

RENESAS CAPACITIVE TOUCH SOLUTION

Brochure

CONTENTS

Introducing the Capacitive Touch Web Site	03
About Capacitive Touch Interfaces	04
Renesas' Basic Capacitive Touch Technology	05
Design Flexibility	06
Waterproof	07
High Sensitivity	08
High Noise Tolerance	08
Low Power Consumption	09
MCU Lineup	10
Capacitive Touch Evaluation Systems	12

Touchless User Interface Solution	13
Self-Capacitance Waterproof Button Solution	14
Touchless-Button-Reference-Design	15
Smart Wakeup Solution	15
Touchless Button Electrode Board	16
Water Level Measurement Demo	16
Easily Generate Drivers with Smart Configurator	18
Related Devices	.19
Application Notes	25
Winning Combinations	.26

The capacitive touch solutions for the advanced capacitive touch HMIs that are becoming an essential part of our daily lives

The Internet of Things (IoT) is expanding rapidly as network capabilities find their way into every aspect of our daily lives, including household equipment such as electric home appliances. At the same time rapid advances are occurring in the human machine interfaces (HMIs) that link people and machines, and the use of capacitive touch panels is expanding quickly. By replacing the fixed functions of mechanical switches with capacitive touch panels it is possible to achieve more intuitive interfaces incorporating complex and sophisticated operations to match a variety of applications. For example, users can touch an overlay with their fingers or slide their fingers to specify the volume. Nevertheless, the time and cost of development can raise high hurdles to the realization of advanced usability due to the need to achieve greater sensitivity and noise tolerance, assure error-free operation even when the user's hands are wet, and so on. We at Renesas Electronics are developing solutions that lower the capacitive touch development hurdles for customers. We provide total support for the development of products with high added value.

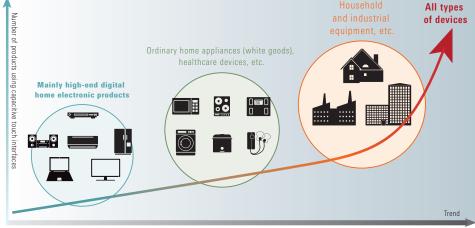
INTRODUCING THE CAPACITIVE TOUCH WEB SITE

Here you will find timely, up-to-date information that you will find useful when selecting capacitive touch solutions.

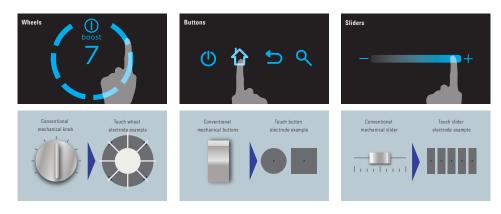
renesas.com/touch

ABOUT CAPACITIVE TOUCH INTERFACES

Utilization of capacitive touch interfaces in an ever wider range of fields

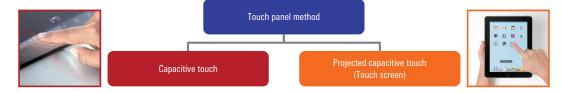

We rely on the functionality of a variety of electrical appliances and household equipment in our everyday lives. Most such products are becoming ever more advanced as they acquire added value and enhanced functionality. As a result, a superior HMI is necessary in order to make full use of this functionality. This is why much attention has come to be focused on capacitive touch interfaces. They enable the user to accomplish a variety of tasks in an intuitive way, bringing out the full potential of today's highly functional products.

High Hopes for Capacitive Touch Interfaces to Expand Markets by Pioneering New Applications


Applications for capacitive touch keypads have grown rapidly in recent years. Previously used mainly in high-end digital home electronic products requiring a high functionality and aesthetically appealing design, the use of touch keypads has expanded over the past few years to include ordinary home appliances known as "white goods" as well as healthcarerelated devices.

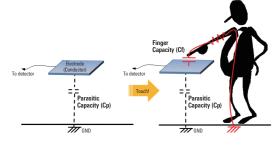
The advantages of capacitive touch interfaces, such as durability and resistance to dust and moisture, make them attractive for use both in household and industrial equipment, and they are expected to achieve adoption in all types of devices moving forward.

Market trend toward rapid adoption of capacitive touch interfaces in embedded devices



As replacements for mechanical keys, touch keypads enable a variety of interface types

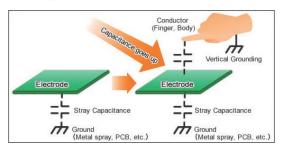
RENESAS' BASIC CAPACITIVE TOUCH TECHNOLOGY


Touch panels can be broadly divided into two types: "capacitive touch" and "projected capacitive touch." Renesas' capacitive touch solutions employ capacitive touch technology. Since they provide excellent design flexibility and require fewer components, capacitive touch panels are widely used in a variety of applications, particularly ordinary home appliances known as white goods.

Items	Capacitive Touch	Projected capacitive touch
Features	Low degree of freedom in operation (one-dimensional)	 High degree of freedom in operation (two-dimensional)
	Fewer parts	Uses expensive parts such as LCDs
Main parts	Cover panel	LCD, ITO electrode, cover panel
Cost	Low	High
Main applications	White goods (refrigerators, microwaves, rice cookers)	Smartphones, tablets
	• Healthcare equipment (blood pressure monitors, body composition monitors)	Gaming devices
	etc.	etc.

Detection Mechanism of Capacitive Touch Panels

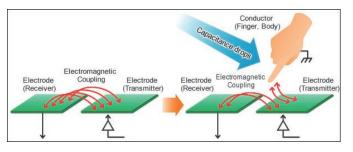
Capacitive touch technology works by detecting changes in capacitance that occur when the user's finger or hand comes in contact with a touch panel. Electrodes are arranged on the touch panel in such a way that a weak capacitance is generated between the panel and a finger that is brought into contact with it. The touch position is determined by detecting changes in capacitance between specific electrodes.



"Self Capacitance" and "Mutual Capacitance" Detection Methods

Touch panels typically use one of two capacitance detection methods: "self-capacitance" and "mutual-capacitance." Self-capacitance detects changes in the electromagnetic field formed between the electrodes and the user's finger. Specifically, when the user's finger comes near an electrode, a pseudocapacitor is created between the electrode and finger, and this causes the capacitance to increase. The touch action is recognized by detecting this change. Mutual-capacitance uses pairs of electrodes,

one for transmitting (the transmission node) and one for receiving (the reception node). The transmission node generates an electromagnetic field, and the reception node absorbs it. The electromagnetic field changes when the user's finger approaches, and the capacitance decreases. The touch action is recognized by detecting this change.


Self-capacitance methods

Comparison of self-capacitance and mutual-capacitance methods

Items	Comparison
Water proof	Both self-capacitance and mutual capacitance are water proof However, active shielding is required when using self-capacitance
Matrix electrode configuration	Only mutual-capacitance is possible
Electrode design	Self-capacitance is easier

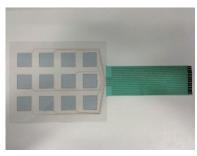
Mutual-capacitance methods

DESIGN FLEXIBILITY

Advantages of Capacitive Touch Technology: Freedom to Use a Variety of Materials

Renesas' capacitive touch technology supports the use of a variety of panel materials. It allows development of many types of switches with attractive designs.

Supported materials: plastic, glass, wood, rubber, cloth, stone, ceramics, mirror, metal

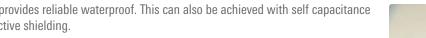


Advantages of Capacitive Touch Technology: Freedom to Use a Variety of Interfaces

It is possible to show only the buttons needed at a particular time and hide the others. This makes it easy to build guidance features into the design and enables the creation of interfaces that are easier to navigate for elderly users, for example.

Application examples of film electrodes

Features


- (1) Switches can be placed even on curved surfaces
- (2) Transparent

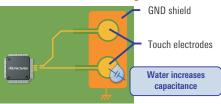
Cooperation: TOYO LABEL CO.,LTD. https://toyolabel.co.jp/product/capacitance-switch.html

WATERPROOF

Renesas' capacitive touch solutions can be used in demanding environments such as outdoor settings or places exposed to water. This is because even when the control panel is wet it can distinguish between the approach of a user's finger and water droplets.

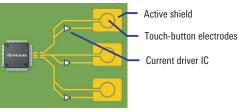
Mutual capacitance provides reliable waterproof. This can also be achieved with self capacitance through the use of active shielding.

Renesas capacitive touch waterproof demonstration https://www.youtube.com/watch?v=gwJ-RFjMM2w

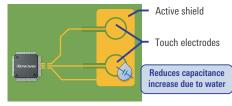

https://v.youku.com/v_show/id_XNDUwMjQxNjgwOA==. html?spm=a2hcb.profile.app.5~5!2~5~5!3~5!2~5~5!2~5!10~A

Active Shielding

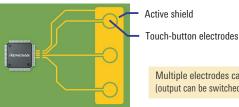
Active shielding is an output function that employs shield electrodes driven in the same phase and potential as the sensor drive pulses of the measurement electrodes. A high degree of waterproof can be achieved even with self capacitance when active shielding is used.


Waterproof

GND shielded: Mis-reacting with water

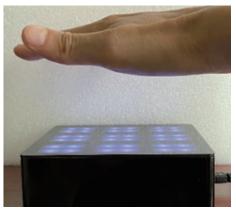


Implementation method

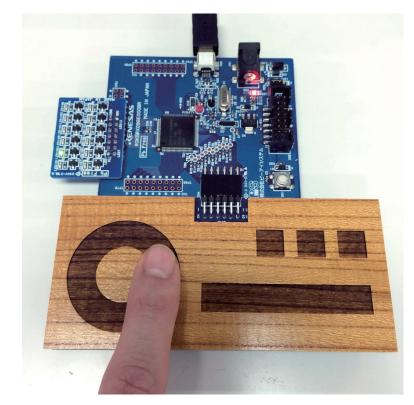

CTSU1: Current-driver IC required for each electrode

Active shield: no false response in water

CTSU2: Direct drive via MCU touch pins



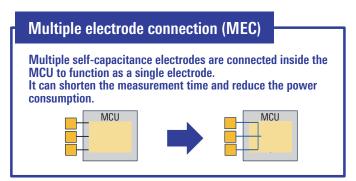
Multiple electrodes can be guarded with one active shield (output can be switched in synchronization with the measurement ch)


Note: For the differences in functions between CTSU1 and CTST2, please refer to the Functions of Each MCU table on page 10 and after.

HIGH SENSITIVITY

Implements proximity sensing (hovering) distance of approximately 30 cm, and supports sensing through overlay materials with a low dielectric constant. Operation is possible while wearing gloves, and there is no need for special gloves.

HIGH NOISE TOLERANCE

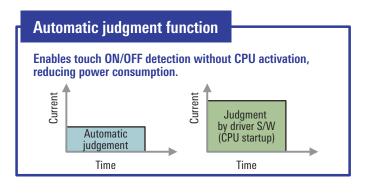
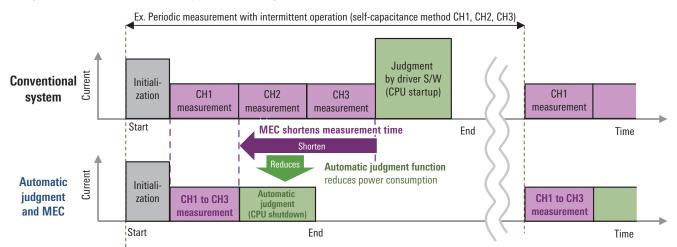
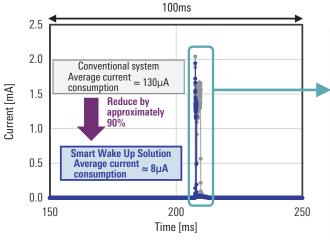

Noise tolerance meets the requirements of IEC 61000 4-3 level 4 for consistently stable operation. This high tolerance for external noise allows use in a wide range of environments.

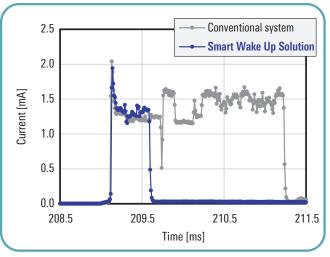
Radiation immunity test (IEC61000 4-3)

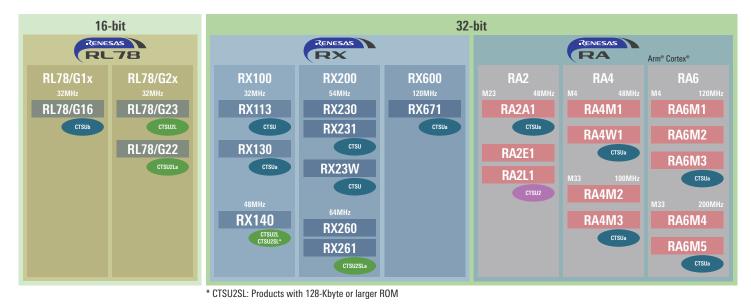
Items	Description	Test environment
Overview	Testing for immunity to relatively high frequency RF noises	
Frequency range	80MHz-1GHz ~ 2.7GHz or ~ 6.0GHz are used depending on the test version [Test level] Lv1: 1 V/m Lv2: 3V/m Lv3: 10V/m Lv4: 30V/m X: Individually stipulated	

LOW POWER CONSUMPTION

This Renesas capacitive touch solution incorporates a smart wake-up function that makes touch on/off judgments without the need to activate the CPU. Also, the multiple electrode connection function converts the measurement values of multiple electrodes into the equivalent of a single electrode, shortening the time required for measurement and reducing overall system power consumption.


Image of Current Reduction Effect by Automatic Judgment and MEC Use


Average current consumption at 100ms touch measurement cycle (in standby mode with 12 channels of self-capacitance buttons)

Smart Wake Up Solution reduces average current consumption by approximately 90% compared to conventional system.

MCU LINEUP

Renesas offers an extensive lineup of MCUs with capacitive touch functionality.

MCU Family with Capacitive Touch Functions

MCU Family with CTSU2

Product Group Name	<u>RA2E1</u>	<u>RA2L1</u>	<u>RX14</u>	₩C7	<u>RX260</u>	<u>RX261</u>	<u>RL78/G23</u>	<u>RL78/G22</u> [_]
CPU core	Cortex®-M23	Cortex®-M23	R>	Kv2	RXv3	RXv3	RL78-S3	RL78-S3
Max. operating frequency (MHz)	48	48	4	18	64	64	32	32
Operating voltage (V) *1	1.6 - 5.5	1.6 - 5.5	1.8	- 5.5	1.6 - 5.5	1.6 - 5.5	1.6 - 5.5	1.6 - 5.5
Program Memory (KB)	32, 64, 128	128, 256	64	128, 256	256, 384, 512	256, 384, 512	96, 128, 192, 256, 384, 512, 768	32, 64
Data Flash (KB)	4	8	4	8	8	8	8	2
RAM (KB)	16	32	16	32, 64	128	128	16, 12, 48, 32, 24, 20	4
Capacitive sensor type	CTSU2	CTSU2	CTSU2L	CTSU2SL	CTSU2SLa	CTSU2SLa	CTSU2L	CTSU2La
Number of Touch pins	30	32	12	36	36	36	32	29
Self-capacitance method	~	√	~	√	~	~	~	\checkmark
Mutual-capacitance method	\checkmark	~	\checkmark	\checkmark	~	~	~	\checkmark
Multi-frequency measurement	\checkmark	~	~	\checkmark	~	~	~	\checkmark
Active shield	\checkmark	~	~	\checkmark	~	\checkmark	~	\checkmark
Auto judgment				~	~	~	√ * ²	√ * ²
Auto correction				\checkmark	~	\checkmark	√ *2	√ * ²
Multiple electrode connection: MEC				~	~	~		\checkmark
Mutual simultaneous scan: CFC	18	20						
Temperature correction	\checkmark	~	~	~	~	~	~	\checkmark

*1: This is the operating voltage of the MCU. It may differ from the operating voltage of the capacitive touch.

The operating voltage condition for CTSU2L and CTSU2La is VDD = 1.8 to 5.5 V. When using CTSU2L and CTSU2La, use them in the range of VDD = 1.8 to 5.5 V.

*2: Realized by combining with Snooze mode sequencer (SMS).

RA Family with CTSU1 (CTSU/CTSUa/CTSUb)										
Product Group Name	<u>RA2A1</u> [기	<u>RA4M1 [7</u>	<u>RA4M2</u>	<u>RA4M3</u> [기	<u>RA4W1</u>	<u>RA6M1</u>	<u>RA6M2</u> [기	<u>RA6M3</u>	<u>RA6M4</u> [기	<u>RA6M5</u> [기
CPU core	Cortex®-M23	Cortex®-M4	Cortex®-M33	Cortex [®] -M33	Cortex®-M4	Cortex®-M4	Cortex®-M4	Cortex®-M4	Cortex®-M33	Cortex®-M33
Max. operating frequency (MHz)	48	48	100	100	48	120	120	120	200	200
Operating voltage (V) *1	1.6 - 5.5	1.6 - 5.5	2.7 - 3.6	2.7 - 3.6	1.8 - 3.6	2.7 - 3.6	2.7 - 3.6	2.7 - 3.6	2.7 - 3.6	2.7 - 3.6
Program Memory (KB)	256	256	256, 384, 512	512, 768, 1024	512	512	512, 1024	1024, 2048	512, 768, 1024	1024, 1536, 2048
Data Flash (KB)	8	8	8	8	8	8	32	64	8	8
RAM (KB)	32	32	128	128	96	256	384	640, 384	256	512
Capacitive sensor type	CTSU	CTSU	CTSU	CTSU	CTSU	CTSU	CTSU	CTSU	CTSU	CTSU

11

 \checkmark

 \checkmark

 \checkmark

19

 \checkmark

 \checkmark

 \checkmark

18

 \checkmark

 \checkmark

 \checkmark

18

 \checkmark

 \checkmark

 \checkmark

20

 \checkmark

 \checkmark

 \checkmark

12

 \checkmark

 \checkmark

 \checkmark

RA Fam

Number of Touch pins

Self-capacitance method

Random pulse frequency

measurement

Mutual-capacitance method

 \checkmark *1: This is the operating voltage of the MCU. It may differ from the operating voltage of the capacitive touch.

26

 \checkmark

 \checkmark

27

 \checkmark

 \checkmark

 \checkmark

12

 \checkmark

 \checkmark

 \checkmark

20

 \checkmark

 \checkmark

 \checkmark

RX Family with CTSU1 (CTSU/CTSUa/CTSUb)

	Product Group Name	<u>RX113</u>	<u>RX130</u> [기	<u>RX230</u>	<u>RX231</u>	<u>RX23W</u> []	<u>RX671</u>
CPU core		RXv1	RXv1	RXv2	RXv2	RXv2	RXv3
Max.	operating frequency (MHz)	32	32	54	54	54	120
Opera	ating voltage (V) *1	1.8 - 3.6	1.8 - 5.5	1.8 - 5.5	1.8 - 5.5	1.8 - 3.6	2.7 - 3.6
Progr	am Memory (KB)	128, 256, 384, 512	64, 128, 256, 384, 512	128, 256	128, 256, 384, 512	384, 512	1024, 1536, 2048
Data Flash (KB)		8	8	8	8	8	8
RAM (KB)		64, 32	10, 16, 48, 32	32	32, 64	64	384
Сара	citive sensor type	CTSU	CTSUa	CTSU	CTSU	CTSU	CTSUa
	Number of Touch pins	12	36	24	24	12	17
	Self-capacitance method	~	~	\checkmark	~	~	~
	Mutual-capacitance method	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark
	Random pulse frequency measurement	\checkmark	~	\checkmark	\checkmark	\checkmark	√

*1: This is the operating voltage of the MCU. It may differ from the operating voltage of the capacitive touch.

RL78 Family with CTSU1 (CTSU/CTSUa/CTSUb)

Product Group Name	<u>RL78/G16</u> [기		
CPU core	RL78-S2		
Max. operating frequency (MHz)	16		
Operating voltage (V) *1	2.4 - 5.5		
Program Memory (KB)	16, 32		
Data Flash (KB)	1		
RAM (KB)	2		
Capacitive sensor type	CTSUb		
Number of Touch pins	15		
Self-capacitance method	\checkmark		
Mutual-capacitance method	\checkmark		
Random pulse frequency measurement	\checkmark		
Multiple electrode connection: MEC	\checkmark		

*1: This is the operating voltage of the MCU. It may differ from the operating voltage of the capacitive touch.

CAPACITIVE TOUCH EVALUATION SYSTEMS

Renesas offers kits that allow you to easily evaluate capacitive touch solutions. Using the boards and software included in the kit, you can begin evaluation immediately after purchasing the kit. For details on each kit, see below. renesas.com/touch

Mounted MCU	RA2L1	RA6M2		
Board Image				
Package	100-pin LFQFP	144-pin QFP		
ROM/RAM	256kB/32kB	1MB/384KB		
Part No.	RTK0EG0022S01001BJ []	<u>RTK0EG0021S01001BJ</u> []		
Capacitive sensor type	CTSU2	CTSU2La		
Number of Touch pins	32	18		
Included items	Evaluation board	• Evaluation board		
	- RA2L1 CPU board	 RA6M2 CPU board 		
	 Self-capacitance electrode board (buttons, sliders, wheels) 	 Self-capacitance electrode board (buttons, sliders, wheels) 		
	• First Step Guide	First Step Guide		

Mounted MCU	RL78/G23	RL78/G22	RL78/G16	
Board Image				
Package	128-pin LFQFP	48-pin LFQFP	32-pin LQFP	
ROM/RAM	768KB/48KB	64KB/4KB	32KB/2KBFP	
Part No.	RTK0EG0030S01001BJ 더	RTK0EG0042S01001BJ [갑	<u>RTK0EG0047S01001BJ</u> []	
Capacitive sensor type	CTSU2L	CTSU2La	CTSUb	
Number of Touch pins	32	29	15	
Included items	Evaluation board	Evaluation board	Evaluation board	
	- RL78/G23 CPU board	- RL78/G22 CPU board	- RL78/G16 CPU board	
	 Self-capacitance electrode board (buttons, sliders, wheels) 	 Self-capacitance electrode board (buttons, sliders, wheels) 	 Self-capacitance electrode board (buttons, sliders, wheels) 	
	• First Step Guide	First Step Guide	First Step Guide	

Mounted MCU	RX130	RX671	RX140	RX261
Board Image				
Package	80-pin LFQFP	80-pin LFQFP 100-pin LFQFP		100-pin LFQFP
ROM/RAM	128KB/16KB	2MB/384KB	256KB/64KB	512kB/128kB
Part No.	<u>RTK0EG0003S02001BJ</u> []	RTK0EG0044S01001BJ []	<u>RTK0EG0039S01001BJ</u> []	RTK0EG0055S01001BJ 디깅
Capacitive sensor type	CTSUa	CTSUa	CTSU2SL	CTSU2SLa
Number of Touch pins	36	17	36	34
Included items	 Evaluation board RX671 CPU board Self-capacitance electrode board (buttons, sliders, wheels) Mutual-capacitance electrode board (buttons, proximity sensors) USB cable First Step Guide 	 Evaluation board RX671 CPU board Self-capacitance electrode board (buttons, sliders, wheels) First Step Guide 	 Evaluation board RX140 CPU board Self-capacitance electrode board (buttons, sliders, wheels) First Step Guide 	 Evaluation board RX261 CPU board Self-capacitance electrode board (buttons, sliders, wheels) First Step Guide

TOUCHLESS USER INTERFACE SOLUTION

This touchless user interface solution includes a 3D gesture solution, which allows the user to control the product touchless by detecting gestures in three-dimensional space, and a 2D gesture solution, which detects movement using two-dimensional coordinates. Both are intended for situations where the user needs to control the product without touching it, perhaps because their hands are wet, or because they can't reach the product, or because they don't want to touch the product. For example, in the kitchen, you can adjust the water temperature and flow with hand movements, and simply waving your hand over the range hood allows you to control the fan and turn on the lights.

Features

Based on Renesas' high-sensitivity, noise-tolerant capacitive touch solutions.

- Recognition of hand position up to a height of 200mm above the sensor
- Maximum accuracy: 1mm

High tolerance for noise and obstructions.

- Capable of sensing through non-conductive barriers (such as wall materials, wood, resin, glass, fabric, paper, etc.)
- Support for IEC 61000 4-3 and IEC 61000 4-6 Level 3 Class B noise immunity standards*

* Class B: No false detection in a noisy environment when there are no objects nearby.

Suitable for use in a variety of products.

- High-performance and power-efficient 32-bit MCU and capacitive touch IP enable product system control and operation using 3D gestures.
- Can be combined with existing capacitive touch functions (gestures and capacitive touch buttons).

For more information, visit <u>https://www.renesas.com/products/software-tools/boards-and-kits/eval-kits/3d-gesture-reference-design.html</u>

3D Gesture Reference Design

Hand positions are converted into coordinates up to a maximum height of 200mm above the sensor. Conversion is accurate and fast, making it possible to control devices by means of dynamic gestures or simple figure recognition.

2D Gesture Reference Design

By combining multiple capacitive proximity sensors, it is possible to detect when the user's hand is held over or near an electrode for a certain period of time as well as hand movements spanning multiple electrodes. This makes it a simple matter to implement gesture-based controls.

Resource information	Title
Hardware	RX231 Group CTSU Application Example: 3D Gesture Demo Set (Hardware)
	RX130 Group CTSU Application Example: 3D Gesture Demo Set Small version (Hardware)
	RA2L1 Group CTSU Application Example: 3D Gesture Electrode Board (Hardware)
Software	RX Family CTSU 3D Gesture Demo Set Sample Software 🖸
	RA2L1 Group CTSU 3D Gesture Electrode Board Sample Software
Development Tools	CTSU 3D Gesture Demo Set Evaluation Tool 다
	QE for Capacitive Touch [건
	3D Gesture Al Solution
Sample codes	CTSU 3D Gesture Demo Set Sample Software (Standard version)
	CTSU 3D Gesture Demo Set Sample Software (Small version)
	RA2L1 Group CTSU 3D Gesture Electrode Board Sample Software
	RX140 Group CTSU 3D Gesture Electrode Board Sample Software
Others	Usage example of e-AI × 3D gesture recognition feature - OE for Capacitive Touch

SELF-CAPACITANCE WATERPROOF BUTTON SOLUTION

The demonstration of self-capacitance waterproof button compares the waterproof capabilities of GND shields and Active shields used in a self-capacitance button.

The Renesas capacitive sensor, CTSU2 can utilize an active shield without any external components. Active shielding is effective in improving water resistance and noise immunity of self-capacitance buttons. The Self-Capacitance Waterproof Button Solution reference design compares water resistance of traditional GND shields to active shield for the self-capacitance buttons.

For more information, visit https://www.renesas.com/application/home-building/capacitive-touch-solutions/self-capacitance-waterproof-button-solution

Resource information	Title
Hardware	RX140 Group Capacitive Touch Evaluation System User's Manual
	RL78/G23 Capacitive Touch Evaluation System User's Manual
	RA2L1 Group Capacitive Touch Evaluation System User's Manual [7]
Development Tool	OE for Capacitive Touch [2]
Sample codes	RX140 Self-capacitance Waterproof Touch Button Demo Software
	RL78/G23 Self-capacitance Waterproof Touch Button Demo Sample Software
	RA2L1 Group Self-capacitance Waterproof Touch Button Demo Sample Software □2
Document	RA2L1 Group Self-Capacitance Waterproof Demo Hardware Manual

TOUCHLESS-BUTTON REFERENCE DESIGN

The touchless button reference design can detect the approach of fingers and hands without physical contact using Renesas' capacitive touch solution. The electrode detects the proximity of the finger via self-capacitance and turns on the LED. The demo solution is compatible with all types of Renesas capacitive touch CPU boards.

Resource information	Title
Hardware	RX140 Group Capacitive Touch Evaluation System User's Manual
	RL78/G23 Capacitive Touch Evaluation System User's Manual 다가
	RA6M2 Group Capacitive Touch Evaluation System User's Manual
	RX130 Group RX Capacitive Touch Evaluation System CPU Board User's Manual
	RA2L1 Group Capacitive Touch Evaluation System User's Manual
Development Tool	OE for Capacitive Touch [2]
Sample codes	RX140 Group Touchless Button Demo Solution Sample Software
	RL78/G23 Group Touchless Button Demo Solution Sample Software
	RA6M2 Group Touchless Button Demo Solution Sample Software
	RX130 Group Touchless Button Demo Solution Sample Software
Document	RA2L1 Group Touchless Button Demo Solution (Hardware)

For more information, visit https://www.renesas.com/application/home-building/capacitive-touch-solutions/capacitive-sensor-application-reference-design-touchless-button-solution-reference-design

SMART WAKEUP SOLUTION

The CTSU2SL's automatic detection function and multiple electrode connection function enable low power consumption standby.

Automatic Judgment Function

Previously, button touch judgements were performed by the driver or middleware based on

calculations performed by the CTSU. This meant that touch judgements required activation of the CPU. The automatic judgment function enables touch judgements to be performed by the CTSU, without the need to activate the CPU. As a result, it is not necessary to periodically wake the CPU, allowing for reduced power consumption.

Multiple Electrode Connection Function

It used to be necessary to use a particular button, such as the power button, to wake the MCU from the low-power mode, but the multiple electrode connection function enables wakeup from low-power mode by touching any button.

For more information, visit <u>https://www.renesas.com/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/smart-wake-solution-smart-wake-solution</u>

Resource information	Title
Hardware	RX140 Group Capacitive Touch Evaluation System User's Manual
Development Tool	<u>ΩE for Capacitive Touch</u> [2]
Sample code	RX140 Group Smart Wakeup Solution
Documents	RX140 Group Smart Wakeup Solution Application Note
	RX140 Group Smart Wakeup Solution (Touchless Demo) Application Note

TOUCHLESS BUTTON ELECTRODE BOARD

The touchless button electrode board uses a Renesas capacitive touch solution to sense the approach of the user's finger or hand without the need for physical contact. Self capacitance electrodes detect when the user's finger is nearby, and an LED turns on. A variety of Renesas capacitive touch CPU boards are supported. The buttons are designed to evoke devices used in public places, such as ticket vending machines.

For more information, visit https://www.renesas.com/video/touchless-button-electrode-board

Resource information	Title
Hardware	RA6M2 Group Capacitive Touch Evaluation System User's Manual
	RL78/G23 Capacitive Touch Evaluation System User's Manual
	RX130 Group RX Capacitive Touch Evaluation System CPU Board User's Manual
	RA2L1 Group Capacitive Touch Evaluation System User's Manual
Development Tool	OE for Capacitive Touch
Sample codes	RA6M2 Group Touchless Button Electrode Board Sample Software
	RL78/G23 Group Touchless Button Electrode Board Sample Software
	RX130 Group Touchless Button Electrode Board Sample Software
	RA2L1 Group Touchless Button Electrode Board Sample Software
Document	Capacitive Sensor Microcontrollers Touchless Button Electrode Board Application Note

WATER LEVEL MEASUREMENT DEMO

This is a demo of the use of a capacitive touch to measure water levels.

For more information, visit https://www.renesas.com/video/water-level-measurement-demo

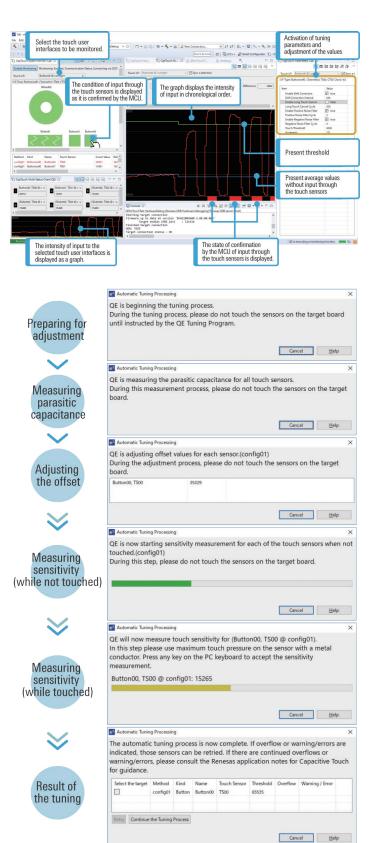
Resource information	Title
Hardware	RX130 Group RX Capacitive Touch Evaluation System CPU Board User's Manual
Development Tool	<u>ΩE for Capacitive Touch</u> [2]
Software	RX Family Capacitive Water Level Measurement Demo Level Monitor
Sample code	RX Family Capacitive Liquid Level Indicator Demo System Sample Software
Documents	RX130 Group Capacitive Water Level Measurement Demo Set Application Note
	RX Family Capacitive Liquid Level Indicator Demo System Sample Software Application Note
	RX Family Capacitive Water Level Measurement Demo Level Monitor User's Manual

QE for Capacitive Touch: Development Assistance Tool for Capacitive Touch Sensors

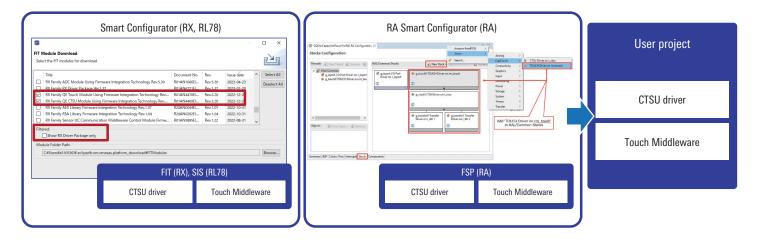
QE for Capacitive Touch is a solution toolkit that runs in the e2 studio integrated development environment. It speeds up the development of integrated systems utilizing capacitive touch sensors by simplifying tasks such as configuring initial settings or tuning the sensitivity of the touch interface.

For more information, visit https://www.renesas.com/qe-capacitive-touch

Monitoring Function


The monitoring function displays waveforms of measurement values as capacitance changes over time. You can adjust a variety of tuning parameters while monitoring the capacitance waveforms. Saving displayed waveforms to a log is also supported.

The supported tuning functions are automatic tuning, manual tuning, and advanced mode tuning. Automatic tuning performs configuration of parameter settings to match the board under development. Simply connect a board populated with an MCU to QE, and you can complete basic adjustments by making selections on the GUI interface. Manual tuning and advanced mode tuning allow fine-grained customization tailored to individual customer requirements. For details, refer to the following application note.


https://www.renesas.com/document/apn/capacitive-sensor-mcu-qecapacitive-touch-advanced-mode-parameter-guide

Tutorial videos for each supported microcontroller For RA family: <u>https://www.renesas.com/ra-how-to-video</u> For RX family: <u>https://www.renesas.com/rx-how-to-video</u> For RL78 family: <u>https://www.renesas.com/r178-how-to-video</u>

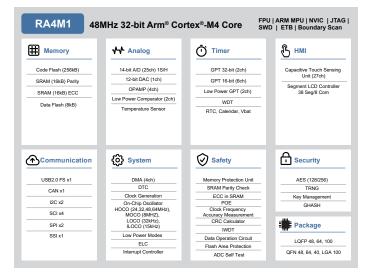
EASILY GENERATE DRIVERS WITH SMART CONFIGURATOR

Smart Configurator is a tool that automatically generates initial configuration programs for specific MCUs. It lets you configure MCU peripheral pin settings and combine software resources such as middleware and drivers to match the project under development in a speedy and smart manner. Drivers and middleware for capacitive touch applications are supplied as modules that can be integrated into existing projects.

RELATED DEVICES

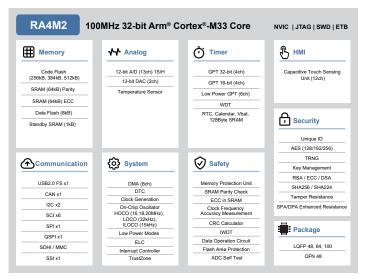
RA2E1

48MHz Arm® Cortex®-M23 Entry Line General Purpose Microcontroller


RA2L1

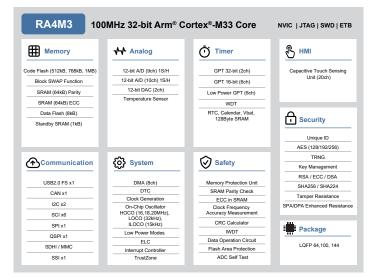
48MHz Arm® Cortex®-M23 Ultra-Low power General Purpose Microcontroller

RA2L1 48	MHz 32-bit Arm [®] Cor	tex [®] -M23 Core	NVIC SWD M
Memory	≁ ≁ Analog	Ö Timer	₿ н мі
Code Flash (256kB, 128kB) SRAM (16kB) Parity SRAM (16kB) ECC Data Flash (8kB)	12-bit ADC (19ch) 12-bit DAC (1ch) Low Power Analog Comparator (2ch) Temperature Sensor	GPT 32-bit (4ch) GPT 16-bit (6ch) AGT 16-bit (2ch) WDT	Capacitive Touch Sensing Unit (32ch) High Current IO (-20mA)
	System	Safety Memory Protection Unit	AES (128/256)
12C x2	DTC	SRAM Parity Check	TRNG
SCI x5 SPI x2	Multiple Clocks On-Chip Oscillator HOCO (24,32,48,64MHz), LOCO (324Hz), ILOCO (154Hz) Low Power Modes ELC Port Function Select	ECC in SRAM POE Clock Frequency Accuracy Measurement CRC Calculator IWDT Data Operation Circuit Flash Area Protection	128 bit Unique ID
	RTC	ADC Self Test	Gr 1440

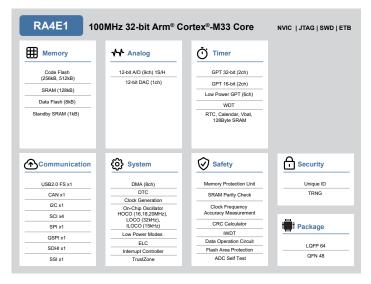

RA4M1

32-bit Microcontrollers with 48MHz Arm^{\circledast} Cortex $^{\circledast}$ -M4 and LCD Controller and Capacitive Touch for HMI

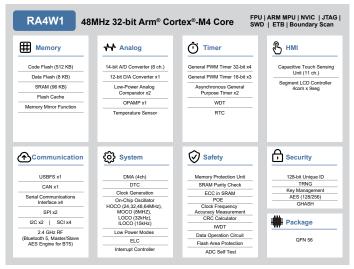
RA4M2


100MHz Arm[®] Cortex[®]-M33 TrustZone[®], High Integration with Lowest Active Power Consumption

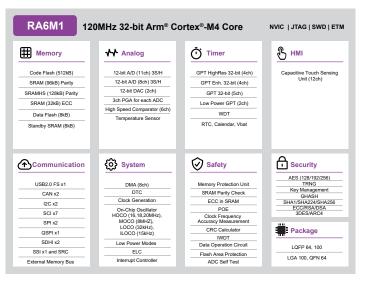
RELATED DEVICES


RA4M3

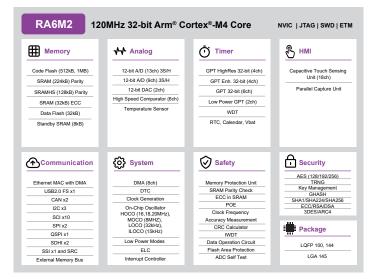
100MHz Arm $^{\otimes}$ Cortex $^{\otimes}\text{-M33}$ TrustZone $^{\otimes}\text{,}$ High Integration with Rich Connectivity


RA4E1

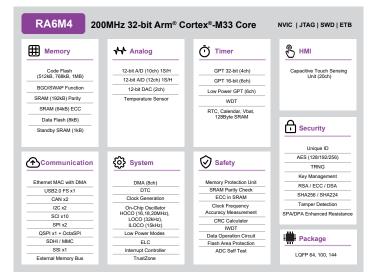
100MHz Arm[®] Cortex[®]-M33, Entry-Line with Balanced Low Power Consumption & Optimized Feature Integration


RA4W1

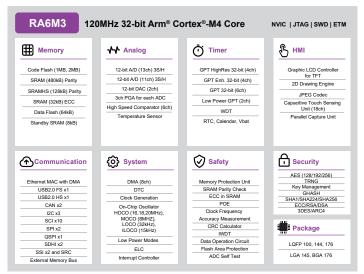
48MHz Arm[®] Cortex[®]-M4 Core + Low Energy, Single Chip 32-bit Microcontrollers with Bluetooth[®] 5.0


RA6M1

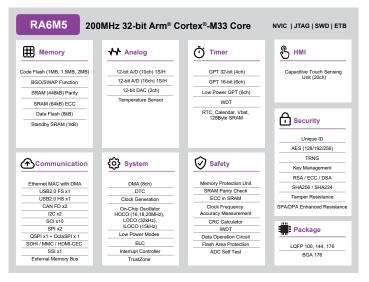
120MHz Arm[®] Cortex[®]-M4 Core, 32-bit Microcontrollers with Optimized Entry Point to the RA6 Series


RA6M2

120MHz Arm[®] Cortex[®]-M4 Core, 32-bit Microcontrollers with Medium Size Memory Integration and Ethernet

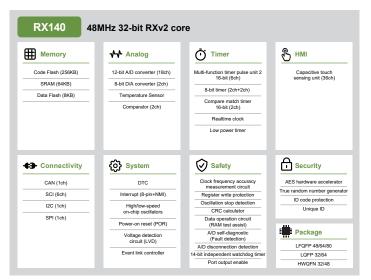

RA6M4

200MHz Arm® Cortex®-M33 TrustZone®, High Integration with Ethernet and OctaSPI

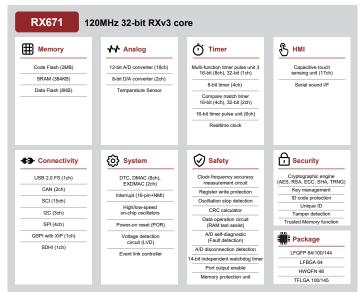

RA6M3

120MHz Arm[®] Cortex[®]-M4 Core, 32-bit Microcontrollers with USB High-Speed, Ethernet and TFT controller

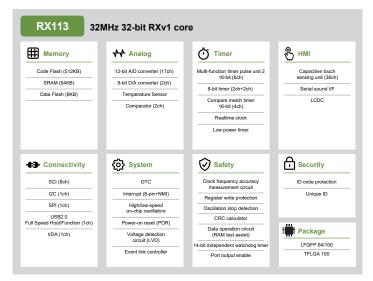
RA6M5


200MHz Arm[®] Cortex[®]-M33 TrustZone[®], Highest Integration with Ethernet and CAN FD

RELATED DEVICES


RX140

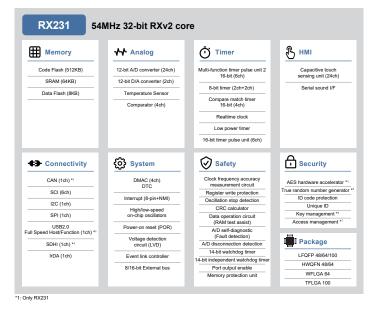
 $48 \mathrm{MHz}\ \mathrm{RXv2}\ \mathrm{Core},\, 32\ \mathrm{bit}\ \mathrm{Microcontrollers}\ \mathrm{with}\ \mathrm{Third}\ \mathrm{Generation}\ \mathrm{Touch}\ \mathrm{IP}$


RX671

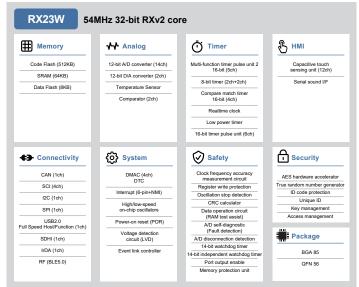
120MHz RXv3 Core, 32-bit Microcontrollers for Fast Real-Time Control and Contactless HMI


RX113

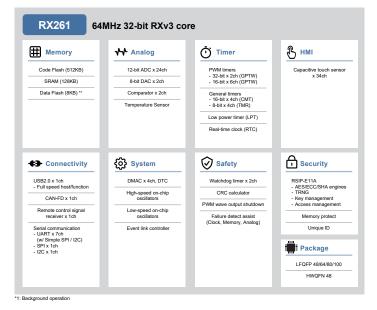
32MHz RXv1 Core, 32-bit Microcontroller with Segment LCD and USB


RX130

32MHz RXv1 Core, 32-bit MCUs with a Wide Range of Memory Lineup


RX231/RX230

54MHz RXv2 Core, 32-bit Microcontrollers with Enhanced Communication and Security Functions

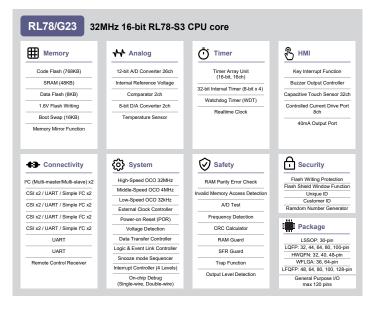

RX23W

 $54 MHz \ RXv2 \ Core, \ 32-bit \ Microcontrollers \ Supporting \ Bluetooth^{\otimes} \ 5.0$ Wireless Communication

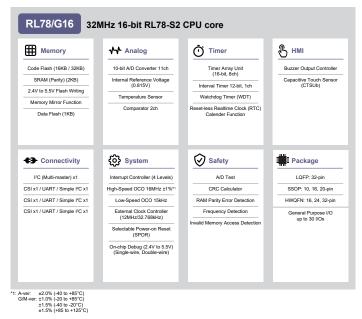
RX261

64MHz RXv3 Core, 32-bit Microcontrollers with Capacitive Touch and Enhanced Security

RX260


64MHz RXv3 Core, 32-bit Microcontrollers with Enhanced Communication and Security Functions

RELATED DEVICES


RL78/G23

32MHz RL78-S3 Core, New Generation General-Purpose Microcontrollers with Further Refined Low-Power Performance and Expanded Peripheral Functions

RL78/G16

16MHz RL78-S2 Core, Compact, Low Pin Count Microcontrollers with Capacitive Touch Sensor Unit, Ideal for Home Appliances and High-Temperature Environments

RL78/G22

32MHz RL78-S3 Core, General-Purpose Microcontrollers with Excellent Low-Power Performance and Rich Capacitive Touch Channels

Memory	- ∿ -∳ Analog	Ö Timer	€ нмі
Code Flash (64KB)	10-bit A/D Converter 10ch	Timer Array Unit (16-bit, 8ch)	Key Interrupt Function Buzzer Output Controller
Data Flash (2KB)	Temperature Sensor	32-bit Interval Timer (8-bit x 4) Watchdog Timer (WDT)	Capacitive Sensing Unit 29ch + Multiple Electrode Connectio
Boot Swap (8KB) Memory Mirror Function		Realtime Clock	
		•	0
Connectivity	Kigh-Speed OCO 32MHz 1%	Safety	Flash Writing Protection
² C (Multi-master/Multi-slave) x1	High-Speed OCO 32MHz 1% Middle-Speed OCO 4MHz	<u> </u>	Flash Writing Protection
² C (Multi-master/Multi-slave) x1 CSI x2 / UART / Simple I ² C x2	High-Speed OCO 32MHz 1% Middle-Speed OCO 4MHz Low-Speed OCO 32kHz	RAM Parity Error Check	Flash Writing Protection Flash Shield Window Function
² C (Multi-master/Multi-slave) x1 CSI x2 / UART / Simple I ² C x2 CSI x2 / UART / Simple I ² C x2	High-Speed OCO 32MHz 1% Middle-Speed OCO 4MHz	RAM Parity Error Check	Flash Writing Protection Flash Shield Window Function Unique ID Customer ID Ramdom Number Generator
Connectivity PC (Multi-master/Multi-slave) x1 CSI x2 / UART / Simple PC x2 CSI x2 / UART / Simple PC x2 CSI x2 / UART / Simple PC x2 UART	High-Speed OCO 32MHz 1% Middle-Speed OCO 4MHz Low-Speed OCO 32kHz External Clock Controller	RAM Parity Error Check Invalid Memory Access Detection A/D Test	Flash Writing Protection Flash Shield Window Function Unique ID Customer ID
PC (Multi-master/Multi-slave) x1 CSI x2 / UART / Simple PC x2 CSI x2 / UART / Simple PC x2 CSI x2 / UART / Simple PC x2	High-Speed OCO 32MHz 1% Middle-Speed OCO 4MHz Low-Speed OCO 4MHz External Clock Controller Power-on Reset (POR) Voltage Detection Data Transfer Controller	RAM Parity Error Check Invalid Memory Access Detection A/D Test Frequency Detection	Flash Writing Protection Flash Shield Window Function Unique ID Customer ID Random Number Generator Package SSOP: 20, 30-pin
PC (Multi-master/Multi-slave) x1 CSI x2 / UART / Simple PC x2 CSI x2 / UART / Simple PC x2 CSI x2 / UART / Simple PC x2	High-Speed OCO 32MHz 1% Middle-Speed OCO 4MHz Low-Speed OCO 4MHz External Clock Controller Power-on Reset (POR) Voltage Detection	RAM Parity Error Check Invalid Memory Access Detection A/D Test Frequency Detection CRC Calculator	Flash Writing Protection Flash Shield Window Function Unique ID Customer ID Ramdom Number Generator

APPLICATION NOTES

Prepared basic and application notes for use when studying and designing touch.

For foundations

Title	Overview
CTSU Capacitive Touch Introduction Guide	Introduction guide targeting customers who use capacitive touch sensors for the first time. The following are introduced: Detection principles and features of the capacitance touch, MCU lineup, hardware, software, development environment and evaluation kit (capacitance touch evaluation system).
CTSU Capacitive Touch Electrode Design Guide	Electrode design and design examples of a microcomputer with a built-in capacitive touch detection circuit are described.

For applications

Title	Overview
Capacitive Touch Noise Immunity Guide	This paper explains how to improve noise immunity of products using touch MCU for every immunity noise defined in the International Standard IEC61000-4.
Capacitive Touch Ripple Noise Prevention Guide []	Explains the sensing principle of capacitive touch and the effects of ripple noise on capacitive touch sensor measurement values. Describes the power supply configuration necessary to deal with ripple noise, power supply selection criteria, and power supply layout.
Capacitive Touch Software Filter Sample Program	Describes software filters for capacitive touch systems.
<u>ΩE for Capacitive Touch Advanced Mode Parameter Guide</u> ☐	Describes the advanced modes (advanced settings) and adjustable CTSU parameters for QE for Capacitive Touch.
CTSU Self Test Software	Describes the CTSU diagnosis software and provides to assist with compliance with IEC60730 class B safety standards.

WINNING COMBINATIONS

What are Winning Combinations?

Winning combinations are comprehensive solutions that combine complementary Renesas products from our portfolio, such as analog + power + embedded processing devices. These winning combinations bring together products that work together optimally, enabling customers to speed up the design process and bring their finished products to market more quickly. With the focus on the industrial, infrastructure, and automotive fields, Renesas is working to provide an optimal portfolio of products to customers and partners worldwide.

Winning Combinations

Analog + Power + Embedded Processing + Connectivity

Application	Title	ID
Appliances	Kitchen Range Hood with 2D Touch Sensor	<u>CN158</u> [7
Industrial Automation	Touchless Button	<u>CN318</u>
Building Automation	AC/DC Non-Isolated Capacitive Touch Wall Switch	AS107
Medical & Healthcare	Infusion Level Monitor Using Capacitive Touch Sensing	<u>JP208</u>
Infotainment Systems	Haptic Touch Key Module for Automotive Switches	<u>AS253</u> [기

Visit the website below to see examples of a variety of solutions for industrial equipment.

https://www.renesas.com/winning-combinations

The easy way to discover Winning Combinations:

Type the ID number into the search bar on the Renesas website (www.renesas.com) to view the corresponding page.

MEMO	

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the Descriptions or circuits, software and other feated minimation in this document are provided only to instruct the product of any burlet set of the circuits, software, and information in the design of your product or system. Renease Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. Renease Electronics bredy expressly disclaims any warranties against and liability for infrigment or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renease Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse 5. engineering
- engineening. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. "Standard" Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. 6.
- High clausity manuformation equipment (additional statistic), such as the control (ration (ration), such as the control (ration (ration), such as the control (ration), such as the control (ration) equipment, explained equipment, explained
- No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including No semiciliated a polycology access to a vision resource in the local and the polycology interest and thepolycolog ACCOMPANYING SOFTWARE OR HARDWARE. INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY. OR FITNESS FOR A PARTICULAR PURPOSE.
- When using Benesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.], and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- unuse of sour specified names. Athough Renease Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products, semiconducts products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate 9
- or court many, may be added of the point in the vertice of a function of manufacture point of the function of the point in the vertice of country processing point of the point in the vertice of country processing point of the point in the vertice of country processing point of the vertice of the point in the vertice of country processing point of the vertice of the point in the vertice of country processing point of the vertice of the ve 10. noncompliance with applicable laws and regulations.
- Renexase Electronics products and regulations. Renexase Electronics products and regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. It is the responsibility of the buyer or distributor of Renexase Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- Please contact a Renessas Electronics sales office if you have any questions regarding the information contained in this document or Renessas Electronics reader the sales office if you have any questions regarding the information contained in this document or Renessas Electronics as used in this document means Renessas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. 1/
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Contact Us https://www.renesas.com/contact-us

Renesas Electronics Corporation

www.renesas.com

(Rev.5.0-1 2020.10)