LENESAS

Design Guide

RL78/11C(512KB) Continuous Operation FOTA
Continuous Operation FOTA Example Project

Table of Contents
N [11 7o To [1 [ox 1o o I PP 4
1.1, AssSumMpPtions and AdVISOIrY NOTESciiiiiieiti ettt e e e e e e e bbbt e e e e e e e e aaaaaaaaeens 4
1.2, ReqUIred ENVIFONMENTSoiiiiiiiie ittt e e e ettt e e e e s bbbt e e e e s s bbb et e e e e e abbb e e e eeessanbbneeeeeeaas 5
1.3, DefiNItION OFf TEIMS c...eiiii ittt e s e e e st e e n e e e srre e e nnnee e 5
2. Features of Continuous Operation FOTA EXample ProjeCtccovviiiiiiiiiii it 6
2.1. Passcode Correctness Judgment FUNCHIONooiiiiiiiiiiieiiiiiiee e 6
2.2, SCreen DiSPIay FUNCHON.o ittt et e e e sttt e e e s s bbb e e e e e s aenbeeeeas 6
R R O N U (o) 1o] OO P TP PPPR PP 7
3. Running the Continuous Operation FOTA EXample ProjecCt ... 8
0 I 41 - o 1 o R 1 [I == Tod - T [T PSSP 8
3.2, Programing the MCU.........cooiiiiiiiieii e e e e e s e e e e e e e e e e e et e aa e e e e eeeeeeeaeeennaa s 8
3.3, EXECULION PIOCEUUIEeeiiiiiiitteet ettt et e ekt e e e e et e e e s e bbb e e e e e e e b ne e e e e e e nnnees 10
3.3.1. IMAYE TTANSTEN ...ttt ettt e e e ettt e e e e st bbb e e e e e s asbbeeeeeeeaae 14
3.3.2. BanK-SWap FUNCHONttt e e e e s st e e e e e e e eaaaaeaeaaeaseessesaaaaannnnns 17
B e (][BST= 11 o [0 RS TP OU PP PP RPPPPP 19
o I = (o = Tod i @0 1o U = 11T o SRR 19
o \V =10 o] VA Y [[oTox= 1 o o N PP UPUPPPUPP PR 20
4.2.1. Memory Allocation for User Application ProjECtuevviiiiiiiiiiiee e 21
4.2.2. Memory Allocation for Middleware SUBPrOJeCt............cco e 25
4.2.3. Memory Allocation for Bootloader SUDProject..........oooo i 28
4.3. Supplemental Information on Link Options (€2StUMI0)...........covveereeireeieeireecreesreeeteeere e eeeeereesreesree s 31
4.4. Using External Defined SYMDBOI FIlESoovviiiiiiiie e 32
4.5, ROM t0 ROM MaPPiNg SELHNGS . ..eeeeeiiiiriiieeeiiitiiee e e ettt e ettt e e e et e e e e e st e e e e e e e b e e e e e e anenees 33
45.1. LCD Update ProCeSS ROULINEcoiiuiiiiiiieiiiiii ettt e st e e e e s snbae e e e e e e 33
45.2. Memory Mapping of User Application ProjECtccoooiiiiiiiiiiiiiiieeeee e 35
4.5.3. Memory Mapping of Middleware SUDPIOJECT........ccoi i 36
454, Memory Mapping of Bootloader SUBPrOJECE.............ooi i 37
4.6, BranCh Table FIOW.........ueiiiii i e e e e e e e e e e e e e e e nnneee 38
4.7. Continuous Operation FOTA Example Project APl FUNCLONScccooiiiiiiiiiiiiiieeeiiece e 40
A.7.0. APITUNCHONSeeiiiiiiie ittt e s s e e st e e sne e e e san e e e s nne e e s nnneeesnnreeeaa 40
4.7.2. Continuous Operation FOTA SEUUENCEuieiiiiiiiiiaaaaa ettt e e e e e e e e aaaaeaa e 41
A8, BUII ..ottt b e 42
T B 1Y/ o 01T o 1= SRR 45
6. WEDSITE QN SUPPOIT ..ttt e et e e e e s s bbb et e e e e s st b et e e e e e s s aabbe et e e e e aanbbneeeeeeaan 45
AL T0] T TS (o 46
RO1TU0393EJ0100 Rev.1.00 RENESAS Page 1 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

Table of Figures

Figure 1-1 : Hardware REQUIFEMENTScccccueuiiiiiiiiiiieeie e eeeeeesseeeeeeesssssassssssssasstssbeeaeeeeeeereeeaaaaaaaeeeeseessansanannnns 5
Figure 2-1 : Passcode AUNENTICAIONttt e aanaas 6
Figure 2-2 : Screen DiSplay FUNCLIONuiiiiiiiieee ettt e et e e e e e nneee 6
Figure 2-3 : Internal Operation Flow Including Bank SWap..........coooiiiiiiiiiiii et 7
Figure 3-1 : Outline of Fast Prototyping BOAIccouiiiiiiiieiiiiiiiiie ettt e e e 8
Figure 3-2 : Renesas Flash ProgrammeErueuiiiiiiiiiiiiieieeiiee e e e e e e e e s s st s e e e e e e eaaaaaaaaaaeaaaaaesanannans 9
Figure 3-3 : Peripherals connection to RL78/11C (512KB) Fast Prototyping Boardccccoevvivieeeeinnnnnn 10
Figure 3-4 : USB Serial Device in WINdOWS DEVICE MANAJGETccceeeeeeiieiiiiieeecccreeetrere e e e r e e raaaaaaaaaaa e 11
Figure 3-5 : Selecting the Serial POrt 0N TEraTEIMMNuuiiiiiiiiiiie e 11
Figure 3-6 : Setting up the Serial POrt 0N Tera TEIM....c.oiuiiiiii e 12
Figure 3-7 : Start-up Message displayed 0N Tera TEIMcuiiiiiiiiiiie e e e e e e e e e e 12
Figure 3-8 : Available Commands in Continuous Operation FOTA ..ot 13
Figure 3-9 : Starting the IMage TranS er.......ccc e e e e e e e aaaaaa e 14
Figure 3-10 : SeleCt XMODEM ...ttt e e e e e e et e e e e e oo e e e bbb bbb e et et et e e e e e e eeaaaaaaaaaaaaans 14
Figure 3-11 : XMODEM DIBIOGuutttiiiiiiiiiiee ettt ettt ettt e e e e et e e e e st bt e e e e e e anbbae e e e e e annnrees 15
Figure 3-12 : Data Transfer COMPIEte MESSATEuutuuiiiiiiiiiiiiiiaiaaa et e e e e e e e aaaaaaaaaaaaaas 15
Figure 3-13 : “hash” COMMANGoooiiiiiiiiie et e e e e st e e e e e e bbb e e e e e e enneees 15
Figure 3-14 : “DINfO” COMMANGuiiiiiiiiiiiiie ettt e et e e e e s e e e e e s st ba e e e e e e s sntbaeeaeeesasbaeeeeeeennneees 16
Figure 3-15 : Authentication OK 0N VEr. 1.00.........uiiiiiiiiiiiiee et e e s e e e e nnnes 17
Figure 3-16 : “bswap” COMMANG..........coiiiiiiii e e e e e e e e e e e e s e e s e e e e eraeeareeereeeaaaaaaaaaaaaas 17
Figure 3-17 : Version display change by "bswap" COMMANG...........cooaiiiiiiiiiiiie e 18
Figure 3-18 : Authentication NG 0N VEr.2.00.........uuuuiiiiiiiiiiiriiieeeeeeee e e e e e et e e s s e s aa s s eeereereeeaaaaaeaaaeeaaes 18
Figure 3-19 : Authentication OK 0N VEI.2.00........uuiiiiii et e et e e s e e e e e et e e e aa et s e aeaeaaneaeanes 18
Figure 4-1 : Project CONfIQUIALIONcoiiiiiiieie ettt e et e e e e e e e e e nneees 19
T 0= |V =T o (o] YA Y/ F=] o T P EESEERRR 20
Figure 4-3 : User Application - Address Range of Memory TYPE (CS+H) .uuuiiiiiiiiiiiiiiieeeiiieee e 21
Figure 4-4 : User Application - Address Range of Memory Type (€2StUdIO)cccuveveveeivveeiireeieeeeeee e s 22
Figure 4-5 : User Application - Debug MONitor Area (CS).....ccii ittt 23
Figure 4-6 : User Application - Debug Monitor Area (€2StUdI0)...........c.veeeieiieriieirieseeereesreesteesreesresseesseeeneas 23
Figure 4-7 : User Application - SECtION LaYOUL (CSH) ...uuuuiiiiiiiiiiiiiiiaaae et e e e e e e e 24
Figure 4-8 : User Application - Section Layout (€2StUTIO)cc.evviirieriiieiieiiecieeieeie st eneas 24
Figure 4-9 : Middleware - Address Range of Memory TYPE (CS+)...ccciiiiiiiiiiiiiiiciiiirerrrrerr e e e 25
Figure 4-10 : Middleware - Address Range of Memory Type (€2StUdi0)ccecveverierieieeierieseeeeee e eneas 25
Figure 4-11 : Middleware - Section Layout and External Defined Symbols (CS+).......ccccvvvveeivieiiiiiiiiieeenneenn, 26
Figure 4-12 : Middleware - Section Layout and External Defined Symbols (€2Studio).............cccccevveverrerrenens 27
Figure 4-13 : Bootloader - Address Range of Memory TYPE (CS+)..ccciiiiiiiiiiiiiiiirirereeeee e e 28
Figure 4-14 : Bootloader - Address Range of Memory Type (€2StUdI0)cccereeiereiiiiiieierieieeeeie e 28
Figure 4-15 : Bootloader - Section Layout and External Defined Symbols (CS+).......covviiiiieiiiniiiineeennne 29
Figure 4-16 : Bootloader - Section Layout and External Defined Symbols (€2Studio)............cccccveeeveeveereenneas 30
Figure 4-17 : User-defined Options - AUTO_SECTION_LAYOUT (€2StUTI0)ccververvririeieiesieeeeiesiesieenas 31
Figure 4-18 : Include External Definition SYmMBol Fil€ceiiiiiiiiiiiii e 32
FIgUre 4-19 : LCD UPAAte PrOCESS.coiiiiiiiiiee ettt e e e e e e e e e e e oo e e e e e e ettt e te ettt e e et e eeaaaaaaaaaaaaans 33
Figure 4-20 : DISplay UPAate.........ccooiiiiiiii ittt et e e e e e e e e e e e e e e et e s e s s s s e s ae e sa e e e e e e e reeaaeaaaaaaaaeees 33
Figure 4-21 : Code Copy from ROM 10 RAMuuiiiiiiiiiiiiie ettt et e e e e e e e e e e e e e e e e as 34
Figure 4-22 : User Application - ROM to RAM Mapped Section (CS+)coooviiciiiiieiiieiiriieeireeer e e e 35
Figure 4-23 : User Application - ROM to RAM Mapped Section (€2StUdio).........c.cccueieeiieieeiieieccreecreeereenas 35
Figure 4-24 : Middleware - ROM to RAM Mapped SeCtioN (CS+)cociiiiiiiiiieiiiiiiieee et 36
Figure 4-25 : Middleware - ROM to RAM Mapped Section (€2StUdI0)............cooccviurriiriiiiiiriieirrerr e reeeaeeee e 36
Figure 4-26 : Bootloader - ROM to RAM Mapped Section (CS+)cciiiiiiiiiieaiiiiiiieee et 37
Figure 4-27 : Bootloader - ROM to RAM Mapped Section (€2StUMIO)cueierireeieeireeereeireesreesreeereeereeeeeeneas 37
Figure 4-28 : Split Vector Table SECHONS (CS)ttt e e e e e e e e e e e e 38
Figure 4-29 : Split Vector Table SeCtions (E2STUIO)vveiiieiiiiiiiiiee et 38
Figure 4-30 : BranCh Table FIOWccooo oot e e e e e e e e e e e e et e e s e e e aaaaeeananes 39
Figure 4-31 : Example of API FUNCHON USAQEooiiiiiiiiiiiieeiiiie ettt 41
Figure 4-32 : Passcode and Version Settings [platform.h].........cccccieeiii e 42
Figure 4-33 1 Version SetliNG (CS) ..ooioiiiiiiiie ittt e e et e e e e et et e e e s et e e e e e e aannnees 43
RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 2 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

Figure 4-34 : Version Setting (E2STUMIO).........ccveiieieeireeereiiteesteereeeesesstesstassresstesstassressseestessteestessbesssessenansens 43
Tables

Table 1-1 : Definition Of TEIMS. ... e e e e et e e e e e e e e e e e e e e et et e e eeaeaaes 5
QLI o1 L= R AN o B U T o) S 40
RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 3 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

1. Introduction

This document describes a sample application using Continuous Operation FOTA on RL78/I1C (512KB) and
its software design.

- What is Continuous Operation FOTA?

RL78/11C (512KB) is mainly used as a microcontroller for power metering (Metrology), and it has a function
to update firmware without stopping the power metering function, which is called Continuous Metrology
FOTA.

This sample software shows the application of Continuous Metrology FOTA to applications other than
metering. For this reason, Continuous Metrology FOTA is replaced by Continuous Operation FOTA in this
document.

Continuous Metrology FOTA: firmware update without stopping the Metrology function

Continuous Operation FOTA: Firmware update without stopping a function of the microcontroller

1.1. Assumptions and Advisory Notes

(1) Tool experience: It is assumed that the user has prior experience working with IDEs such as CS+
or e’studio, and terminal emulation programs such as Tera Term.

(2) Itis assumed that the user has basic knowledge about microcontrollers, embedded systems, and
Code Generator in CS+ to create and modify the example project as described in this document.

(3) The images and screenshots provided throughout this document are for reference. The actual
screen content may differ depending on the version of software or development tool.

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 4 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

1.2. Required Environments
Hardware Requirements: (Figurel-1)

® RL78/I1C (512KB) Fast Prototyping Board [RTK5RL10NOCPLO00OBJ] (“1” in the figure.)
PMOD OLEDrgb [Digilent Pmod OLEDrgb (Revision B)] (96x64 RGB Display,“2” in the figure.)
PMOD KYPD [Digilent PmodKYPD (Revision B)] (4x4 Keypad, “3” in the figure)
Micro USB Device Cable (“4” in the figure.)

PC with at least 1 USB port (“5” in the figure.)

PMOD OLEDrgb

USB Cable

4

RL78/I1C(512KB) Fast Prototyping Board

Host PC 3
PMOD KYPD
Figure 1-1 : Hardware Requirements
Software Requirements:
® Windows® 10 operating system
® USB Serial Drivers (included in Windows 10)
® Tera Term (or similar) terminal console application
® CS+ Ver. 9.06.00 or e2studio 2021-10
® CC-RL compiler V1.10.00
® Renesas Flash Programmer V3.08.03
1.3. Definition of Terms
Table 1-1 : Definition of Terms.
FOTA Firmware update Over-The-Air
Bank swap There are two banks, bank 0 (256KB) for current execution area and

bank 1 (256KB) for new firmware, swap the bank 1 and bank 0 by
using the Bank Swap Library

Self-programming The operation that takes place when the firmware update target is the
firmware itself
FSL Flash Self-programming Library
RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 5 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

2. Features of Continuous Operation FOTA Example Project

In this sample project, the function of judging the correctness of the passcode entered by the user and the
LCD display function work. If you want to change the passcode, you need to update the authentication
firmware. In this case, RL78/I1C(512KB) Continuous Operation FOTA allows you to update the firmware
(change the passcode) while keeping the LCD display operation.

2.1. Passcode Correctness Judgment Function

It accepts passcode input from PMOD KYPD (4x4 keypad) and judges the passcode as correct or incorrect.
The passcode consists of four digits (0-9) and letters (A-F) except for E. There is only one set of correct
passcodes.

Correct Passcode

ENTER PASS

Wrong Passcode

Entered Passcode

Figure 2-1 : Passcode Authentication

2.2. Screen Display Function

The indicator bar on the LCD (96x64 RGB Display) is always in operation even during the firmware update
period. The LCD also displays the "ENTER PASS" message, the entered passcode, the result of
correct/incorrect judgment and the current firmware version.

Indicator Bar / ENTER PASS
Entered Passcode 1 2 3 A : l
VeriLool |

Version

Figure 2-2 : Screen Display Function

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 6 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

2.3. FOTA Function

This sample project downloads and programs the new passcode judgment application C and switches the
application from "B" to "C" without stopping the LCD display function (OLED control F/W). This Continuous
Operation FOTA is realized by using two flash memory banks of RL78/I1C (512KB), bank swap function, and
executing the program on RAM.

-~ In operation In operation // (1) In operation
< By N L Erase App A N
% 3_ Application B Application A Application B Application B o
o é (New) (old) Update (=f79) Prograrj;w App C (old) Appication C
v request Swap
i OLED Control F/W] OLED Control F/W OLED Control F/W] OLED Control F/W OLED Control F/W |OLED Control F/W
§ %1 FOTA F/W FOTA F/W New Application FOTA F/W FOTA F/W FOTA F/W FOTA F/w
= Image
b Boot Boot Boot Boot Boot Boot
Banko Banki Banko Banki Works on RAM Banko Banki
= o || ¢ g
i & & H
Z 2 I =
iz s |l &) ¢ 8:
T3 5 z 8
& 3 = S
@ G @1 ®
®)
Figure 2-3 : Internal Operation Flow Including Bank Swap
® Application A : Previous applications that are not currently in use
® Application B : Currently running application
® Application C : New application
® OLED Control F/W : Firmware to update the display
® Boot : Bootloader

<Operation Flow>

(1) While application B is running, write new application C to an unused bank (Bank1) where
the previous application A is located.

(2) After programming, the code to be executed on RAM (e.g., updating the LCD indicator bar)
is extracted from ROM to RAM upon receiving the bank swap command.

(3) Switch the interrupt vector table to the one on RAM and switch to the operation on RAM.
(4) Bank swap is executed. Meanwhile, the program in RAM continues to operate.
(5) After the bank swap is completed, return the interrupt vector table to the one on ROM.

(6) Start the operation of the updated application.

RO1TUO0393EJ0100 Rev.1.00 RENESAS

February 25, 2022

Page 7 of 46

RL78/11C(512KB) Continuous Operation FOTA Design Guide

3. Running the Continuous Operation FOTA Example Project

This chapter shows the operating procedure for the Continuous Operation FOTA sample.

3.1. Extracting the Packages

The sample project contains the following three subfolders, and the files in (1) and (2) are used to run the
sample.

(1) RFP RI78I1C Production folder: contains the Renesas Flash Programmer project file
[i1c_512k_production.rpj] and the "Ver.1.00" MOT file ([rI78ilc_production.mot]). For details on how to
create the MOT file, refer to Chapter 4.8.

(2) New Application File folder: contains [r178i1c_v100.mot] and [rl78i1c_v200.mot], which are "Ver.1.00"
and "Ver.2.00" generated in Chapter 4.8, respectively.

(3) Source folder: Contains a set of software including configuration files and source code.

3.2. Programing the MCU

The following steps show how to program the MCU Flash.

(1) Setthe on-board dip switch (SW3) to “Debug” and connect the Micro USB cable to the Micro USB
connector on the RL78/11C (512KB) Fast Prototyping Board.

JcDebug
L

o™
oS

W «

— gefial

ATKSAL 10NOCPLO00BY &5,
" REV.A™®

® R26ES.

PMOD2

Figure 3-1 : Qutline of Fast Prototyping Board

(2) Connect the other end of the Micro USB cable to the host PC. LED3 (POWER) ON.

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 8 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

(3) Open [ilc_512k production.rpj] in Chapter 3.1 (1) in Renesas Flash Programmer.

(4) Select [rI78ilc_production.mot] and click the “Start” button to initiate the download.

s Renesas Flash Programmer V3.02.01 (Free-of-charge Edition) - X & Renesas Flash Programmer V3.08.01 (Free-of-charge Edition) - X
File Device Information Help File Device Information Help
Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code
Project Information Project Information
Currert Project i1c_512_production.rpj Curment Project ilc_512k_production mpj
Microcontroller: R5FIONPL Microcontroller: RSF10NPL
Program File Program File
«<Project Dir>\r 78 1c_production mat Browse... «<Project Dir>\rl78i Te_production mot Browse..
CRC-32 : DD208264 CRC-32 : DD208264
Flash Operation Flash Operation
Program Program
Renesas Flash Programmer W3.08.01 [1 Jan 2021] (Fres-of-chares Edition) i [Code Flash] 0x00074C00 - 0x0007CFFF size: 33 K ~
Loading Praject (D¥Meter¥RL7SIIGIE12KE) Fast Prototypine Board¥FOTA Bootloader¥rip_Debue¥ile_ [Code Flash] 0x0007FGO0 - 0<0007FFFF size: 1 K
612k_productionrp))
| Writine data to the tarest device
[Code Flash] 0x00000000 - 0x000018FF size: 6 K
[Code Flash] 0x00002000 - 0x0000EBFF size : 51 K
[Code Flash] 0x00034G00 - 0x0003GFFF size : 33 K
[Code Flash] 0x0003FCO0 - 0xD00413FF size : 6 K
[Code Flash] 0x00042000 - 0x0004EBFF size : 51K
[Code Flash] 0x00074C00 - 0x0007CFFF size: 33 K
[Code Flash] 0x0007FGO0 - 0x0007FFFF size: 1K
Disconnecting the tool
Operation completed.
v
Clear status and message Clear status and message

Figure 3-2 : Renesas Flash Programmer

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 9 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

3.3. Execution Procedure

To run the Example Operation Package, use the following instructions:

1. Setthe on-board dip switch (SW3) to “Serial” and connect the Micro USB cable to the Micro USB

connector on the RL78/11C (512KB) Fast Prototyping Board.

Connect the Pmod OLEDrgb and Pmod KYPD to the RL78/11C (512KB) Fast Prototyping Board.

“”'éxa{'..f T.L
== N
’5m -rQn:t_-:ch

(1.-1_

I\lh‘n ‘r_ 2

o
=3
-
L)
~

m ©32)2

Figure 3-3 : Peripherals connection to RL78/11C (512KB) Fast Prototyping Board

3. Connect the other end of the Micro USB cable to the host PC. LED3 (POWER) ON.

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 10 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

4. On the host PC, open Windows Device Manager. Expand Ports (Com & LPT), located USB Serial

Device (COMxx) and note down the COM port number for reference in the next step.

& Device Manager

File Action View Help

& B E HB=EB

i Audio inputs and outputs
\@ Batteries
5| Biometric devices
€3 Bluetooth
® Cameras
[Computer
s Disk drives
53 Display adapters
3 Firmware
) Human Interface Devices
=2 Keyboards
(Mice and other pointing devices
[Z Monitors
Network adapters
v @ Ports (COM & LPT)

- 1agement Technology - SOL (COM3)
[W USB Serial Devic%COMS)

- "
1 Processors

Figure 3-4 : USB Serial Device in Windows Device Manager

Note: USB Serial Device drivers are required to communicate between the RL78/I1C (512KB) Fast

Prototyping Board and the terminal application on the host PC.

5. Open Tera Term, select Serial and COMxx: Serial Device (COMxx) and click OK.

T

File

Edit &otim Cocteal Wiindess Uale

Tera Terrn: MNew connection

O TCPAP myhost.example.com
History
Telnet

55H S5H2
Other

22

AUTO

@ PDE: COMS5: USB Serial Device [COMbS)

Cancel Help

Figure 3-5: Selecting the Serial Port on TeraTerm

RO1TUO0393EJ0100 Rev.1.00 RENESAS
February 25, 2022

Page 11 of 46

RL78/11C(512KB) Continuous Operation FOTA Design Guide

6. InTera Term, select Setup and Serial port... for the Tera Term: Serial port setup and connection
window. Configure the setup as follows (38400 baud, 8N1) and click New setting.

1 COM3 - Tera Term VT — O X
File Edit Setup Contrel Window Help

Terminal... Tera Term: Serial port setup and connection bt

Window... (\
Font : Port: COMb w

New setting
Keyboard... Speed: 38400 ~
Seral port... o :
P Data: B bit v Cancel

Proxy...]

Parity: none e
55H...
55H Authentication... Stop bits: 1 bit ¥ sy
55H Forwarding... Flow control: none y
55H KeyGenerator..,

TCR/AIP... Transmit delay

General... El msecjchar El mseciline

Additional settings...

Device Friendly Name: USB Serial Device [COMbS]

3ave setup... Device Instance ID: USBWID_D45B2PID_0245000000000000°
Restore setup... Device Manufacturer: Microsoft

) Provider Name: Microsoft
Setup directory... Driver Date: 6-21-2006

Driver Yersion: 10.0.18362.1
Load key map...

Figure 3-6 : Setting up the Serial Port on Tera Term

7. Press the on-board RST button on the RL78/I1C (512KB) Fast Prototyping Board. The start-up
message is displayed on Tera Term.

rt-up

Figure 3-7 : Start-up Message displayed on Tera Term

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 12 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

8. Type “?” and press Enter key to observe the possible commands.

1] |::- rotoco |

are to the header v

Figure 3-8 : Available Commands in Continuous Operation FOTA

9. Type the command and press Enter key to execute the function.

The usage and operation of each command will be explained in the next section.

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 13 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

3.3.1. Image Transfer
This section describes the image file transfer of the Continuous Operation FOTA sample project. The file
transfer function is tested by using Tera Term v4.106.

e The Image Transfer is performed using the XMODEM checksum protocol.
e Variations such as XMODEM CRC are not supported.

1. Send the “xfer” command from Tera Term and select the XMODEM transfer file(rl78i1c_v200.mot).
In the XMODEM protocol, data transfer begins with the receiver sending a NAK to the sender.
After executing the “xfer” command, the receiving user application is put into a state of sending
NAK every 10 seconds so that the file transfer starts.

CHMD> xfer
Pleasze start file transfer using XModem protocol.

Transfer will initiate within 10 seconds.

Figure 3-9 : Starting the Image Transfer

T COMA - Tera Term VT
File Edit Setup Control Window Help

Mew connection... Alt+MN
Duplicate session Alt+D
Cygwin connection Alt+G
Log...

Pause Logging
Comment to Log...
View Log

Show Log dialog...

Stop Legging (Q)

Send file...

Transfer » Kermit

S5H SCP... XMODEM » Receive...

Change directory... YMODEM » Send...

Replay Log... ZMODEM »

TTY Record s ¢

TTV Replay Quick-VAMN

Print... Alt+P

Disconnect Alt+]

Figure 3-10 : Select XMODEM

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 14 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

2. Onreceiving the NAK, Tera Term will initiate the data transfer.

Tera Term: XMODEM Send b4
Filename: rl78i1c_vw200.mot |
Protocol: KMODEM (checksum)
Packet: 227
Bytes transferred: 29056
Elapsed time: 1:15 (387Bytes/s)

Figure 3-11 : XMODEM Dialog

3. When the user application receives a block data, the data is verified with the checksum. If the
verification is successful, the data is written in the Flash, the LED1 on the RL78/11C(512KB) Fast
Prototyping Board blinks, and the user application sends back ACK to Tera Term. This process is
repeated until all the data has been transferred.

4. After all the data transfer completes successfully, the message is displayed as shown in Figure 3-12.

CHD> xfer
Please start file transfer using KModem protocol.
Transfer will initiate within 10 seconds.

End of File.
Updating Image Header. ..
Transfer Complete.

Figure 3-12 : Data Transfer Complete Message

5. The “hash” command can be used to verify the hash value of the transferred application image.

Calculated program hash: B0x6c30
Embedded program hash: Bx6c30

Figure 3-13 : “hash” Command

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 15 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

6. The “binfo” command can be used to see the software version, etc.

binf

Figure 3-14 : “binfo” Command

7. The transferred User Application image can be activated using the “bswap” command described in

the next section.

RO1TU0393EJ0100 Rev.1.00
February 25, 2022

RENESAS

Page 16 of 46

RL78/11C(512KB) Continuous Operation FOTA Design Guide

3.3.2. Bank-Swap Function

The “bswap” command initiates Flash bank switching. The very fact that the firmware has been updated is
confirmed by the following.

B Before “bswap” command

In Pmod KYPD, enter the correct passcode for Ver.1.00 (1 2 3 A in this sample), and press "E", "OK " will
be displayed.

ENI’ER PASS
0 K

ENTER PASS
1234

R

,&

0

——

oy

Figure 3-15 : Authentication OK on Ver. 1.00

B Execute “bswap” command

When you execute the "bswap" command, the flash bank in the RL78/I1C (512KB) is switched, and the
operation with the new firmware (Ver.2.00) starts immediately.

Figure 3-16 : “bswap” Command

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 17 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

On the other hand, you can also see the change to Ver.2.00 on the LED display.

e

|
|

ENTER PASS | ENTER PASS |

Ver. 1 00* il

Figure 3-17 : Version display change by "bswap" command

In this sample, the passcode of Ver.1.00 is "123A" and the passcode of Ver.2.00 is "456B", so the result of
passcode authentication in Ver.2.00 firmware is shown in Figure 3-18 and Figure 3-19 respectively.

ENTER PASS

ENTER PASS

| 4568 0K

IR | ' rmummmmm HH |

m—

Figure 3-19 : Authentication OK on Ver.2.00

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 18 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4. Project Settings

This chapter describes the project settings and operations in this example project.

4.1. Project Configuration

This sample project consists of three projects. The main project is the user application project to be updated
by the FOTA function. The middleware subproject contains the programs related to the screen display
functions. The bootloader subproject contains the bootloader functions and the bootloader library.

Project Tree 3 X
: @8] =
- r78i1c (Project)” 5 "
% RSF10NPL (Microcontroller) Serappiication
+- %4 Code Generator (Design Tool) main project

’\ CC-RL (Build Tool)
2> RL78 E2 Lite (Debug Tool)
‘U’ Program Analyzer (Analyze Tool)

+.-[1 File

=L {3 f178i1c_middleware (Subproject) @ Middleware
. ™ RSF10NPL (Microcontroller) _
czi Code Generator (Design Tool) subproject

’\ CC-RL (Build Tool)
.z RL78 Simulator (Debug Tool)
i Program Analyzer (Analyze Tool)

[+ _'Tn File

5| 13 ri78i1c_bootloader (Subproject) @ Bootloader
. 9% RSF10NPL (Microcontroller) _
. %8 Code Generator (Design Tool) subproject

.. A, CC-RL (Build Tool)
j ...~ RL78 E1(Serial) (Debug Tool)
i’ Program Analyzer (Analyze Tool)

a-[Y File

Figure 4-1 : Project Configuration

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 19 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.2. Memory Allocation
The ROM and RAM mappings are described below.

Ox3FDFF 45568Bytes OxFFE1F 4896Bytes

Display functions far area : Common Stack
+ Display-related functions OxFEBOO
@ + Device driver OxFEAFF 17152Bytes
+ISR
0x34C00
0x34BFF 211456Bytes)

User Application
(OTA code Area)

g @
©
User Application
(OTA code Area) g' 0xFAS00
Fp'l OxFATFF 8960Bytes
@ o Display-related functions
+
E Fix area
(1]
0x01200] 0XF8500
0x011FF Branche Table 256Bytes 0xFB4FF 512Bytes
0x01100 Bootloader
0x010FF Imade header 256Bytes
0x01000 < _ 0xF8300
0x00FFF 4096Bytes L. 0xF82FF 1024Bytes
Bootloader code
Boot cluster W FSL reserved
0x00000 =7 xFTFO0

Figure 4-2 : Memory Mapping

The numbers (1), (2), and (3) above indicate the correspondence with each project in Figure 4-1.

The rewriting target is the entire “Updated Area” in the figure. The bootloader and display functions are
located in the “Fixed Area” and cannot be rewritten by FOTA.

The startup bank will be placed at 0x00000 to 0x3FDFF, and similar ones will be placed in the other bank
after 0x40000.

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 20 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.2.1. Memory Allocation for User Application Project

This section describes how to allocate ROM and RAM for the rl78ilc project (Figure 4-1 (1)).
The allocation method is shown below for CS+ and e2studio respectively.

® (00000-0007f . ROM area for on-chip debugger functions.

® (000c0-000d7 : ROM area for the Option Byte and Security ID required for MCU operation.
® (01000-34bff . ROM area for user applications.

® 3fe00-3ffff : ROM area for debugger monitor2.

® fa800-feaff : RAM area for user applications.

B Address range of memory type.

For CS+:
CC-RL (Build Tool) — Link Options — Verify — Address range of memory type
v Verify
Check section larger than specified range of address Yes(-CPu)
v e N Address range of memory type[S]
[0] ROM=00000-0007F
[1] ROM=000c0-000d7
[2] ROM=01000-34bff
[3 RO M=3fe D0-3
4] RAM=faB004eaff
Check specifications of device R
Suppress checking section allocation that crosses (B4KE-1) boundary Text Edit X
Do net check memory allocation of sections Text:
s Meszans i | B
Address range of memory type " | [ROM=0D0D0-D00
Specify the address range of memory type in the format of "<Memory type»=<Start address>-<End | |ROM=000c0-000d7
The <Memory type> can specify the {ROmIRAMIFDG . ROM=01000-24bff
RO M=3e -3
\ Common Options ,(Compile Options ,{/ AszsembleOptions !‘I Link Options ,{I Hex Outp RAM-Fa 800 fexff
Output I
Figure 4-3 : User Application - Address Range of Memory Type (CS+)
RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 21 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

For e’studio:

Properties — C/C++ Build — Settings — Linker — Device-— Address range of memory type

a Properties for rl78i1c

] >
[type ilter text Settings v v §
Resource
Builders
« C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...
Build Variables
Environment
Logging & Tool Settings Toolchain Device & Build Steps Build Artifact Binary Parsers @ Error Parsers
53 Common Security ID value (-security_id) ‘Cl
& Compiler [Reserve working memory for RRM/DMM function (-rrm)
53 Assembler
Project Natures ~ 1) Linker Start address area [-rrm=<values)
Project References v @ Input Secure memeory area of OCD monitor (-debug_monitor)
. . bk
Refactoring History “g Advanced Memory area (-debug_monitor=<start address>- <end address>) ‘ 3FED0-3FFFF |
B List
Renesas QF . -4 Set user option byte (-user_opt_byte)
Run/Debug Settings
User option byte value (-user_opt_byte= <value>) ‘ 7E3BEQ |
Set enable/disable on-chip debug by link option (-ocdbg)
™ Output
v b@uﬁwnc On-chip debug control value (-ocdbg=<value>) ‘84 |
g Miscellaneous RAM area without section (-self/-ocdtr/-ocdhpi) Meone ~
1
b"’ User dhpiw)
~ & Converter
(&2 Output

@ Hex format
(2 CRC Operation
@ Miscellaneous
(&2 User

Address range of memory type (-cpu)

€48 85 &

ROM=000c0-000d7
ROM=01000-34bff
ROM=3fe00-3fff
RAM=faB00-feaff

Figure 4-4 : User Application - Address Range of Memory Type (e?studio)

RO1TUO0393EJ0100 Rev.1.00 RENESAS

Page 22 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

B Debug monitor area.

For CS+:

CC-RL (Build Tool) — Link Options — Device — Set debug monitor area

~ Dewvice
Set enable/disable on-chip debug by link option Yes(OCDBG)
Option byte values for OCD T
Set debug monitor area Yes(Specify address range)(-DEBUG_MONITOR=<Address range>)
Range of debug monitor area 3FED0-3FFFF

Figure 4-5 : User Application - Debug Monitor Area (CS+)

For e’studio:

Properties — C/C++ Build — Settings — Linker — Device — Memory Area

w B8 Linker
[@ Input Secure memory area of OCD monitor (-debug_monitor)
b .
“b'% Advanced Memory area (-debug_monitor= <start address> - <end addresss) | 3FEQD-3FFFF |
(23 List -
| -

@ Optimization [w] Set user option byte (-user_opt_byte)
@ Section User option byte value (-user_opt_byte= <value>) | TE3BEQ |
@ Device Set enable/disable on-chip debug by link option (-ccdbg)
Lit]

v (22 Output . _

B Advanced On-chip debug control value (-ocdbg=<value=) |34 |

Figure 4-6 : User Application - Debug Monitor Area (estudio)

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 23 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

B Section layout.

For CS+:
CC-RL (Build Tool) — Link Options — Section — Section start address

v Section
Layout sections automatically s(-AUTO _SECTION |AYOUT)
Section start address I-IE _header_f/01000,.const, RLIB..SLIB, textf /02000, .dataR, bss/FAB00 I
» Section that outputs external defined symbols to the file Section that outputs extemal defined symbols to the file[0]
ROM to RAM mapped section ROM to RAM mapped section[1]
0] data=dataR
Section Settings X
Address Section Add...
0x01000 image_header_f
Modify...
002000 .const
RLIB New Overlay...
— Remove
tendf
OxFAB00 dataR
bss
Import.
Expott...
Cace Heb

Figure 4-7 : User Application - Section Layout (CS+)

For e’studio:

Properties — C/C++ Build — Settings — Linker —Section — Sections

@ Tool Settings Toolchain Device ,ﬁ' Build Steps Build Artifact Binary Parsers @ Error Parsers

By Common Specify execution start address (-entry)
B3 Compiler

Execution start address (-entry= <symbaol>) | _bl_start |

53 Assembler . . .
. Layout sections automatically (-auto_section_layout)
~| B3 Linker
Input

Setions (-start) [image_header_/01000,.const, RLIB, SLIB, textf/02000,.dataR,.bss/OFABOD |/,
2 List
Optimization L] X
Uncheck .
Section Viewer
Device
@ OQutput Address Section Name ‘/
% Miscellaneous 0x00001000 image_header_f
@ User 0x 00002000 «const
&3 Converter .RLIB
SLIB
Jextf
0x000FAB00 .dataR
Jbss Add Section

New Overlay

Figure 4-8 : User Application - Section Layout (e?studio)

RO1TUO0393EJ0100 Rev.1.00 RENESAS

Page 24 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.2.2. Memory Allocation for Middleware Subproject

This section describes how to allocate ROM and RAM for the rl78ilc_middleware subproject (Figure 4-1 (2)).
The allocation method is shown below for CS+ and e2studio respectively.

B Address range of memory type.

For CS+:

CC-RL (Build Tool) — Link Options — Section — Device — Address range of memory type

= ﬂ rl78i1c_middleware (Subproject)

) v Verify
g RSFIONPL (Microcontroller) Check section larger than specified range of address es Py
°=i Code Generator (Design Tool) v Address range of memory type[4]
ROM=00000-0007
= RL78 Simulator (Debug Tool) ROM=000c0-000d7
1’ Program Analyzer (Analyze Tool) 2 ROM=34c00-3fff
@[File &) RAM=85004a 7
3 : - Check specifications of device No
178i1
* E firSifclbdotoades (Subproject) Suppress checking section allocation that crosses (64KB-1) boundary No

Address range of memory type
Specify the address range of memory type in the format of "<Memory type>=<Start address>-<End address>", one per line.
The <Memory type> can specify the {(ROmIRAmIFIX}

\ Common Options / Compile Options /(AssembleOptions) Link Options A Hex Output Options /{ 1/0 Header File Generation Options /
Output

Figure 4-9 : Middleware - Address Range of Memory Type (CS+)

For e’studio:

Properties — C/C++ Build — Settings — Linker — Device — Address range of memory type

~ 5 Linker ST AUt ESE BTES = SV aiE =7
“ @ Input Secure memory area of OCD monitor (-debug_monitor)
s
“[9 Advanced Memory area (-debug_monitor= <start address>- <end address>) |3FEOO—3FFFF |
(&3 List .
o -
@ Optimization Set user option byte (-user_opt_byte)

A Certinn User option byte value (-user_opt_byte= <value>) |TEEBEO |
Set enable/disable on-chip debug by link cption (-ccdbg)

g Cutput .
On-chip debs trol value (-ocdbg= <value> &4
% Advanced n-chip debug control value (-ocdbg=<value>) | |
@ Miscellanecus RAM area without section (-self/-occdtr/-ocdhpi) Mone ~
i)
(2 User Output a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)

~ 83 Converter

@ Output [] Check specifications of device (-check_device)

@ Hex format O Suppress checking section allocation that crosses (64KB-1) boundary (-check_64k_only)
(# CRC Operation [[] Do not check memory allocation of sections (-no_check_section_layout)
(2 Miscellaneous Address range of memory type (-cpu) & & 85 E
(2 User :
ROM=000c0-000d7
ROM=24c00- 3FFff
RAM=f8500-fa7ff
Figure 4-10 : Middleware - Address Range of Memory Type (e?studio)
RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 25 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

B Section layout and External defined symbols.

For CS+:
CC-RL (Build Tool) — Link Options — Section — Section start address
CC-RL (Build Tool) — Link Options — Section — Section that outputs external defined symbols to the file

v Section
Layout sections automatically Yes(- T LAYOUT)
Section start address WrpRam TxR_n.EMRamTxR_n.Prefetch/f8500
v Section that outputs external defined symbols to the file Section that outputs extemal defined symbols to the file[7]
10] et
M .constf
121 data
13 bss
14 EMText_f
[51 WrmpRamTx_f
(6] EMRam Tx_f
ROM to RAM mapped section ROM to RAM mapped section[3]

Figure 4-11 : Middleware - Section Layout and External Defined Symbols (CS+)

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 26 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

For e?studio:

Properties — C/C++ Build — Settings — Linker — Section — Sections

Properties — C/C++ Build — Settings — Linker — Section — Section that outputs external symbols to the

file

8 Tool Settings Toolchain Device & Build Steps Build Artifact Binary Parsers @ Error Parsers

» B Common
» B Compiler

~ B3 Linker
> Input
(25 List

Specify execution start address (-entry)

Execution start address (-entry= <symbol>) |_b|_5tarl

Layout sections automatically (-auto_section_layout)

5 Optimization
@ Section
¥ Device

> (2 Output
(2 Miscellaneous
@ User
» B Converter

ets LruwiLL

@ Output

Rdvanced
@ Miscellaneous
@ User

w B3 Converter
@ CQutput
@ Hex format
(% CRC Operation
@ Miscellanecus
@ User

Setions (-start) | WrpRamT«R_n, MWRamTxR_n,Prefetch/OFE500 | o
] >
UnCheCk Section Viewer
Address Section Mame
0x000F8500 WrpRamTxF_n
MWRamT=<R_n
Prefetch
¢ ey s | |
Generate divided vector table section (-split_vect)
Address setting for specified area of vector table (-vectn) & 5 B &3
ROM to RAM mapped section (-rom) 88 38 5§

.data=.dataR
MWRamTx_f=MWRamTxR_n
WrpRamTx_f=WrpRamTxF_n

Section that outputs external defined symbols to the file (-fsymbol)

.constf

data

Jbss
MWText_f
‘WrpRamTx_f
MWRamTx_f

888y

Figure 4-12 : Middleware - Section Layout and External Defined Symbols (e?studio)

RO1TUO393EJ0100 Rev.1.00

February 25, 2022

RENESAS

Page 27 of 46

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

4.2.3. Memory Allocation for Bootloader Subproject

This section describes how to allocate ROM and RAM for the rl78ilc_bootloader subproject (Figure 4-1 (3)).

The allocation method is shown below for CS+ and e2studio respectively.

B Address range of memory type.

For CS+:

CC-RL (Build Tool) — Link Options — Device — Verify — Address range of memory type

T

[File
: ﬂ r78i1c_middleware (Subproject)
ﬂ ri78i1c_bootloader (Subproject)
% RSF10NPL (Microcontroller)
CJ Code Generator (Design Tool)
BN CCR i Too |
&5, RL78 E1(Serial) (Debug Tool)
- \ ' Program Analyzer (Analyze Tool)

-3 File

Specify the address range of memory type in the format of "<Memory type>=<Start address>-<End address>", one per line.
The <Memeory type> can specify the {ROmIRAMIFDG.

~ Vertly
Check section larger than specified range of address YeslLPu)
R4l Address range of memory type Address range of memory type[3]
[0 ROM=00000-00ff
U] ROM=3fe 00-3ff
2 RAM=f3300484ff
Check specifications of device No
Suppress checking section allocation that crosses (64KB-1) boundary No
Do not check memory allocation of sections No
Message
+ Others
Address range of memory type

Common Options / Compile Options ,(AssembleOptions ',"-. Link Options ‘x': Hex Output Options / 1/0 Header File Generation Options /

Output

For e’studio:

Figure 4-13 : Bootloader - Address Range of Memory Type (CS+)

Properties — C/C++ Build — Settings — Linker — Device — Address range of memory type

~ B33 Linker

v @ Input
@ Advanced
@ List
@ Optimization
(# Section
@ Device
v (# Qutput
@ Advanced
@ Miscellanecus
@ User

~ 3 Converter

Output

Hex format
(# CRC Operation
(# Miscellaneous
(2 User

R e o e

Set user option byte (-user_opt_byte)

ROM =3feD0-3ffff
RAM=f8300-fa4ff

User option byte value (-user_opt_byte=<value>) | TE3FEO |
Set enable/disable on-chip debug by link option (-ocdbg)
On-chip debug control value (-occdbg=<value>) |B4 |
RAM area without section (-self/-ocdir/-ocdhpi) self RAM area ~
[J Output a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)
[]Check specifications of device (-check_device)
[J Suppress checking section allocation that crosses (84KB-1) boundary (-check_84k_cnly)
[Do not check memory allocation of sections (-no_check_section_layout)

Address range of memory type (-cpu) SRR '1} | ,@ |

Figure 4-14 : Bootloader - Address Range of Memory Type (e?studio)

RO1TUO393EJ0100 Rev.1.00

February 25, 2022

RENESAS

Page 28 of 46

RL78/11C(512KB) Continuous Operation FOTA Design Guide

B Section layout and External defined symbols.

For CS+:
CC-RL (Build Tool) — Link Options — Section — Section start address

CC-RL (Build Tool) — Link Options — Section — Section that outputs external defined symbols to the file

~ Section
Layout sections automatically Yes(-AUTO SECTION LAYOUT)
Section start address FSL_RCDR.Prefetch_FSL.BLRamTxR_n.Prefetch/f8300
~ Section that outputs external defined symbols to the file Section that outputs extemal defined symbols to the file[11]
[00] text
[01] et
[02] constf
[03] data
[04] bss
[05] BLRamTx_f
[06] FSL_FCD
[07] FSL_BCD
[08] FSL_RCD
[08] FSL_BECD
[10] FSL_FECD
ROM to RAM mapped section ROM to RAM mapped section[3]
Figure 4-15 : Bootloader - Section Layout and External Defined Symbols (CS+)
RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 29 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

For e?studio:
Properties — C/C++ Build — Settings — Linker — Section — Sections

Properties — C/C++ Build — Settings — Linker — Section — Section that outputs external symbols to the
file

@ Tool Settings Toolchain Device ,h' Build Steps Build Artifact Binary Parsers @ Error Parsers

» B Common Specify execution start address (-entry)

» & Compiler Execution start address (-entry=<symbaol>) |_b|_5tart |
> BB Assembler

Layout sections automatically (-auto_section_layout)

(2 List
Optimization

v B85 Linker
; Sections (-start) |FSL_F‘.CDR,PrE'fEtch_FSL,BLRameF‘._n_PrE'fetcthFBB{)D |/

Uncheck .

Section Viewer

Device
~ (2 Output Address Section Name /
“@. Advanced xDOOFE300 FSL_RCDR
[,%.;; [\J-"hscellaneuus Prefetch_FSL
(5 Hser BLRamT«R_n

& C rt
v® o Prefetch
(&2 Qutput
(2 Hex format

@ Cutput
(2 Advanced
@ Miscellaneous
@ User
w B Converter
@ Cutput
@ Hex format

@ CRC Cperation - — -
@ Miscellanecus ROM to RAM mapped section (-rom) & w5 8 ﬁ_}| ,@,

(& User

BLRamTx_f=BLRamTxF_n
FSL_RCD=FSL_RCDR

Section that outputs external defined symbaols to the file (-fsymbol) & & &35 E

.data ~

bss
BLRamTx_f
FSL_FCD
FSL_BCD
FSL_RCD
FSL_BECD
FSL_FECD W

Figure 4-16 : Bootloader - Section Layout and External Defined Symbols (e?studio)

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 30 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.3. Supplemental Information on Link Options (e’studio)

In e2studio, if the checkbox [Layout sections automatically (-auto_section_layout)] in [C/C ++ Build—
Settings— Linker— Sections] is checked, the linker option “-start” does not appear. Therefore specify “-
auto_section_layout” in the Use-defined options (Figure 4-17).

This is required for all rl78ilc project (Figure 4-1 (1)), rI78ilc_middleware subproject (Figure 4-1 (2)), and
rl78ilc_bootloader subproject (Figure 4-1 (3)).

For e®studio only:

Properties — C/C++ Build — Settings — Linker — User — User-defined options

&) Tool Settings Toolchain Device 4 Build Steps Build Artifact Binary Parsers €3 Error Parsers

i Commen
i Compiler
1 Assembler -AUTO_SECTION_LAYOUT
w BBy Linker

(# Input

(B List

(& Optimization

(& Section

2 Device

@ Output

Miscellaneous
@ User

User-defined options (added before all specified options)

8a8 8

Figure 4-17 : User-defined Options - AUTO_SECTION_LAYOUT (e?studio)

RO1TUO0393EJ0100 Rev.1.00 RENESAS

Page 31 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

4.4. Using External Defined Symbol Files

The external defined symbol files are used for invocations and information sharing between main and
subprojects. In order to use them, it is necessary to include the external defined symbol file in the project
after outputting the symbol file in Chapter 4.2.2 and Chapter 4.2.3.

In this example project, the external symbol files are referenced as follows.

® Refer to the middleware subproject and bootloader subproject in the main project.
® Refer to the bootloader project in the middleware subproject

For CS+:

= hﬁ fl78ilc (Project

icrocontroller)

: ;~| Code Generator (Design Tool)

----- #« CC-RL (Build Tool)

----- == RL78 E2 Lite (Debug Tool)

----- T:' Program Analyzer (Analyze Tool)
=[P File

..... n-| iodefine.h

----- u compiler.h
----- “ﬂ" ap_btable.asm

&L wrapper
[—],_ bootloader
] headers

ke

| 8= bootloader.fsy
=~ ,_ middleware

ahs

: Iﬂﬂ middlmare.fsyl
|| headers

E'— . f_'; 7811 c_middleware (Subproject)

----- = B3F10MPL (Microcontroller)
----- szl Code Generator (Design Tool)
----- 4, CC-RL (Build Tool)

----- ==, RL78 Simulator (Debug Tool)
----- J::' Program Analyzer (Analyze Tool)
-3 File

..... h-| iodefine.h

Ej---_l compiler

&-L) r78itc

] application

El,_ bootloader

: _]_ headers

= abs
-§ 550 bootloader.fsy
] driver

Figure 4-18 : Include External Definition Symbol File

For e®studio:

The case of e2studio is omitted because it is the same as the case of CS+.

RO1TU0393EJ0100 Rev.1.00
February 25, 2022

RENESAS

Page 32 of 46

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.5. ROM to ROM Mapping Settings
45.1. LCD Update Process Routine

The screen display functions are invoked by a timer interrupt.

The interrupt process is used to update the indicator bar on the screen and display the inputted
characters, etc.

NTTMO2 E

ENTER PASS

Update indicator bar animation

Update other display items

End of interrupt

Figure 4-19 : LCD Update Process

It runs on the ROM in the normal operation. On the other hand, it runs on the RAM during the bank swap
period to continue to execute the LCD display function.

ROM RAM ROM
— [] \
ety Enable

Figure 4-20 : Display Update

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 33 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

Figure 4-21 shows an image of a code copy from ROM to RAM.

. . Code to run
ROMization
on RAM

Code to run
on RAM

ROM RAM

Figure 4-21 : Code Copy from ROM to RAM

The interrupt callback function while running on ROM is replaced by the MW_RunOnRam_Ramlsr
function, which controls all interrupts while running on RAM. This function checks each interrupt flag
(specifically, TMIF02 and CSIIF30) and the corresponding interrupt process is executed. After processing,
each interrupt flag must be cleared manually.

function performs the equivalent of each interrupt. We must also manually clear each interrupt flag after
processing.

Copying the code from ROM to RAM is done on a section-by-section basis. Therefore, divide the sections
in advance and isolate the code to be executed on RAM.

The MW_RunOnRam_PrepareFunctions function is used to copy the code from ROM to RAM.

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 34 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

4.5.2.

Memory Mapping of User Application Project

For the rl78ilc project (Figure 4-1 (1)), set the area to be mapped from ROM to RAM as follows.

For CS+:

CC-RL (Build Tool) — Link Options — Section — ROM to RAM mapped section

- File
] iodefine.h
| typedef.h
]| compilerh
..... 2 ap_btable.asm
#o) estartasm
U! driver
[wrapper
-] bootloader
[] middleware
L1 application
| main.c
[I startup
[1] debug
& emd.c
b cmd.h

| debug.h
- xmodem
[] button
-1 keypad
] keypad.h
| keypad.c
| platform.h

Program Analyzer (Analyze Tool)

€4 command.c
M| command.h

| % ri78ilc_middleware (Subproject)
4% RSFI0NPL (Microcontroller)
5| Code Generator (Design Tool)

A _,/ommonaToon

Generate function list used for detecting illegal indirect function call
Split vector table sections
List

Output link map file

Output file name

Variables Hunclions information

Output variables/functions information header file
~ Seclion

<

Layout sections automatically
Section start address

No
No

Yes{List contents=ALL)(LISt -SHow=ALL)

“%ProjectName % map

No

Yes-AUTO_SECTION_LAYOUT)
image_header_f/01000. const. RLIB. SLIB, textf/02000. dataR. bss/FAB00

Do nt check memery allocation of sections
v Message
Enable information message output
hac.of.

5 - Socion ok cutpuie sdemal defined cumbole o il clicun bt outpis axiomal definad sumbale e Slel)
> | N ROM to RAM mapped section[1]]
~ Ver
Check section larger than specified range of address Text Edit x
> Address range of memory type T
Check specifications of device
Suppress checking section allocation that crosses (64KB-1) boundary data-dataR

ROM to RAM mapped section
Specify ROM to RAM mapped section in the format of "<ROM section name==<RAM section name|
This option corresponds to the -ROm cption of the rlink command

Common Options /| CompileOptions | AssembleOptions|), Link Options | |Hex Out{

Output
éTfEEEat;nchDEHWDDS) ¢ The device file was updated. Update the header file by se

N
Informat ion{M0231003) : The device file was updated. Update the header file by se
E1.00b -3> ¥1.00J
Informat jontM0231003) : The device file was updated. Update the header file by se
E[éuggb => Y100,

For e?studio:

Figure 4-22 : User Application - ROM to RAM Mapped Section (CS+)

Properties — C/C++ Build — Settings — Linker — Output — ROM to RAM mapped section

w C/C++ Build Configuration: |Uebug | Active | ~ | | Manage Contigurations...
Build Variables
Environment
Q\E Tool Settings Toolchain Device .ﬁ' Build Steps Build Artifact Binary Parsers @ Error Parsers
Setti
Stack Analysis & Common Type of output file (-form) Absolute ~
Tool Chain Editor i Compiler) - —— ——
/e General 5 Assembler Output file directary (-output) ${workspace_loc:/${ProjName}/${ConfigName]
Project Natures ~ &5 Linker [Output debug information (-nodebug/-debug)
Project References e @ Input [[] Compress debug information (-compress/-nocompress)
Refactoring History \‘;@ Advanced [Delete local symbel name information (-hide)
Renesas QF % I{}:St_ L Reduce memory occupancy of linker (-memary)
i o timization
Run/Debug Settings e o [CIFill with padding data at the end of a section (-padding)
Address setting for unused vector area (-vect) | |
[[] Generate divided vector table section (-split_vect)
(5 Miscellaneous Address setting for specified area of vector table {-vectn) [ZE AR AR
@ User
w B3 Converter
(&2 Output
(&2 Hex format
g CRC Operaticn
@ Miscellaneous
@ User
ROM to RAM mapped sectien (-rom) LZR =] %}‘ .&\

Figure 4-23 : User Application - ROM to RAM Mapped Section (e?studio)

RO1TU0393EJ0100 Rev.1.00
February 25, 2022

RENESAS

Page 35 of 46

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.5.3. Memory Mapping of Middleware Subproject

For the rl78i1c_middleware subproject (Figure 4-1 (2)), set the area to be mapped from ROM to RAM as
follows.

For CS+:
CC-RL (Build Tool) — Link Options — Section — ROM to RAM mapped section

Ll ROM to RAM mapped section ROM to RTMI mapped section[3]

[0] data=dataR
[1] MWRamTx_f=MWRamTxF_n
[21 WmpRamTx_f=WmpRamTxR_n

Figure 4-24 : Middleware - ROM to RAM Mapped Section (CS+)

For e?studio:
Properties — C/C++ Build — Settings — Linker — Output — ROM to RAM mapped section

€8 E a5l ¥

ROM to RAM mapped section (-rom)

MWRamTx_f=MWRamTxF_n
WrpRamTx_f=WrpRamTxF_n

Figure 4-25 : Middleware - ROM to RAM Mapped Section (e2studio)

MWRamTx : This section contains the functions for updating the LCD display on RAM.

WrpRamTx : his is a utility function section used by functions in MWRamTXx.

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 36 of 46

February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.5.4. Memory Mapping of Bootloader Subproject

For the rl78i1c_bootloader subproject (Figure 4-1 (3)), set the area to be mapped from ROM to RAM as
follows.

For CS+:
CC-RL (Build Tool) — Link Options — Section — ROM to RAM mapped section

Rl ROM to RAM mapped section ROM to RAM mapped section[3]

0 .data=dataR
1 BLRam Tx_f=BLRamTxR_n
[2 RCD-FSI_RCDR

Figure 4-26 : Bootloader - ROM to RAM Mapped Section (CS+)

For e?studio:
Properties — C/C++ Build — Settings — Linker — Output — ROM to RAM mapped section

ROM to RAM mapped section (-rom) LR TR

BLRamTx_f=BLRamTxRF_n
FSL_RCD=FSL_RCDR

Figure 4-27 : Bootloader - ROM to RAM Mapped Section (e?studio)

BLRamTx : This is the section of functions that the bootloader uses on RAM.
FSL_RCD : FSL library section,

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 37 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.6. Branch Table Flow

The user application has a branch table for interrupt processing that is separate from the bootloader vector
table. The branch table method would be faster than the function pointer call method.

The user application and the boot loader can share the vector table. On the other hand, the vector table is
fixed and cannot be changed according to the update of the user application.

In addition, the code related to the middleware is placed in the far area. Therefore, the branch table is
divided into two parts, ap_btable.asm for user application projects and mw_btable.asm for middleware
subprojects. Branches to each starting from the vector table of the boot loader subproject. Therefore, in
the bootloader subproject, the vector table section needs to be split.

For CS+:
CC-RL (Build Tool) — Link Options — Output Code — Split vector table sections
v Output Code
Specify execution start address Yes(-ENTry)
Execution start address _bl_start
Fill with padding data at the end of a section No
Address setting for specified area of vector table Address setting for specified area of vector table[0]
Lddress setting for unused vector area
Generate function list used for detecting illegal indirect function call 0
Split vector table sections

Figure 4-28 : Split Vector Table Sections (CS+)

For e’studio:

Properties — C/C++ Build — Settings — Linker — Output — Generate divided vector table section

= imizati enerate divided vector table section (-split_vect)
(2 Optimization MG te divided vector tabl tion (-split_vect)
(2 Section

2 Device
v @ Cutput
5 Aduanrced

Address setting for specified area of vector table (-vectn) 4|

Figure 4-29 : Split Vector Table Sections (e2studio)

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 38 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

The following figure shows the branch table flow for the display functions.

Fas
o T Display functions [+ _ peodit / CCHL oA
a % l 4 II vold r_tavl_channell_interrupt(veid)
[s1 = i
/* Start user code. Do not edit comment
Branch Table |» EL0);
X AN "SECTION .oranch_table, AT MW_BRANCH_TABLE
', BR 1 _mw_cstart Ent
[. . 064 BxffEfEff oD
8 g User Application N\
(1] w Y o
o o 3 [BR 11_r_taul_channel2_interrupt
o 06X OxTITTTeT
Branch Table DB4 ewfEFEEAE i
h'd DB PR INTATCPHD/ TNTSHPA3/ TNTSHP13
s DB OxPEEFFEEE INTIT
W m F.;EB-‘- ?xﬂﬂf;;; ; t'.;\'li1['.|'1 - ; I ‘:'1
] 10_r_esi30_interrupt NTCST30/INTIICT/INTST
) Bootloader -
v} §
o - LSECTION far_vtable, AT FAR_BRANCH_VECTOR_TABLE
SN ER 11 (M _SRANCH_TABLE + BiBddi®2) Entry
bR 11 (M _BRANCH_TABLE + 2x0002%2) o0
N R L EE"S H r;.& E £ E;gﬂ;!'!]
2 B (Ml _BRANCH_TABLE + Bx@la*2)
BR TT(M_BRANCH_TABLE + Bx0036°2)
Y BR 11(M_BRANCH_TABLE + 2x2038+2)
BR 11 (Wa_BRANCH_TABLE + Bx0034%2) PR3/ INTSHETS
[11 (Md_BRARCH_TABLE + Bu@d3(*2)
BR 11 (M_BRANCH_TABLE + @x003E*2) NTSHPR4/INTSMP 14
BR 11(M_BRANCH_TABLE + 2x0048+2) NTST3
SECTION .vtable, AT @xidd
(DB (USER_BRANCH_TABLE + dwddad=2) INTHOTI
1 (DB} (USER_BRANCH_TABLE + :B086%2) INTLY
INTTMOZ2 | 082 (FAR_BRANCH VECTOR TASLE s @x@034*2)
0B1 (USER_BRANCH_TABLE + Bxd03672)
[= 82 (USER_BRANCH_TABLE + 0x0036°2)
082 (USER_BRANCH_TABLE + Dxda3A*2) PO/ THTSHPT 3
LDBI (USER_BRANCH_TABLE + 2x3(*2)
082 (USER_BRANCH_TABLE + Bxd03E*2) SHPR4/ INTSHPT £
L0821 (FAR_EBRANCH_VECTOR_TABLE + Budede~d)]
082 (USER_BRANCH_TABLE + 0x0842%2) 4

Figure 4-30 : Branch Table Flow

The display process starts from the timer interrupt using the INTTMO02. When the interrupt INTTMO02

occurs, it jumps to the specified location. (Step 1)

| .DB2 (FAR_BRANCH_VECTOR_TABLE + 8x8834*1) ;

INTTMR2 |

The display functions are located in the far area, so it jumps to an intermediate branch table. (Step 2)

Then it jumps to the branch table of the display functions (Step 3) and reaches the interrupt function itself.

(Step 4)

Note: The related source files are as follows.
bI_vtabIe.asm in rl78i1c_bootloader subproject
bl_far_vtable.asm in rl78ilc_bootloader subproject
mw_btable.asm in rl78ilc_middleware subproject

E]r_tau_user_mw.c in rI78ilc_middleware subproject

RO1TUO0393EJ0100 Rev.1.00 RENESAS
February 25, 2022

Page 39 of 46

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

4.7. Continuous Operation FOTA Example Project APl Functions

4.7.1. APIfunctions

Table 4-1 : APl Functions

Function

Explanation

COMMAND_PollingProcessing

Processes received UART commands

COMMAND_InvokeBankSwap

Command to invoke Continuous FOTA
Bank Swap

MW_RunOnRam_NonStopBankSwap

Continuous update sequence

MW_RunOnRam_PrepareFunctions

Prepare to run on RAM (Copy code from
ROM to RAM)

MW_RunOnRam_DisablelnterruptsExceptDisplayRelated

Mask off all other interrupt except display
related

BL_RunOnRam_PrepareFunctions

Prepare to run on RAM (Copy code from
ROM to RAM)

BL_FLASH_RAM_SwapBankWithRamIsr

Swap active boot cluster with running
interrupt service routine on RAM

FSL_ChangeinterruptTable

Change vector table to RAM ISR

FSL_SwapActiveBootCluster

Swap the bank

FSL_RestorelnterruptTable

Restore vector table to ROM ISR

BL_FLASH_RAM_JumpBankSwapEntry

Call bankswap entry function

RO1TU0393EJ0100 Rev.1.00
February 25, 2022

RENESAS

Page 40 of 46

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

4.7.2. Continuous Operation FOTA Sequence

Figure 4-31 shows an example of the APl usage for Continuous Operation FOTA.

C

Start >

Command polling loop
COMMAND_PollingProcessing

"bswap™ ?

Recieve No

Bank Swap COMMAND function
COMMAND_InvokeBankSwap

Continuous Bank Swap sequence
MW_RunOnRam_NonStopBankSwap

Copy Code from ROM to BAM {middiware)
MW_RunOnRam_PrepareFunctions

Stop unnecessary intermupts
MW_RunOnRam_DisableInterruptsExceptDisplayRelated

Copy Code from ROM to RAM (bootloader)
BL_RunOnRam_PrepareFunctions

‘ The following functions are called within this function.

Execute Bank Swap
BL_FLASH_RAM_SwapBankwithRamIsr

Change vector table to RAM ISR
FSL_ChangelnterruptTable
Bank Swap

Restore vector table to ROM ISR

‘ FSL_SwapActiveBootCluster

Call bankswap entry functon
BL_FLASH_RAM_JumpBankSwapEntry

FSL_RestorelnterruptTable

Figure 4-31 : Example of API Function Usage

RO1TU0393EJ0100 Rev.1.00
February 25, 2022

RENESAS

Page 41 of 46

RL78/11C(512KB) Continuous Operation FOTA Design Guide

4.8. Build

This section describes how to create [rl78i1c_production.mot] in Chapter 3.1 (1) and [rI78i1c_v100.mot] and
[rI78ilc_v200.mot] in Chapter 3.1 (2). Set the passcode as described in Chapter 2.1 and the version
information as described in Chapter 2.2 as follows.

B Passcode setting.

The 4-digit passcode is defined in [platform.h]. APP_PASSCODE_1~4 corresponds to the 1st~4th digits of
the passcode, and any character from "0123456789ABCDF" can be set. ("E" cannot be set because it is
used as a decision key.)

3 -1/

4 Macro definitions

5 !
16 /* Software version to be printed on start-up of FOTA Demo */
7 #define APP_SOFTWARE_VERSION (nm

28 /* Passcode */

29 #define APP_PASSCODE_1 ("1")

38 #define APP_PASSCODE_2 ("2")

3 #define APP_PASSCODE 3 ('3")

32 #define APP_PASSCODE_4 ("A")

rd

Figure 4-32 : Passcode and Version Settings [platform.h]

B Version setting.

The version information is specified in [platform.h] and the build configuration file. (Values from 0 to 9 can be
set.)

The specified value is reflected in the first digit of the version.

+ APP_SOFTWARE_VERSION in [platform.h].

Define a value between 0 and as shown in Figure 4-32.

+ Build configuration.

Set the values 0x000000~0x000009 (the same values as APP_SOFTWARE_VERSION above) in the
locations shown in Figure 4-33 and Figure 4-34.

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 42 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

For CS+:

CC-RL (Build Tool) — Link Options — Others — Command executed after ling processing

Project Tree 3 x
5 2 &
rl78i1c (Project) "

icrocontroller)
J Code Generator (Design Tool)
m)" Pin View

Peripheral Functions

&

Tool)
¢’/ Program Analyzer (Analyze Tool)

- File

. 71! Ruild tool aenerated files

@ Property - X
A, CC-RL Property a » -
» Message
v Others
Qutput stack information file Yes(-STACkK)
Display total size of sections Yes(-Total_size)
Display copyright information No(-NOLOgo)

> Commands executed before link processing Commands executed before link processing[1]

Al Commands executed after link processing Commands executed after link processing[1]

[0] cscript script\generate_images js //nologo Ainker:"%
Other additional options

Cammande avacitad afier link nrncescinn

Common Opti... /\Complle Optio... /< Assemble Opt... /\I Link OgtioEd/(Mput 0. /<I/0 Header Fil... / 5

Text Edit

Text:

*

TASample_1P2W_I1C512K" /AZ Rt il device (x 80000 /setting_bootload:

L4 >
Flacehglder:

Placeholder Value (s

ActiveProject Dir D ¥FOTA%¥src¥CS+ CCRL

ActiveProjectMicomMame RSF10MPL

ActiveProjectMame A78i1c

BuildModeMame Debug

link~AFil~ Mehn inEd TR 1~ ahe 7

€ >

For e?studio:

Figure 4-33 : Version Setting (CS+)

Properties — C/C++ Build — Settings — Build Steps — Post-build steps

type filter text

Settings

G g

> Resource
Builders
~ (/C++ Build
Build Variables
Environment

Configuration: |Debug [Active]

T Pre-build steps

~| | Manage Configurations...

:gging B Tool Settings Toolchain Device ¥ Build Steps Build Artifact Binary Parsers €3 Error Parsers

Project References

Tool Chain Editor Commandis):
» C/C++ General | .¥script¥generate_default_image_header.cmd 3{ProjDirPath}/${BuildModeName}image_headerbin v ‘
Project Natures
Description:

Refactoring History |

Renesas QF

Run/Debug Settings Post-build steps

Command(s):

I" fimage:"Image” /transferri78i1c_user_app /production:f78i1c_production /platform:"RES_FOTASample_1P2W_I1C512K"

Description:

hd ‘

Figure 4-34 : Version Setting (e?studio)

RO1TU0393EJ0100 Rev.1.00
February 25, 2022

RENESAS Page 43 of 46

RL78/11C(512KB) Continuous Operation FOTA Design Guide

B Motorola file output.

- Firmware of Ver.1.00

Set APP_SOFTWARE_VERSION as "1" in [platform.h] and the parameter as “0x0000001” in the build
configuration. (Change the passcode if necessary.)

When you build it, [r178i1c_production.mot] is generated in the following folder.
CS+
\Source\CS+_CCRL\Debug\image
e’studio

\Source\e2studio\rl78ilc\Debug\image

[rI78ilc_production.mot] is the one used in Chapter 3.1 (1).
[rI78ilc.mot] is also generated in the same folder.

Rename [r178i1c0.mot] to [rI78i1lc_v100.mot] and use it in Chapter 3.1 (2).

+ Firmware of Ver.2.00

Set APP_SOFTWARE_VERSION as "2" in [platform.h] and the parameter as “0x0000002” in the build
configuration. (Change the passcode if necessary.)

When you build it, [rI78i1c.mot] is generated in the following folder.
CS+
\Source\CS+_CCRL\Debug\image
e?studio
\Source\e2studio\rl78ilc\Debug\image

After that, rename [rl78i1c0.mot] to [rl78i1c0_v200.mot] and use it in Chapter 3.1 (2).

In the same way, you can generate [r178i1c0_v300.mot], [rI78i1c0_v400.mot], ..., [rI78i1c0_v900.mot].

RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 44 of 46
February 25, 2022

RL78/11C(512KB) Continuous Operation FOTA Design Guide

5. Diving Deeper

1.

To learn more about the RL78/11C (512KB) Fast Prototyping Board, refer to the RL78/11C (512KB)
User’'s Manual available in the User Guides & Manuals of the RL78/11C webpage at
renesas.com/br/en/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus/rl78ilc-
ultra-low-power-microcontrollers-high-end-smart-electricity-meter-market

Renesas provides several example projects that demonstrate different capabilities of the RL78/11C
(512KB) Fast Prototyping Board. These example projects can serve as a good starting point for
users to develop custom applications. Example projects (source code and project files) are available
in the RL78/11C (512KB) Fast Prototyping Board Example Project Bundle.

6. Website and Support

Visit the following URLSs to learn about the kit and the RA family of microcontrollers, download tools and
documentation, and get support.

RL78/11C Resource renesas.com/br/en/products/microcontrollers-microprocessors/rl78-
low-power-8-16-bit-mcus/rl78ilc-ultra-low-power-microcontrollers-high-end-smart-electricity-meter-
market

e RL78 Product Information renesas.com/br/en/products/microcontrollers-microprocessors/rl78-
low-power-8-16-bit-mcus
e RL78 Knowledge Base en-support.renesas.com/knowledgeBase#31025
e Renesas Support en-support.renesas.com/dashboard
RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 45 of 46

February 25, 2022

https://www.renesas.com/br/en/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus/rl78i1c-ultra-low-power-microcontrollers-high-end-smart-electricity-meter-market
https://www.renesas.com/br/en/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus/rl78i1c-ultra-low-power-microcontrollers-high-end-smart-electricity-meter-market
https://www.renesas.com/br/en/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus/rl78i1c-ultra-low-power-microcontrollers-high-end-smart-electricity-meter-market
https://www.renesas.com/br/en/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus/rl78i1c-ultra-low-power-microcontrollers-high-end-smart-electricity-meter-market
https://www.renesas.com/br/en/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus/rl78i1c-ultra-low-power-microcontrollers-high-end-smart-electricity-meter-market
https://www.renesas.com/br/en/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus
https://www.renesas.com/br/en/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus
https://en-support.renesas.com/knowledgeBase#31025
https://en-support.renesas.com/dashboard

RL78/11C(512KB) Continuous Operation FOTA

Design Guide

Revision History

Description
Rev. Date Page Summary
1.00 February 25, 2022 | - Initial release
RO1TUO0393EJ0100 Rev.1.00 RENESAS Page 46 of 46

February 25, 2022

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the
products.

1.

Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation.
Steps must be taken to stop the generation of static electricity as much as possible. and quickly dissipate it when it occurs. Environmental control
must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static
electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way. the states of
pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches

the level at which resetting is specified.
Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input

signal become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal
produced with an external resonator or by an external oscillator while program execution is in progress. wait until the target clock signal is stable.
Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when
the input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi (Min.).

Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to
problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might
differ in terms of internal memory capacity. layout pattern. and other factors. which can affect the ranges of electrical characteristics. such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part
number, implement a system-evaluation test for the given product.

10.

11.

12.

13.

14.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor
products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the
design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising
from the use of these circuits. software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents .
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information
described in this document, including but not limited to, the product data. drawings. charts, programs. algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import,
export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products. if required.
You shall not alter, modify, copy. or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse
engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade. as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles. trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment;
key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.). or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’'s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach. including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY
AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE
EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED,
WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets. user's manuals, application notes, “General
Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.). and ensure that usage conditions are within the ranges
specified by Renesas Electronics with respect to maximum ratings. operating power supply voltage range. heat dissipation characteristics.
installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas
Electronics products outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics. such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high
reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas
Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the
possibility of bodily injury. injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas
Electronics products, such as safety design for hardware and software. including but not limited to redundancy. fire control and malfunction
prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone
is very difficult and impractical., you are responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances. including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale
is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products. or any other party who distributes, disposes of, or otherwise sells
or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted. reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indire ctly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology. the most up-to-
Koto-ku, Tokyo 135-0061, Japan date version of a document, or your nearest sales office, please

www.renesas.com visit: www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

