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1. Notes 

The MCU may malfunction when using EW1 mode, which is one of the internal flash memory rewrite function, under any of 

the following conditions: 

1.1 A software command is executed in EW1 mode when the CPU clock is lower than 1 MHz. 

1.2 A block blank check command is executed when the CPU clock is lower than 3 MHz (when the command is executed 

in EW1 mode, or executed in EW0 mode before entering EW1 mode). 

1.3 The read lock bit status command is executed, or the program command or block erase command is executed to the 

block although write/erase operations to the block are disabled by the lock bit command (when the command is 

executed in EW1 mode, or executed in EW0 mode before entering EW1 mode). 

1.4 EW1 mode is used in the user program in which the MCU enters wait mode or stop mode. 

 

2 Countermeasures 

2.1 Frequency limitation of EW1 mode 

Set the CPU clock to 1 MHz or higher when using EW1 mode. 

 

2.2 Frequency limitation of block blank check command 

Set the CPU clock to 3 MHz or higher when using the block blank check command. 

 

2.3 Disabling the lock bit 

Set the FMR02 bit in the FMR0 register to 1 (lock bit disabled). 

Do not execute the read lock bit status command or lock bit program command. 

 

2.4 Entering EW1 mode in the user program using wait or stop mode 

When using EW1 mode in the user program in which the MCU enters wait mode or stop mode, follow steps (1) to 

(13) in the procedure below. Make sure interrupts are disabled in this procedure. 
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(1) Set registers CM0, CM1, and PM1 to use the CPU clock within 1 MHz to 10 MHz with one wait. 

(2) Transfer the programs in steps (6) to (10) to RAM. 

(3) Set the FMR01 bit in the FMR0 register to 0 and then set it to 1 (CPU rewrite mode enabled, EW0 mode). 

(4) Set the FMR02 bit in the FMR0 register to 0 and then set it to 1 (lock bit disabled). 

(5) Jump to the first address of the transferred program (on RAM). 

(6) Set the FMSTP bit in the FMR0 register to 1 (flash memory operation stopped). 

(7) Wait until the flash memory stabilizes (tps). 

(8) Set the FMSTP bit in the FMR0 register to 0 (flash memory operation enabled). 

(9) Wait until the flash memory stabilizes (tps). 

(10) Jump to the program on internal flash memory. 

(11) Set the FMR11 bit in the FMR1 register to 1 (write to FMR6 register enabled). 

(12) Set bits FMR61 and FMR60 in the FMR6 register to 1 (EW1 mode). 

(13) Set the FMR11 bit in the FMR1 register to 0 (write to FMR6 register disabled). 

 

3 Relation between EW1/EW0 Modes and Countermeasures 

The table below lists the relation between “2. Countermeasures” and each mode. 

Table 1. EW1/EW0 Modes and Countermeasures 

Item EW1 Mode Used Both EW1 and EW0 
Modes Used EW0 Mode Used 

CPU clock 
Set as follows: 
· 1 MHz ≤ f(BCLK) ≤ 10 MHz 
· PM17 bit in the PM1 register to 1 (one wait) 

Set as follows: 
· f(BCLK) ≤ 10 MHz 
· PM17 bit in the PM1 register to 1 

(wait state) 

Block blank check command 
Set as follows: 
· 3 MHz ≤ f(BCLK) ≤ 10 MHz 
· PM17 bit in the PM1 register to 1 (one wait) 

Set as follows: 
· f(BCLK) ≤ 10 MHz 
· PM17 bit in the PM1 register to 1 

(wait state) 

Lock bit 
Do not use.  
Set the FMR02 bit in the FMR0 register to 1 (lock 
bit disabled). 

Applicable 
Enabled/disabled can be selected.

Lock bit program command Do not use. Applicable 

Read lock bit status command Do not use. Applicable 

Entering EW1 mode in the user 
program using wait or stop mode 

Follow the procedure stated in 2.4 to enter EW1 
mode. — 
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APPLICATION NOTE


1. Abstract
This document describes the program for avoiding the problem in M16C/65 and 64A Groups where the MCU
cannot enter EW1 mode after exiting wait mode or stop mode. 


2. Flash Memory Control Circuit Reset Function (FLASH_RESET Function)
The above mentioned problem can be avoided by resetting the flash memory using the FLASH_RESET function.
This function executes the flash memory reset program on RAM. Then, the MCU enters EW1 mode.


3. Notes on Calling the FLASH_RESET Function


(1) Setting the CPU clock
Before calling this function, set the CM1 and CM0 registers to use CPU clock within 1 MHz to 10 MHz.
Also, set the PM17 bit to 1 to insert one wait.


(2) Interrupt enable flag (I Flag)
As the flash memory is stopped in this function, interrupts are disabled. When this function is called, the flag
register including the I flag is saved to the stack. Then, the I flag is cleared (maskable interrupt disabled). After
the flash memory is reset, the I flag returns to its previous state, then the program exits this function.


(3) Used stack size 
As the flash memory reset halts the flash memory operation, flash memory must be reset on RAM. Therefore, this
function reserves the AUTO variable (RAM_BUFF[RAM_SIZE]), and the program that resets the flash memory
(FLASH_CONTROL_RESET function) is copied to that area and executed.
As the FLASH_RESET function uses a maximum 48-byte stacks (without optimizing), be careful of stack
overflow. With an optimization option in a compiler, the maximum size of the stack used changes.


(4) RAM size for program allocation
When the FLASH_CONTROL_RESET function, which resets flash memory is changed, RAM size also changes.
Therefore, do not change the AUTO variable (RAM_BUFF[RAM_SIZE]), FLASH_CONTROL_RESET
function, or asm_INTO_EW1_MODE function.
Note: As stated in (5), the Wait_TIME value can be changed.


#define RAM_SIZE 0x1E //void FLASH_CONTROL_RESET function's code size
void FLASH_CONTROL_RESET(void){}


(5) Flash memory circuit stabilization wait time (tps)
After the flash memory is reset by the FLASH_CONTROL_RESET function, flash memory circuit stabilization
wait time (tps) is necessary. This function sets a software loop time by the macro below to wait (tps). Change the
Wait_TIME to the desired value depending on the environment.


Wait_TIME .equ 60    /*  ( 1/CPU Clock ) * 9cycle * Wait_time >= tps  (even address) */
/*  Ex) Xin: 20MHz ,CPU Clock :10MHz(Xin/2 div)      */


For more information on the flash memory circuit stabilization wait time (tps), refer to Electrical Characteristics
in the hardware manual. 


(6) Disabling the lock bit (FMR02 bit is 1)
Commands related to the lock bit cannot used in EW1 mode. Therefore, in the FLASH_RESET function, the lock
bit is disabled by setting the FMR02 bit to 1 before entering EW1 mode.
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4. Function Tables 
The tables below show the functions used in this program.


(1) FLASH_RESET 


(2) FLASH_CONTROL_RESET


(3) asm_smovf


Declaration void FLASH_RESET(void)
Outline Resetting the flash memory
Argument None


Variable (AUTO) char RAM_BUFF[RAM_SIZE] Reserve an area for allocating the 
command execution program


Returned value None


Function


This function reserves the RAM_BUFF[RAM_SIZE] variable (stack), and the program 
that resets the flash memory control circuit is allocated to that area and executed.  
After executing the program, FMR02 bit is set to 1. Then, the MCU enters EW1 mode 
with the lock bit disabled.


Declaration void FLASH_CONTROL_RESET(void)
Outline Resetting the flash memory control circuit using the FMSTP bit in the FMR0 register
Argument None
Variable (AUTO) None
Returned value None


Function This function resets the flash memory control circuit using the FMSTP bit in the FMR0 
register.


Declaration void asm_smovf(void _far *_source, void _near *_dest, unsigned int _size)
Outline Transferring RAM


Argument
void_far *_source Source address (program)
void_near *_dest Destination address (RAM area)
void_near *_dest Transfer size


Variable (AUTO) None
Returned value None


Function


This function transmits the program to the address specified by the second argument. 
(The First address of the program is specified by the first argument and number of 
the bytes of the program is specified by the third argument.) 
After the transfer, the program allocated to the RAM address is executed, and the 
MCU enters EW1 mode.
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5. Using This Program
This is an example of how to call the FLASH_RESET function:


extern void FLASH_RESET(void); //Declare prototype


void main(){
////  Omission  ////
_asm(“ fset I”);
_asm(“ wait”);
////  Omission  ////


_asm(“ fclr I”);


//CM0,CM1,PM17 bit=“1”  (1MHz<f(BCLK)<10MHz§1wait setting)
FLASH_RESET(); //Call FLASH_RESET function (enter EW1 mode)


//Software  Command       Ex)Erase command


FMR0 = 0x00; //Exit EW1 mode
}
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/**************************************************************************/

/*																		  */

/*	This program is FLASH Memory initial function.						  */

/*																		  */

/*	CPU:M16C/64A,M16C/65												  */

/*	Rev:1.00															  */

/*	Since:09-07-01														  */

/*																		  */

/*																		  */

/**************************************************************************/







#define RAM_SIZE 0x1E	//void FLASH_CONTROL_RESET function's code size





void FLASH_RESET(void);

void FLASH_CONTROL_RESET(void);



void asm_INTO_EW1_MODE(void _far *_source, void _near *_dest, unsigned int _size);

#pragma PARAMETER asm_INTO_EW1_MODE(R2R0,A1,R3)







/**********************************************************************************/

/*      FLASH_RESET																  */

/**********************************************************************************/





void FLASH_RESET(void){

	char RAM_BUFF[RAM_SIZE];	/* RAM buff(Program code copy adder) */

	

#pragma asm

	pushc	FLG

	fclr	i					/*	I FLG clear */

#pragma endasm



	asm_INTO_EW1_MODE((void _far *)FLASH_CONTROL_RESET,(void _near *)RAM_BUFF,RAM_SIZE);

#pragma asm

	popc	FLG

#pragma endasm



}



/**********************************************************************************/

/*      FLASH_CONTROL_RESET Function										  */

/**********************************************************************************/





void FLASH_CONTROL_RESET(void){



#pragma asm



	Wait_TIME	.equ	60			/* Please Setting wait time	�@1-0FFFFh	*/

									/* (1/CPU Clock) * 9cycle * Wait_time >= tps */

									/* Ex) Xin: 20MHz ,CPU Clock :10MHz(Xin/2 div)	*/

									/*     1/10MHz * 9 * 60 = 54us	(even address)	*/



   /* FLASH control circuit RESET */

FLASH_CONTROL_RESET_ST:

	OR.B:S		#08h,	220h		/* FMSTP bit="1" FLASH STOP */

	MOV.W:G		#Wait_TIME,	R0

?:									/* tps waitting about 50us (When Xin:20MHz div /2 PM17="1") */

	SUB.W:G		#1h,	R0

	JNE			?-



	AND.B:S		#0F7h,	220h		/* FMSTP bit="1" FLASH STOP */



	MOV.W:G		#Wait_TIME,	R0

?:									/* tps waitting about 50us (When Xin:20MHz div /2 PM17="1") */

	SUB.W:G		#1h,	R0

	JNE			?-

FLASH_CONTROL_RESET_ED:

#pragma endasm



}





/**********************************************************************************/

/*      asm_INTO_EW1_MODE

/**********************************************************************************/

void asm_INTO_EW1_MODE(void _far *_source, void _near *_dest, unsigned int _size)

{

#pragma ASM





    mov.w    R0,A0         /* Source lower 16bit is forwarded from R0 to A0    */

    mov.w    R2,R1         /* Source higher 4bit is forwarded from R2 to R1    */

    mov.b    R1L,R1H       /* Source higher 4bit is forwarded from R1L to R1H  */

	mov.w	 A1,R0

    smovf.b                /* String forwarding execution */

	mov.w	#0000h,A1

	mov.w	R0,A0



	/* CPU rewrite mode */

	BCLR:G	1,220h

	BSET:G	1,220h				/* FMSTP bit="1" FLASH STOP */

	BCLR:G	2,220h				/* FMR02 bit="0" */

	BSET:G	2,220h				/* FMR02 bit="1" LOCK BIT disenable */



	jsri.a	A1A0				/* JUMP FLASH RESET(RAM)			*/

	mov.b	#02h,221h

	mov.b	#03h,230h			/*	EW1 mode						*/

	mov.b	#00h,221h

	

#pragma ENDASM



}







