

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

(c) 2009. Renesas Technology Corp., All rights reserved. Page 1 of 2

Date: Jul.15.2009

RENESAS TECHNICAL UPDATE
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Renesas Technology Corp.

Product
Category MPU & MCU Document

No. TN-16C-A175A/E Rev. 1.00

Title M16C/65, M16C/64A Groups
Notes on Using EW1 Mode

Information
Category Technical Notification

Lot No.

Applicable
Products M16C/65, M16C/64A Groups

Reference
Documents

1. Notes

The MCU may malfunction when using EW1 mode, which is one of the internal flash memory rewrite function, under any of

the following conditions:

1.1 A software command is executed in EW1 mode when the CPU clock is lower than 1 MHz.

1.2 A block blank check command is executed when the CPU clock is lower than 3 MHz (when the command is executed

in EW1 mode, or executed in EW0 mode before entering EW1 mode).

1.3 The read lock bit status command is executed, or the program command or block erase command is executed to the

block although write/erase operations to the block are disabled by the lock bit command (when the command is

executed in EW1 mode, or executed in EW0 mode before entering EW1 mode).

1.4 EW1 mode is used in the user program in which the MCU enters wait mode or stop mode.

2 Countermeasures

2.1 Frequency limitation of EW1 mode

Set the CPU clock to 1 MHz or higher when using EW1 mode.

2.2 Frequency limitation of block blank check command

Set the CPU clock to 3 MHz or higher when using the block blank check command.

2.3 Disabling the lock bit

Set the FMR02 bit in the FMR0 register to 1 (lock bit disabled).

Do not execute the read lock bit status command or lock bit program command.

2.4 Entering EW1 mode in the user program using wait or stop mode

When using EW1 mode in the user program in which the MCU enters wait mode or stop mode, follow steps (1) to

(13) in the procedure below. Make sure interrupts are disabled in this procedure.

RENESAS TECHNICAL UPDATE TN-16C-A175A/E Date: Jul.15.2009

Page 2 of 2

(1) Set registers CM0, CM1, and PM1 to use the CPU clock within 1 MHz to 10 MHz with one wait.

(2) Transfer the programs in steps (6) to (10) to RAM.

(3) Set the FMR01 bit in the FMR0 register to 0 and then set it to 1 (CPU rewrite mode enabled, EW0 mode).

(4) Set the FMR02 bit in the FMR0 register to 0 and then set it to 1 (lock bit disabled).

(5) Jump to the first address of the transferred program (on RAM).

(6) Set the FMSTP bit in the FMR0 register to 1 (flash memory operation stopped).

(7) Wait until the flash memory stabilizes (tps).

(8) Set the FMSTP bit in the FMR0 register to 0 (flash memory operation enabled).

(9) Wait until the flash memory stabilizes (tps).

(10) Jump to the program on internal flash memory.

(11) Set the FMR11 bit in the FMR1 register to 1 (write to FMR6 register enabled).

(12) Set bits FMR61 and FMR60 in the FMR6 register to 1 (EW1 mode).

(13) Set the FMR11 bit in the FMR1 register to 0 (write to FMR6 register disabled).

3 Relation between EW1/EW0 Modes and Countermeasures

The table below lists the relation between “2. Countermeasures” and each mode.

Table 1. EW1/EW0 Modes and Countermeasures

Item EW1 Mode Used Both EW1 and EW0
Modes Used EW0 Mode Used

CPU clock
Set as follows:
· 1 MHz ≤ f(BCLK) ≤ 10 MHz
· PM17 bit in the PM1 register to 1 (one wait)

Set as follows:
· f(BCLK) ≤ 10 MHz
· PM17 bit in the PM1 register to 1

(wait state)

Block blank check command
Set as follows:
· 3 MHz ≤ f(BCLK) ≤ 10 MHz
· PM17 bit in the PM1 register to 1 (one wait)

Set as follows:
· f(BCLK) ≤ 10 MHz
· PM17 bit in the PM1 register to 1

(wait state)

Lock bit
Do not use.
Set the FMR02 bit in the FMR0 register to 1 (lock
bit disabled).

Applicable
Enabled/disabled can be selected.

Lock bit program command Do not use. Applicable

Read lock bit status command Do not use. Applicable

Entering EW1 mode in the user
program using wait or stop mode

Follow the procedure stated in 2.4 to enter EW1
mode. —

Page 1 of 5

APPLICATION NOTE

1. Abstract
This document describes the program for avoiding the problem in M16C/65 and 64A Groups where the MCU
cannot enter EW1 mode after exiting wait mode or stop mode.

2. Flash Memory Control Circuit Reset Function (FLASH_RESET Function)
The above mentioned problem can be avoided by resetting the flash memory using the FLASH_RESET function.
This function executes the flash memory reset program on RAM. Then, the MCU enters EW1 mode.

3. Notes on Calling the FLASH_RESET Function

(1) Setting the CPU clock
Before calling this function, set the CM1 and CM0 registers to use CPU clock within 1 MHz to 10 MHz.
Also, set the PM17 bit to 1 to insert one wait.

(2) Interrupt enable flag (I Flag)
As the flash memory is stopped in this function, interrupts are disabled. When this function is called, the flag
register including the I flag is saved to the stack. Then, the I flag is cleared (maskable interrupt disabled). After
the flash memory is reset, the I flag returns to its previous state, then the program exits this function.

(3) Used stack size
As the flash memory reset halts the flash memory operation, flash memory must be reset on RAM. Therefore, this
function reserves the AUTO variable (RAM_BUFF[RAM_SIZE]), and the program that resets the flash memory
(FLASH_CONTROL_RESET function) is copied to that area and executed.
As the FLASH_RESET function uses a maximum 48-byte stacks (without optimizing), be careful of stack
overflow. With an optimization option in a compiler, the maximum size of the stack used changes.

(4) RAM size for program allocation
When the FLASH_CONTROL_RESET function, which resets flash memory is changed, RAM size also changes.
Therefore, do not change the AUTO variable (RAM_BUFF[RAM_SIZE]), FLASH_CONTROL_RESET
function, or asm_INTO_EW1_MODE function.
Note: As stated in (5), the Wait_TIME value can be changed.

#define RAM_SIZE 0x1E //void FLASH_CONTROL_RESET function's code size
void FLASH_CONTROL_RESET(void){}

(5) Flash memory circuit stabilization wait time (tps)
After the flash memory is reset by the FLASH_CONTROL_RESET function, flash memory circuit stabilization
wait time (tps) is necessary. This function sets a software loop time by the macro below to wait (tps). Change the
Wait_TIME to the desired value depending on the environment.

Wait_TIME .equ 60 /* (1/CPU Clock) * 9cycle * Wait_time >= tps (even address) */
/* Ex) Xin: 20MHz ,CPU Clock :10MHz(Xin/2 div) */

For more information on the flash memory circuit stabilization wait time (tps), refer to Electrical Characteristics
in the hardware manual.

(6) Disabling the lock bit (FMR02 bit is 1)
Commands related to the lock bit cannot used in EW1 mode. Therefore, in the FLASH_RESET function, the lock
bit is disabled by setting the FMR02 bit to 1 before entering EW1 mode.

M16C/65 and M16C/64A Groups
Program for Enabling Transition to EW1 Mode After Exiting Wait/Stop Mode

July 2009

July 2009 Page 2 of 5

M16C/65 and M16C/64A Groups
Program for Enabling Transition to EW1 Mode After Exiting Wait/Stop Mode

4. Function Tables
The tables below show the functions used in this program.

(1) FLASH_RESET

(2) FLASH_CONTROL_RESET

(3) asm_smovf

Declaration void FLASH_RESET(void)
Outline Resetting the flash memory
Argument None

Variable (AUTO) char RAM_BUFF[RAM_SIZE] Reserve an area for allocating the
command execution program

Returned value None

Function

This function reserves the RAM_BUFF[RAM_SIZE] variable (stack), and the program
that resets the flash memory control circuit is allocated to that area and executed.
After executing the program, FMR02 bit is set to 1. Then, the MCU enters EW1 mode
with the lock bit disabled.

Declaration void FLASH_CONTROL_RESET(void)
Outline Resetting the flash memory control circuit using the FMSTP bit in the FMR0 register
Argument None
Variable (AUTO) None
Returned value None

Function This function resets the flash memory control circuit using the FMSTP bit in the FMR0
register.

Declaration void asm_smovf(void _far *_source, void _near *_dest, unsigned int _size)
Outline Transferring RAM

Argument
void_far *_source Source address (program)
void_near *_dest Destination address (RAM area)
void_near *_dest Transfer size

Variable (AUTO) None
Returned value None

Function

This function transmits the program to the address specified by the second argument.
(The First address of the program is specified by the first argument and number of
the bytes of the program is specified by the third argument.)
After the transfer, the program allocated to the RAM address is executed, and the
MCU enters EW1 mode.

July 2009 Page 3 of 5

M16C/65 and M16C/64A Groups
Program for Enabling Transition to EW1 Mode After Exiting Wait/Stop Mode

5. Using This Program
This is an example of how to call the FLASH_RESET function:

extern void FLASH_RESET(void); //Declare prototype

void main(){
//// Omission ////
_asm(“ fset I”);
_asm(“ wait”);
//// Omission ////

_asm(“ fclr I”);

//CM0,CM1,PM17 bit=“1” (1MHz<f(BCLK)<10MHz§1wait setting)
FLASH_RESET(); //Call FLASH_RESET function (enter EW1 mode)

//Software Command Ex)Erase command

FMR0 = 0x00; //Exit EW1 mode
}

July 2009 Page 4 of 5

M16C/65 and M16C/64A Groups
Program for Enabling Transition to EW1 Mode After Exiting Wait/Stop Mode

Revision History

All trademarks and registered trademarks are the property of their respective owners

Rev. Date
Description

Page Summary
1.00 Jul.01, 2009 − First Edition issued

July 2009 Page 5 of 5

M16C/65 and M16C/64A Groups
Program for Enabling Transition to EW1 Mode After Exiting Wait/Stop Mode

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

		1. Abstract

		2. Flash Memory Control Circuit Reset Function (FLASH_RESET Function)

		3. Notes on Calling the FLASH_RESET Function

		(1) Setting the CPU clock

		(2) Interrupt enable flag (I Flag)

		(3) Used stack size

		(4) RAM size for program allocation

		(5) Flash memory circuit stabilization wait time (tps)

		(6) Disabling the lock bit (FMR02 bit is 1)

		4. Function Tables

		(1) FLASH_RESET

		(2) FLASH_CONTROL_RESET

		(3) asm_smovf

		5. Using This Program

/**/

/*																		 */

/*	This program is FLASH Memory initial function.						 */

/*																		 */

/*	CPU:M16C/64A,M16C/65												 */

/*	Rev:1.00															 */

/*	Since:09-07-01														 */

/*																		 */

/*																		 */

/**/

#define RAM_SIZE 0x1E	//void FLASH_CONTROL_RESET function's code size

void FLASH_RESET(void);

void FLASH_CONTROL_RESET(void);

void asm_INTO_EW1_MODE(void _far *_source, void _near *_dest, unsigned int _size);

#pragma PARAMETER asm_INTO_EW1_MODE(R2R0,A1,R3)

/**/

/* FLASH_RESET																 */

/**/

void FLASH_RESET(void){

	char RAM_BUFF[RAM_SIZE];	/* RAM buff(Program code copy adder) */

	

#pragma asm

	pushc	FLG

	fclr	i					/*	I FLG clear */

#pragma endasm

	asm_INTO_EW1_MODE((void _far *)FLASH_CONTROL_RESET,(void _near *)RAM_BUFF,RAM_SIZE);

#pragma asm

	popc	FLG

#pragma endasm

}

/**/

/* FLASH_CONTROL_RESET Function										 */

/**/

void FLASH_CONTROL_RESET(void){

#pragma asm

	Wait_TIME	.equ	60			/* Please Setting wait time	�@1-0FFFFh	*/

									/* (1/CPU Clock) * 9cycle * Wait_time >= tps */

									/* Ex) Xin: 20MHz ,CPU Clock :10MHz(Xin/2 div)	*/

									/* 1/10MHz * 9 * 60 = 54us	(even address)	*/

 /* FLASH control circuit RESET */

FLASH_CONTROL_RESET_ST:

	OR.B:S		#08h,	220h		/* FMSTP bit="1" FLASH STOP */

	MOV.W:G		#Wait_TIME,	R0

?:									/* tps waitting about 50us (When Xin:20MHz div /2 PM17="1") */

	SUB.W:G		#1h,	R0

	JNE			?-

	AND.B:S		#0F7h,	220h		/* FMSTP bit="1" FLASH STOP */

	MOV.W:G		#Wait_TIME,	R0

?:									/* tps waitting about 50us (When Xin:20MHz div /2 PM17="1") */

	SUB.W:G		#1h,	R0

	JNE			?-

FLASH_CONTROL_RESET_ED:

#pragma endasm

}

/**/

/* asm_INTO_EW1_MODE

/**/

void asm_INTO_EW1_MODE(void _far *_source, void _near *_dest, unsigned int _size)

{

#pragma ASM

 mov.w R0,A0 /* Source lower 16bit is forwarded from R0 to A0 */

 mov.w R2,R1 /* Source higher 4bit is forwarded from R2 to R1 */

 mov.b R1L,R1H /* Source higher 4bit is forwarded from R1L to R1H */

	mov.w	 A1,R0

 smovf.b /* String forwarding execution */

	mov.w	#0000h,A1

	mov.w	R0,A0

	/* CPU rewrite mode */

	BCLR:G	1,220h

	BSET:G	1,220h				/* FMSTP bit="1" FLASH STOP */

	BCLR:G	2,220h				/* FMR02 bit="0" */

	BSET:G	2,220h				/* FMR02 bit="1" LOCK BIT disenable */

	jsri.a	A1A0				/* JUMP FLASH RESET(RAM)			*/

	mov.b	#02h,221h

	mov.b	#03h,230h			/*	EW1 mode						*/

	mov.b	#00h,221h

	

#pragma ENDASM

}

