100/RX100Brochure.pdf

RX100 Customer Presentation:
http://www.am.renesas.com/media/products/mpumcu/rx/rx100/RX100SeriesOverview.pdf

RX100 Video Introduction:
https://www.youtube.com/watch?feature=player_embedded&v=lWrM0NOhtjA

RX100 Renesas Interactive Training Module:
http://www.renesasinteractive.com/course/view.php?id=553?loginActionInvoker=renesasinteractive

http://documentation.renesas.com/doc/products/mpumcu/doc/rx_family/r01uh0365ej0100_rx111.pdf
http://www.am.renesas.com/rx100
http://www.am.renesas.com/rx100
http://www.am.renesas.com/media/products/mpumcu/rx/rx100/RX100Brochure.pdf
http://www.am.renesas.com/media/products/mpumcu/rx/rx100/RX100SeriesOverview.pdf
https://www.youtube.com/watch?feature=player_embedded&v=lWrM0NOhtjA
http://www.renesasinteractive.com/course/view.php?id=553?loginActionInvoker=renesasinteractive

