
 APPLICATION NOTE

R01AN2184EU0330 Rev. 3.30 Page 1 of 39

Nov 1, 2017

RX Family

Flash Module Using Firmware Integration Technology

Introduction

The Flash Module Using Firmware Integration Technology (FIT) has been developed to allow users of supported RX

devices to easily integrate reprogramming abilities into their applications using self-programming. Self-programming is

the feature to reprogram the on-chip flash memory while running in single-chip mode. This application note focuses on

using the Flash FIT module and integrating it with your application program.

The Flash FIT module is different from the Simple Flash API that supports the RX600 and the RX200 Series of MCUs

(R01AN0544EU).

The source files accompanying the Flash FIT module comply with the Renesas RX compiler only.

Target Device

The following is a list of devices that are currently supported by this API:

 RX110, RX111, RX113 Groups

 RX130, RX130-512KB Groups

 RX210, RX21A Groups

 RX220 Group

 RX231, RX230 Groups

 RX23T, RX24T Groups

 RX24U Group

 RX610 Group

 RX621, RX62N, RX62T, RX62G Groups

 RX630, RX631, RX63N, RX63T Groups

 RX64M Group

 RX651, RX65N, RX65N-2M Groups

 RX71M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

Related Documents

 Firmware Integration Technology User’s Manual (R01AN1833EU)

 Board Support Package Firmware Integration Technology Module (R01AN1685EU)

 Adding Firmware Integration Technology Modules to Projects (R01AN1723EU)

 Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826EJ)

R01AN2184EU0330
Rev. 3.30

Nov 1, 2017

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 2 of 39

Nov 1, 2017

Contents

1. Overview ... 4

1.1 Features .. 4

1.2 Optional BSP ... 4

2. API Information.. 5

2.1 Hardware Requirements ... 5

2.2 Software Requirements ... 5

2.3 Limitations ... 5

2.4 Supported Toolchains ... 5

2.5 Header Files .. 5

2.6 Integer Types .. 5

2.7 Flash Types and Features .. 5

2.8 Configuration Overview ... 6

2.9 Code Size .. 8

2.10 API Data Types ... 9

2.11 Return Values.. 9

2.12 Adding the FIT Flash Module to Your Project ... 10

2.12.1 Adding source tree and project include paths .. 10

2.12.2 Setting driver and FIT BSP use options ... 10

2.12.3 Project generated files (no FIT BSP) ... 11

2.12.4 Migrating from version 1.x to version 2.x ... 11

2.12.5 Migrating from version 2.x to version 3.20 ... 11

2.13 Programming Code Flash from RAM .. 12

2.14 Programming Code Flash from ROM ... 14

2.15 Operations in BGO Mode .. 14

2.16 Dual Bank Operation ... 15

2.17 Usage Notes.. 17

2.17.1 Data Flash Operations in BGO Mode .. 17

2.17.2 ROM Operations in BGO Mode ... 17

2.17.3 ROM Operations and General Interrupts ... 18

2.17.4 Emulator Debug Configuration ... 18

3. API Functions .. 19

3.1 Summary ... 19

3.2 R_FLASH_Open ... 20

3.3 R_FLASH_Close ... 21

3.4 R_FLASH_Erase ... 22

3.5 R_FLASH_BlankCheck ... 24

3.6 R_FLASH_Write .. 26

3.7 R_FLASH_Control .. 28

3.8 R_FLASH_GetVersion .. 35

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 3 of 39

Nov 1, 2017

4. Demo Projects ... 36

4.1 flash_demo_rskrx113 .. 36

4.2 flash_demo_rskrx231 .. 36

4.3 flash_demo_rskrx23T .. 36

4.4 flash_demo_rskrx130 .. 37

4.5 flash_demo_rskrx24T .. 37

4.6 flash_demo_rskrx65N ... 37

4.7 flash_demo_rskrx24U ... 37

4.8 flash_demo_rx65n2mb_bank1_bootapp / _bank0_otherapp ... 38

4.9 Adding a Demo to a Workspace ... 38

Website and Support ... 39

Revision Record .. 40

General Precautions in the Handling of MPU/MCU Products ... 42

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 4 of 39

Nov 1, 2017

1. Overview

The Flash FIT module is provided to customers to make the process of programming and erasing on-chip flash areas

easier. Both ROM and data flash areas are supported. The module can be used to perform erase and program operations

in blocking or non-blocking BGO mode. In blocking mode, when a program or erase function is called, the function

does not return until the operation has finished. In Background Operations (BGO) mode, the API functions return

immediately after the operation has begun. When a ROM operation is on-going, that ROM area cannot be accessed by

the user. If an attempt is made to access the ROM area, the sequencer will transition into an error state. In BGO mode,

whether operating on ROM or data flash, the user must poll for operation completion or provide a flash interrupt

callback (if flash interrupt support is available on MCU).

1.1 Features

Below is a list of the features supported by the Flash FIT module.

 Erasing, programming, and blank checking for ROM and data flash in blocking mode or non-blocking BGO

mode.

 Area protection via access windows or lockbits.

 Start-up program protection; this function is used to safely rewrite block 0 to block 7 in ROM

1.2 Optional BSP

As of v2.00, this driver may be built with or without the BSP. When not using the BSP, flash dependent settings such as

clock speed and memory sizes normally set in r_bsp_config.h are set in r_mcu_config.h instead

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 5 of 39

Nov 1, 2017

2. API Information

This Driver API follows the Renesas API naming standards.

2.1 Hardware Requirements

This driver requires that your MCU supports the following peripheral(s):

 Flash

2.2 Software Requirements

This driver is dependent upon the following FIT packages:

 Renesas Board Support Package (r_bsp) v3.60.

2.3 Limitations

 This code is not re-entrant and protects against multiple concurrent function calls (not including RESET).

 During ROM reprogramming, ROM cannot be accessed. When reprogramming ROM, make sure application

code runs from RAM.

2.4 Supported Toolchains

This driver is tested and working with the following toolchains:

 Renesas RX Toolchain v2.06.00

2.5 Header Files

All API calls and their supporting interface definitions are located in “r_flash_rx_if.h”. This file should be included by

all files which utilize the Flash API.

Build-time configuration options are selected or defined in the file "r_flash_rx_config.h”.

When building without the BSP, additional configuration options are selected or defined in the file "r_mcu_config.h”.

2.6 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These

types are defined in stdint.h.

2.7 Flash Types and Features

The flash driver is divided into four separate types based upon the technology and sequencer used. The compiled flash

driver size is based upon the flash type (see section 2.9).

FLASH TYPE 1

 RX110*, RX111, RX113, RX130

 RX230, RX231. RX23T*, RX24T, RX24U

 *has no data flash

FLASH TYPE 2

 RX210, RX220, RX21A

 RX610,

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 6 of 39

Nov 1, 2017

 RX62G, RX62N, RX62T

 RX630, RX631, RX63N, RX63T

FLASH TYPE 3

 RX64M, RX71M

FLASH TYPE 4

 RX651*, RX65N**

 *has no data flash, **no data flash on parts with less than 1.5M code flash

Because of the different flash types, not all flash commands or features are available on all MCUs. The file

r_flash_rx_if.h identifies which features are available on each MCU using #defines. Some of these features/#defines

include:

#define FLASH_HAS_ISR_CALLBACK_CMD

#define FLASH_NO_BLANK_CHECK

#define FLASH_HAS_CF_BLANK_CHECK

#define FLASH_ERASE_ASCENDING_BLOCK_NUMS

#define FLASH_ERASE_ASCENDING_ADDRESSES

#define FLASH_HAS_ROM_CACHE

#define FLASH_HAS_DIFF_CF_BLOCK_SIZES

#define FLASH_HAS_BOOT_SWAP

#define FLASH_HAS_APP_SWAP

#define FLASH_HAS_CF_ACCESS_WINDOW

#define FLASH_HAS_DF_ACCESS_WINDOW

#define FLASH_HAS_INDIVIDUAL_CF_BLOCK_LOCKS

#define FLASH_HAS_SEQUENTIAL_CF_BLOCKS_LOCK

2.8 Configuration Overview

Configuring this module is done through the supplied r_flash_rx_config.h header file. Each configuration item is

represented by a macro definition in this file. Each configurable item is detailed in the table below.

Configuration options in r_flash_rx_config.h

Equate
Default

Value
Description

FLASH_CFG_USE_FIT_BSP 1
Setting to 1 builds driver with constants from

r_bsp_config.h

Setting to 0 build driver with constants from

r_mcu_config.h

FLASH_CFG_PARAM_CHECKING_ENABLE 1
Setting to 1 includes parameter checking.

Setting to 0 omits parameter checking.

FLASH_CFG_CODE_FLASH_ENABLE 0

If you are only using data flash, set this to 0.

Setting to 1 includes code to program the

ROM area. When programming ROM, code

must be executed from RAM, except for

FLASH_TYPE_3 (see HW Manual Table

63.18) and RX65N-2M (see HW Manual

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 7 of 39

Nov 1, 2017

Table 57.16) under certain restrictions. See

section 2.13 for details on how to set up code

and the linker to execute code from RAM. See

section 2.15 for driver definition of BGO

mode.

FLASH_CFG_DATA_FLASH_BGO 0

Setting this to 0 forces data flash API function

to block until completed.

Setting to 1 places the module in BGO

(background operations/interrupt) mode. In

BGO mode, data flash operations return

immediately after the operation has been

started. Notification of the operation

completion is done via the callback function.

FLASH_CFG_CODE_FLASH_BGO 0

Setting this to 0 forces ROM API function to

block until completed.

Setting to 1 places the module in BGO

(background operations/interrupt) mode. In

BGO mode, ROM operations return

immediately after the operation has been

started. Notification of the operation

completion is done via the callback function.

When reprogramming ROM, the relocatable

vector table and corresponding interrupt

routines must be relocated to an area other

than ROM in advance. See sections 2.17

Usage Notes.

FLASH_CFG_CODE_FLASH_RUN_FROM_ROM 0

For FLASH_TYPE_3, RX65N-2M. Valid

only when

FLASH_CFG_CODE_FLASH_ENABLE is

set to 1.

Set this to 0 when programming code flash

while executing in RAM.

Set this to 1 when programming code flash

while executing from another segment in

ROM (see section 2.14).

FLASH_CFG_FLASH_READY_IPL 5
For FLASH_TYPE_2. This defines the

interrupt priority level for that interrupt

FLASH_CFG_IGNORE_LOCK_BITS 1

For FLASH_TYPE_2. This applies only to

ROM as Data Flash does not support lock bits.

Each erasure block has a corresponding lock

bit that can be used to protect that block from

being programmed/erased after the lock bit is

set.

Setting this to 1 causes lock bits to be ignored

and programs/erases to a block will not be

limited.

Setting this to 0 will cause lock bits to be used

as the user configures through the Control

command.

Table 1: Flash general configuration settings

Configuration options in r_mcu_config.h

Equate
Default

Value
Description

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 8 of 39

Nov 1, 2017

MCU_CFG_ICLK_HZ (FIT

BSP

default)

Set value to MCU ICLK speed (e.g. 80000000

for 80Mhz)

MCU_CFG_FCLK_HZ

(FIT

BSP

default)

Set value to MCU flash clock speed (e.g.

20000000 for 20Mhz)

MCU_CFG_PART_MEMORY_SIZE

(FIT

BSP

default)

Set value (0x0 – 0xF) to memory size

designation found in part number. The

possible values are also found just below this

equate in the r_mcu_config.h file.

Table 2: Configuration settings when FIT BSP is not used

2.9 Code Size

The code size is based on optimization level 2 and optimization type for size for the RXC toolchain in Section 2.4. The

ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration options set in

the module configuration header file.

 Flash Type 1 ROM and RAM usage

ROM usage:

PARAM_CHECKING_ENABLE 1 > PARAM_CHECKING_ENABLE 0

DATA_FLASH_BGO 1 > DATA_FLASH_BGO 0

CODE_FLASH_ENABLE 1 > CODE_FLASH_ENABLE 0

CODE_FLASH_BGO 1 > CODE_FLASH_BGO 0

Minimum Size

ROM: 2198 bytes (2098 if no DF)

RAM: 84 bytes (84+1944=2028 if no DF)

Maximum Size

ROM: 3386 bytes (2567 if no DF)

RAM: 84 + 2690 = 2774 bytes

(84+2384=2468 if no DF)

Flash Type 2 ROM and RAM usage

ROM usage:

PARAM_CHECKING_ENABLE 1 > PARAM_CHECKING_ENABLE 0

DATA_FLASH_BGO 1 > DATA_FLASH_BGO 0

CODE_FLASH_ENABLE 1 > CODE_FLASH_ENABLE 0

CODE_FLASH_BGO 1 > CODE_FLASH_BGO 0

IGNORE_LOCK_BITS 0 > IGNORE_LOCK_BITS 1

Minimum Size

ROM: 2179 bytes

RAM: 32 bytes

Maximum Size

ROM: 2953 bytes

RAM: 44 + 2626 = 2670 bytes

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 9 of 39

Nov 1, 2017

Flash Type 3 ROM and RAM usage

ROM usage:

PARAM_CHECKING_ENABLE 1 > PARAM_CHECKING_ENABLE 0

CODE/DATA_FLASH_BGO 1 > CODE/DATA_FLASH_BGO 0

CODE_FLASH_ENABLE 1 > CODE_FLASH_ENABLE 0

Minimum Size

ROM: 1797 bytes

RAM: 64 bytes

Maximum Size

ROM: 3262 bytes

RAM: 64 + 2900 = 2964 bytes

Flash Type 4 ROM and RAM usage

ROM usage:

PARAM_CHECKING_ENABLE 1 > PARAM_CHECKING_ENABLE 0

CODE/DATA_FLASH_BGO 1 > CODE/DATA_FLASH_BGO 0

Minimum Size

ROM: 1967 bytes

RAM: 64 + 1707 = 1771 bytes

Maximum Size

ROM: 2656 bytes

RAM: 64 + 2368 = 2432 bytes

2.10 API Data Types

The API data structures are located in the file “r_flash_rx_if.h” and discussed in Section 3.

2.11 Return Values

This shows the different values API functions can return. This return type is defined in “r_flash_rx_if.h”.

/* Flash API error codes */

typedef enum_flash_err

{

FLASH_SUCCESS = 0,

FLASH_ERR_BUSY, /* Flash module busy */

FLASH_ERR_ACCESSW, /* Access window error */

FLASH_ERR_FAILURE, /* Flash operation failure; programming error,

 erasing error, blank check error, etc. */

FLASH_ERR_CMD_LOCKED, /* Type3 - Peripheral in command locked state */

FLASH_ERR_LOCKBIT_SET, /* Type3 - Program/Erase error due to lock bit. */

FLASH_ERR_FREQUENCY, /* Type3 - Illegal Frequency value attempted (4-60Mhz) */

FLASH_ERR_ALIGNED, /* Type2 - The address that was supplied was not

 on aligned correctly for code flash or data flash */

FLASH_ERR_BOUNDARY, /* Type2 - Writes cannot cross the 1MB boundary

 on some parts */

FLASH_ERR_OVERFLOW, /* Type2 - 'Address + number of bytes' for this

 operation went past the end of this memory area. */

FLASH_ERR_BYTES, /* Invalid number of bytes passed */

FLASH_ERR_ADDRESS, /* Invalid address */

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 10 of 39

Nov 1, 2017

FLASH_ERR_BLOCKS, /* The "number of blocks" argument is invalid. */

FLASH_ERR_PARAM, /* Illegal parameter */

FLASH_ERR_NULL_PTR, /* Missing required argument */

FLASH_ERR_UNSUPPORTED, /* Command not supported for this flash type */

FLASH_ERR_SECURITY, /* Type4 - Pgm/Erase err due to part locked (FAW.FSPR)*/

FLASH_ERR_TIMEOUT, /* Timeout condition */

FLASH_ERR_ALREADY_OPEN /* Open() called twice without intermediate Close() */

} flash_err_t;

2.12 Adding the FIT Flash Module to Your Project

For detailed explanation of how to add a FIT Module to your project, see document R01AN1723EU “Adding FIT

Modules to Projects”.

2.12.1 Adding source tree and project include paths

In general, a FIT Module may be added in 3 ways:

1. Using an e2studio FIT tool, such as File>New>Renesas FIT Module (prior to v5.3.0), Renesas Views->e2

solutions toolkit->FIT Configurator (v5.3.0 or later), or projects created using the Smart Configurator (v5.3.0 or

later). This adds the module and project include paths.

2. Using e2studio File>Import>General>Archive File from the project context menu.

3. Unzipping the .zip file into the project directory directly from Windows.

When using methods 2or 3, the include paths must be manually added to the project. This is done in e2studio from the

project context menu by selecting Properties>C/C++ Build>Settings and selecting Compiler>Source in the ToolSettings

tab. The green “+” sign in the box to the right is used to pop a dialog box to add the include paths. In that box, click on

the Workspace button and select the directories needed from the project tree structure displayed. The directories needed

for this module are:

 ${workspace_loc:/${ProjName}/r_flash_rx

 ${workspace_loc:/${ProjName}/r_flash_rx/src

 ${workspace_loc:/${ProjName}/r_flash_rx/src/targets

 ${workspace_loc:/${ProjName}/r_flash_rx/src/flash_type_1

 ${workspace_loc:/${ProjName}/r_flash_rx/src/flash_type_2

 ${workspace_loc:/${ProjName}/r_flash_rx/src/flash_type_3

 ${workspace_loc:/${ProjName}/r_flash_rx/src/flash_type_4

 ${workspace_loc:/${ProjName}/r_config

2.12.2 Setting driver and FIT BSP use options

The flash-specific options are found and edited in \r_config\r_flash_rx_config.h.

A reference copy (not for editing) containing the default values for this file is stored in

\r_flash_rx\ref\r_flash_rx_config_reference.h.

If you are building your application with the FIT BSP, nothing else is required.

If you are building your application without using the FIT BSP, the user must:

COPY \r_flash_rx\src\targets\<mcu>\r_mcu_config_reference.h

TO \r_config\r_mcu_config_reference.h, then

RENAME to \r_config\r_mcu_config.h

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 11 of 39

Nov 1, 2017

Next, set FLASH_CFG_USE_FIT_BSP to 0 in r_flash_rx_config.h. Additionally, change the clock speeds and memory

size value in r_mcu_config.h if needed.

Any application file which calls an API function should include the interface file “r_flash_rx_if.h” (which in turn

includes “r_flash_rx_config.h” and indirectly “r_mcu_config.h” if needed). This file contains the API function

declarations and all structures and enumerations necessary to use the module.

2.12.3 Project generated files (no FIT BSP)

If you are using the project generator, and your application will use flash interrupts, you will need to comment out the

generated ISR templates. Specifically, comment out:

src\vect.h:

#pragma interrupt (Excep_FCUIF_FRDYI(vect=23))

#pragma interrupt (Excep_FCUIF_FIFERR(vect=21))

src\interrupt_handlers.c

void Excep_FCUIF_FRDYI(void){ }

void Excep_FCUIF_FIFERR(void){ }

2.12.4 Migrating from version 1.x to version 2.x

To migrate from version 1.x to 2.x when using the FIT BSP, after installing the new source tree, a single file must be

copied and renamed:

COPY \r_flash_rx\src\targets\<mcu>\r_mcu_config_reference.h

TO \r_config\r_mcu_config_reference.h, then

RENAME to \r_config\r_mcu_config.h

No other action is required.

2.12.5 Migrating from version 2.x to version 3.20

To migrate from version 2.x to 3.20 when using the FIT BSP, after installing the new source tree, the file

“r_config\r_mcu_config.h” should be removed.

To migrate from version 2.x to 3.20 when not using the FIT BSP, after installing the new source tree, the

“r_mcu_config_reference.h” file still needs to be copied and renamed:

COPY \r_flash_rx\src\targets\<mcu>\r_mcu_config_reference.h

TO \r_config\r_mcu_config_reference.h, then

RENAME to \r_config\r_mcu_config.h

This will overwrite the previous “r_mcu_config.h” file. No other action is required.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 12 of 39

Nov 1, 2017

2.13 Programming Code Flash from RAM

MCUs require that sections in RAM and ROM be created to hold the API functions for reprogramming ROM. This is

required because the sequencer (with some exceptions in Type 3) cannot program or erase ROM while executing from

ROM. The RAM section will need to be initialized after reset.

In order to enable ROM reprogramming, configure the FLASH_CFG_CODE_FLASH_ENABLE to 1 in the

r_flash_rx_config.h file. Note that this is only for ROM programming. Please follow the steps below when

programming or erasing ROM:

Example when configuring in e2studio:

The process of setting up the linker sections and mapping ROM to RAM needs to be done in e2 studio as listed below.

1. Add a new section titled ‘RPFRAM’ in a RAM area

2. Add a new section titled ‘PFRAM’ in a ROM area.

NOTE: Depending upon the e2studio version you are using, there will be a section called

P or P*. If it is P*, then there is no need to specify a separate PFRAM section.

If you are using e2studio v6.0.0 or later, the table does not appear by default. To make

the table appear, click the “…” button to the right of the “Sections” entry.

3. Add the linker option to map the ROM section (PFRAM) address to the RAM section address (RPFRAM) by

adding ‘PFRAM=RPFRAM’ to the linker Output options as seen below. This is done using the Linker -> Output

section of the Tool Settings in e2Studio prior to v6.0.0.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 13 of 39

Nov 1, 2017

If you are using e2studio v6.0.0 or later, add ‘PFRAM=RPFRAM’ via Linker -> Section

-> Symbol file.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 14 of 39

Nov 1, 2017

4. The linker is now setup to correctly allocate the appropriate API code to RAM. The operation to copy code from

ROM to RAM is done automatically upon calling the R_FLASH_Open() function. If this is not done before the

API functions are called, then the MCU will jump to uninitialized RAM.

5. The interrupt callback functions and the code which operate on ROM should be enclosed within the FRAM section.

#pragma section FRAM

/* functions to operate on ROM (and interrupt callbacks) goes here */

#pragma

2.14 Programming Code Flash from ROM

For flash type 3 and RX65N-2M, with certain limitations ROM can be programmed while running from ROM.

Basically ROM is broken into two segments. Code can run from one segment and erase/write operations can be

performed on the other. The size of these segments vary based upon the amount of ROM on the MCU. See Table 63.18

in the RX64M and RX71M Hardware Manuals for boundary details. For the RX65N-2M group, the boundaries

correspond to bank boundaries.

When this method is used, set FLASH_CFG_CODE_FLASH_ENABLE and

FLASH_CFG_CODE_FLASH_RUN_FROM_ROM to 1 in the r_flash_rx_config.h file.

FLASH_CFG_CODE_FLASH_BGO (functions do not block/wait for completion) may be set to 0 or 1, but must match

the setting for data flash BGO.

Be sure not set up the linker as just described in section 2.13, but do guarantee that the region the code is running from

is not the region being operated on!

2.15 Operations in BGO Mode

Historically, Background Operation (BGO) mode refers to the non-blocking mode of the driver- the ability to execute

instructions from RAM while a code flash operation is running in the background. For Flash Type 3 and RX65N-2M

devices, the hardware manual redefines BGO as the ability to program one region of code flash while executing from

another region as discussed in section 2.14.

The #defines in r_flash_config.h use the historical definition of BGO as to whether or not to use interrupts or to perform

blocking. For Flash Type 3 and RX65N-2M devices, the new “BGO” feature is indicated with the equate

FLASH_CFG_CODE_FLASH_RUN_FROM_ROM.

When operating in BGO mode, API function calls do not block and return immediately. The user should not access the

flash area being operated on until the operation has finished. If the area is accessed during an operation, the sequencer

will go into an error state and the operation will fail.

The completion of the operation is indicated by the FRDYI interrupt. The completion of processing is checked in the

FRDYI interrupt handler and the callback function is called. To register the callback function (non-Flash Type 2), call

the R_FLASH_Control function with the FLASH_CMD_SET_BGO_CALLBACK command. The callback function is

passed an event to indicate the completion status. Instead of passing an event to a single callback function, Flash Type 2

has predefined callback functions for each event:

 FlashEraseDone(void)

 FlashBlankCheckDone(result)

 FlashWriteDone(void)

 FlashError(void)

When reprogramming ROM, the relocatable vector table and associated interrupts must be relocated to an area other

than ROM in advance (exception- Flash Type 3 and RX65N-2M usage as explained in section 2.14).

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 15 of 39

Nov 1, 2017

2.16 Dual Bank Operation

The RX65N-2M Group can operate in two modes- linear and dual bank. Linear mode is the standard mode where a

single application runs out of code flash. Dual bank mode allows two applications to be loaded into code flash

simultaneously. The application loaded into the upper half of code flash (the part which contains the fixed vector table)

is the application that runs. Applications can be swapped at runtime using the command

R_FLASH_Control(FLASH_CMD_BANK_TOGGLE). Note that the swap does not take effect until the next MCU

reset.

When developing these applications, two constants in bsp_config.h must be modified:

BSP_CFG_CODE_FLASH_BANK_MODE 0 // set to 0 for dual mode (not default)

BSP_CFG_CODE_FLASH_START_BANK 1 // different value for each application

The mode constant should be set to 0 in both applications. The start bank should be set to 1 in one application and 0 in

the other. Either bank can actually be the boot bank. The bank that is booted from is selected in the debug configuration.

In the above example, the application built with BSP_CFG_CODE_FLASH_START_BANK set to 1 will be the

application that is executed at reset.

As mentioned in Section 2.14, the flash driver can erase and program code flash in the other bank without running from

RAM (set FLASH_CFG_CODE_FLASH_RUN_FROM_ROM to 1 in r_flash_config.h). However, the code that

handles swapping of the banks must execute from RAM. To accomplish this, add the section RPFRAM2 to the linker

section table and linker mapped output as follows:

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 16 of 39

Nov 1, 2017

Note: For e2studio v6.0.0 or later, a “…” button appears at the top right which must be pressed to display the section

table as shown in this earlier release.

Note: For e2studio v6.0.0 or later, “ROM to RAM mapped section” is in Linker->Section->Symbol file,

not Linker->Output

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 17 of 39

Nov 1, 2017

To have the emulator also download the application built with BSP_CFG_CODE_FLASH_START_BANK set to 0, it

must be added to the startup tab as shown below.

Note that the offset for the second application should always be FFF00000 for a 2Mb part. This is two’s compliment for

-1M (not a starting address). This means that the application will be loaded into memory 1Mb lower than the values

shown in the linker or map file. But after the banks are swapped, the addresses in memory will match those that are

executing.

Currently, e2studio can only maintain one debug symbol table at a time. Therefore, only one of the applications should

have “Image and Symbols” selected for the load type. Whenever the debug session is paused, e2studio will always use

this symbol table for displaying source code and variables. Note that this may not even be correct for the application

that was running. Because of this, it is recommended that the user uses an LED to indicate which application is running,

and therefore know when the program is paused whether or not the source code displayed matches the executing code.

This limitation should only be a minor inconvenience when you consider that the applications can be fully debugged

independently first, and that the symbol table loaded can be easily changed when desired.

2.17 Usage Notes

2.17.1 Data Flash Operations in BGO Mode

When reprogramming data flash in BGO/non-blocking mode, ROM, RAM, and external memory can still be accessed.

Care should be taken to make sure that the data flash is not accessed during data flash operations. This includes

interrupts that may access the data flash.

2.17.2 ROM Operations in BGO Mode

When reprogramming ROM in BGO/non-blocking mode, external memory and RAM can still be accessed. Since the

flash API functions will return before the ROM operation has finished, the code that calls the API function will need to

be in RAM, and the code will need to check for completion before issuing another Flash command. Note that this

includes setting the code flash access window, swapping boot blocks/toggling startup area flag, erasing code flash,

writing code flash, as well as reading the Unique ID with another FIT Module (R01AN2191EJ).

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 18 of 39

Nov 1, 2017

2.17.3 ROM Operations and General Interrupts

ROM or data flash areas cannot be accessed while a flash operation is on-going for that particular memory area. This

means that the relocatable vector table will need to be taken care of when allowing interrupts to occur during flash

operations.

The vector table is placed in ROM by default. If an interrupt occurs during ROM operation, then ROM will be accessed

to fetch the interrupt’s starting address and an error will occur. To fix this situation the user will need to relocate the

vector table and any interrupt handlers that may occur outside of ROM. The user will also need to change the interrupt

table register (INTB).

The module does not include the function to relocate the vector table and the interrupt handler. Please consider an

appropriate method to relocate them according to the user system.

2.17.4 Emulator Debug Configuration

As a safety feature, the emulator prohibits modification of code and data flash by the application. To use this driver,

writing must be enabled. This is accomplished by changing the Debug Tool Settings in the debug configuration as

follows:

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 19 of 39

Nov 1, 2017

3. API Functions

3.1 Summary

The following functions are included in this design:

Function Description

R_FLASH_Open() Initializes the Flash FIT module.

R_FLASH_Close() Closes the Flash FIT module.

R_FLASH_Erase() Erases the specified block of ROM or data flash.

R_FLASH_BlankCheck() Checks if the specified data flash or ROM area is blank.

R_FLASH_Write() Write data to ROM or data flash.

R_FLASH_Control() Configures settings for the status check, area protection, and switching areas for start-up

program protection.

R_FLASH_GetVersion() Returns the current version of this FIT module.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 20 of 39

Nov 1, 2017

3.2 R_FLASH_Open

The function initializes the Flash FIT module. This function must be called before calling any other API functions.

Format
flash_err_t R_FLASH_Open(void);

Parameters
None

Return Values
FLASH_SUCCESS: Flash FIT module initialized successfully

FLASH_ERR_BUSY: Another flash operation in progress, try again later

FLASH_ERR_ALREADY_OPEN: Open() called twice without an intermediate Close()

Properties
Prototyped in file “r_flash_rx_if.h”

Description
This function initializes the Flash FIT module, and if FLASH_CFG_CODE_FLASH_ENABLE is 1, copies the API

functions necessary for ROM erasing/reprogramming into RAM (not including vector table). Note that this function

must be called before any other API function.

Reentrant
No.

Example
flash_err_t err;

/* Initialize the API. */

err = R_FLASH_Open();

/* Check for errors. */

if (FLASH_SUCCESS != err)

{

 . . .
}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 21 of 39

Nov 1, 2017

3.3 R_FLASH_Close

The function closes the Flash FIT module.

Format
flash_err_t R_FLASH_Close(void);

Parameters
None

Return Values
FLASH_SUCCESS: Flash FIT module closed successfully

FLASH_ERR_BUSY: Another flash operation in progress, try again later

Properties
Prototyped in file “r_flash_rx_if.h”

Description
This function closes the Flash FIT module. It disables the flash interrupts (if enabled) and sets the driver to an

uninitialized state. This function is only required when the VEE (Virtual EEPROM) driver will be used. In that case, the

flash driver must be closed (or never opened) prior to calling R_VEE_Open().

Reentrant
No.

Example
flash_err_t err;

/* Close the driver */

err = R_FLASH_Close();

/* Check for error */

if (FLASH_SUCCESS != err)

{

 . . .
}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 22 of 39

Nov 1, 2017

3.4 R_FLASH_Erase

This function is used to erase the specified block in ROM or data flash.

Format
flash_err_t R_FLASH_Erase(flash_block_address_t block_start_address,

 uint32_t num_blocks);

Parameters
block_start_address

Specifies the start address of block to erase. The enum flash_block_address_t is defined in the corresponding

MCU’s r_flash_rx\src\targets\mcu\r_flash_mcu.h file. The blocks are labeled in the same fashion as they are in

the device’s Hardware Manual. For example, the block located at address 0xFFFFC000 is called Block 7 in the

RX113 hardware manual, therefore “FLASH_CF_BLOCK_7” should be passed for this parameter. Similarly,

to erase Data Flash Block 0 which is located at address 0x00100000, this argument should be

FLASH_DF_BLOCK_0.

num_blocks

Specifies the number of blocks to be erased. For type 1 parts, address + num_blocks cannot cross a 256K

boundary.

Return Values
FLASH_SUCCESS: Operation successful (if BGO mode is enabled, this

 means the operation was started successfully)

FLASH_ERR_BLOCKS: Invalid number of blocks specified

FLASH_ERR_ADDRESS: Invalid address specified

FLASH_ERR_BUSY: Another flash operation in progress, or the module is not

 initialized

FLASH_ERR_FAILURE: Erasing failure. Sequencer has been reset. Or callback

 function not registered (if BGO/poling mode is enabled)

Properties
Prototyped in file “r_flash_rx_if.h”

Description
Erases a contiguous number of ROM or data flash memory blocks.

The block size varies depending on MCU types. For example, on the RX111 both code and data flash block sizes are

1Kbytes. On the RX231 and RX23T the block size for ROM is 2 Kbytes and for data flash is 1Kbyte (no data flash on

the RX23T). The equates FLASH_CF_BLOCK_SIZE for ROM and FLASH_DF_BLOCK_SIZE for data flash are

provided for these values.

The enum flash_block_address_t is configured at compile time based on the memory configuration of the MCU device

specified in the r_bsp module.

When the API is used in BGO/non-blocking mode, the FRDYI interrupt occurs after blocks for the specified number

are erased, and then the callback function is called.

Reentrant
No.

Example
flash_err_t err;

/* Erase Data Flash blocks 0 and 1 */

err = R_FLASH_Erase(FLASH_DF_BLOCK_0, 2);

/* Check for errors. */

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 23 of 39

Nov 1, 2017

if (FLASH_SUCCESS != err)

{

 . . .

}

Special Notes:
 In order to erase a ROM block, the area to be erased needs to be in a rewritable area. FLASH_TYPE_1 uses

access windows to identify this. The other flash types use lock bits which must be off for erasing.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 24 of 39

Nov 1, 2017

3.5 R_FLASH_BlankCheck

This function is used to determine if the specified area in either ROM or data flash is blank or not.

Format
uint8_t R_FLASH_BlankCheck(uint32_t address,

 uint32_t num_bytes,

 flash_res_t *blank_check_result);

Parameters
address

The address of the area to blank check. MCUs may support this feature on data flash, code flash, both, or

neither.

num_bytes

For flash types 1, 3, and 4, this is the number of bytes to be checked. The number of bytes specified must be a

multiple of FLASH_DF_MIN_PGM_SIZE for a data flash address or FLASH_CF_MIN_PGM_SIZE for a

code flash address. These equates are defined in r_flash_rx\src\targets\<mcu>\r_flash_<mcu>.h and are MCU

specific. For type 1 parts, address + num_bytes cannot cross a 256K boundary.

For flash type 2, num_bytes must be either BLANK_CHECK_SMALLEST or

BLANK_CHECK_ENTIRE_BLOCK. These values are used to be compatible with legacy Simple Flash API

code. BLANK_CHECK_SMALLEST denotes that FLASH_DF_MIN_PGM_SIZE will be checked.

*blank_check_result

Pointer that will be populated by the API with the results of the blank check operation in blocking (non-BGO)

mode

Return Values
FLASH_SUCCESS: Operation successful (in BGO mode,

 this means the operation was started successfully)

FLASH_ERR_FAILURE: Blank check Failed. Sequencer has been reset, or callback

 function not registered (if BGO mode is enabled with flash

 interrupt support)

FLASH_ERR_BUSY: Another flash operation in progress or the module is not

 initialized

FLASH_ERR_BYTES: num_bytes was either too large or not a multiple of the

 minimum programming size or exceed the maximum range

FLASH_ERR_ADDRESS: Invalid address was input or address not divisible by the

 minimum programming size

Properties
Prototyped in file “r_flash_rx_if.h”

Description
The result of the blank check operation is placed into blank_check_result when operating in blocking mode. This

variable is of type flash_res_t which is defined in r_flash_rx_if.h. If the API is used in BGO/non-blocking mode, after

the blank check is complete, the result of the blank check is passed as the argument of the callback function.

Reentrant
No.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 25 of 39

Nov 1, 2017

Example: Flash Types 1, 3, and 4
Second argument is number of bytes to check (must be multiple of FLASH_DF_MIN_PGM_SIZE).

flash_err_t err;

flash_res_t result;

/* Blank check first 64 bytes of data flash block 0 */

err = R_FLASH_BlankCheck((uint32_t)FLASH_DF_BLOCK_0, 64, &result);

if (err != FLASH_SUCCESS)

{

 /* handle error */

}

else

{

 /* Check result. */

 if (FLASH_RES_NOT_BLANK == result)

 {

 /* Block is not blank. */

 . . .

 }

 else if (FLASH_RES_BLANK == ret)

 {

 /* Block is blank. */

 . . .

 }

}

Example: Flash Type 2
Second argument must be BLANK_CHECK_SMALLEST (checks FLASH_DF_MIN_PGM_SIZE bytes) or

BLANK_CHECK_ENTIRE_BLOCK.

flash_err_t err;

flash_res_t result;

/* Blank check all of data flash block 0 */

err = R_FLASH_BlankCheck((uint32_t)FLASH_DF_BLOCK_0,

 BLANKCHECK_ENTIRE_BLOCK, &result);

if (err != FLASH_SUCCESS)

{

 /* handle error */

}

else

{

 /* Check result. */

 if (FLASH_RES_NOT_BLANK == result)

 {

 /* Block is not blank. */

 . . .

 }

 else if (FLASH_RES_BLANK == ret)

 {

 /* Block is blank. */

 . . .

 }

}

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 26 of 39

Nov 1, 2017

3.6 R_FLASH_Write

This function is used to write data to ROM or data flash.

Format
flash_err_t R_FLASH_Write(uint32_t src_address,

 uint32_t dest_address,

 uint32_t num_bytes);

Parameters
src_address

This is a pointer to the buffer containing the data to write to Flash.

dest_address

This is a pointer to the ROM or data flash area to write. The address specified must be divisible by the

minimum programming size. See Description below for important restrictions regarding this parameter.

num_bytes

 The number of bytes contained in the buffer specified with src_address. This number must be a multiple of the

minimum programming size for memory area you are writing to.

Return Values
FLASH_SUCCESS: Operation successful (in BGO/non-blocking mode,

 this means the operation was started successfully)

FLASH_ERR_FAILURE: Programming failed. Possibly the destination address under

 access window or lockbit control; or callback function

 not present(BGO mode with flash interrupt support)

FLASH_ERR_BUSY: Another flash operation in progress or the module not

 initialized

FLASH_ERR_BYTES: Number of bytes provided was not a multiple of the minimum

 programming size or exceed the maximum range

FLASH_ERR_ADDRESS: Invalid address was input or address not divisible by the

 minimum programming size.

Properties
Prototyped in file “r_flash_rx_if.h”

Description
Writes data to flash memory. Before writing to any flash area, the area must already be erased.

When performing a write the user must make sure to start the write on an address divisible by the minimum

programming size and make the number of bytes to write be a multiple of the minimum programming size. The

minimum programming size differs depending on what MCU package is being used and whether the ROM or data flash

is being written to.

An area to write data to ROM must be rewritable area (access window or lockbit allowed).

When the API is used in BGO/non-blocking mode, the callback function is called when all write operations are

complete.

Reentrant
No.

Example
flash_err_t err;

uint8_t write_buffer[16] = “Hello World...”;

/* Write data to internal memory. */

err = R_FLASH_Write((uint32_t)write_buffer, dst_addr, sizeof(write_buffer));

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 27 of 39

Nov 1, 2017

/* Check for errors. */

if (FLASH_SUCCESS != err)

{

 . . .

}

Special Notes:
 FLASH_DF_MIN_PGM_SIZE defines the minimum data flash program size.

 FLASH_CF_MIN_PGM_SIZE defines the minimum ROM (code flash) program size.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 28 of 39

Nov 1, 2017

3.7 R_FLASH_Control

This function implements all non-core functionality of the sequencer.

Format
flash_err_t R_FLASH_Control(flash_cmd_t cmd

 void *pcfg);

Parameters
cmd

Command to execute.

*pcfg

Configuration parameters required by the specific command. This maybe NULL if the command does not

require it.

Return Values
FLASH_SUCCESS: Operation successful (in BGO mode,

 this means the operations was started successfully)

FLASH_ERR_BYTES: Number of blocks exceeds max range

FLASH_ERR_ADDRESS: Address is an invalid Code/Data Flash block start

 address

FLASH_ERR_NULL_PTR: pcfg was NULL for a command that expects a configuration

 structure

FLASH_ERR_BUSY: Another flash operation in progress or API not

 initialized

FLASH_ERR_LOCKED: The flash control circuit was in a command locked state

 and was reset

FLASH_ERR_ACCESSW: Access window error: Incorrect area specified

FLASH_ERR_PARAM: Invalid command

Properties
Prototyped in file “r_flash_rx_if.h”

Description
This function is an expansion function that implements non-core functionality of the sequencer. Depending on the

command type a different argument type has to be passed.

Command Argument Operation

Flash type 1,2,3,4

FLASH_CMD_RESET

NULL Resets the flash sequencer. This

may or may not wait for the

current flash operation to

complete (operation dependent).

Flash type 1,2,3,4

FLASH_CMD_STATUS_GET

NULL Returns the status of the API

(Busy or Idle).

Flash type 1,3,4

FLASH_CMD_SET_BGO_CALLBACK

flash_interrupt_config_t * Registers the callback function.

Flash type 1,4

FLASH_CMD_ACCESSWINDOW_GET

flash_access_window_config_t * Returns the access window

boundaries for ROM.

Flash type 1,2,4

FLASH_CMD_ACCESSWINDOW_SET

flash_access_window_config_t *

(different structure for flash

types)

Specifies the access window

boundaries for ROM (types 1,4)

or the data flash read/write block

enable masks (type 2). Types 1

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 29 of 39

Nov 1, 2017

& 4 use callback function in

BGO/non-blocking mode.**

Flash type 1,4

FLASH_CMD_SWAPFLAG_GET

uint32_t * Loads the flag indicating the

designated boot block startup

area (SASMF type 1, BTFLG

type 4).

Flash type 1,4

FLASH_CMD_SWAPFLAG_TOGGLE

NULL Toggles the flag indicating the

designated boot block start-up

area. Boot block swap takes

effect at next reset. Uses

callback function in BGO/non-

blocking mode.**

Flash type 1,4

FLASH_CMD_SWAPSTATE_GET

uint8_t * Loads the flags

(FLASH_SAS_xxx values)

indicating temporary boot block

startup area.

Flash type 1,4

FLASH_CMD_SWAPSTATE_SET

uint8_t * Sets the flags

(FLASH_SAS_xxx values)

indicating the temporary boot

block startup area. The value of

SWAPFLAG still indicates boot

block area used at next reset.

Flash type 2

FLASH_CMD_LOCKBIT_PROTECTION

flash_lockbit_enable_t * Setting argument to “false”

allows erasing/writing of blocks

with lockbit set.

Setting argument to “true”

prohibits erasing/writing of

blocks with lockbit set.

NOTE: Erasing a block clears

the lockbit.

Flash type 2

FLASH_CMD_LOCKBIT_PROGRAM

flash_program_lockbit_config_t * Sets lockbit for block whose

address is provided as argument.

Flash type 2, 3

FLASH_CMD_LOCKBIT_READ

2) flash_read_lockbit_config_t *

3) flash_lockbit_config_t *

Type 2: Loads argument with

FLASH_LOCKBIT_SET or

FLASH_LOCKBIT_NOT_SET

for block address provided.

Type 3: Loads argument with

FLASH_RES_LOCKBIT_STA

TE_PROTECTED or

FLASH_RES_LOCKBIT_STA

TE_NON_PROTECTED for

block address provided. Type 3

uses callback function in

BGO/non-blocking mode.

Flash type 3

FLASH_CMD_LOCKBIT_WRITE

flash_lockbit_config_t * Sets the lockbit for the number

of blocks specified starting with

the block address provided. Uses

callback function in BGO/non-

blocking mode.

Flash type 3

FLASH_CMD_LOCKBIT_ENABLE

NULL Prohibits erasing/writing of

blocks with lockbit set.

Flash type 3

FLASH_CMD_LOCKBIT_DISABLE

NULL Allows erasing/writing of blocks

with lockbit set. NOTE: Erasing

a block clears the lockbit.

Flash type 3,4

FLASH_CMD_CONFIG_CLOCK

uint32_t * Speed in Hz that FCLK is

running at. Only needs to be

called if clock speed changes at

run time.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 30 of 39

Nov 1, 2017

RX24T, RX24U, RX65x

FLASH_CMD_ROM_CACHE_ENABLE

NULL

Enables caching of ROM

(invalidates cache first).

RX24T, RX24U, RX65x

FLASH_CMD_ROM_CACHE_DISABLE

NULL Disables caching of ROM. Call

before rewriting ROM.

RX24T, RX24U, RX65x

FLASH_CMD_ROM_CACHE_STATUS

uint8_t * Sets the value to 1 if caching is

enabled; 0 if disabled.

RX65N-2M

FLASH_CMD_BANK_TOGGLE

NULL Swaps startup bank. Becomes

effective at next reset. Uses

callback function in BGO/non-

blocking mode.**

RX65N-2M

FLASH_CMD_BANK_GET

flash_bank_t * Loads the current BANKSEL

value (bank and address

effective at next reset).

**These commands will block until completed even when in BGO (interrupt) mode. This is necessary while flash

reconfigures itself. The callback function will still be called upon completion in BGO mode.

Reentrant
No, except for the FLASH_CMD_RESET command which can be executed at any time.

Example 1: Polling in BGO mode
To spin in a loop while waiting for a flash operation to complete and doing nothing else is functionally the same as

operating in normal blocking mode. BGO mode is used when other processing must be performed while waiting for a

flash operation to complete.

 flash_err_t err;

 /* erase all of data flash */

 R_FLASH_Erase(FLASH_DF_BLOCK_0, FLASH_NUM_BLOCKS_DF);

 /* wait for operation to complete */

 while (R_FLASH_Control(FLASH_CMD_STATUS_GET, NULL) == FLASH_ERR_BUSY)

 {

 /* do critical system checks here */

 }

Example 2: Setting up BGO mode with interrupt support on flash types 1, 3 and 4.
BGO/non-blocking mode is enabled when FLASH_CFG_DATA_FLASH_BGO equals 1 or

FLASH_CFG_CODE_FLASH_BGO equals 1. When reprogramming ROM, relocate the relocatable vector table to

RAM. Also, the callback function must be registered prior to write/erase/blank check calls.

void func(void)

{

 flash_err_t err;

 flash_interrupt_config_t cb_func_info;

 uint32_t *pvect_table;

 /* Relocate the Relocatable Vector Table in RAM */

 /* It is also possible to set the address of the flash ready interrupt

 function directly to ram_vect_table[23]. Please consider the method

 according to the user's system.*/

 pvect_table = (uint32_t *)__sectop("C$VECT");

 ram_vect_table[23] = pvect_table[23]; /* FRDYI Interrupt function Copy */

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 31 of 39

Nov 1, 2017

 set_intb((void *)ram_vect_table);

 /* Initialize the API. */

 err = R_FLASH_Open();

 /* Check for errors. */

 if (FLASH_SUCCESS != err)

 {

 ...(omission)

 }

 /* Set callback function and interrupt priority */

 cb_func_info.pcallback = u_cb_function;

 cb_func_info.int_priority = 1;

 err = R_FLASH_Control(FLASH_CMD_SET_BGO_CALLBACK,(void *)&cb_func_info);

 if (FLASH_SUCCESS != err)

 {

 printf("Control FLASH_CMD_SET_BGO_CALLBACK command failure.");

 }

 /* Perform operations on ROM */

 do_rom_operations();

 ... (omission)

}

#pragma section FRAM

void u_cb_function(void *event) /* callback function */

{

 flash_int_cb_args_t *ready_event = event;

 /* Perform ISR callback functionality here */

}

void do_rom_operations(void)

{

 /* Set cf access window, toggle startup area flag/swap boot blocks,

 erase, blank check, or write ROM here */

 ... (omission)

}

#pragma section

Example 3: Get range of current access window
flash_err_t err;

flash_access_window_config_t access_info;

err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_GET, (void *)&access_info);

if (FLASH_SUCCESS != err)

{

 printf("Control FLASH_CMD_ACCESSWINDOW_GET command failure.");

}

Example 4: Set access window code flash (flash types 1 and 4)
The area protection is used to prevent unauthorized programming or erasure of ROM blocks. The following example

makes only block 3 writeable (and everything else is not writeable).

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 32 of 39

Nov 1, 2017

flash_err_t err;

flash_access_window_config_t access_info;

/* Allow write to Code Flash block 3 */

access_info.start_addr = (uint32_t) FLASH_CF_BLOCK_3;

access_info.end_addr = (uint32_t) FLASH_CF_BLOCK_2;

err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_SET, (void *)&access_info);

if (FLASH_SUCCESS != err)

{

 printf("Control FLASH_CMD_ACCESSWINDOW_SET command failure.");

}

Example 5: Set access window data flash (flash type 2)
The area protection is used to prevent unauthorized reading, programming or erasure of data flash blocks. The

following example allows only blocks 64-127 to be read/writeable on an RX63N.

flash_err_t err;

flash_access_window_config_t df_access;

/* Map of access window bits to data flash blocks

 * RX62* RX63* RX21*

 * b0 0 0-63 0-15

 * b1 1 64-127 16-31

 * b2 2 128-191 32-47

 * b3 3 192-255 48-63

 * b4 4 256-319

 * b5 5 320-383

 * b6 6 384-447

 * b7 7 448-511

 * b8 8 512-575

 * b9 9 576-639

 * b10 10 640-703

 * b11 11 704-767

 * b12 12 768-831

 * b13 13 832-895

 * b14 14 896-959

 * b15 15 960-1023

 */

/* Allow reads and writes to Data Flash blocks 64-127 on an RX63N */

df_access.read_en_mask = 0x0002;

df_access.write_en_mask = 0x0002;

err = R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_SET, (void *)&df_access);

if (FLASH_SUCCESS != err)

{

 printf("Control FLASH_CMD_ACCESSWINDOW_SET command failure.");

}

Example 6: Get value of active startup area
The following example shows how to read the value of the start-up area setting monitor flag (FSCMR.SASMF).

uint32_t swap_flag;

flash_err_t err;

err = R_FLASH_Control(FLASH_CMD_SWAPFLAG_GET, (void *)&swap_flag);

if (FLASH_SUCCESS != err)

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 33 of 39

Nov 1, 2017

{

 printf("Control FLASH_CMD_SWAPFLAG_GET command failure.");

}

Example 7: Swap active startup area
The following example shows how to toggle the active start-up program area. Swap the area with the function placed in

RAM. After the area has been swapped, reset the MCU without returning to ROM.

flash_err_t err;

/* Swap the active area from Default to Alternate or vice versa. */

err = R_FLASH_Control(FLASH_CMD_SWAPFLAG_TOGGLE, FIT_NO_PTR);

if(FLASH_SUCCESS != err)

{

 printf("Control FLASH_CMD_SWAPFLAG_TOGGLE command failure.");

}

Example 8: Get value of startup area select bit
The example below shows how to read the current value in the start-up area select bit (FISR.SAS).

uint8_t swap_area;

flash_err_t err;

err = R_FLASH_Control(FLASH_CMD_SWAPSTATE_GET, (void *)&swap_area);

if (FLASH_SUCCESS != err)

{

 printf("Control FLASH_CMD_SWAPSTATE_GET command failure.");

}

Example 9: Set value of startup area select bit
The example below shows how to set the value to the start-up area select bit (FISR.SAS) for the start-up

program area. Swap the area with the function placed in RAM. After a reset, the area will be the one specified

with FLASH_SAS_EXTRA.

uint8_t swap_area;

flash_err_t err;

swap_area = FLASH_SAS_SWITCH_AREA;

err = R_FLASH_Control(FLASH_CMD_SWAPSTATE_SET, (void *)&swap_area);

if (FLASH_SUCCESS != err)

{

 printf("Control FLASH_CMD_SWAPSTATE_SET command failure.");

}

Example 10: Using ROM cache
The example below shows cache command usage when rewriting ROM.

uint8_t status;

/* Enable caching towards beginning of application */

R_FLASH_Control(FLASH_CMD_ROM_CACHE_ENABLE, NULL);

/* Put main code here; optionally verify that flash is enabled */

R_FLASH_Control(FLASH_CMD_ROM_CACHE_STATUS, &status);

if (status != 1)

{

 // should never happen

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 34 of 39

Nov 1, 2017

}

/* Prepare to rewrite ROM */

R_FLASH_Control(FLASH_CMD_ROM_CACHE_DISABLE, NULL);

/* Erase, write, and verify new ROM code here */

/* Re-enable caching */

R_FLASH_Control(FLASH_CMD_ROM_CACHE_ENABLE, NULL);

Special Notes:
None

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 35 of 39

Nov 1, 2017

3.8 R_FLASH_GetVersion

Returns the current version of the Flash FIT module.

Format
uint32_t R_FLASH_GetVersion(void);

Parameters
None.

Return Values
Version of the Flash FIT module.

Properties
Prototyped in file “r_flash_rx_if.h”

Description
This function will return the version of the currently installed Flash API. The version number is encoded where the top

2 bytes are the major version number and the bottom 2 bytes are the minor version number. For example, Version 4.25

would be returned as 0x00040019.

Reentrant
Yes.

Example
uint32_t cur_version;

/* Get version of installed Flash API. */

cur_version = R_FLASH_GetVersion();

/* Check to make sure version is new enough for this application’s use. */

if (MIN_VERSION > cur_version)

{

 /* This Flash API version is not new enough and does not have XXX feature

 that is needed by this application. Alert user. */

 ...

}

Special Notes:
This function is specified to be an inline function.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 36 of 39

Nov 1, 2017

4. Demo Projects

Demo projects are complete stand-alone programs. They include function main() that utilizes the module and its

dependent modules (e.g. r_bsp). The standard naming convention for the demo project is <module>_demo_<board>

where <module> is the peripheral acronym (e.g. s12ad, cmt, sci) and the <board> is the standard RSK (e.g. rskrx113).

For example, s12ad FIT module demo project for RSKRX113 will be named as s12ad_demo_rskrx113. Similarly the

exported .zip file will be <module>_demo_<board>.zip. For the same example, the zipped export/import file will be

named as s12ad_demo_rskrx113.zip

4.1 flash_demo_rskrx113

This is a simple demo for the RSKRX113 starter kit. The demo uses the r_flash_rx API with blocking functionality to

erase, blank check, and write data flash and code flash. Each write function is verified with a read-back of data. Note

the “pragma section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project

Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution

1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported

RSKRX113

4.2 flash_demo_rskrx231

This is a simple demo for the RSKRX231 starter kit. The demo uses the r_flash_rx API with blocking functionality to

erase, blank check, and write data flash and code flash. Each write function is verified with a read-back of data. Note

the “pragma section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project

Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution

1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported

RSKRX231

4.3 flash_demo_rskrx23T

This is a simple demo for the RSKRX23T starter kit. The demo uses the r_flash_rx API with blocking functionality to

erase, blank check, and write code flash. Each write function is verified with a read-back of data. Note the “pragma

section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project Properties-

>C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution

1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported

RSKRX23T

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 37 of 39

Nov 1, 2017

4.4 flash_demo_rskrx130

This is a simple demo for the RSKRX130 starter kit. The demo uses the r_flash_rx API with blocking functionality to

erase, blank check, and write data flash and code flash. Each write function is verified with a read-back of data. Note

the “pragma section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project

Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution

1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported

RSKRX130

4.5 flash_demo_rskrx24T

This is a simple demo for the RSKRX24Tstarter kit. The demo uses the r_flash_rx API with blocking functionality to

erase, blank check, and write data flash and code flash. Each write function is verified with a read-back of data. Note

the “pragma section FRAM” for writing to code flash and the corresponding section definitions in the linker (see project

Properties->C/C++ Build ->Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution

1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported

RSKRX24T

4.6 flash_demo_rskrx65N

This is a simple demo for the RSKRX65N starter kit. The demo uses the r_flash_rx API with blocking functionality to

erase and write code flash. Each write function is verified with a read-back of data. Note the “pragma section FRAM”

for writing to code flash and the corresponding section definitions in the linker (see project Properties->C/C++ Build -

>Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution

1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported

RSKRX65N

4.7 flash_demo_rskrx24U

This is a simple demo for the RSKRX24U starter kit. The demo uses the r_flash_rx API with blocking functionality to

erase and write code flash. Each write function is verified with a read-back of data. Note the “pragma section FRAM”

for writing to code flash and the corresponding section definitions in the linker (see project Properties->C/C++ Build -

>Settings ->Tool Settings (tab) ->Linker ->Section and ->Output).

Setup and Execution

1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

Boards Supported

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 38 of 39

Nov 1, 2017

RSKRX24U

4.8 flash_demo_rx65n2mb_bank1_bootapp / _bank0_otherapp

This is a simple demo for the dual bank operation of the RX65N-2MB demo board. The demo uses the r_flash_rx API

with blocking functionality to read the BANKSEL register and swap banks/applications at next reset. The bank 1

application flashes LED1 when it is running. The bank 0 application flashes LED0 when it is running.

Setup and Execution

1. Build flash_demo_rx65n2mb_bank1_bootapp, and build flash_demo_rx65n2mb_bank0_otherapp.

2. Download (HardwareDebug) flash_demo_rx65n2mb_bank1_bootapp (its debug configuration also downloads the

other app).

3. Click 'Reset Go' to start the software. If the program stops at main(), press F8 to resume.

4. Notice LED1 is flashing. Press the reset switch on the board. Notice LED0 is flashing (banks have swapped and the

other application is now running). Continue this reset process if desired.

Boards Supported

RX65N-2MB demo board.

4.9 Adding a Demo to a Workspace

To add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click

“Next”. From the Import Projects dialog, choose the “Select archive file” radio button and Browse to the .zip file for

the demo. If you are using e2studio v6.0.0 or later, you may need to update the project after importing it in order for the

project to build properly. This is done by right-clicking on the project folder and selecting “Upgrade Legacy e2studio

Projects”.

RX Family Flash Module Using Firmware Integration Technology

R01AN2184EU0330 Rev. 3.30 Page 39 of 39

Nov 1, 2017

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description

Page Summary

1.00 July.24.14 — First edition issued

1.10 Nov.13.14 1,4

7

Added RX113 support.

Updated “ROM to RAM” image.

1.11 Dec.11.14 — Added RX64M to xml support file.

1.20 Dec.22.14 1,4 Added RX71M support.

1.30 Aug.28.15 All

5,10

Updated template. Added RX231 support

Added flash type 3 code flash run-from-rom info.

Fixed RX64M/71M erase boundary issue.

1.40 Sep.03.15 1,4 Added RX23T support

Fixed Big Endian bug in R_DF_Write_Operation() for Flash

Type 1.

Fixed FLASH_xF_BLOCK_INVALID values for Flash Type 3.

1.50 Nov.11.15 1,4 Added RX130 support

1.51 Nov.11.15 --- Repackaged demo with BSP v3.10

1.60 Nov.17.15 1,5

22,25

Added RX24T support

Added ROM cache support

Fixed incorrect FLASH_CF_BLOCK_INVALID for

RX210/21A/62N/630/63N/63T in code (Flash Type 2).

1.61 May.20.16 10,11 Added erase/write/blankcheck BGO support for RX64M/71M

Fixed lockbit enable/disable commands.

1.62 May.25.16 --- Added lockbit write/read BGO support for RX64M/71M

1.63 Jun.13.16 --- Fixed bug where large flash writes returned success when

actually failed (improper timeout handling) on RX64M/71M

1.64 Aug.11.16 -- Fixed RX64M/71M bug where R_FLASH_Control

(FLASH_CMD_STATUS_GET, NULL) always returned BUSY.

Added #if to exclude ISR code when not in BGO mode.

1.70 Aug.11.16 1,4-6,8

Added RX651/RX65N support (Flash Type 4)

Fixed bug in Flash Type 2 that caused erroneous blankcheck

results.

2.00 Aug.17.16 1,3,4,6-9

Added RX230 and RX24T support (Flash Type 1)

Added configuration option for operation without FIT BSP.

Inserted document sections 2.12.2 thru 2.12.4.

Modified values for FLASH_CF_LOWEST_VALID_BLOCK and

FLASH_CF_BLOCK_INVALID for Flash TYPE 1.

2.10 Dec.20.16 1,5-7,

11,13,17,

19,21,23-

26,31-32

Added RX24U and RX24T-512 support (Flash Type 1)

Fixed several minor bugs in all flash types and added more

parameter checking. See History in r_flash_rx_if.h for complete

list of changes.

3.00 Dec.21.16 8,9 Merged code common to types 1, 3, and 4 and restructured

high level code for cleaner operation.

Modified ROM/RAM size tables.

3.10 Feb.17.17 5-7, 13-17,

26-28, 35

Added RX65N-2M support. Added sections 2.16 and 2.17.4.

Added commands FLASH_CMD_BANK_xxx.

Fixed potential “BUSY” return from Flash Type 1 API calls

(potential bug with very slow flash).

Added clearing of ECC flag during initialization of Flash Type

3.

3.20 Aug.11.17 1, 5,

10-14, 16,

36

Added RX130-512KB support.

Added e2studio v6.0.0 differences.

Modified driver so mcu_config.h only necessary when not

using BSP.

Fixed bug in RX65N-2M dual mode operation where

sometimes when running in bank 0, performing a bank swap

caused application execution to fail.

3.30 Nov.1.17 10,20

19,21

32

25

Added FLASH_ERR_ALREADY_OPEN.

Added R_FLASH_Close().

Added Flash Type 2 set access window example

Added Flash Type 2 blankcheck example.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates

that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

LSI, an associated shoot-through current flows internally, and malfunctions occur due to the

false recognition of the pin state as an input signal become possible. Unused pins should be

handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of

pins are not guaranteed from the moment when power is supplied until the reset process is

completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset

function are not guaranteed from the moment when power is supplied until the power reaches

the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become

stable. When switching the clock signal during program execution, wait until the target clock signal

has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock

signal. Moreover, when switching to a clock signal produced with an external resonator (or by

an external oscillator) while program execution is in progress, wait until the target clock signal is

stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number

may differ in terms of the internal memory capacity, layout pattern, and other factors, which can

affect the ranges of electrical characteristics, such as characteristic values, operating margins,

immunity to noise, and amount of radiated noise. When changing to a product with a different

part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.

Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Overview
	1.1 Features
	1.2 Optional BSP

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Limitations
	2.4 Supported Toolchains
	2.5 Header Files
	2.6 Integer Types
	2.7 Flash Types and Features
	2.8 Configuration Overview
	2.9 Code Size
	2.10 API Data Types
	2.11 Return Values
	2.12 Adding the FIT Flash Module to Your Project
	2.12.1 Adding source tree and project include paths
	2.12.2 Setting driver and FIT BSP use options
	2.12.3 Project generated files (no FIT BSP)
	2.12.4 Migrating from version 1.x to version 2.x
	2.12.5 Migrating from version 2.x to version 3.20

	2.13 Programming Code Flash from RAM
	2.14 Programming Code Flash from ROM
	2.15 Operations in BGO Mode
	2.16 Dual Bank Operation
	2.17 Usage Notes
	2.17.1 Data Flash Operations in BGO Mode
	2.17.2 ROM Operations in BGO Mode
	2.17.3 ROM Operations and General Interrupts
	2.17.4 Emulator Debug Configuration

	3. API Functions
	3.1 Summary
	3.2 R_FLASH_Open
	3.3 R_FLASH_Close
	3.4 R_FLASH_Erase
	3.5 R_FLASH_BlankCheck
	3.6 R_FLASH_Write
	3.7 R_FLASH_Control
	3.8 R_FLASH_GetVersion

	4. Demo Projects
	4.1 flash_demo_rskrx113
	4.2 flash_demo_rskrx231
	4.3 flash_demo_rskrx23T
	4.4 flash_demo_rskrx130
	4.5 flash_demo_rskrx24T
	4.6 flash_demo_rskrx65N
	4.7 flash_demo_rskrx24U
	4.8 flash_demo_rx65n2mb_bank1_bootapp / _bank0_otherapp
	4.9 Adding a Demo to a Workspace

	Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products

