
© 2016 Renesas System Design Co., Ltd. All rights reserved.

RL78 Development
Environment Migration Guide
Migration between RL78 family
(IDE ed.)
(CA78K0R to CC-RL)

December 28, 2016
R20UT3415EJ0102

Software Business Division
Renesas System Design Co., Ltd

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 2

Introduction

 This document describes how to manipulate projects in CS+ to migrate projects created for the
CA78K0R C compiler for the RL78 family of MCUs to the CC-RL C compiler for the RL78 family of
MCUs.

 This document describes the CS+ integrated development environment, the CA78K0R C compiler for
the RL78 family of MCUs, and the CC-RL C compiler for the RL78 family of MCUs.
The applicable versions are as follows.

CS+ V4.01.00

CA78K0R V1.20 and later

CC-RL V1.03.00

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Agenda

 Introduction Page 2

 Porting Projects to CS+ for CC-RL Page 4

- Starting up CS+ Page 5

- Creating a New Project Page 7

- Utilizing an Existing Project Page 8

 Differences from CA78K0R Projects Page 9

- Generated Files Page 10

- Startup Files Page 11

- iodefine.h Page 13

- Section Allocation Page 15

- Optimization Options Page 18
Page 3

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Porting Projects to CS+ for CC-RL

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 5

Porting Projects to CS+ for CC-RL

Process Method 1 Method 2
Source file registration Manual Automatic
Option setting Manual (Partially) automatic
Source file folder location No care needs to be taken regarding

the file registration location.
The folder structure should be the same
as that of the existing project.(Note)

Conflict between source files and
automatically generated files

Care should be taken regarding
conflict at manual file registration.

Files should be modified after a project is
created.

CA78K0R projects that have been created using CS+ or CubeSuite+ can be ported to the CS+
environment for CC-RL in either of the following two ways.

Method 1 : Create a new project with CS+.
Create a new project in CS+ for RL78 and register existing source files that you have.

Method 2 : Utilize an existing project.
Utilize a CA78K0R CS+ or CubeSuite+ project to create a new project with CS+ for CC-RL.

(Note): If you do not convert the source files, a build error may occur if the structures of folders differ and the paths to the folders are
not specified.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 6

Creating a New Project

After creating a new project, register and use the existing source files for CA78K0R.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 7

Utilizing an Existing Project (1/2)

During the process of creating a new project, select [Pass the file composition of an existing project to
the new project]. Then select a project that was created using CA78K0R.

Remark:
When a new project is created in the same folder as where
the existing project is stored, the relationship with the header
files included through relative paths from the project folder
becomes the same as that of the existing project.
However, if an existing file has the same name as
that of an automatically generated file, a message will
be output to confirm storing of the file as a *.bak file.
In this case, modify the file name back to
the original one after the project is created.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 8

Utilizing an Existing Project (2/2)

When you create a new project, you can convert the existing source files of CA78K0R compiler to the
source files of CC-RL.

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Differences from CA78K0R Projects

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 10

Generated Files

When a new project is created for CC-RL, the following files necessary
for development will be generated.

Startup file (cstart.asm)
hdwinit initial-setting function file (hdwinit.asm)
stkinit stack initial-setting function (stkinit.asm)

(This is not output for an MCU with the RL78-S1 core.)
main function file (main.c)
SFR file (iodefine.h)

Note:
When a project is created for CA78K0R,
these files for CC-RL will not be generated.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 11

Startup File (1/2)
The following shows the contents of the startup file registered in the project tree.
(Example for the RL78-S2/S3 core)

Reset the CPU

_cstart:
1. Initialize the CPU
2. /* Call the stack area initial-setting function */

3. Call the hardware initial-setting function

4. Initialize RAM areas
Clear uninitialized data areas
(Default: .bss and .sbss sections*)
Copy initialized data from ROM to RAM
(Default: .data and .sdata sections*)

5. Call the main function

6. After the main function has ended, execution enters an endless loop.
main function (with no parameters or return values)
→User main function

stkinit function

(stkinit.asm)

End of the system

hdwinit function
→Initial setting for the CPU

*Blank at the time of creating the project
To be created by the user

(hdwinit.asm)

To be created by the user

This function call is commented out; call it as
necessary.
(For example, call it when using the RAM
parity function in the MCU.)

(main.c)

*The processing for the .bssf and .dataf sections for far
variables is commented out.
When defining a far variable, enable this processing.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 12

Startup File (2/2)

When the main function and hdwinit function are registered in the existing project, use either of the
following two ways to exclude the files that are automatically generated during project creation from the
target of build.

Delete the files from the project tree.

Select [No] for "Set as build-target" in the property of the main.c and hdwinit.asm files registered in
the project tree.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 13

iodefine.h (1/2)

The declarations in this file can be used in a C source file to access SFRs in the RL78.

<How to Access>
• Use the descriptions in the iodefine.h file to access SFRs
and their bits.
• For the bits that are not registered as reserved words,
use the names with suffix "_bit" to access them.
• Specify #pragma interrupt to use interrupt request names.

<iodefine.h>
• • •
typedef struct
{

unsigned char no0:1;
unsigned char no1:1;
unsigned char no2:1;
unsigned char no3:1;
unsigned char no4:1;
unsigned char no5:1;
unsigned char no6:1;
unsigned char no7:1;

} __bitf_T;
• • •
#define ADM2 (*(volatile __near unsigned char *)0x10)
#define ADM2_bit (*(volatile __near __bitf_T *)0x10)
#define P0 (*(volatile __near unsigned char *)0xFF00)
#define P0_bit (*(volatile __near __bitf_T *)0xFF00)
#define P1 (*(volatile __near unsigned char *)0xFF01)
#define P1_bit (*(volatile __near __bitf_T *)0xFF01)
• • •
#define INTP0 0x0008
#define INTP1 0x000A
#define INTP2 0x000C
#define INTP3 0x000E
• • •

<Registers are accessed from this file>
#include “iodefine.h”
• • •
void main(void)
{

• • •
ADM2 = 0x12;
ADTYP = 1;
P0_bit.no2 = 1;
• • •

}
• • •
#pragma interrupt inter (vect=INTP0)
void __near inter (void) {

/*Interrupt processing*/
}
• • •

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 14

iodefine.h (2/2)

It’s possible by the next one of ways for inclusion iodefine.h to source files.
Write #include "iodefine.h" in each source file.
‐Description is needed every each source file.
‐It‘s necessary to do inclusion before an interrupt request name of vector table designation(#pragma interrupt)

and a description of SFR access.
Specify -preinclude=iodefine.h by a compilation option.

－It's applied to all source files.
‐When SFR name and an interrupt request name are used by the different use, #define is replaced by a definition

in iodefine.h. <example of C source file>
#include “iodefine.h”
• • •
void main(void)
{

ADM2 = 0x12;
P0_bit.no2 = 1;

}
#pragma interrupt inter (vect=INTP0)
void __near inter (void) {

/*Interrupt processing*/
}

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 15

Section Allocation (1/3)

Specify allocation of program and data sections on the Link Options tabbed page of the Property panel.

For section allocation, specify the
section names generated by the
compiler.

Refer to the link directive file created for
CA78K0R and modify section allocation.

Any section can be allocated to a desired address.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 16

Section Allocation (2/3)

CC-RL generates sections with default section names.
Default
Section Name

Relocation
Attribute

Description

.callt0 CALLT0 Section for the callt function call table

.text TEXT Section for code (allocated to near area)

.textf TEXTF Section for code (allocated to far area)

.textf_unit64kp TEXTF_UNIT64KP Section for code (the section is allocated so that the start address is an even
number and the section does not extend over a 64-KB - 1 boundary)

.const CONST ROM data (allocated to near area) (in mirror area)

.constf CONSTF ROM data (allocated to far area)

.data DATA Section for initialized data (with initial values, allocated to near area)

.dataf DATAF Section for initialized data (with initial values, allocated to far area)

.sdata SDATA Section for initialized data (with initial values, variables allocated to saddr)

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 17

Default Section Name Relocation Attribute Description

.sbss_bit SBSS_BIT Section for bit data area (uninitialized, variables allocated to saddr)

.bss_bit BSS_BIT Section for bit data area (uninitialized, allocated to near area)

.bss BSS Section for data area (uninitialized, allocated to near area)

.bssf BSSF Section for data area (uninitialized, allocated to far area)

.sbss SBSS Section for data area (uninitialized, variables allocated to saddr)

.option_byte OPT_BYTE Section dedicated for user option byte and on-chip debug settings

.security_id SECUR_ID Section dedicated for security ID setting

.vect(Note) AT interrupt vector table

.dataR DATA Section for initialized data RAM (initialized, allocated to near area)
Defined in the startup file.

.sdataR DATA Section for initialized data RAM (initialized, allocated to saddr area)
Defined in the startup file.

.RLIB(Note) TEXTF Section for code of runtime libraries.

.SLIB(Note) TEXTF Section for code of standard libraries.

(Note) : The section name cannot be modified through #pragma section. Section Allocation (3/3)

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 18

Optimization Options (1/4)

 The optimization techniques of the Renesas compilers and linkage editors have been enhanced to a
higher level that matches the RL78 MCUs (optimum register assignment, optimum instruction selection,
instruction scheduling, etc.) to generate compact codes.

Optimization by the compiler
‐Easy selection of optimization mode
− Selection of size or speed precedence

‐Wide-range optimization at compilation
− Inline expansion of functions in multiple files

‐Detailed optimization settings
− Loop expansion, inline function expansion, replacement of a function call at the end of a function with a br

instruction, etc.
Optimization by the optimizing linkage editor
‐Inter-module optimization
− Branch instruction optimization

‐Detailed settings for disabling optimization

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 19

Optimization Options (2/4)

Specify options on the Compile Options tabbed page in the CC-RL (build tool) Property panel.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 20

Optimization Options (3/4)

Optimization options can be specified as follows through the selection of ROM size precedence or
execution speed precedence. In addition, optimization can be fine-tuned through detailed setting items.
Optimization
Item

Description Optimization Level
-Osize -Ospeed -Odefault -Onothing

unroll Loop expansion (the maximum rate of increase in code size after
loop expansion)

1 2 1 1

delete_static_func Deletion of unused static functions on on on off

inline_level Inline expansion of functions (level of expansion)*1 3 2 3 -

inline_size Size of inline expansion *2 0 100 0 -

tail_call Replacement of a function call at the end of a function with a br
instruction

On On On Off

*1 Level of expansion
0: Suppresses all inline expansion including the function for which #pragma inline is specified.
1: Performs inline expansion for only a function for which #pragma inline is specified.
2: Distinguishes a function that is the target of expansion automatically and expands it.
3: Distinguishes the function that is the target of expansion automatically and expands it, while minimizing the increase in code size.

However, even if 1 to 3 is specified, the function specified by #pragma inline may not be expanded depending on the contents of the function and the status of compilation.
*2 Size of inline expansion : This specifies the maximum increasing rate (%) of the code size up to which inline expansion is performed.

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 21

Optimization Options (4/4)

The RL78 build environment provides optimization by the linkage editor in addition to optimization by the
compiler. The information, such as allocation addresses, obtained at linkage is used for optimization to
generate more efficient codes.

file1.c

file2.c

file3.c

file4.c

file1.obj

file2.obj

file3.obj

file4.obj

file1.obj

file2.obj

file3.obj

file4.obj

file1.obj

file2.obj

file3.obj

file4.obj

file.abs

Compiler Linkage editor
Optimization by compilerOptimization by compiler Optimization by linkage editor

© 2016 Renesas System Design Co., Ltd. All rights reserved. Page 22

Revision History

Revision Description Page
Rev.1.00 First revision -
Rev.1.01 Modification of version number of CS+ P2

Addition of method including iodefine.h file P12
Rev.1.02 Modification of version number of CS+ and CC-RL -

© 2016 Renesas System Design Co., Ltd. All rights reserved.

Renesas System Design Co., Ltd.

	RL78 Development Environment Migration Guide Migration between RL78 family (IDE ed.)(CA78K0R to CC-RL)
	Introduction
	Agenda
	Porting Projects to CS+ for CC-RL
	Porting Projects to CS+ for CC-RL
	Creating a New Project
	Utilizing an Existing Project

	Differences from CA78K0R Projects
	Generated Files
	Startup File
	iodefine.h
	Section Allocation
	Optimization Options

	Revision History

