Date: Feb. 22, 2016

RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A033C/E	Rev.	3.00	
Title	Correction for Incorrect Description Notice RL78/L1C Descriptions in the User's Manual Rev. 2.00 Changed	Information Category	Technical Notification			
			D. 70# 40 H			
Applicable Product	RL78/L1C Group	All lots		RL78/L1C User's Man Rev. 2.00 R01UH0409EJ0200 (F		

This document describes misstatements found in the RL78/L1C User's Manual: Hardware Rev. 2.00 (R01UH0409EJ0200).

Corrections

Applicable Item	Applicable Page	Contents
2.1.1 80/85-pin products (with USB)	p.24	Incorrect descriptions revised
2.1.2 80/85-pin products (without USB)	p.27	Incorrect descriptions revised
2.1.3 100-pin products (with USB)	p.30	Incorrect descriptions revised
2.1.4 100-pin products (without USB)	p.33	Incorrect descriptions revised
2.4 Pin Block Diagrams Figure 2 - 7 Pin Block Diagram of Pin Type 7-5-10	p.47	Caution added
2.4 Pin Block Diagrams Figure 2 - 11 Pin Block Diagram of Pin Type 7-3-4	p.51	Caution added
2.4 Pin Block Diagrams Figure 2 - 14 Pin Block Diagram of Pin Type 8-5-10	p.54	Caution added
2.4 Pin Block Diagrams Figure 2 - 15 Pin Block Diagram of Pin Type 8-3-4	p.55	Caution added
2.4 Pin Block Diagrams Figure 2 - 16 Pin Block Diagram of Pin Type 12-1-2	p.56	Incorrect descriptions revised

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

			Corrections and Applicable Items		Pages in this
No.		Document No.	English	R01UH0409EJ0200	document for
	2212		· ·		corrections
1		pecial function registe	Pages 82 and 83	Page 4 and 5	
2		mer mode register r node register mn (TMF	Page 248	Page 6	
3			illator trimming register (HIOTRM)	Page 186	Page 7
4		SNOOZE mode function Chart of SNOOZE Mo	on de Operation (Figure 14-74. and Figure	Pages 663 and 665	Page 8 and 9
5	15.6.3	SNOOZE mode function	on	Page 688	Page 10
6	Timing	SNOOZE mode function Chart of SNOOZE Industries	on Mode Operation (Figure 15-95., Figure	Pages 690, 691 and 693	Page 11 to 13
7	17.4.5.3	DTC Transfers (D0F	IFO and D1FIFO Ports)	Page 895	Page 14
8	34.6.1 3	34.6.1 A/D converter of	haracteristics	Page 1221	Page 15 and 16
9	34.9 Da Charact	•	de Low Supply Voltage Data Retention	Page 1234	Page 17
10		ta Memory STOP Mo cteristics	de Low Supply Voltage Data Retention	Page 1294	Page 18
11	8.3.4 Re	eal-time clock control	register 1 (RTCC1)	Page 457	Page 19
12	5.2 Con	figuration of Clock Ge	enerator	page 170	Page 20
13	5.3.2 Sy	stem clock control re	gister (CKC)	page 174	Page 21
14	5.3.6 Pe	eripheral enable regist	ters 0, 1, 2 (PER0, PER1, PER2)	page 180, 181	Page 22
15	5.3.10 F	PLL control register (D	SCCTL)	page 187	Page 23
16	5.4.5 PL	L (Phase Locked Loc	op)	page 194	Page 24
17	5.6.1 Ex	cample of setting high	-speed on-chip oscillator	page 197	Pages 25
18	5.6.4 Ex	cample of setting PLL	circuit	page 199	Page 26 and 27
19	5.6.5 CI	PU clock status transi	tion diagram	page 202	Pages 28
20	Table 5		tion diagram tion and SFR Register Setting	pages 203 to 209	Page 29 to 36
21		PU clock status transi - 11 CPU Clock Tran	tion diagram sition and SFR Register Setting	page 213	Page 37
22		ondition before chang ng CPU clock	ing CPU clock and processing after	pages 216 to 217	Page 38 and 39
23	6.3.1 Pe	eripheral enable regist	ter 0 (PER0)	page 240	Page 40
24	8.3.1 Pe	eripheral enable regist	ter 0 (PER0)	page 451	Page 41
25	8.4.1 St	arting operation of rea	al-time clock 2	page 469	Page 42
26	12.3.1 F	Peripheral enable regi	ster 0 (PER0)	page 502	Page 43
27	15.3.1 F	Peripheral enable regi	ster 0 (PER0)	page 591	Page 44
28	16.3.1 F	Peripheral enable regi	ster 0 (PER0)	page 734	Pages 45
29	34.1 Ab	solute Maximum Rati	ngs	page 1172	Page 46
30	34.3.1 F	Pin characteristics		page 1175	Pages 47 and 48
31	35.1 Absolute Maximum Ratings page 1239		page 1239	Page 49	
32	35.3.1 F	Pin characteristics		page 1242	Pages 50 and 51
33	2.1.1 80)/85-pin products (with	uSB)	p.24	Page 52
34)/85-pin products (with	p.27	Page 53	
35		00-pin products (with l	•	p.30	Page 54
36		00-pin products (witho	,	p.33	Page 55
37		Block Diagrams Figur	e 2 - 7 Pin Block Diagram of Pin Type	p.47	Page 56

RENESAS TECHNICAL UPDATE TN-RL*-5 033C/E

α	IW	٠.	V\/	' Q.Q	&\$ %	
O	UIII.	-	1 7	CIOZ	OCD /0	

38	2.4 Pin Block Diagrams Figure 2 - 11 Pin Block Diagram of Pin Type 7-3-4	p.51	Page 57
39	2.4 Pin Block Diagrams Figure 2 - 14 Pin Block Diagram of Pin Type 8-5-10	p.54	Page 58
40	2.4 Pin Block Diagrams Figure 2 - 15 Pin Block Diagram of Pin Type 8-3-4	p.55	Page 59
41	2.4 Pin Block Diagrams Figure 2 - 16 Pin Block Diagram of Pin Type 12-1-2	p.56	Page 60

Incorrect,Old: Bold with underline; Correct, New: Gray hatched

Revision History

RL78/L1C Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A033A/E	Aug. 18, 2014	First edition issued Corrections No.1 to No.10 revised
TN-RL*-A046A/E	Jul. 6 , 2015	Correction No.11 revised
TN-RL*-A033B/E	Sep. 30, 2015	Second edition issued Corrections No.12 to No.32 revised
TN-RL*-A033C/E	Feb. 22, 2016	Third edition issued Corrections No.33 to No.36 revised (this document)

1. 3.3.4 Special function registers (SFRs) Table 3 - 7 SFR List (Page 82 and 83)

Incorrect:

Table 3-7. SFR List (1/4)

Address	Special Function Register (SFR) Name	Syn	nbol	R/W	Manipulable Bit Range			After Reset
					1-bit	8-bit	16-bit	
		(0	mitted)					
FFF10H	Serial data register 00	TXD0/ SIO00	SDR00	R/W	I	√	√	0000H
FFF11H		1			ı	ı		
FFF12H	Serial data register 01	RXD0	SDR01	R/W	Ī	\checkmark	\checkmark	0000H
FFF13H		_			-	_		
FFF14H	Serial data register 12	TXD3	SDR12	R/W	ı	V	√	0000H
FFF15H		SIO30			-	1		
FFF16H	Serial data register 13	RXD3	SDR13	R/W	ı	V	√	0000H
FFF17H		ı			ı	ı		
	(omitted)							

Table 3-7. SFR List (1/4)

	Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset
						1-bit	8-bit	16-bit	
			(0	mitted)					
	FFF10H	Serial data register 00	TXD0/	SDR00	R/W	-	\checkmark	√	0000H
			SIO00					Į	
	FFF11H		-			-	_		
	FFF12H	Serial data register 01	RXD0	SDR01	R/W	-	\checkmark	√	0000H
	FFF13H		_			-	-		
	FFF14H	Serial data register 12	TXD3/	SDR12	R/W	-	\checkmark	√	0000H
			SIO30						
	FFF15H					=	=		
	FFF16H	Serial data register 13	RXD3	SDR13	R/W	-	$\sqrt{}$	V	0000H
11	FFF17H		=			=	=		
1	(omitted)								

Incorrect:

Table 3-7. SFR List (2/4)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset
					1-bit	8-bit	16-bit	
		(0	mitted)					
FFF44H	Serial data register 02	TXD1/	SDR02	R/W	=	\checkmark	V	0000H
		SIO10						
FFF45H		-			-	ī		
FFF46H	Serial data register 03	RXD1	SDR03	R/W	-	$\sqrt{}$	$\sqrt{}$	0000H
FFF47H		ı			-	ı		
FFF48H	Serial data register 10	TXD2	SDR10	R/W	1	√	V	0000H
FFF49H		SIO20			1	1		
FFF4AH	Serial data register 11	RXD2	SDR11	R/W	-	\checkmark	$\sqrt{}$	0000H
FFF4BH		1			1	1		
	(omitted)							

Table 3-7. SFR List (2/4)

Address	Special Function Register (SFR) Name	Syn	Symbol		Manipulable Bit Range			After Reset	
					1-bit	8-bit	16-bit		
(omitted)									
FFF44H	Serial data register 02	TXD1/	SDR02	R/W	-	$\sqrt{}$	$\sqrt{}$	0000H	
		SIO10							
FFF45H		-			ī	ı			
FFF46H	Serial data register 03	RXD1	SDR03	R/W	1	\checkmark	$\sqrt{}$	0000H	
FFF47H		_			1	1			
FFF48H	Serial data register 10	TXD2/	SDR10	R/W	=	$\sqrt{}$	V	0000H	
		SIO20							
FFF49H					-	I			
FFF4AH	Serial data register 11	RXD2	SDR11	R/W	-	$\sqrt{}$	V	0000H	
FFF4BH		-			-				
	(omitted)								

2. <u>6.3.3 Timer mode register mn (TMRmn)</u> Figure 6 - 17 Format of Timer mode register mn (TMRmn) (4/4)(p.248)

Incorrect:

Operation mode (Value set by the MDmn3 to MDmn1 bits (see the table above))	MD mn 0	Setting of starting counting and interrupt
Interval timer mode (0, 0, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
One-count mode Note 2 (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated.
	1	Start trigger is valid during counting operation ^{Note 3} . At that time, interrupt is also generated.
Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time interrupt is not generated.
Other than above		Setting prohibited

Operation mode (Value set by the MDmn3 to MDmn1 bits (see the table above))	MD mn 0	Setting of starting counting and interrupt
• Interval timer mode (0, 0, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• One-count mode Note 2 (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated.
	1	Start trigger is valid during counting operation ^{Note 3} . At that time, interrupt is not generated.
• Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time interrupt is not generated.
Other than above	•	Setting prohibited

3. <u>5.3.9 High-speed on-chip oscillator trimming register (HIOTRM)</u> (Page 186)

Incorrect:

5.3.9 High-speed on-chip oscillator trimming register (HIOTRM) (omitted)

Figure 5-14. Format of High-Speed On-Chip Oscillator Trimming Register (HIOTRM)

Address	: F0	H0AC	After rese	t: undefined '	Note R/W			
Symbol	7	6	5	4	3	2	1	0
HIOTRM	0	0	HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0

HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0	High-speed on-chip oscillator
0	0	0	0	0	0	Minimum speed
0	0	0	0	0	1	†
0	0	0	0	1	0	
0	0	0	0	1	1	
0	0	0	1	0	0	
			•			
1	1	1	1	1	0	•
1	1	1	1	1	1	Maximum speed

Note The value after reset is the value adjusted at shipment.

Remark1. The HIOTRM register can be used to adjust the high-speed on-chip oscillator clock to an accuracy within about 0.05%.

Remark2. For the usage example of the HIOTRM register, see the application note for RL78 MCU series High-speed On-chip Oscillator (HOCO) Clock Frequency Correction (R01AN0464).

Correct:

5.3.9 High-speed on-chip oscillator trimming register (HIOTRM) (omitted)

Figure 5-14. Format of High-Speed On-Chip Oscillator Trimming Register (HIOTRM)

Address	Address: F00A0H After reset: undefined Note			Note R/W				
Symbol	7	6	5	4	3	2	1	0
HIOTRM	0	0	HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0

HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0	High-speed on-chip oscillator
0	0	0	0	0	0	Minimum speed
0	0	0	0	0	1	<u></u>
0	0	0	0	1	0	
0	0	0	0	1	1	
0	0	0	1	0	0	
			•			
1	1	1	1	1	0	+
1	1	1	1	1	1	Maximum speed

Note The value after reset is the value adjusted at shipment.

Remarks 1. The HIOTRM register holds a six-bit value used to adjust the high-speed on-chip oscillator with an increment of 1 corresponding to an increase of frequency by about 0.05%.

Remark 2. For the usage example of the HIOTRM register, see the application note for RL78 MCU series High-speed On-chip Oscillator (HOCO) Clock Frequency Correction (R01AN0464).

4. 15.5.7 SNOOZE mode function Timing Chart of SNOOZE Mode Operation (Figure 15-74. and Figure 15-76.) (Pages 663 and 665)

It is correction of "CPU operation status", "Clock request signal (internal signal)" and "TSF00" in this Figure.

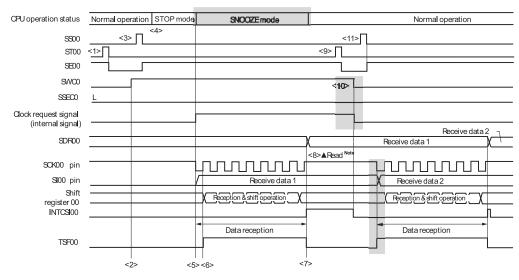
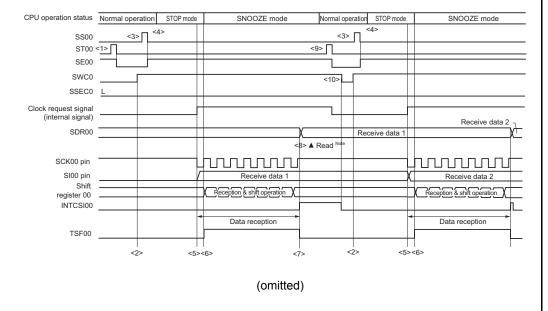

Incorrect:

Figure 15-74. Timing Chart of SNOOZE Mode Operation (once startup)
(Type 1: DAPmn = 0, CKPmn = 0)

Correct:

Figure 15-74. Timing Chart of SNOOZE Mode Operation (once startup)
(Type 1: DAPmn = 0, CKPmn = 0)


(omitted)

RENESAS

It is correction of "CPU operation status", "Clock request signal (internal signal)" and "INTCSI00" in this Figure.

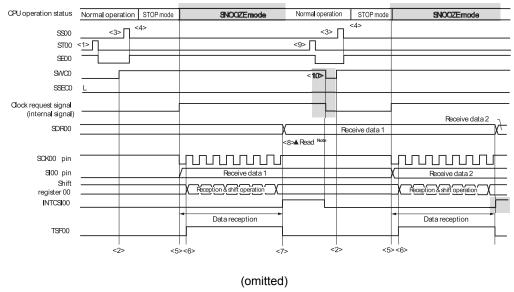

Incorrect:

Figure 15-76. Timing Chart of SNOOZE Mode Operation (continuous startup) (Type 1: DAPmn = 0, CKPmn = 0)

Correct:

Figure 15-76. Timing Chart of SNOOZE Mode Operation (continuous startup) (Type 1: DAPmn = 0, CKPmn = 0)

RENESAS

5. 15.6.3 SNOOZE mode function (Page 688)

Incorrect:

15.6.3 SNOOZE mode function

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fin) is selected for fclk.

(omitted)

Cautions 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.

Correct:

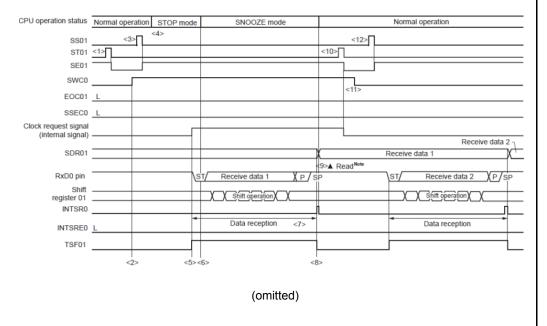
15.6.3 SNOOZE mode function

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fin) is selected for fclk.

(omitted)


- Cautions 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.
- Cautions 5. The CPU shifts from the STOP mode to the SNOOZE mode on detecting the valid edge of the RxDq signal. Note, however, that transfer through the UART channel may not start and the CPU may remain in the SNOOZE mode if an input pulse on the RxDq pin is too short to be detected as a start bit. In such cases, data may not be received correctly, and this may lead to a framing error or parity error in the next UART transfer.

6. <u>15.6.3 SNOOZE mode function</u> <u>Timing Chart of SNOOZE Mode Operation (Figure 15-95, Figure 15-96</u> and Figure 15-98) (Pages 690, 691 and 693)

It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

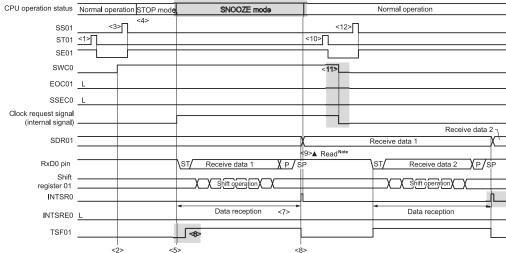
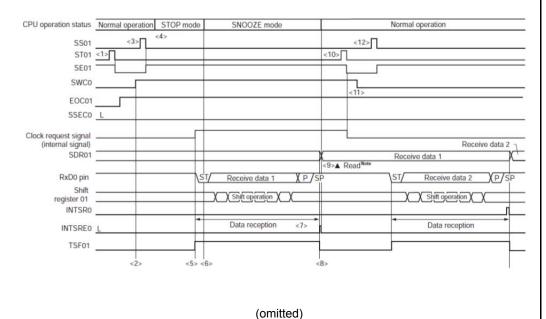

Incorrect:

Figure 15-95. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

Correct:

Figure 15-95. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)



(omitted)

It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

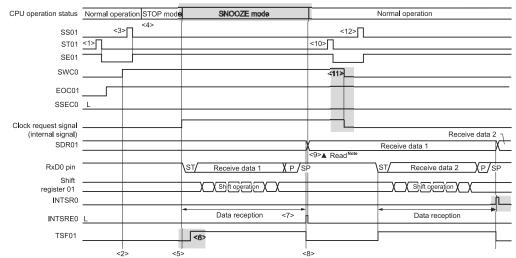

Incorrect:

Figure 15-96. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)

Correct:

Figure 15-96. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)



(omitted)

It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

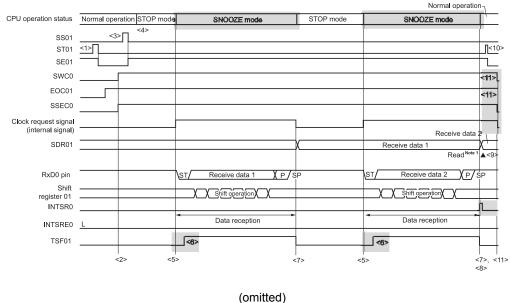

Incorrect:

Figure 15-98. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

(omitted)

Figure 15-98. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

7. <u>17.4.5.3 DTC Transfers (D0FIFO and D1FIFO Ports)</u> Table 17 - 22 DTC Settings(p.895)

Old:

Table 17 - 22 DTC Settings

	Cycle steal transfer	Block transfer			
DTCCRj	MODE = 0 (Use this se	etting in normal mode.)			
	SAMOD = FIFO read directi	on: 0, FIFO write direction: 1			
	DAMOD = FIFO read direction: 1, FIFO write direction: 0				
	(Fix the address of the FIFO side.)				
	CHNE = 0 (Disable chain transfers.)				
	Specify the setting according	g to the setting of Sz = MBW.			
	Setting other bits is inva	alid due to normal mode			
DTBLSj	01H	Sz = 0: Max. Packet Size			
(DTC block size)	(Sz = 0: 1 byte/Sz = 1: 2 bytes)	Sz = 1: Max. Packet Size/2			
DTCCTj	Any value (Max. 256 times)	Any value (Max. 256 times)			

New:

Table 17 - 22 DTC Settings

	Cycle steal transfer	Block transfer				
DTCCRj	MODE = 0 (Use this se	etting in normal mode.)				
	SAMOD = FIFO read direction	on: 0, FIFO write direction: 1				
	DAMOD = FIFO read directi	on: 1, FIFO write direction: 0				
	(Fix the address of the FIFO side.)					
	CHNE = 0 (Disable chain transfers.)					
	Specify the setting according to the setting of Sz = MBW.					
	Setting other bits is inva	Setting other bits is invalid due to normal mode				
DTBLSj	01H	Sz = 0: Max. Packet Size				
(DTC block size)	(Sz = 0: 1 byte/Sz = 1: 2 bytes)	Sz = 1: Max. Packet Size/2				
DTCCTj	Any value (Max. 256 times)	Any value (Max. 256 times)				
DTDARj	FIFO Read direction: Data	transfer destination address				
(Destination address)	FIFO Write direction : D	0FIFOD00/D1FIFOD00				
DTSARj	FIFO Read direction : D	0FIFOD00/D1FIFOD00				
(Source address)	FIFO Write direction: Date	a transfer source address				

Caution: j=D0FIFO/D1FIFO are assigned to activation source (0~23)
For details of DTC setting, see CHAPTER 19 DATA TRANSFER CONTROLLER

Date: Feb. 22, 2016

Voltage Range of A/D conversion was extended.

Old:

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI12

(TA = -40 to +85°C, 2.7 V

AVREFP

AVDD = VDD

3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V, HALT mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Overall error Notes 1, 2, 3	AINL	12-bit resolution		±1.7	±3.3	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	3.375			μS
Zero-scale error ^{Notes 1, 2, 3}	Ezs	12-bit resolution		±1.3	±3.2	LSB
Full-scale error ^{Notes 1, 2, 3}	Ers	12-bit resolution		±0.7	±2.9	LSB
Integral linearity error ^{Notes 1, 2, 3}	ILE	12-bit resolution		±1.0	±1.4	LSB
Differential linearity error Notes 1, 2, 3	DLE	12-bit resolution		±0.9	±1.2	LSB
Analog input voltage	Vain		0		AVREFP	V

- **Notes 1.** TYP. Value is the average value at AV_{DD} = AV_{REFP} = 3 V and T_A = 25°C. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.
 - 2. These values are the results of characteristic evaluation and are not checked for shipment.
 - **3.** Excludes quantization error ($\pm 1/2$ LSB).
- Cautions 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise.
 - In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.
 - 2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P20 to P27 and P150 to P154.

New:

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI12

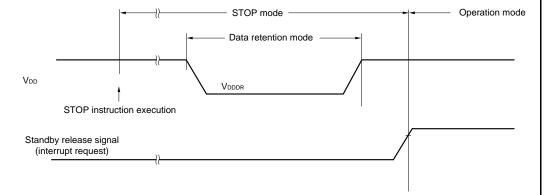
(T_A = -40 to +85°C, 2.4 V ≤ AV_{REFP} ≤ AV_{DD} = V_{DD} ≤ 3.6 V, V_{SS} = 0 V, AV_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V, HALT mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Overall error ^{Notes 1, 2, 3}	AINL	12-bit resolution		±1.7	±3.3	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	3.375			μS
Zero-scale error ^{Notes 1, 2, 3}	Ezs	12-bit resolution		±1.3	±3.2	LSB
Full-scale error ^{Notes 1, 2, 3}	Ers	12-bit resolution		±0.7	±2.9	LSB
Integral linearity error Notes 1, 2, 3	ILE	12-bit resolution		±1.0	±1.4	LSB
Differential linearity error Notes 1, 2, 3	DLE	12-bit resolution		±0.9	±1.2	LSB
Analog input voltage	Vain		0		AVREFP	V

- **Notes 1.** TYP. Value is the average value at AV_{DD} = AV_{REFP} = 3 V and T_A = 25°C. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.
 - 2. These values are the results of characteristic evaluation and are not checked for shipment.
 - 3. Excludes quantization error (±1/2 LSB).
- Cautions 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise.
 - In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.
 - 2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P20 to P27 and P150 to P154.

RENESAS

9.34.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (Page 1234)

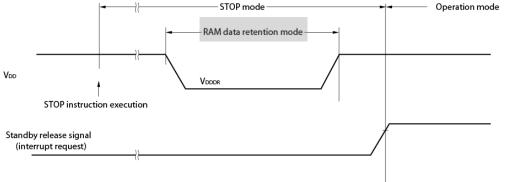

Old:

34.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.


New:

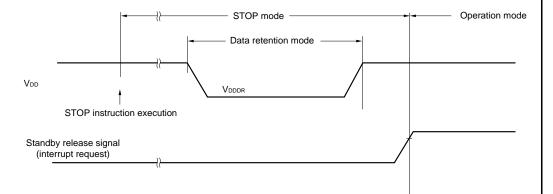
34.9 RAM Data Retention Characteristics

$$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		3.6	٧

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

10. 35.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (Page 1294)

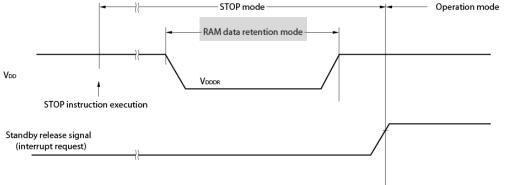

Old:

35.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply	VDDDR		1.44 ^{Note}		3.6	V
voltage						

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.


New:

35.9 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply	VDDDR		1.44 ^{Note}		3.6	V
voltage						

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

11. 8.3.4 Real-time clock control register 1 (RTCC1)

Additional entry to Figure 8 - 8 Format of Real-time clock control register 1 (RTCC1) (3/3)

Old:

RWAIT	Wait control of real-time clock 2
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value

This bit controls the operation of the counter.

Be sure to write "1" to it to read or write the counter value.

As the counter (16-bit) is continuing to run, completereading or writing within one second and turn back to 0. When RWAIT = 1, it takes up to 1 clock (fRTC) until the counter value can be read or written (RWST = 1). When the counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts up.

However, when it wrote a value to second count register, it will not keep the overflow event

New:

RWAIT	Wait control of real-time clock 2
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value

This bit controls the operation of the counter.

Be sure to write "1" to it to read or write the counter value.

As the counter (16-bit) is continuing to run, completereading or writing within one second and turn back to 0. When RWAIT = 1, it takes up to 1 clock (fRTC) until the counter value can be read or written (RWST = 1).

When the counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts up.

However, when it wrote a value to second count register, it will not keep the overflow event

Note1.	When setting RWAIT=1 during 1 operating clock (f _{RTC}), after setting RTCE=1, it may take two
	clock time of the operation clock (f _{RTC}), until RWST bit is set to "1".

Note2. When setting RWAIT=1 during 1 operating clock (f_{RTC}), after returning from a stand-by (HALT mode, STOP mode and SNOOZE mode), it may take two clock time of the operation clock (f_{RTC}), until RWST bit is set to "1".

12. 5.2 Configuration of Clock Generator (Page 170)

Additional entry to Figure 5 - 1 Block Diagram of Clock Generator (Products with USB)

Old:

Remark f_X: X1 clock oscillation frequency

f_{HOCO}: High-speed on-chip oscillator clock frequency (48 MHz max.)

 f_{IH} : Main system clock source frequency when the high-speed on-chip oscillator clock divided 1,2, 4, or 8, or the PLL clock divided by2, 4, or 8 is selected (24 MHz max.)

f_{EX}: External main system clock frequency

 f_{MX} : High-speed system clock frequency

f_{MAIN}: Main system clock frequency

f_{XT}: XT1 clock oscillation frequency

f_{EXT}: External subsystem clock frequency

f_{SUB}: Subsystem clock frequency

f_{CLK}: CPU/peripheral hardware clock frequency

f_{IL}: Low-speed on-chip oscillator clock frequency

New:

Remark f_X: X1 clock oscillation frequency

f_{HOCO}: High-speed on-chip oscillator clock frequency (48 MHz max.)

f_{IH}: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1,2, 4, or 8, or the PLL clock divided by2, 4, or 8 is selected (24 MHz max.)

f_{EX}: External main system clock frequency

f_{MX}: High-speed system clock frequency

f_{MAIN}: Main system clock frequency

f_{XT}: XT1 clock oscillation frequency

f_{EXT}: External subsystem clock frequency

f_{SUB}: Subsystem clock frequency

f_{CLK}: CPU/peripheral hardware clock frequency

f_{IL}: Low-speed on-chip oscillator clock frequency

f_{PLL}:PLL clock frequency

f_{USB}:USB clock frequency

13. 5.3.2 System clock control register (CKC) (Page 174)

Incorrect descriptions revised to Caution 5.

Incorrect:

Caution 5. When using the high-speed on-chip oscillator clock fHOCOset to 48 MHz

(FRQSEL4 = 1 in the option byte (000C2H)) or using the PLL clock (48 MHz) for the USB/function controller or 16-bit timers KB20,KB21, and KB22, be sure to set CCS to 0.

Correct:

Caution 5. When using the high-speed on-chip oscillator clock fHOCOset to 48 MHz

(FRQSEL4 = 1 in the option byte (000C2H)) or using the PLL clock (48 MHz) for
the USB/function controller or 16-bit timers KB20,KB21, and KB22, be sure to set
CSS to 0.

14. <u>5.3.6 Peripheral enable registers 0, 1, 2 (PER0, PER1, PER2) (Page 180,181)</u>

Incorrect:

Figure 5 - 8 Format of Peripheral enable register 0 (PER0) (1/2)

Address: F00F0H Afte		er reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN Note	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

RTCWENNote	Control of real-time clock 2 (RTC2) input clock supply
0	Stops input clock supply. • SFRs used by the real-time clock 2 (RTC2) cannot be written. • The real-time clock 2 (RTC2) is operable.
1	Enables input clock supply. • SFRs used by the real-time clock 2 (RTC2) can be read and written. • The real-time clock 2 (RTC2) is operable.

ADCEN	Control of A/D converter input clock supply
0	Stops input clock supply. • SFRs used by the A/D converter cannot be written. • The A/D converter is in the reset status.
1	Enables input clock supply. • SFRs used by the A/D converter can be read and written.

Note The RTCWEN bit is reset only by a power-on reset; it retains the value when a reset caused by another factor occurs.

Caution Be sure to clear bits 6 and 1 to 0.

Correct:

Figure 5 - 8 Format of Peripheral enable register 0 (PER0) (1/2)

Address: F00F0H A		r reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

RTCWEN	Control of real-time clock 2 (RTC2) input clock supply
0	Stops input clock supply.(Stops f _{CLK} clock supply) • SFRs used by the real-time clock 2 (RTC2) cannot be written. • The real-time clock 2 (RTC2) is operable.
1	Enables input clock supply. • SFRs used by the real-time clock 2 (RTC2) can be read and written. • The real-time clock 2 (RTC2) is operable.

ADCEN	Control of A/D converter input clock supply
0	Stops input clock supply. • SFRs used by the A/D converter cannot be written. • The A/D converter is in the reset status.
1	Enables input clock supply. • SFRs used by the A/D converter can be read and written.

Caution Be sure to clear bits 6 and 1 to 0.

15. 5.3.10 PLL control register (DSCCTL) (Page 187)

Additional entry to Figure 5 - 15 Format of PLL control register (DSCCTL)

Old:

Figure 5-15. Format of PLL Control Register (DSCCTL)

Address:	F02E5H	After rese	et: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
DSCCTL	0	0	0	0	0	DSFRDIV	DSCM	DSCON

DSFRDIV	PLL reference clock divider control
0	No division
1	Divided by 2

Remark PLL reference clock is the high-speed system clock (fmx).

DSCM	PLL multiplication selection
0	12 times (6 times)
1	16 times (8 times)

Remark The frequency is divided by 2 in the last stage of the PLL oscillator, therefore the multiplication ratio becomes the value in parentheses.

DSCON	PLL oscillation and output control
0	Stop
1	Ocsillation, output

Caution Be sure to clear bits 3 to 7 to 0.

New:

Figure 5-15. Format of PLL Control Register (DSCCTL)

Address:	F02E5H	After rese	t: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
DSCCTL	0	0	0	0	0	DSFRDIV	DSCM	DSCON

DSFRDIV	PLL reference clock divider control
0	No division
1	Divided by 2

Remark PLL reference clock is the high-speed system clock (fmx).

DSCM	PLL multiplication selection
0	12 times (6 times)
1	16 times (8 times)

Remark The frequency is divided by 2 in the last stage of the PLL oscillator, therefore the multiplication ratio becomes the value in parentheses.

DSCON	PLL oscillation and output control
0	Stop
1	Ocsillation, output

Caution 1. Be sure to clear bits 3 to 7 to 0.

Caution 2. Be sure to set the DSCON bit to 0 before changing DSFRDIV and DSCM.

Caution 3. Do not set the DSCON bit to 0 while the PLL clock is selected as the system clock.

16. <u>5.4.5 PLL (Phase Locked Loop) (Page 194)</u>

Incorrect descriptions revised to Caution 2.

Old:

Caution 1. When switching from PLL mode to the internal high-speed oscillation clock and the high speed system clock, stop the function (USB function controller) that provides the PLL output clock (f_{PLL}).

Caution 2. PLL operations cannot be performed while the subsystem clock is operating

New:

Caution 1. When switching from PLL mode to the internal high-speed oscillation clock and the high speed system clock, stop the function (USB function controller) that provides the PLL output clock (f_{PLL}).

Caution 2. Do not set the DSCON bit to 1 to start the PLL operating while the subsystem clock is the operating clock for the CPU.

17. <u>5.6.1 Example of setting high-speed on-chip oscillator (Page 197)</u>

Incorrect descriptions revised to 5.6.1 Example of setting high-speed on-chip oscillator.

Old:

[Option byte setting]

Address: 000C2H

Option	7	6	5	4	3	2	1	0
byte	CMODE1	CMODE0		FRQSEL4	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0
(000C2H)	1	1	1	1	0	0	0	0/1

CMODE1	CMODE0	Setting of flash operation mode
0	0	LV (low voltage main) mode VDD= 1.6 V to 3.6 V @ 1 MHz to 4 MHz
1	0	LS (low speed main) mode VDD= 1.8 V to 3.6 V @ 1 MHz to 8 MHz
1	1	HS (high speed main) mode V _{DD} = 2.4 V to 5.5 V @ 1 MHz to 16 MHz V _{DD} = 2.7 V to 5.5 V @ 1 MHz to 24 MHz
Other tha	an above	Setting prohibited

FRQSEL4	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator				
					fносо	fıн			
1	0	0	0	0	48 MHz	24 MHz			
(omitted)									
	О	Setting prohibited							

Note See the MCKC register for division ratio settings.

New:

[Option byte setting]

Address: 000C2H

Option	7	6	5	4	3	2	1	0
byte	CMODE1	CMODE0		FRQSEL4	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0
(000C2H)	1	1	1	1	0	0	0	0/1

CMODE1	CMODE0	Setting of flash operation mode
0	0	LV (low voltage main) mode VDD= 1.6 V to 3.6 V @ 1 MHz to 4 MHz
1	0	LS (low speed main) mode VDD= 1.8 V to 3.6 V @ 1 MHz to 8 MHz
1	1	HS (high speed main) mode ^{Note1} V _{DD} = 2.4 V to 5.5 V @ 1 MHz to 16 MHz
		V _{DD} = 2.7 V to 5.5 V @ 1 MHz to 24 MHz
Other tha	an above	Setting prohibited

FRQSEL4	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator				
					fносо	fıн			
1	0	0	0	0	48 MHz ^{Note2}	24 MHz ^{Note3}			
(omitted)									
	0	Setting prohibited							

Note 1. When you use PLL, please choose HS (high speed Maine) mode.

Note 2. When you use PLL, I set it in FRQSEL4=0, and, please do not choose 48MHz.

Note3. See the MCKC register for division ratio settings.

18. 5.6.4 Example of setting PLL circuit (Page 201)

Incorrect descriptions revised to 5.6.4 Example of setting PLL circuit.

Old:

[Register settings] Set the register in the order of <1> to <5> below.

<1> Set the DSFRDIV bit and DSCM bit in the DSCCTL register to set the PLL multiplication and division.

_	7	6	5	4	3	2	1	0
DSCCTL						DSFRDIV	DSCM	DSCON
	0	0	0	0	0	0/1	0/1	0

<2> Set the RDIV1, RDIV0 bits of the MCKC register to set the division of the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
WICKC	0	0	0	0	0	0/1	0/1	0

AMPHS0 and AMPHS1 bits: These bits are used to specify the oscillation mode of the XT1 oscillator.

<3> Set (1) the DSCON bit of the DSCCTL register to operate the PLL circuit Note.

	7	6	5	4	3	2	1	0
DOCCTI						DSFRDIV	DSCM	DSCON
DSCCTL	0	0	0	0	0	0/1	0/1	1

<4> Wait for 40 μ s by using software.

<5> Set (1) the CKSELR bit of the MCKC register to select PLL output for the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	1

Note After the X1 oscillator clock stabilizes, allow at least 1 μ s to elapse before operating the PLL. When operating the PLL again after it has been stopped, wait for at least 4 μ s before operating.

New:

[Register settings] Set the register in the order of <1> to <5> below.

<1> Set the HIOSTOP bit in the CSC register to make the high-speed on-chip oscillator run.

	7	6	5	4	3	2	1	0
000								HIOSTOP
CSC	0/1	0/1	0	0	0	0	0	0 ^{Note1}

<2> Set the DSFRDIV bit and DSCM bit in the DSCCTL register to set the PLL multiplication and division.

	7	6	5	4	3	2	1	0
DCCCTI						DSFRDIV	DSCM	DSCON
DSCCTL	0	0	0	0	0	0/1	0/1	0

<3> Set the RDIV1, RDIV0 bits of the MCKC register to set the division of the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	0

AMPHS0 and AMPHS1 bits: These bits are used to specify the oscillation mode of the XT1 oscillator.

<4> Set (1) the DSCON bit of the DSCCTL register to operate the PLL circuit Note.

	7	6	5	4	3	2	1	0
DOCCTI						DSFRDIV	DSCM	DSCON
DSCCTL	0	0	0	0	0	0/1	0/1	1

<5> Set (1) the CKSELR bit of the MCKC register to select PLL output for the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	1

<6> Use software to set up a wait of 65 μs. Note3

<7> Set the HIOSTOP bit in the CSC register to stop the high-speed on-chip oscillator. Note2

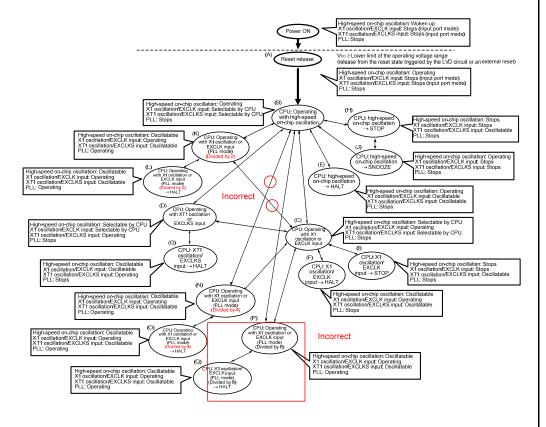
	7	6	5	4	3	2	1	0
000								HIOSTOP
CSC	0/1	0/1	0	0	0	0	0	1 ^{Note1}

<8> When the PLL clock frequency divided by 2, 4, or 8 is selected as the main system clock (f_{MAIN}), set the MCM0 bit in the CKC register to select the source for deriving the main system clock as a signal with a frequency (f_{IH}) of up to 24 MHz.

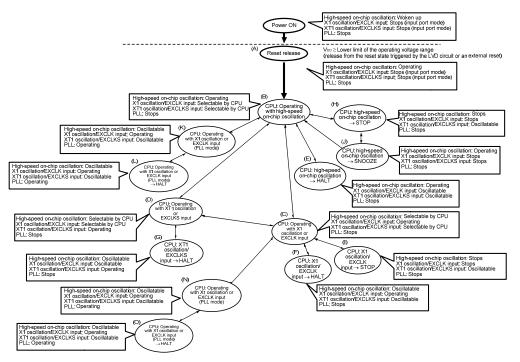
	7	6	5	4	3	2	1	0
CKC	CLS	CSS	MCS	MCM0				
CKC	0/1	0/1	0	0	0	0	0	0

Note 1. No setting is required to change to the PLL while the CKSELR bit is 1.

When setting the CKSELR bit to 1, ensure that the high-speed on-chip oscillator is running.


Note 2. After oscillation by the X1 oscillator clock has become stable, allow at least 1 μ s to elapse before starting the PLL. When restarting the PLL after it has been stopped, wait for at least 4 μ s before using it in operations.

Note 3. Wait for 40 μs for oscillation by the oscillator clock to become stabled if the HIOSTOP bit is not set to 0.


19. 5.6.5 CPU clock status transition diagram (Page 202)

Incorrect descriptions revised to Figure 5 - 24 CPU Clock Status Transition Diagram (Products with USB).

Old:

New:

20. 5.6.5 CPU clock status transition diagram

<u>Table 5 - 4 CPU Clock Transition and SFR Register Setting Examples</u> (pages 203 to 209)

Old:

(2) CPU operating with high-speed system clock (C) after reset release (A) (The CPU operates with the high-speed on-chip oscillator clock immediately after a reset release (B).)

(Setting sequence of SFR registers)

Setting Flag of SFR Register				OSTS	CSC	OSTC	СКС
				Register	Register	Register	Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		MCM0
$(A) \rightarrow (B) \rightarrow (C)$ $(X1 \text{ clock: } 1 \text{ MHz} \le f_X \le 10 \text{ MHz})$	0	1	0	Note 2	0	Must be checked	1
$ (A) \rightarrow (B) \rightarrow (C) $ $ (X1 \ clock: 10 \ MHz < f_X \le 20 \ MHz) $	0	1	Q	Note 2	0	Must be checked	1
$(A) \rightarrow (B) \rightarrow (C)$ (external main clock)	1	1	×	Note 2	0	Must not be checked	1

New:

(2) CPU operating with high-speed system clock (C) after reset release (A) (The CPU operates with the high-speed on-chip oscillator clock immediately after a reset release (B).)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CMC Register Note 1			OSTS	CSC	OSTC	CKC
				Register	Register	Register	Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		MCM0
$(A) \rightarrow (B) \rightarrow (C)$	0	1	0	Note 2	0	Must be	1
(X1 clock: 1 MHz \leq fx \leq 10 MHz)						checked	
$(A) \rightarrow (B) \rightarrow (C)$	0	1	1	Note 2	0	Must be	1
(X1 clock: 10 MHz \leq fx \leq 20 MHz)						checked	
$(A) \rightarrow (B) \rightarrow (C)$	1	1	×	Note 2	0	Must not be	1
(external main clock)						checked	

(4) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (C)

(Setting sequence of SFR registers)

Toglotoro							
Setting Flag of SFR Register	CMC Register ^{Note 1}			OSTS Register	CSC Register	OSTC Register	CKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		MCM0
$(B) \rightarrow (C)$ $(X1 \ clock: 1 \ MHz \le f_X \le 10 \ MHz)$	0	1	0	Note 2	0	Must be checked	1
$(B) \rightarrow (C)$ $(X1 \ clock: \ 10 \ MHz < f_X \leq 20$ $MHz)$	0	1	1	Note 2	0	Must be checked	1
(B) → (D) (external main clock)	1	1	×	Note 2	0	Must not be checked	1

Unnecessary if these

Unnecessary if the CPU is registers are already set operating with the high-speed system clock

(6) CPU clock changing from high-speed system clock (C) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers) —

Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
	HIOSTOP	stabilization time	MCM0
Status Transition			
$(C) \rightarrow (B)$	0	Note	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 75 μ s

New:

(4) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (C)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	СМС	C Register		OSTS Register	CSC Register	OSTC Register	CKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		мсмо
$(B) \rightarrow (C)$	0	1	0	Note 2	0	Must be checked	1
(X1 clock: 1 MHz \leq f _X \leq 10 MHz)							
$(B) \rightarrow (C)$	0	1	1	Note 2	0	Must be checked	1
(X1 clock: 10 MHz < $f_X \le 20$							
MHz)							
$(B) \rightarrow (C)$	1	1	×	Note 2	0	Must not be	1
(external main clock)						checked	

Unnecessary if these

Unnecessary if the CPU is registers are already set operating with the high-speed system clock

(6) CPU clock changing from high-speed system clock (C) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers) -

Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
	HIOSTOP	stabilization time	МСМ0
Status Transition			
$(C) \rightarrow (B)$	0	Note	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 135 μ s

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	Oscillation	CKC Register
Status Transition	HIOSTOP	accuracy stabilization time	CSS
$(D) \rightarrow (B)$	0	Note	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 75 μ s

New:

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	Oscillation	CKC Register
Status Transition	HIOSTOP	accuracy stabilization time	CSS
$(D) \rightarrow (B)$	0	Note	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 135 μ s

- (10) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (divided by 2) (K)
- CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (divided by 4) (N)
- CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed
 system clock (PLL mode) (divided by 8) (P)
 - CPU clock changing from high-speed system clock (C) to high-speed system clock
 (PLL mode) (divided by 2) (K)
 - CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (divided by 4) (N)
- CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (divided by 8) (P)

(Setting sequence of SFR registers) -

Setting Flag of SFR Register	DSCCTL Register DSFRDIV DSCM			KC ister	Waiting for Oscillation	MCKC Register
Status Transition			RDIV1	RDIV0	Stabilization	CKSELR
(B).→.(K)	0/1	9/1	0/1	0/1	40.μs	1
(B).⇒.(N)						
(B).⇒.(P)						
(C).⇒.(K)						
(C).→(N)						
$(C) \rightarrow (P)$						

New:

- (10) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (K)
- CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (N)

Continue

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CM	C Register ^N	ote ₁	OSTS Register	CSC Register	OSTC Register	DSCCTL	Register	MCKC F	Register	Waiting for Oscillation Stabilization	DSCCTL Register	Waiting for Oscillation	MCKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		DSFRDIV	DSCM	RDIV1	RDIV0		DSCON	Stabilization	CKSELR
(B) \rightarrow (K) (divided by 2)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	0	0		1		1
(B) \rightarrow (K) (divided by 4)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	0	1	1us	1	40us	1
(B) \rightarrow (K) (divided by 8)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	1	0		1		1

Note 1. Writing to the clock operating mode control register (CMC) can only proceed once and must be by an 8-bit memory manipulation instruction after release from the reset state.

Note 2. Set the oscillation stabilization time in the oscillation stabilization time select register (OSTS) as follows.

• Desired oscillation stabilization time setting of the oscillation stabilization time counter status register (OSTC) < Oscillation stabilization time set in the OSTS register

Caution: Completion of clock switching after the CKSELR bit has been set to 1 requires up to 2 clock cycles when the FRQSEL4 bit is 1, and up to 10 clock cycles when the FRQSEL4 bit is 0. Until the clock switching is completed, do not stop the high-speed on-chip oscillator.

(Setting sequence of SFR registers)

Setting Flag of SFR Register Status Transition	CSC Register HIOSTOP	DSCCTL R	egister DSCM	MCKC I	Register	DSCCTL Register DSCON	MCKC Register CKSELR	Waiting for Oscillation Stabilization	CSC Register HIOSTOP	CKC Register MCM0
(C) (N) (divided by 2)	O ^{Note3}	0/1	0/1	0	0	1	1 ^{Note3}		1 Note3	0
(C) (N) (divided by 2)	O ^{Note3}	0/1	0/1	0	1	1	1 ^{Note3}	65us ^{Note4}	1 Note3	0
(C) (N) (divided by 2)	O ^{Note3}	0/1	0/1	1	0	1	1 ^{Note3}		1 Note3	0

Note 3. No setting is required to change to the PLL while the CKSELR bit is 1. When setting the CKSELR bit to 1, ensure that the high-speed on-chip oscillator is running.

Note 4. Wait for 40 μs for oscillation by the oscillator clock to become stable if the HIOSTOP bit is not set to 0.

- (11) CPU clock changing from high-speed system clock (PLL mode) (divided by 2) (K) to high-speed on-chip oscillator clock (B)
- CPU clock changing from high-speed system clock (PLL mode) (divided by 4)

 (N) to high-speed on-chip oscillator clock (B)
 - CPU clock changing from high-speed system clock (PLL mode) (divided by 8) (P)
 to high-speed on-chip oscillator clock (B)
 - CPU clock changing from high-speed system clock (PLL mode) (divided by 2) (K) to high-speed system clock (C)
 - CPU clock changing from high-speed system clock (PLL mode) (divided by 4)

 (N) to high-speed system clock (C)
- CPU clock changing from high-speed system clock (PLL mode) (divided by 8) (P)
 to high-speed system clock (C)

(Setting sequence of SFR registers)

Status Transition	Setting Flag of SFR Register	MCKC Register CKSELR	DSCCTL Register DSCON
(K).→ (B)		Q	Q
(N).→ (B)			
(P).→ (B)			
(K) → (C)			
(N).→(C)			
$(P) \rightarrow (C)$			

New:

- (11) CPU clock changing from high-speed system clock (PLL mode) (K) to high-speed on-chip oscillator clock (B)
- CPU clock changing from high-speed system clock (PLL mode) (N) to high-speed system clock (C)

Setting Flag of SFR Register	CSC Register	Waiting for	MCKC Register	Waiting for	DSCCTL Register
Status Transition	HIOSTOP	Oscillation Stabilization	CKSELR	clock change	DSCON
$(K) \rightarrow (B)$ FRQSEL4=0	0	18∼65 µs	0	256 clokc	0
(K) → (B) FRQSEL4=1		18∼135 µs		16 clock	

(Setting sequence of SFR registers)

Setting Flag of SFR Register Status Transition	CKC Register	Waiting for clock change	DSCCTL Register
	MCM0		DSCON
(N) (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 16MHz		3 Clock	
(N) (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 12MHz		4 Clock	
(N) (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 8MHz		6 Clock	
(N) (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 6MHz		8 Clock	
(N) (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 16MHz		2 Clock	
(N) (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 12MHz		2 Clock	
(N) (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 8MHz	1	3 Clock	0
(N) (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 6MHz		4 Clock	
(N) (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 16MHz		2 Clock	
(N) (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 12MHz		2 Clock	
(N) (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 8MHz		2 Clock	
(N) (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 6MHz		2 Clock	

- (12) HALT mode (E) set while CPU is operating with high-speed on-chip oscillator clock (B)
 - HALT mode (F) set while CPU is operating with high-speed system clock (C)
 - HALT mode (G) set while CPU is operating with subsystem clock (D)
 - HALT mode (L) set while CPU is operating with high-speed system clock (PLL mode) (divided by 2) (K)
 - HALT mode (O) set while CPU is operating with high-speed system clock (PLL mode) (divided by 4) (N)
- HALT mode (Q) set while CPU is operating with high-speed system clock (PLL mode) (divided by 8) (P)

Status Transition	Setting
$(B) \rightarrow (E)$	Executing HALT instruction
$(C) \rightarrow (F)$	
$(D) \rightarrow (G)$	
$(K) \rightarrow (L)$	
(N).→.(Q)	
(P) → (Q)	

- (15) STOP mode (I) set while CPU is operating with high-speed system clock (PLL mode) (divided by 2) (K)
- : STOP mode (I) set while CPU is operating with high-speed system clock (PLL mode) (divided by 4) (N)
- : STOP mode (I) set while CPU is operating with high-speed system clock (PLL mode) (divided by 8) (P)

Switch from PLL mode operation to **high-speed on-chip oscillator clock** and high-speed system clock operations

(refer to 5.6.5 (11)) and stop the PLL (DSCON = 0), then execute the STOP instruction

New:

- (12) HALT mode (E) set while CPU is operating with high-speed on-chip oscillator clock (B)
 - HALT mode (F) set while CPU is operating with high-speed system clock (C)
 - HALT mode (G) set while CPU is operating with subsystem clock (D)
 - HALT mode (L) set while CPU is operating with high-speed system clock (PLL mode)
 (K)
 - HALT mode (O) set while CPU is operating with high-speed system clock (PLL mode) (N)

Status Transition	Setting
$(B) \rightarrow (E)$	Executing HALT instruction
$(C) \rightarrow (F)$	
$(D) \rightarrow (G)$	
$(K) \rightarrow (L)$	
$(N) \rightarrow (O)$	

(15) • Changing to STOP mode (I) from the high-speed system clock (PLL mode) as the operating clock for the CPU (K)

Switch to high-speed system clock operation from PLL mode, stop the PLL (DSCON = 0), and then execute the STOP instruction.

21. 5.6.5 CPU clock status transition diagram

<u>Table 5 - 11 CPU Clock Transition and SFR Register Setting Examples (page</u> 213)

Old:

(6) CPU clock changing from high-speed system clock (C) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers) -

Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
Status Transition	HIOSTOP	stabilization time	MCM0
$(C) \rightarrow (B)$	0	When FRQSEL4 = 0: 18	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 75 μ s

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
Status Transition	HIOSTOP	stabilization time	CSS
$(D) \rightarrow (B)$	0	When FRQSEL4 = 0: 18	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 75 μ s

New:

(6) CPU clock changing from high-speed system clock (C) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers) -

Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
Status Transition	ition HIOSTOP		MCM0
$(C) \rightarrow (B)$	0	When FRQSEL4 = 0: 18	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μs to 135 μs

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers) -

Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
Status Transition	HIOSTOP	stabilization time	CSS
$(D) \rightarrow (B)$	0	When FRQSEL4 = 0: 18	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μs to 135 μs

22. 5.6.6 Condition before changing CPU clock and processing after changing CPU clock (pages 216 217)

Old:

Table 5-16. Changing CPU Clock (1/3)

CPU	Clock	Condition Before Change	Processing After Change
Before Change	After Change		
X1 clock		(omitted)	
	PLL clock	Oscillation of PLL • DSCON = 1	-

New:

Table 5-16. Changing CPU Clock (1/3)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
X1 clock		(omitted)	
	PLL clock	Oscillation of PLL • DSCON = 1	_
		Enabling oscillation of high-speed on-chip oscillator HIOSTOP = 0	
		The oscillation accuracy stabilization time has elapsed	

Old:

Table 5-16. Changing CPU Clock (2/3)

CPU	Clock	Condition Before Change	Processing After Change
Before Change	After Change		
External main system clock	High-speed on-chip oscillator clock	Enabling oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • After elapse of oscillation accuracy stabilization time	External main system clock input can be disabled (MSTOP = 1).
	X1 clock	Transition not possible	-
	XT1 clock	Stabilization of XT1 oscillation OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 After elapse of oscillation stabilization time	External main system clock input can be disabled (MSTOP = 1).
	External subsystem clock	Enabling input of external clock from the EXCLKS pin OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	External main system clock input can be disabled (MSTOP = 1).
	PLL clock	Oscillation of PLL • DSCON = 1	-
		(omitted)	

New:

Table 5-16. Changing CPU Clock (2/3)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
External main system clock	High-speed on-chip oscillator clock	Enabling oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • After elapse of oscillation accuracy stabilization time Transition not possible	External main system clock input can be disabled (MSTOP = 1).
	XT1 clock	Stabilization of XT1 oscillation OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 After elapse of oscillation stabilization time	External main system clock input can be disabled (MSTOP = 1).
	External subsystem clock	Enabling input of external clock from the EXCLKS pin • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	External main system clock input can be disabled (MSTOP = 1).
	PLL clock	Oscillation of PLL • DSCON = 1 Enabling oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • The oscillation accuracy stabilization time has elapsed	_
		(omitted)	

23. 6.3.1 Peripheral enable register 0 (PER0) (Page 240)

Incorrect:

Figure 6 - 11 Format of Peripheral enable register 0 (PER0)

Addre	ess: F00F0H After	reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN Note	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

TAU0EN	Control of timer array unit input clock
0	Stops supply of input clock. SFR used by the timer array unit cannot be written. The timer array unit is in the reset status
1	Supplies input clock. SFR used by the timer array unit can be read/written.

Note The RTCWEN bit is reset only by a power-on reset; it retains the value when a reset caused by another factor occurs.

Figure 6 - 11 Format of Peripheral enable register 0 (PER0)

Addre	ss: F00F0H A	fter reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

TAU0EN	Control of timer array unit input clock
0	Stops supply of input clock. · SFR used by the timer array unit cannot be written. · The timer array unit is in the reset status
1	Supplies input clock. • SFR used by the timer array unit can be read/written.

24. 8.3.1 Peripheral enable register 0 (PER0) (Page 451)

Incorrect:

Figure 8 - 2 Format of Peripheral enable register 0 (PER0)

Addre	ss: F00F0H Afte	reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

RTCWEN. Note	Control of internal clock supply to real-time clock 2
0	Stops input clock supply. SFR used by the real-time clock 2 cannot be written. The real-time clock 2 can operate.
1	Enables input clock supply. SFR used by the real-time clock 2 can be read/written. The real-time clock 2 can operate

Note The RTCWEN bit is reset only by a power-on reset; it retains the value when a reset caused by another factor occurs.

Caution 1. When using the real-time clock 2, first set the RTCWEN bit to 1, while oscillation of the input clock (fRTC)is stable. If RTCWEN = 0, writing to a control register of the real-time clock 2 is ignored.

Caution 2. Be sure to set bits 1 and 6 to 0

Correct:

Figure 8 - 2 Format of Peripheral enable register 0 (PER0)

Address: F00F0H		After reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

RTCWEN	Control of internal clock supply to real-time clock 2
0	Stops input clock supply. (Stops f _{CLK} clock supply) · SFR used by the real-time clock 2 cannot be written. · The real-time clock 2 can operate.
1	Enables input clock supply. SFR used by the real-time clock 2 can be read/written. The real-time clock 2 can operate

Caution 1. When using the real-time clock 2, first set the RTCWEN bit to 1, while oscillation of the input clock (fRTC)is stable. If RTCWEN = 0, writing to a control register of the real-time clock 2 is ignored.

Caution 2. Be sure to set bits 1 and 6 to 0

25. 8.4.1 Starting operation of real-time clock 2 (Page 469)

Incorrect:

Figure 8 - 20 Procedure for Starting Operation of Real-time Clock 2

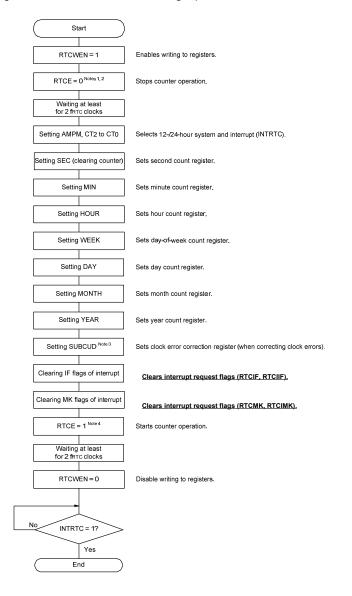
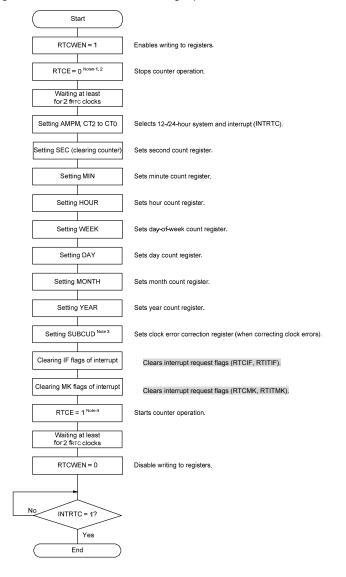



Figure 8 - 20 Procedure for Starting Operation of Real-time Clock 2

26. 12.3.1 Peripheral enableregister 0 (PER0) (Page 451)

Incorrect:

Figure 12 - 2 Format of Peripheral enable register 0 (PER0)

Addre	ss: F00F0H After	reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN Note	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

ADCEN	Control of A/D converter input clock supply
0	Stops input clock supply. SFR used by the A/D converter cannot be written. The A/D converter is in the reset status.
1	Enables input clock supply. · SFR used by the A/D converter can be read/written.

Note The RTCWEN bit is reset only by a power-on reset; it retains the value when a reset caused by another factor occurs.

Figure 12 - 2 Format of Peripheral enable register 0 (PER0)

Address: F00F0H		After re	eset: 00H	R/W					
Symbol	<7>		6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN		0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

ADCEN	Control of A/D converter input clock supply
0	Stops input clock supply. SFR used by the A/D converter cannot be written. The A/D converter is in the reset status.
1	Enables input clock supply. • SFR used by the A/D converter can be read/written.

27. 15.3.1 Peripheral enableregister 0 (PER0) (Page 451)

Incorrect:

Figure 12 - 2 Format of Peripheral enable register 0 (PER0)

Addre	ess: F00F0H After	reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN Note	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

SAUmEN	Control of serial array unit m input clock supply
0	Stops supply of input clock. SFR used by serial array unit m cannot be written. Serial array unit m is in the reset status.
1	Enables input clock supply. • SFR used by serial array unit m can be read/written.

Note The RTCWEN bit is reset only by a power-on reset; it retains the value when a reset caused by another factor occurs.

Figure 12 - 2 Format of Peripheral enable register 0 (PER0)

Address: F00F0H		fter reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

SAUmEN	Control of serial array unit m input clock supply
0	Stops supply of input clock. · SFR used by serial array unit m cannot be written. · Serial array unit m is in the reset status.
1	Enables input clock supply. • SFR used by serial array unit m can be read/written.

28. 16.3.1 Peripheral enableregister 0 (PER0) (Page 451)

Incorrect:

Figure 12 - 2 Format of Peripheral enable register 0 (PER0)

Addre	ess: F00F0H After	reset: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN Note	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

IICAnEN	Control of serial interface IICAn input clock supply
0	Stops input clock supply. SFR used by serial interface IICAn cannot be written. Serial interface IICAn is in the reset status
1	Enables input clock supply. • SFR used by serial interface IICAn can be read/written

Note The RTCWEN bit is reset only by a power-on reset; it retains the value when a reset caused by another factor occurs.

Figure 12 - 2 Format of Peripheral enable register 0 (PER0)

Address: F00F0H		After re	eset: 00H	R/W					
Symbol	<7>		6	<5>	<4>	<3>	<2>	1	<0>
PER0	RTCWEN		0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN

IICAnEN	Control of serial interface IICAn input clock supply
0	Stops input clock supply. SFR used by serial interface IICAn cannot be written. Serial interface IICAn is in the reset status
1	Enables input clock supply. · SFR used by serial interface IICAn can be read/written

29. 34.1 Absolute Maximum Ratings (page 1172)

Incorrect:

Absolute Maximum Ratings (TA= 25°C)

	1	1		1	
Parameter	Sym bols		Conditions	Ratings	Unit
Output current,	IOH1	Per pin	P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P405 P407, P407 P407	-40	mA
			P125-P127. P140-P143		
		Total of all pins	P40-P46	-70	mA
		-170 mA	P00-P07, P10-P17, P20-P27, P30-P37,	-100	mA
			P50-P57, P70-P77, P80-P83, P125-P127, P140-P143		
	IOH2	Per pin	P130 , P150-P156	-0.1	mA
		Total of all pins		-0.8	mA
	ЮН3	Per pin	UDP, UDM	-3	mA
Output current,	IOL1	Per pin	P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P140-P143	40	mA
		Total of all pins	P40-P46	70	mA
		170 mA	P00-P07, P10-P17, P20-P27, P30-P37, P50-P57, P70-P77, P80-P83, P125-P127, P140-P143	100	mA
	IOL2	Per pin	P130. P150-P156	0.4	mA
		Total of all pins		3.2	mA
	IOL3	1端子	UDP, UDM	3	mA

Correct:

Absolute Maximum Ratings (TA= 25)

Parameter	Sym bols		Conditions	Ratings	Unit
Output current,	IOH1	Per pin	P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143	-40	mA
		Total of all pins -170 mA	P40-P46	-70	mA
			P00-P07, P10-P17, P20-P27, P30-P37, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143	-100	mA
	IOH2	Per pin	P150-P156	-0.1	mA
		Total of all pins		-0.7	mA
	ЮН3	Per pin	UDP, UDM	-3	mA
Output current,	IOL1	Per pin	P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P130, P140-P143	40	mA
		Total of all pins	P40-P46	70	mA
		170 mA	P00-P07, P10-P17, P20-P27, P30-P37, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143	100	mA
	IOL2	Per pin	P150-P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	Per pin	UDP, UDM	3	mA

30. 34.3.1 Pin characteristics (page 1175)

Incorrect:

 $(TA = -40 \sim +85 \text{ }^{\circ}C, 1.6 \text{ V} \leq \text{AVDD} = \text{VDD} \leq 3.6 \text{ V}, \text{VSS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output Current, high Note1	IOH1	Per pin fot P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P125-P127, P140-P143				-10.0 Note2	mA
		Total of P00 to P07,P10 to P17,	2.7 V≦VDD≦3.6 V			-15.0	mA
		P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P8	1.8 V≦VDD<2.7 V			-7.0	mA
		to P83,P125 to P127, P140 to P143 (When duty = 70% Note 3)	1.6 V≦VDD<1.8 V			-3.0	mA
	IOH2	Per pin for P130, P150-P156	1.6 V≦VDD≦3.6 V			-0.1 Note2	mA
		Total of all pins	1.6 V≦VDD≦3.6 V			-0.8	mA

Correct:

 $(TA = -40 \sim +85 \text{ }^{\circ}\text{C}, 1.6 \text{ V} \leq \text{AVDD} = \text{VDD} \leq 3.6 \text{ V}, \text{VSS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output IO Current, high Note1	IOH1	per pin for P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143				-10.0 Note2	mA
		P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83,	2.7 V≦VDD≦3.6 V			-15.0	mA
			1.8 V≦VDD<2.7 V			-7.0	mA
			1.6 V≦VDD<1.8 V			-3.0	mA
	IOH2	Per pin for P150-P156	1.6 V≦VDD≦3.6 V			-0.1 Note2	mA
		Total of all pins	1.6 V≦VDD≦3.6 V			-0.7	mA

Incorrect:

 $(TA = -40 \sim +85 \, ^{\circ}C, 1.6 \, V \leq AVDD = VDD \leq 3.6 \, V, \, VSS = 0 \, V)$

Items	Symb	Conditions	3	MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00-P07. P10-P17, P20-P27, P30-P37. P40-P46, P50-P57, P60, P61. P70-P77, P80-P83. P125-P127, P140-P143				20.0 Note 2	mA
		Per pin P60, P61				15.0 Note 2	mA
		(when duty = 70% Note 3)	2.7 V≦VDD≦3.6 V			15.0	mA
			1.8 V≦VDD<2.7 V			9.0	mA
			1.6 V≦VDD<1.8 V			4.5	mA
			2.7 V≦VDD≦3.6 V			35.0	mA
		P20-P27, P30-P37, P50-P57, P60, P61, P70-P77, P80-P83,	1.8 V≦VDD<2.7 V			20.0	mA
		P125-P127. P140-P143 (when duty = 70% Note 3)	1.6 V≦VDD<1.8 V			10.0	mA
		Total of all pins (when duty = 70% Note 3)				50.0	mA
	IOL2	Per pin for P130. P150-P156				0.4 Note 2	mA
		Total of all pins	1.6 V≦VDD≦3.6 V			3.2	mA

Correct:

 $(TA = -40 \sim +85 \text{ }^{\circ}\text{C}, 1.6 \text{ V} \leq \text{AVDD} = \text{VDD} \leq 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P130, P140-P143				20.0 Note 2	mA
		Per pin P60, P61				15.0 Note 2	mA
		(when duty = 70% Note 3)	2.7 V≦VDD≦3.6 V			15.0	mA
			1.8 V≦VDD<2.7 V			9.0	mA
			1.6 V≦VDD<1.8 V			4.5	mA
			2.7 V≦VDD≦3.6 V			35.0	mA
			1.8 V≦VDD<2.7 V			20.0	mA
			1.6 V≦VDD<1.8 V			10.0	mA
		Total of all pins (when duty = 70% Note 3)				50.0	mA
	IOL2	Per pin for P150-P156				0.4 Note 2	mA
		Total of all pins	1.6 V≦VDD≦3.6 V			2.8	mA

31. 35.1 Absolute Maximum Ratings (pages 1239)

Incorrect:

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	IOH1	Per pin	P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P125-P127, P140-P143	-40	mA
		Total of all pins	P40-P46 P00-P07, P10-P17, P20-P27, P30-P37, P50-P57,	-70 -100	mA mA
		-170 mA	P70-P77, P80-P83, P125-P127, P140-P143		
	IOH2	Per pin	P130, P150-P156	-0.1	mA
		Total of all pins		-0.8	mA
	ІОН3	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P140-P143	40	mA
		Total of all	P40-P46	70	mA
		pins 170 mA	P00-P07, P10-P17, P20-P27, P30-P37, P50-P57, P70-P77, P80-P83, P125-P127, P140-P143	100	mA
	IOL2	Per pin	P130, P150-P156	0.4	mA
		Total of all pins		3.2	mA
	IOL3	1端子	UDP, UDM	3	mA

Parameter	Symbols		Conditions	Ratings	Unit
Output IOH1 current, high		Per pin	P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143	-40	mA
		Total of all pins	P40-P46	-70	mA
		-170 mA	P00-P07, P10-P17, P20-P27, P30-P37, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143	-100	mA
	IOH2	Per pin	P150-P156	-0.1	mA
		Total of all pins		-0.7	mA
	ЮН3	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P130, P140-P143	40	mA
		Total of all pins	P40-P46	70	mA
		170 mA	P00-P07, P10-P17, P20-P27, P30-P37, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143	100	mA
	IOL2	Per pin	P150-P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	1端子	UDP, UDM	3	mA

32. 35.3.1 Pin characteristics (page 1242)

Incorrect:

 $(TA = -40 \sim +105 \, ^{\circ}C, 2.4 \, V \leq AVDD = VDD \leq 3.6 \, V, \, VSS = 0 \, V)$

Items	Symbol	Condition	ns	MIN	TYP.	MAX.	Unit
Output current, high Note 1	IOH1	Per pin for P00-P07. P10-P17. P20-P27. P30-P37. P40-P46. P50-P57. P70-P77. P80-P83. P125-P127. P140-P143				-10.0 ^{Note} 2	mA
		Total of P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P125-P127, P140-P143 (when duty = 70% Note 3)	2.7 V≦VDD≦3.6 V 2.4 V≦VDD<2.7 V			-15.0 -7.0	mA mA
	IOH2	Per pin for P130, P150-P156				-0.1 Note 2	mA
		Total of all pins	2.4 V≦VDD≦3.6 V			-0.8	mA

Correct:

 $(TA = -40 \sim +105 \text{ °C}, 2.4 \text{ V} \leq \text{AVDD} = \text{VDD} \leq 3.6 \text{ V}, \text{VSS} = 0 \text{ V})$

Items	Symbol	Conditions	S	MIN	TYP.	MAX.	Unit
Output current, high Note 1	IOH1	Per pin for P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143				-10.0 Note 2	mA
		Total of P00-P07, P10-P17,	2.7 V≦VDD≦3.6 V			-15.0	mA
		P20-P27, P30-P37, P40-P46, P50-P57, P70-P77, P80-P83, P125-P127, P130, P140-P143 (when duty = 70% Note 3)	2.4 V≦VDD<2.7 V			-7.0	mA
	IOH2	Per pin for P150-P156				-0.1 Note 2	mA
		Total of all pins	2.4 V≦VDD≦3.6 V			-0.7	mA

Incorrect:

 $(TA = -40 \sim +105 \text{ °C}, 2.4 \text{ V} \leq \text{AVDD} = \text{VDD} \leq 3.6 \text{ V}, \text{VSS} = 0 \text{ V})$

Items	Symbol	Conditions	S	MIN	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P140-P143				20.0 Note 2	mA
		Per pin for P60, P61				15.0 Note 2	mA
		Total of P40-P46	2.7 V≦VDD≦3.6 V			15.0	mA
		(when duty = 70% Note 3)	2.4 V≦VDD<2.7 V			9.0	mA
		Total of P00-P07, P10-P17,	2.7 V≦VDD≦3.6 V			35.0	mA
		P20-P27, P30-P37, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P140-P143 (when duty = 70% Note 3)	2.4 V≦VDD<2.7 V			20.0	mA
		Total of all pins(when duty = 70% Note 3)				50.0	mA
	IOL2	Per pin for P130, P150-P156				0.4 Note 2	mA
		Total of all pins	2.4 V≦VDD≦3.6 V			3.2	mA

Correct:

 $(TA = -40 \sim +105 \text{ °C}, 2.4 \text{ V} \leq \text{AVDD} = \text{VDD} \leq 3.6 \text{ V}, \text{VSS} = 0 \text{ V})$

Items	Symbol	Conditions	S	MIN	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00-P07, P10-P17, P20-P27, P30-P37, P40-P46, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P130, P140-P143				20.0 Note 2	mA
		Per pin for P60, P61				15.0 Note 2	mA
		Total of P40-P46	2.7 V≦VDD≦3.6 V			15.0	mA
		((when duty = 70% Note 3)	2.4 V≦VDD<2.7 V			9.0	mA
		Total of P00-P07, P10-P17,	2.7 V≦VDD≦3.6 V			35.0	mA
		P20-P27, P30-P37, P50-P57, P60, P61, P70-P77, P80-P83, P125-P127, P130, P140-P143 (when duty = 70% Note 3)	2.4 V≦VDD<2.7 V			20.0	mA
		Total of all pins (when duty = 70% Note 3)				50.0	mA
	IOL2	Per pin for P150-P156				0.4 Note 2	mA
		Total of all pins	2.4 V≦VDD≦3.6 V			2.8	mA

33. 2.1.1 80/85-pin products (with USB)(Page 24)

Incorrect:

Function Name	Pin Type	I/O	After Reset	Alternate Function	Function				
	(omitted)								
P40	7-1-3	I/O	Input port	TOOL0/(TI00)/(TO00)	Port 4.				
P43	8-3-4			(INTP7)/IVCMP0	5-bit I/O port. Input/output can be specified in 1-bit				
P44				IVREF0	units. Use of an on-chip pull-up resistor can be				
P45	7-4-1			ANO0	specified by a software setting at input				
P46				ANO1	– port. P43 to P46 can be set to analog input Note2.				
P50	7-5-4	I/O	Digital	SEG4/INTP6	Port 5.				
P51			input invalid ^{Note1}	SEG5	3-bit I/O port. Input/output can be specified in 1-bit				
P52				SEG6	units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.				
P60	12-1-2	I/O	Input port	SCLA0/(TI01)/(TO01)	Port 6.				
P61				SDAA0/(TI02)/(TO02)	2-bit I/O port. Input/output can be specified in 1-bit units. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance).				
				(omitted)					

Function Name	Pin Type	1/0	After Reset	Alternate Function	Function
				(omitted)	
P40	7-1-3	I/O	Input port	TOOL0/(TI00)/(TO00)	Port 4.
P43	8-3-4			(INTP7)/IVCMP0	5-bit I/O port. Input/output can be specified in 1-bit
P44				IVREF0	units. Use of an on-chip pull-up resistor can be
P45	7-4-1			ANO0	specified by a software setting at input
P46				ANO1	P43 to P46 can be set to analog input
P50	7-5-4	I/O	3	SEG4/INTP6	Port 5.
P51			input invalid ^{Note1}	SEG5	3-bit I/O port. Input/output can be specified in 1-bit
P52				SEG6	units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-3	I/O	Input port	SCLA0/(TI01)/(TO01)	Port 6.
P61				SDAA0/(TI02)/(TO02)	2-bit I/O port. Input/output can be specified in 1-bit units. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance).
				(omitted)	

34. 2.1.2 80/85-pin products (without USB) (Page 27)

Incorrect:

Function Name	Pin Type	I/O	After Reset	Alternate Function	Function
				(omitted)	
P40	7-1-3	I/O	Input port	TOOL0/(TI00)/(TO00)	Port 4.
P43	8-3-4			(INTP7)/IVCMP0	5-bit I/O port. Input/output can be specified in 1-bit
P44				IVREF0	units. Use of an on-chip pull-up resistor can be
P45	7-4-1			ANO0	specified by a software setting at input port.
P46				ANO1	P43 to P46 can be set to analog input Note2
P50	7-5-4	I/O	Digital	SEG4/INTP6	Port 5.
P51			input invalid ^{Note1}	SEG5	3-bit I/O port. Input/output can be specified in 1-bit
P52				SEG6	units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-2	I/O	Input port	SCLA0/(TI01)/(TO01)	Port 6.
P61				SDAA0/(TI02)/(TO02)	2-bit I/O port. Input/output can be specified in 1-bit units. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance).
				(omitted)	

Function Name	Pin Type	1/0	After Reset	Alternate Function	Function
				(omitted)	
P40	7-1-3	I/O	Input port	TOOL0/(TI00)/(TO00)	Port 4.
P43	8-3-4			(INTP7)/IVCMP0	5-bit I/O port. Input/output can be specified in 1-bit
P44				IVREF0	units. Use of an on-chip pull-up resistor can be
P45	7-4-1			ANO0	specified by a software setting at input
P46				ANO1	P43 to P46 can be set to analog input
P50	7-5-4	I/O	3	SEG4/INTP6	Port 5.
P51			input invalid ^{Note1}	SEG5	3-bit I/O port. Input/output can be specified in 1-bit
P52				SEG6	units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-3	I/O	Input port	SCLA0/(TI01)/(TO01)	Port 6.
P61				SDAA0/(TI02)/(TO02)	2-bit I/O port. Input/output can be specified in 1-bit units. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance).
				(omitted)	

35. 2.1.3 100-pin products (with USB) (Page 30)

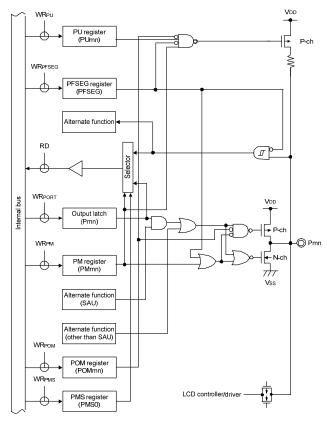
Incorrect:

Function Name	Pin Type	I/O	After Reset	Alternate Function	Function					
	(omitted)									
P40	7-1-3	I/O	Input port	TOOL0/(TI00)/(TO00)	Port 4.					
P43	8-3-4			(INTP7)/IVCMP0	5-bit I/O port. Input/output can be specified in 1-bit					
P44				IVREF0	units. Use of an on-chip pull-up resistor can be					
P45	7-4-1			ANO0	specified by a software setting at input					
P46				ANO1	port. P43 to P46 can be set to analog input Note2					
P50	7-5-4	I/O	Digital	SEG4/INTP6	Port 5.					
P51			input invalid ^{Note1}	SEG5	3-bit I/O port. Input/output can be specified in 1-bit					
P52				SEG6	units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.					
P60	12-1-2	I/O	Input port	SCLA0/(TI01)/(TO01)	Port 6.					
P61				SDAA0/(TI02)/(TO02)	2-bit I/O port. Input/output can be specified in 1-bit units. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance).					
				(omitted)						

Function Name	Pin Type	1/0	After Reset	Alternate Function	Function
				(omitted)	
P40	7-1-3	I/O	Input port	TOOL0/(TI00)/(TO00)	Port 4.
P43	8-3-4			(INTP7)/IVCMP0	5-bit I/O port. Input/output can be specified in 1-bit
P44				IVREF0	units. Use of an on-chip pull-up resistor can be
P45	7-4-1			ANO0	specified by a software setting at input port.
P46				ANO1	P43 to P46 can be set to analog input
P50	7-5-4	I/O	3	SEG4/INTP6	Port 5.
P51			input invalid ^{Note1}	SEG5	3-bit I/O port. Input/output can be specified in 1-bit
P52				SEG6	units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-3	I/O	Input port	SCLA0/(TI01)/(TO01)	Port 6.
P61				SDAA0/(TI02)/(TO02)	2-bit I/O port. Input/output can be specified in 1-bit units. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance).
				(omitted)	

36. 2.1.4 100-pin products (without USB) (Page 33)

Incorrect:

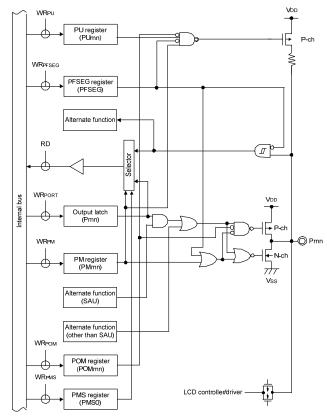

Function Name	Pin Type	I/O	After Reset	Alternate Function	Function
				(omitted)	
P40	7-1-3	I/O	Input port	TOOL0/(TI00)/(TO00)	Port 4.
P43	8-3-4			(INTP7)/IVCMP0	5-bit I/O port. Input/output can be specified in 1-bit
P44				IVREF0	units. Use of an on-chip pull-up resistor can be
P45	7-4-1			ANO0	specified by a software setting at input
P46				ANO1	port. P43 to P46 can be set to analog input Note2
P50	7-5-4	I/O	Digital	SEG4/INTP6	Port 5.
P51			input invalid ^{Note1}	SEG5	3-bit I/O port. Input/output can be specified in 1-bit
P52				SEG6	units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-2	I/O	Input port	SCLA0/(TI01)/(TO01)	Port 6.
P61				SDAA0/(TI02)/(TO02)	2-bit I/O port. Input/output can be specified in 1-bit units. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance).
				(omitted)	

Function Name	Pin Type	1/0	After Reset	Alternate Function	Function
				(omitted)	
P40	7-1-3	I/O	Input port	TOOL0/(TI00)/(TO00)	Port 4.
P43	8-3-4			(INTP7)/IVCMP0	5-bit I/O port. Input/output can be specified in 1-bit
P44				IVREF0	units. Use of an on-chip pull-up resistor can be
P45	7-4-1			ANO0	specified by a software setting at input port.
P46				ANO1	P43 to P46 can be set to analog input Note2
P50	7-5-4	I/O	3	SEG4/INTP6	Port 5.
P51			input invalid ^{Note1}	SEG5	3-bit I/O port. Input/output can be specified in 1-bit
P52				SEG6	units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-3	I/O	Input port	SCLA0/(TI01)/(TO01)	Port 6.
P61				SDAA0/(TI02)/(TO02)	2-bit I/O port. Input/output can be specified in 1-bit units. Output of P60 and P61 can be set to N-ch open-drain output (6 V tolerance).
				(omitted)	

37. <u>2.4 Pin Block Diagrams Figure 2 - 7 Pin Block Diagram of Pin Type 7-5-10</u> (page 47)

Old:

Figure 2 - 7 Pin Block Diagram of Pin Type 7-5-10



Remark 1. Refer to 2.1 Port Function for alternate functions.

Remark 2. SAU: Serial array unit

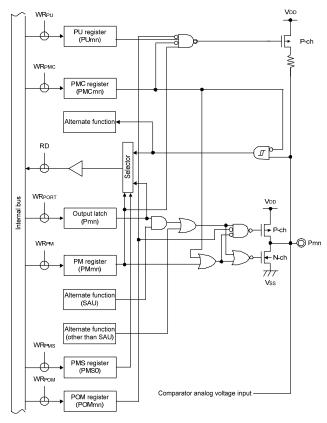
New:

Figure 2 - 7 Pin Block Diagram of Pin Type 7-5-10

Caution A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

Remark 1. Refer to 2.1 Port Function for alternate functions.

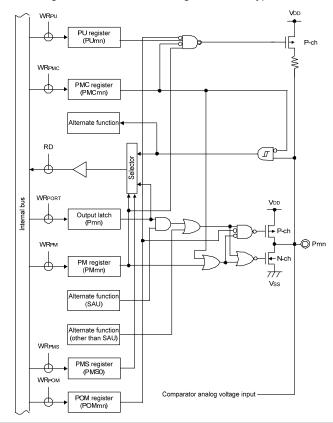
Remark 2. SAU: Serial array unit


Page 56 of 60

38. <u>2.4 Pin Block Diagrams Figure 2 - 11 Pin Block Diagram of Pin Type 7-3-4 (page 51)</u>

Old:

Figure 2 - 11 Pin Block Diagram of Pin Type 7-3-4



Remark 1. Refer to 2.1 Port Function for alternate functions.

Remark 2. SAU: Serial array unit

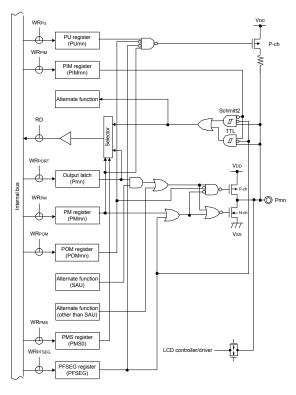
New:

Figure 2 - 11 Pin Block Diagram of Pin Type 7-3-4

Caution A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

Remark 1. Refer to 2.1 Port Function for alternate functions.

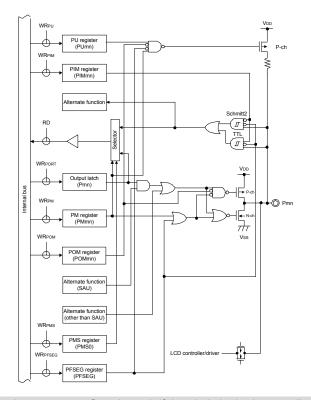
Remark 2. SAU: Serial array unit


Page 57 of 60

39. <u>2.4 Pin Block Diagrams Figure 2 - 14 Pin Block Diagram of Pin Type</u> 8-5-10 (page 54)

Old:

Figure 2 - 14 Pin Block Diagram of Pin Type 8-5-10

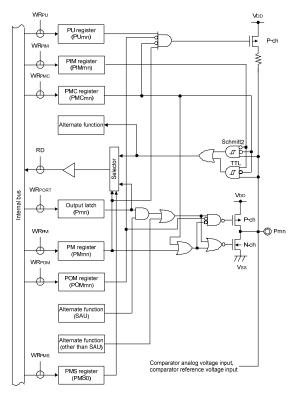


Remark 1. Refer to 2.1 Port Function for alternate functions.

Remark 2. SAU: Serial array unit

New:

Figure 2 - 14 Pin Block Diagram of Pin Type 8-5-10

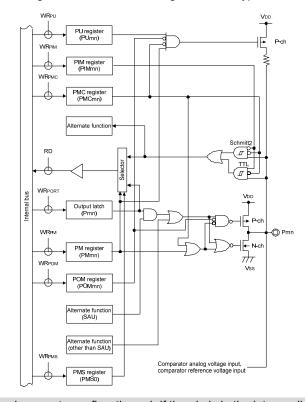

Caution 1. A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

Caution 2. Because of TTL input buffer structure, if the port input mode register (PIMx) is set in TTL input buffer, a through current may flow through in the case of high level input. It is recommended to input a low level to prevent a through current.

40. <u>2.4 Pin Block Diagrams Figure 2 - 15 Pin Block Diagram of Pin Type 8-3-4</u> (page 55)

Old:

Figure 2 - 15 Pin Block Diagram of Pin Type 8-3-4

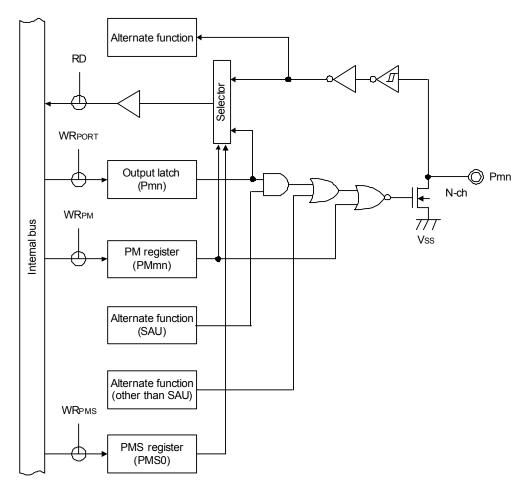


Remark 1. Refer to 2.1 Port Function for alternate functions.

Remark 2. SAU: Serial array unit

New:

Figure 2 - 15 Pin Block Diagram of Pin Type 8-3-4

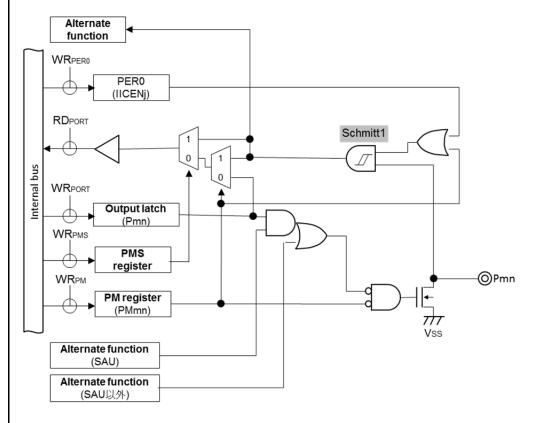

Caution 1. A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

Caution 2. Because of TTL input buffer structure, if the port input mode register (PIMx) is set in TTL input buffer, a through current may flow through in the case of high level input. It is recommended to input a low level to prevent a through current.

41. 2.4 Pin Block Diagrams Figure 2 - 16 Pin Block Diagram of Pin Type 12-1-2 (page 56)

Incorrect:

Figure 2 - 16 Pin Block Diagram of Pin Type 12-1-2



Remark 1. Refer to 2.1 Port Function for alternate functions.

Remark 2. SAU: Serial array unit

Correct:

Figure 2 - 16 Pin Block Diagram of Pin Type 12-1-3

Remark 1. Refer to 2.1 Port Function for alternate functions.

Remark 2. SAU: Serial array unit

