RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A055B/E	Rev.	2.00	
Title	Correction for Incorrect Description Notice RL78/G1C Descriptions in the User's Manua Hardware Rev. 1.10 Changed	Information Category	Technical Notification			
		Lot No.				
Applicable Product RL78/G1C Group		All Lots	Reference Document	RL78/G1C User's Manual: Hardwa Rev. 1.10 R01UH0348EJ0110 (Nov. 2013)		

This document describes misstatements found in the RL78/G1C User's Manual: Hardware Rev. 1.10 (R01UH0348EJ0110).

Corrections

Applicable Item	Applicable Page	Contents
2.4 Block Diagrams of Pins Figure 2-7. Pin Block Diagram for Pin Type 7-1-4	Page 32	Caution added
2.4 Block Diagrams of Pins Figure 2-9. Pin Block Diagram for Pin Type 8-1-4	Page 34	Caution added
2.4 Block Diagrams of Pins Figure 2-10. Pin Block Diagram for Pin Type 8-3-4	Page 35	Caution added
3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers)	Page 66	Incorrect descriptions revised

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

		Corrections and Applicable Items					
No		Document No.	English	R01UH0	348EJ0110	document for corrections	
1	5.3.10 PLL control	register (DSCCTL)			Page 136	Page 3	
2	5.4.5 PLL (Phase L	ocked Loop)			Page 142	Page 4	
3	5.6.4 Example of se	etting PLL circuit			Page 148	Pages 6 to 7	
4	5.6.5 CPU clock sta	atus transition diagrar	n		Page 149	Page 8	
5	5.6.5 CPU clock status transition diagram Table 5-4. CPU Clock Transition Pages 150 to and SFR Register Setting Examples 154						
6	5.6.6 Condition bef CPU clock	Pages 16 to 17					
7	7.3.4 Real-time clock control register 1 (RTCC1) Page 2					Page 18	
8	2.4 Block Diagrams of Pins Figure 2-7. Pin Block Diagram for Pin Type 7-1-4 Page 32					Page 19	
9	2.4 Block Diagrams of Pins Figure 2-9. Pin Block Diagram for Pin Type 8-1-4 Page 34				Page 34	Page 20	
10	2.4 Block Diagrams of Pins Figure 2-10. Pin Block Diagram for Pin Type 8-3-4				Page 35	Page 21	
11	3.2.5 Extended spe Registers)	ecial function registers	s (2nd SFRs: 2nd Sp	ecial Function	Page 66	Page 22	

Incorrect, Old: Bold with underline: Correct, New: Gray hatched

Revision History

RL78/G1C Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A046A/E	Jul. 6 , 2015	Correction No.7 revised
TN-RL*-A055A/E	Oct. 28, 2015	First edition issued Corrections No.1 to No.6 revised
TN-RL*-A055B/E	Feb. 24, 2016	Second edition issued Corrections No.8 to No.11 revised (This document)

Date: Feb. 24, 2016

1. 5.3.10 PLL control register (DSCCTL) (Page 136)

Additional entry to Figure 5 - 11 Format of PLL control register (DSCCTL)

Old:

Figure 5-11. Format of PLL Control Register (DSCCTL)

Address:	F02E5H	After rese	et: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
DSCCTL	0	0	0	0	0	DSFRDIV	DSCM	DSCON

DSFRDIV	PLL reference clock divider control
0	No division
1	Divided by 2

Remark PLL reference clock is the high-speed system clock (fmx).

DSCM	PLL multiplication selection
0	12 times (6 times)
1	16 times (8 times)

Remark The frequency is divided by 2 in the last stage of the PLL oscillator, therefore the multiplication ratio becomes the value in parentheses.

DSCON	PLL oscillation and output control
0	Stop
1	Ocsillation, output

Caution Be sure to clear bits 3 to 7 to 0.

Date: Feb. 24, 2016

New:

Figure 5-11. Format of PLL Control Register (DSCCTL)

Address:	F02E5H	After rese	et: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
DSCCTL	0	0	0	0	0	DSFRDIV	DSCM	DSCON

DSFRDIV	PLL reference clock divider control
0	No division
1	Divided by 2

Remark PLL reference clock is the high-speed system clock (fmx).

DSCM	PLL multiplication selection
0	12 times (6 times)
1	16 times (8 times)

Remark The frequency is divided by 2 in the last stage of the PLL oscillator, therefore the multiplication ratio becomes the value in parentheses.

DSCON	PLL oscillation and output control
0	Stop
1	Ocsillation, output

Caution 1. Be sure to clear bits 3 to 7 to 0.

Caution 2. Be sure to set the DSCON bit to 0 before changing DSFRDIV and DSCM.

Caution 3. Do not set the DSCON bit to 0 while the PLL clock is selected as the system clock.

2. 5.4.5 PLL (Phase Locked Loop) (Page 142)

Incorrect descriptions revised to Caution 2.

Old:

Caution 1. When switching from PLL mode to the internal high-speed oscillation clock and the high speed system clock, stop the function (USB function controller) that provides the PLL output clock (f_{PLL}).

Caution 2. PLL operations cannot be performed while the subsystem clock is operating

Date: Feb. 24, 2016

New:

Caution 1. When switching from PLL mode to the internal high-speed oscillation clock and the high speed system clock, stop the function (USB function controller) that provides the PLL output clock (f_{PLL}).

Caution 2. Do not set the DSCON bit to 1 to start the PLL operating while the subsystem clock is the operating clock for the CPU.

3. <u>5.6.4 Example of setting PLL circuit (Page 148)</u>

Incorrect descriptions revised to 5.6.4 Example of setting PLL circuit.

Old:

[Register settings] Set the register in the order of <1> to <5> below.

<1> Set the DSFRDIV bit and DSCM bit in the DSCCTL register to set the PLL multiplication and division.

_	7	6	5	4	3	2	1	0
DCCCTI						DSFRDIV	DSCM	DSCON
DSCCTL	0	0	0	0	0	0/1	0/1	0

<2> Set the RDIV1, RDIV0 bits of the MCKC register to set the division of the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	0

AMPHS0 and AMPHS1 bits: These bits are used to specify the oscillation mode of the XT1 oscillator.

<3> Set (1) the DSCON bit of the DSCCTL register to operate the PLL circuit Note.

_	7	6	5	4	3	2	1	0
DOCCTI						DSFRDIV	DSCM	DSCON
DSCCTL	0	0	0	0	0	0/1	0/1	1

<4> Wait for 40 μ s by using software.

<5> Set (1) the CKSELR bit of the MCKC register to select PLL output for the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	1

Note After the X1 oscillator clock stabilizes, allow at least 1 μ s to elapse before operating the PLL. When operating the PLL again after it has been stopped, wait for at least 4 μ s before operating.

Date: Feb. 24, 2016

New:

[Register settings] Set the register in the order of <1> to <5> below.

<1> Set the HIOSTOP bit in the CSC register to make the high-speed on-chip oscillator run.

	7	6	5	4	3	2	1	0
CSC								HIOSTOP
000	0/1	0/1	0	0	0	0	0	O ^{Note1}

<2> Set the DSFRDIV bit and DSCM bit in the DSCCTL register to set the PLL multiplication and division.

_	7	6	5	4	3	2	1	0
DSCCTL						DSFRDIV	DSCM	DSCON
DSCCIL	0	0	0	0	0	0/1	0/1	0

<3> Set the RDIV1, RDIV0 bits of the MCKC register to set the division of the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	0

AMPHS0 and AMPHS1 bits: These bits are used to specify the oscillation mode of the XT1 oscillator.

<4> Set (1) the DSCON bit of the DSCCTL register to operate the PLL circuit Note.

_	7	6	5	4	3	2	1	0
DOGOTI						DSFRDIV	DSCM	DSCON
DSCCTL	0	0	0	0	0	0/1	0/1	1

<5> Set (1) the CKSELR bit of the MCKC register to select PLL output for the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	1

<6> Use software to set up a wait of 65 μs. Note3

<7> Set the HIOSTOP bit in the CSC register to stop the high-speed on-chip oscillator. Note2

	7	6	5	4	3	2	1	0
000								HIOSTOP
CSC	0/1	0/1	0	0	0	0	0	1 ^{Note1}

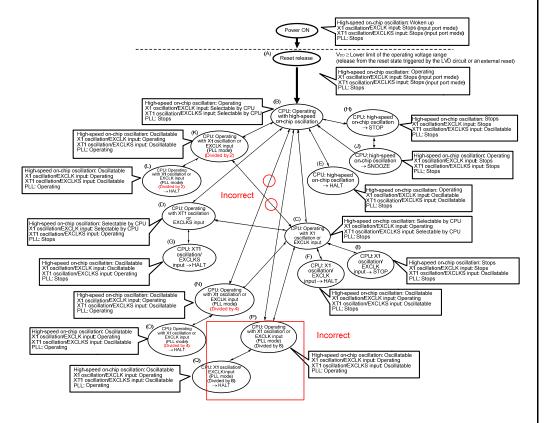
Date: Feb. 24, 2016

<8> When the PLL clock frequency divided by 2, 4, or 8 is selected as the main system clock (f_{MAIN}), set the MCM0 bit in the CKC register to select the source for deriving the main system clock as a signal with a frequency (f_{IH}) of up to 24 MHz.

	7	6	5	4	3	2	1	0
CKC	CLS	CSS						
CKC	0/1	0/1	0	0	0	0	0	0

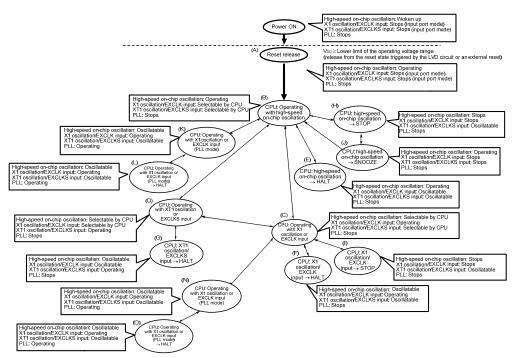
Note 1. No setting is required to change to the PLL while the CKSELR bit is 1.

When setting the CKSELR bit to 1, ensure that the high-speed on-chip oscillator is running.


Note 2. After oscillation by the X1 oscillator clock has become stable, allow at least 1 μ s to elapse before starting the PLL. When restarting the PLL after it has been stopped, wait for at least 4 μ s before using it in operations.

Note 3. Wait for 40 μs for oscillation by the oscillator clock to become stabled if the HIOSTOP bit is not set to 0.

4. 5.6.5 CPU clock status transition diagram (Page 149)


Incorrect descriptions revised to Figure 5 - 18 CPU Clock Status Transition Diagram

Old:

Date: Feb 24, 2016

New:

5. 5.6.5 CPU clock status transition diagram

<u>Table 5 - 4 CPU Clock Transition and SFR Register Setting Examples</u> (pages 150 to 154)

Old:

(2) CPU operating with high-speed system clock (C) after reset release (A) (The CPU operates with the high-speed on-chip oscillator clock immediately after a reset release (B).)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CMC Register Note 1			OSTS Register	CSC Register	OSTC Register	CKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		МСМ0
$(A) \rightarrow (B) \rightarrow (C)$ (X1 clock: 1 MHz \leq fx \leq 10 MHz)	0	1	0	Note 2	0	Must be checked	1
$(A) \rightarrow (B) \rightarrow (C)$ (X1 clock: 10 MHz < fx ≤ 20 MHz)	0	1	Q	Note 2	0	Must be checked	1
$(A) \rightarrow (B) \rightarrow (C)$ (external main clock)	1	1	×	Note 2	0	Must not be checked	1

New:

(2) CPU operating with high-speed system clock (C) after reset release (A) (The CPU operates with the high-speed on-chip oscillator clock immediately after a reset release (B).)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CMC Register Note 1			OSTS	CSC	OSTC	CKC
				Register	Register	Register	Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		MCM0
$(A) \to (B) \to (C)$	0	1	0	Note 2	0	Must be	1
(X1 clock: 1 MHz \leq fx \leq 10 MHz)						checked	
$(A) \rightarrow (B) \rightarrow (C)$	0	1	1	Note 2	0	Must be	1
(X1 clock: 10 MHz < fx ≤ 20 MHz)						checked	
$(A) \rightarrow (B) \rightarrow (C)$	1	1	×	Note 2	0	Must not be	1
(external main clock)						checked	

Old:

(4) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (C)

(Setting sequence of SFR registers)

Tegisters)							
Setting Flag of SFR Register	СМО	C Register	Note 1	OSTS Register	CSC Register	OSTC Register	CKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		мсмо
$(B) \rightarrow (C)$	0	1	0	Note 2	0	Must be checked	1
(X1 clock: 1 MHz \leq f _X \leq 10 MHz)							
$(B) \rightarrow (C)$	0	1	1	Note 2	0	Must be checked	1
(X1 clock: 10 MHz < $f_X \le 20$							
MHz)							
(B) → (D)	1	1	×	Note 2	0	Must not be	1
(external main clock)						checked	

Unnecessary if these registers are already set

Unnecessary if the CPU is operating with the high-speed system clock

(6) CPU clock changing from high-speed system clock (C) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
	HIOSTOP	stabilization time	мсм0
Status Transition			
$(C) \rightarrow (B)$	0	Note	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 75 μ s

Date: Feb. 24, 2016

New:

(4) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (C)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	СМО	C Register	Note 1	OSTS Register	CSC Register	OSTC Register	CKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		мсм0
$(B) \rightarrow (C)$	0	1	0	Note 2	0	Must be checked	1
(X1 clock: 1 MHz \leq f _X \leq 10 MHz)							
$(B) \rightarrow (C)$	0	1	1	Note 2	0	Must be checked	1
(X1 clock: 10 MHz < $f_X \le 20$							
MHz)							
$(B) \rightarrow (C)$	1	1	×	Note 2	0	Must not be	1
(external main clock)						checked	

Unnecessary if these

Unnecessary if the CPU is registers are already set operating with the high-speed system clock

(6) CPU clock changing from high-speed system clock (C) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers) —

Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
	HIOSTOP	stabilization time	MCM0
Status Transition			
$(C) \rightarrow (B)$	0	Note	0
	1	,	

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 135 μ s

Old:

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	Oscillation	CKC Register
Status Transition	HIOSTOP	accuracy stabilization time	CSS
$(D)\to (B)$	0	Note	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 75 μ s

Date: Feb. 24, 2016

New:

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	Oscillation	CKC Register	
Status Transition	HIOSTOP	accuracy stabilization time	CSS	
$(D) \rightarrow (B)$	0	Note	0	

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 135 μ s

Old:

- (10) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (divided by 2) (K)
- CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (divided by 4) (N)
- CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (divided by 8) (P)
 - CPU clock changing from high-speed system clock (C) to high-speed system clock
 (PLL mode) (divided by 2) (K)
 - CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (divided by 4) (N)
- CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (divided by 8) (P)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	DSCCTL Register			KC ister	Waiting for Oscillation	MCKC Register
Status Transition	DSFRDIV	DSCM	RDIV1	RDIV0	Stabilization	CKSELR
(B).→.(K)	9/1	9/1	0/1	0/1	40.μs	1
(B).⇒.(N)						
(B).→.(P)						
(C).⇒.(K)						
(C).⇒.(N)						
$(C) \rightarrow (P)$						

Date: Feb. 24, 2016

New:

- (10) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (K)
- CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (N)

Continue

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CMC Re	gister Note 1		OSTS Register	CSC Register	OSTC Register	DSCCTL R	egister	MCKC F	Register	Waiting for Oscillation Stabilizatio	DSCCT L Register	Waiting for Oscillation Stabilizatio	MCKC Registe r
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		DSFRDI V	DSCM	RDIV1	RDIV0	n	DSCON	n	CKSEL R
(B) \rightarrow (K) (divided by 2)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	0	0		1		1
(B) \rightarrow (K) (divided by 4)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	0	1	1us	1	40us	1
(B) \rightarrow (K) (divided by 8)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	1	0		1		1

Note 1. Writing to the clock operating mode control register (CMC) can only proceed once and must be by an 8-bit memory manipulation instruction after release from the reset state.

Note 2. Set the oscillation stabilization time in the oscillation stabilization time select register (OSTS) as follows.

• Desired oscillation stabilization time setting of the oscillation stabilization time counter status register (OSTC) ≤ Oscillation stabilization time set in the OSTS register

Caution: Completion of clock switching after the CKSELR bit has been set to 1 requires up to 2 clock cycles when the FRQSEL4 bit is 1, and up to 10 clock cycles when the FRQSEL4 bit is 0. Until the clock switching is completed, do not stop the high-speed on-chip oscillator.

(Setting sequence of SFR registers)

Status T	Setting Flag of SFR Register tus Transition		CSC Register	DSCCTL Register		MCKC Register		DSCCTL Register	MCKC Register	Waiting for Oscillation	CSC Register	CKC Register
Otatas 1	Tarionio		HIOSTOP	DSFRDIV	DSCM	RDIV1	RDIV0	DSCON	CKSELR	Stabilization	HIOSTOP	мсмо
(C)	(N)	(divided by 2)	O ^{Note3}	0/1	0/1	0	0	1	1 ^{Note3}	135us ^{Note4}	1 ^{Note3}	0
(C)	(N)	(divided by 2)	O ^{Note3}	0/1	0/1	0	1	1	1 ^{Note3}		1 ^{Note3}	0
(C)	(N)	(divided by 2)	O ^{Note3}	0/1	0/1	1	0	1	1 ^{Note3}		1 ^{Note3}	0

Note 3. No setting is required to change to the PLL while the CKSELR bit is 1. When setting the CKSELR bit to 1, ensure that the high-speed on-chip oscillator is running.

Note 4. Wait for 40 μs for oscillation by the oscillator clock to become stable if the HIOSTOP bit is not set to 0

Old:

- (11) CPU clock changing from high-speed system clock (PLL mode) (divided by 2) (K) to high-speed on-chip oscillator clock (B)
- CPU clock changing from high-speed system clock (PLL mode) (divided by 4)

 (N) to high-speed on-chip oscillator clock (B)
- CPU clock changing from high-speed system clock (PLL mode) (divided by 8) (P)
 to high-speed on-chip oscillator clock (B)
 - CPU clock changing from high-speed system clock (PLL mode) (divided by 2) (K) to high-speed system clock (C)
 - CPU clock changing from high-speed system clock (PLL mode) (divided by 4)

 (N) to high-speed system clock (C)
- CPU clock changing from high-speed system clock (PLL mode) (divided by 8) (P)
 to high-speed system clock (C)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	MCKC Register	DSCCTL Register
Status Transition	CKSELR	DSCON
(K) → (B)	Q	Q
(N).⇒.(B)		
(P).⇒.(B)		
(K).⇒.(C)		
(N).⇒.(C)		
(P).⇒.(C)		

Date: Feb. 24, 2016

New:

- (11) CPU clock changing from high-speed system clock (PLL mode)_(K) to high-speed on-chip oscillator clock (B)
- CPU clock changing from high-speed system clock (PLL mode) (N) to high-speed system clock (C)

Setting Flag of SFR Register	CSC Register	Waiting for Oscillation	MCKC Register	Waiting for	DSCCTL Register
Status Transition	HIOSTOP	Stabilization	CKSELR	clock change	DSCON
(K) → (B) FRQSEL4=0	0	18∼65 µs	0	256 clokc	0
(K) → (B) FRQSEL4=1		18∼135 µs		16 clock	

Continue

(Setting sequence of SFR registers) -

Setting Flag of SFR Register Status Transition	CKC Register	Waiting for clock change	DSCCTL Register
Status Harisition	MCM0	orden enange	DSCON
(N) (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 16MHz		3 Clock	
(N) (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 12MHz		4 Clock	
(N) (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 8MHz		6 Clock	
(N) (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 6MHz		8 Clock	
(N) (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 16MHz		2 Clock	
(N) (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 12MHz	1	2 Clock	0
(N) (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 8MHz	ľ	3 Clock	<u> </u>
(N) (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 6MHz		4 Clock	
(N) (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 16MHz		2 Clock	
(N) (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 12MHz		2 Clock	
(N) (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 8MHz		2 Clock	
(N) (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 6MHz		2 Clock	

Old:

(12) • HALT mode (E) set while CPU is operating with high-speed on-chip oscillator clock (B)

- HALT mode (F) set while CPU is operating with high-speed system clock (C)
- HALT mode (G) set while CPU is operating with subsystem clock (D)
- HALT mode (L) set while CPU is operating with high-speed system clock (PLL mode) (divided by 2) (K)
- HALT mode (O) set while CPU is operating with high-speed system clock (PLL mode) (divided by 4) (N)
- HALT mode (Q) set while CPU is operating with high-speed system clock (PLL mode) (divided by 8) (P)

Status Transition	Setting
$(B) \rightarrow (E)$	Executing HALT instruction
$(C) \rightarrow (F)$	
$(D) \rightarrow (G)$	
$(K) \rightarrow (L)$	
(N).→.(Q)	
(P).→.(Q)	

- (15) STOP mode (I) set while CPU is operating with high-speed system clock (PLL mode) (divided by 2) (K)
- : STOP mode (I) set while CPU is operating with high-speed system clock (PLL mode) (divided by 4) (N)
- : STOP mode (I) set while CPU is operating with high-speed system clock (PLL mode) (divided by 8) (P)

Switch from PLL mode operation to **high-speed on-chip oscillator clock** and high-speed system clock operations

(refer to 5.6.5 (11)) and stop the PLL (DSCON = 0), then execute the STOP instruction

Date: Feb. 24, 2016

New:

(12) • HALT mode (E) set while CPU is operating with high-speed on-chip oscillator clock (B)

- HALT mode (F) set while CPU is operating with high-speed system clock (C)
- HALT mode (G) set while CPU is operating with subsystem clock (D)
- HALT mode (L) set while CPU is operating with high-speed system clock (PLL mode)
 (K)
- HALT mode (O) set while CPU is operating with high-speed system clock (PLL mode)
 (N)

Status Transition	Setting
$(B) \rightarrow (E)$	Executing HALT instruction
$(C) \rightarrow (F)$	
$(D) \rightarrow (G)$	
$(K) \rightarrow (L)$	
$(N) \rightarrow (O)$	

(15) • Changing to STOP mode (I) from the high-speed system clock (PLL mode) as the operating clock for the CPU (K)

Switch to high-speed system clock operation from PLL mode, stop the PLL (DSCON = 0), and then execute the STOP instruction.

6.5.6.6 Condition before changing CPU clock and processing after changing CPU clock (pages 157 158)

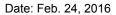
Old:

Table 5-5. Changing CPU Clock (1/3)

CPU Clock		Condition Before Change	Processing After Change
Before Change After Change			
X1 clock		(omitted)	
	PLL clock	Oscillation of PLL • DSCON = 1	-

Date: Feb. 24, 2016

New:


Table 5-5. Changing CPU Clock (1/3)

CPU Clock		Condition Before Change	Processing After Change		
Before Change	After Change				
X1 clock		(omitted)			
PLL clock		Oscillation of PLL • DSCON = 1	-		
		Enabling oscillation of high-speed on-chip oscillator			
		· HIOSTOP = 0			
		· The oscillation accuracy			
		stabilization time			
		has elapsed			

Old:

Table 5-5. Changing CPU Clock (2/3)

CPU Clock		Condition Before Change	Processing After Change	
Before Change	After Change			
External main system clock On-chip oscillator clock		Enabling oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • After elapse of oscillation accuracy stabilization time	External main system clock input can be disabled (MSTOP = 1).	
	X1 clock	Transition not possible	-	
XT1 clock		Stabilization of XT1 oscillation OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 After elapse of oscillation stabilization time	External main system clock input can be disabled (MSTOP = 1).	
	External Enabling input of external clock subsystem clock clock • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0		External main system clock input can be disabled (MSTOP = 1).	
	PLL clock	Oscillation of PLL • DSCON = 1	-	
		(omitted)		

New:

Table 5-5. Changing CPU Clock (2/3)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
External main system clock On-chip oscillator clock		Enabling oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • After elapse of oscillation accuracy stabilization time	External main system clock input can be disabled (MSTOP = 1).
	X1 clock	Transition not possible	-
External subsystem clock		Stabilization of XT1 oscillation OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 After elapse of oscillation stabilization time	External main system clock input can be disabled (MSTOP = 1).
		Enabling input of external clock from the EXCLKS pin OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	External main system clock input can be disabled (MSTOP = 1).
	PLL clock	Oscillation of PLL • DSCON = 1	-
		Enabling oscillation of high-speed on-chip	
		oscillator · HIOSTOP = 0	
		· The oscillation accuracy	
		stabilization time	
		has elapsed	
		(omitted)	1

7. 7.3.4 Real-time clock control register 1 (RTCC1)

Additional entry to Figure 7 - 5 Format of Real-time clock control register 1 (RTCC1) (2/2)

Old:

RWAIT	Wait control of real-time clock 2
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value

This bit controls the operation of the counter.

Be sure to write "1" to it to read or write the counter value.

As the internal counter (16-bit) is continuing to run, complete reading or writing within one second and turn back to

0.

When RWAIT = 1, it takes up to one cycle of fRTCuntil the counter value can be read or written (RWST = 1). When the internal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts up.

However, when it wrote a value to second count register, it will not keep the overflow event.

Date: Feb. 24, 2016

New:

RWAIT	Wait control of real-time clock 2
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value

This bit controls the operation of the counter.

Be sure to write "1" to it to read or write the counter value.

As the internal counter (16-bit) is continuing to run, complete reading or writing within one second and turn back to

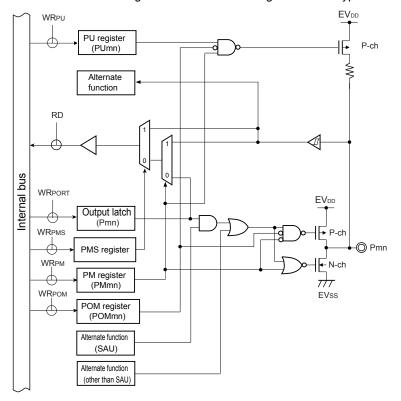
0.

When RWAIT = 1, it takes up to one cycle of fRTC until the counter value can be read or written (RWST = 1). Notes1,2

When the internal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts up.

However, when it wrote a value to second count register, it will not keep the overflow event.

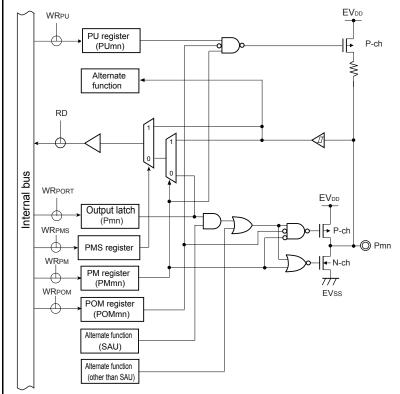
Note1.	When setting RWAIT=1 during 1 operating clock (f _{RTC}), after setting RTCE=1, it may take two
	clock time of the operation clock (f_{RTC}), until RWST bit is set to "1".


Note2. When setting RWAIT=1 during 1 operating clock (f_{RTC}), after returning from a stand-by (HALT mode, STOP mode and SNOOZE mode), it may take two clock time of the operation clock (f_{RTC}), until RWST bit is set to "1".

8. <u>2.4 Block Diagrams of Pins Figure 2-7. Pin Block Diagram for Pin Type</u> 7-1-4(Page 32)

Old:

Figure 2-7. Pin Block Diagram for Pin Type 7-1-4

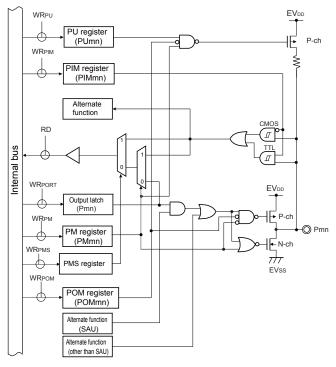


Remarks 1. For alternate functions, see **2.1 Port Function**.

2. SAU: Serial array unit

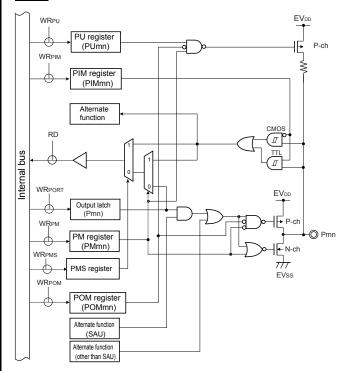
New:

Figure 2-7. Pin Block Diagram for Pin Type 7-1-4


Caution A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

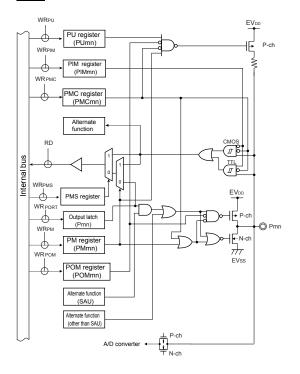
Remarks 1. For alternate functions, see 2.1 Port Function.

2. SAU: Serial array unit.


9. <u>2.4 Block Diagrams of Pins Figure 2-9. Pin Block Diagram for Pin Type</u> 8-1-4(Page 34)

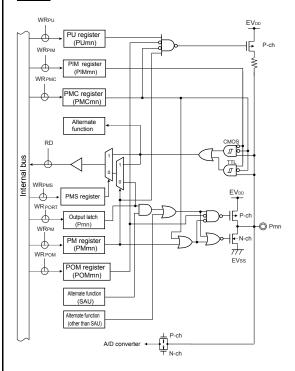
Old:

- Remarks 1. For alternate functions, see 2.1 Port Function.
 - **2.** SAU: Serial array unit


New:

- **Caution 1** A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).
- Caution 2 Because of TTL input buffer structure, if the port input mode register (PIMx) is set in TTL input buffer, a through current may flow through in the case of high level input. It is recommended to input a low level to prevent a through current.
 - **Remarks 1.** For alternate functions, see **2.1 Port Function**.
 - 2. SAU: Serial array unit

10. <u>2.4 Block Diagrams of Pins Figure 2-10. Pin Block Diagram for Pin Type 8-3-4(Page 35)</u>


Old:

Remarks 1. For alternate functions, see **2.1 Port Function**.

2. SAU: Serial array unit

New:

Caution 1 A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

Caution 2 Because of TTL input buffer structure, if the port input mode register (PIMx) is set in TTL input buffer, a through current may flow through in the case of high level input. It is recommended to input a low level to prevent a through current.

Remarks 1. For alternate functions, see **2.1 Port Function**.

2. SAU: Serial array unit

11. <u>3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers) (Page 66)</u>

Incorrect:

Table 3-6. Extended SFR (2nd SFR) List (5/8)

Address	Special Function Register (SFR)	Symbol		Symbol		R/W	Manipu	ılable Bi	t Range	After Reset
	Name				1-bit	8-bit	16-bit			
	(omitted)									
F0414H	CFIFO port register	CFIFOML	CFIFOM	R/W	-	√	√	00H		
F0415H		_			l	İ		00H		
F0418H	D0FIFO port register	DOFIFOML	DOFIFOM	R/W	İ	√	√	00H		
F0419H		-			I	Î		00H		
F041CH	D1FIFO port register	D1FIFOML	D1FIFOM	R/W	I	$\sqrt{}$	\checkmark	00H		
F041DH		-			İ	İ		00H		
F0420H	CFIFO port selection register	CFIFOSEL		R/W	1	-	\checkmark	0000H		
F0421H										
F0422H	CFIFO port control register	CFIFO	CTR	R/W	-	-	\checkmark	0000H		
F0423H										
F0428H	D0FIFO port selection register	D0FIF0	DSEL	R/W	1	-	\checkmark	0000H		
F0429H										
F042CH	D0FIFO port control register	DOFIFOCTR		R/W.	118	15	7	0000H		
F042DH										
F042EH	D1FIFO port selection	D1FIFOSEL		R/W	18	=	7	0000H		
F042FH	register									

Correct:

Table 3-6. Extended SFR (2nd SFR) List (5/8)

Address	Special Function Register (SFR)	Symbol		R/W	Manipu	ılable Bi	t Range	After Reset
	Name				1-bit	8-bit	16-bit	
		10)	nitted)					
F0414H	CFIFO port register	CFIFOML	CFIFOM	R/W	-	√	√	00H
F0415H		_			-	-		00H
F0418H	D0FIFO port register	D0FIFOML	DOFIFOM	R/W	-	√	√	00H
F0419H		-			-	-		00H
F041CH	D1FIFO port register	D1FIFOML	D1FIFOM	R/W	I	√	√	00H
F041DH		_			I	-		00H
F0420H	CFIFO port selection register	CFIFOSEL		R/W	-	-	\checkmark	0000H
F0421H								
F0422H	CFIFO port control register	CFIFOCTR		R/W	-	-	√	0000H
F0423H								
F0428H	D0FIFO port selection register	D0FIF0	OSEL	R/W	-	-	\checkmark	0000H
F0429H								
F042AH	D0FIFO port control register	D0FIF	OCTR	R/W			\checkmark	H0000
F042BH								
F042CH	D1FIFO port selection register	D1FIFOSEL		R/W			\checkmark	H0000
F042DH								
F042EH	D1FIFO port control register	D1FIFOCTR		R/W			\checkmark	H0000
F042FH								

