
 APPLICATION NOTE

V850E2/ML4 Microcontrollers R01AN1037EJ0100
Rev.1.00

Mar. 23, 2012Example of USB Multifunction Operation

Summary

This application note describes the usage of the USB function controller (USBF) incorporated in the
V850E2/ML4 microcontrollers by using an example of operating the sample program created for the USB mass
storage class (MSC) and communication device class (CDC).

The description and software presented in this application note are used to explain an example of using the
USB function module. Note, however, that the described operation is not guaranteed.

Operation Verified Devices

V850E2/ML4 (PD70F4022)

Contents

1. INTRODUCTION... 2

2. OVERVIEW ... 3

3. OVERVIEW OF USB .. 6

4. SAMPLE PROGRAM SPECIFICATIONS .. 16

5. DEVELOPMENT ENVIRONMENT ... 120

6. OVERVIEW OF V850E2/ML4 CPU BOARD.. 140

R01AN1037EJ0100 Rev.1.00 Page 1 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 2 of 145
Mar. 23, 2012

1. INTRODUCTION

1.1 Caution

The sample programs used in this application note are provided for reference purposes only and their
operation is not guaranteed by Renesas Electronics Corporation.
Before using these sample programs, carefully evaluate them on the user's set.

1.2 Readers

This application note is intended for users who understand the features of the V850E2/ML4
microcontrollers, and are planning to develop application systems using a V850E2/ML4 microcontroller.

1.3 Purpose

This application note is intended to give users an understanding of the specifications of the sample program
for using the USBF incorporated in the V850E2/ML4 microcontrollers.

1.4 Organization

This application note is broadly divided into the following four sections:

 An overview of the USB standard
 Overview of USB multifunction
 The specifications for the sample program
 Development environment (CubeSuite+)

1.5 How to Read This Manual

It is assumed that the readers of this application note have general knowledge in the fields of electrical
engineering, logic circuits, and microcontrollers.

 To learn about the hardware features and electrical specifications of the V850E2/ML4 microcontrollers

 See the separately provided V850E2/ML4 microcontrollers Hardware User's Manual.
 To learn about the instructions of the V850E2/ML4 microcontrollers

 See the separately provided V850E2M Architecture User's Manual.
 To understand the specifications of the MSC driver and CDC driver

 See the application note of each driver.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 3 of 145
Mar. 23, 2012

2. OVERVIEW

This application note describes the usage of the USB function controller (USBF) incorporated in the
V850E2/ML4 microcontrollers by using an example of operating the sample program created for the MSC
and CDC commands.
This sample program covers processing of control transfers, bulk transfers, interrupt transfers, and USB
multifunctions (MSC and CDC class commands).

This chapter provides an overview of the sample program and describes the microcontrollers for which the
sample program can be used.

2.1 Overview

2.1.1 Features of the USBF
The USBF that is incorporated in the V850E2/ML4 microcontrollers and is to be controlled by the sample
program has the following features.

 Conforms to the Universal Serial Bus Rev. 2.0 Specification.
 Operates as a full-speed (12 Mbps) device.
 Includes the following endpoints:

Table 2-1. Configuration of the Endpoints of the V850E2/ML4 Microcontrollers

Endpoint Name FIFO Size (Bytes) Transfer Type Remarks

Endpoint 0 Read 64 Control transfer (IN)

Endpoint 0 Write 64 Control transfer (OUT)

Endpoint 1 64 × 2 Bulk transfer 1 (IN) Dual-buffer configuration

Endpoint 2 64 × 2 Bulk transfer 1 (OUT) Dual-buffer configuration

Endpoint 3 64 × 2 Bulk transfer 2 (IN) Dual-buffer configuration

Endpoint 4 64 × 2 Bulk transfer 2 (OUT) Dual-buffer configuration

Endpoint 7 64 Interrupt transfer (IN)

Endpoint 8 64 Interrupt transfer (IN)

 Automatically responds to standard USB requests (except some requests).
 The internal or external clock can be selectedNote

Internal clock: 9.6 MHz external clock internally multiplied by 20, divided by 4 (48 MHz)
 7.2 MHz external clock internally multiplied by 20, divided by 3 (48 MHz)
External clock: Input to the USBCLK pin (fUSB = 48 MHz)

Note The sample program selects the internal clock.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 4 of 145
Mar. 23, 2012

2.1.2 Features of the sample program
The multifunction sample program for the V850E2/ML4 microcontrollers has the features below. For
details about the features and operations, see 4. SAMPLE PROGRAM SPECIFICATIONS.

 Allows the host to recognize connected devices with MSC and CDC functions.
 Operates as a self-powered device.
 Can be formatted to any file system format from a host.
 Data such as files and folders can be written to internal RAM.
 Files and folders written to internal RAM can be read.
 Compliant with Abstract Control Model of USB Communication Device Class Ver. 1.1
 Operation as a virtual COM device
 Exclusively uses the following amounts of memory (excluding the vector table):

ROM: About 10.0 KB
RAM: About 26.0 KBNote

Note 24 KB in RAM is used as a data storage area. Therefore, the data stored in this area is initialized
when the device is turned off or the reset switch is pressed.

2.1.3 Files included in the sample program
The sample program is created assuming use with CubeSuite+. The files included in the sample
program are shown below.

Table 2-2. Files Included in the Sample Program

Folder File Overview

main.c Main routine

scsi_cmd.c SCSI command processing

usbf850.c USB initialization, endpoint control, bulk transfer, control transfer

usbf850_communication.c CDC-specific processing

usbf850_storage.c MSC-specific processing

src

cstart.asm Bootstrap

main.h main.c function prototype declaration

scsi.h SCSI macro definitions

usbf850.h usbf850.c function prototype declaration

usbstrg_desc.h Descriptor definition

usbf850_errno.h Error code definition

usbf850_storage.h usbf850_storage.c function prototype declarations

usbf850_communication.h usbf850_communication.c function prototype declaration

usbf850_types.h User-defined type declaration

include

reg_v850e2ML4.h USBF register definitions

inf file XXX_CDC.inf INF file for CDC (Windows environment)

The name of the respective microcontrollers fits in XXX:: ML4

Remark In addition, the project-related files for CubeSuite+ (an integrated development tool made by
Renesas Electronics) are also included. For details, see 5.2.1 Preparing the host
environment.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 5 of 145
Mar. 23, 2012

2.2 V850E2/ML4 Microcontrollers

For details about the V850E2/ML4 microcontrollers that are to be controlled by the sample program, see the
hardware user's manual of the applicable product.

2.2.1 Applicable products
The sample program can be used for the following products:

Table 2-3. V850E2/ML4 Microcontrollers

Internal Memory Interrupt Generic Name Part Number

Flash

Memory

RAM

Incorporated

USB Function

In
te

rn
al

N
o

te

E
xt

er
na

l N
o

te

Refer to:

PD70F4021 768 KB Internal

RAM 64 KB

+ shared

memory

64 KB

Host/function 122 29 V850E2/ML4

PD70F4022 1 MB Internal

RAM 64 KB

+ shared

memory

64 KB

Host/function 122 29

V850E2/ML4 Hardware

User’s Manual

(R01UH0262EJ)

Note Includes non-maskable interrupts.

2.2.2 Features
The main features of the V850E2/ML4 are as follows.

 Internal memory: RAM: 64 KB
 Flash memory: 768 KB (PD70F4021), 1 MB (PD70F4022)
 Flash memory cache: Single core: 16 KB (4-way set associative)
 External bus interface: SRAM or SDRAM connectable
 Serial interface: Asynchronous serial interface UART: 2 channels
 Clocked serial interface CSI: 2 channels
 Asynchronous serial interface UART (FIFO): 2 channels
 Clocked serial interface CSI (FIFO): 2 channels
 I2C: 2 channels
 CAN controller: 1 channel
 USB function controller: 1 channel
 USB host controller: 1 channel
 Ethernet controller: 1 channel
 DMA controller: DMA controller: 8 channels
 DTS: Up to 128 channels

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 6 of 145
Mar. 23, 2012

3. OVERVIEW OF USB

This chapter provides an overview of the USB standard, which the sample program conforms to.
USB (Universal Serial Bus) is an interface standard for connecting various peripherals to a host by using
the same type of connector. The USB interface is more flexible and easier to use than older interfaces in
that it can connect up to 127 devices by adding a branching point known as a hub, and supports the
hot-plug feature, which enables devices to be recognized by Plug & Play. The USB interface is provided in
most current computers and has become the standard for connecting peripherals to a computer.
The USB standard is formulated and managed by the USB Implementers Forum (USB-IF). For details
about the USB standard, see the official USB-IF website (www.usb.org).

3.1 Transfer Format

Four types of transfer formats (control, bulk, interrupt, and isochronous) are defined in the USB standard.
Table 3-1 shows the features of each transfer format.

Table 3-1. USB Transfer Format

Transfer Format

Item

Control Transfer Bulk Transfer Interrupt Transfer Isochronous

Transfer

Feature Transfer format used

to exchange

information required

for controlling

peripheral devices

Transfer format used

to periodically

handle large

amounts of data

Periodic data

transfer format that

has a low band width

Transfer format used

for a real-time

transfer

High speed

480 Mbps

64 bytes 512 bytes 1 to 1,024 bytes 1 to 1,024 bytes

Full speed

12 Mbps

8, 16, 32, or 64 bytes 8, 16, 32, or 64 bytes 1 to 64 bytes 1 to 1,023 bytes

Specifiable packet

size

Low speed

1.5 Mbps

8 bytes 1 to 8 bytes

Transfer priority 3 3 2 1

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 7 of 145
Mar. 23, 2012

3.2 Endpoints

An endpoint is an information unit that is used by the host to specify a communicating device and is
specified using a number from 0 to 15 and a direction (IN or OUT). An endpoint must be provided for every
data communication path that is used for a peripheral device and cannot be shared by multiple
communication pathsNote. For example, a device that can write to and read from an SD card and print out
documents must have a separate endpoint for each purpose. Endpoint 0 is used to control transfers for any
type of device.
During data communication, the host uses a USB device address, which specifies the device, and an
endpoint (a number and direction) to specify the communication destination in the device.
Peripheral devices have buffer memory that is a physical circuit to be used for the endpoint and functions as
a FIFO that absorbs the difference in speed of the USB and communication destination (such as memory).

Note An endpoint can be exclusively switched by using the alternative setting.

3.3 Class

Various classes, such as the mass storage class (MSC), communication device class (CDC), printer class,
and human interface device class (HID), are defined according to the functions of the peripheral devices
connected via the USB (the function devices). A common host driver can be used if the connected devices
conform to the standard specifications of the relevant class, which is defined by a protocol.
This sample program uses the MSC driver and CDC driver for multifunction processing. For details about
each driver, see the application note.

3.3.1 Mass storage class (MSC)
The mass storage class (MSC) is an interface class used to recognize and control memory devices such
as flash memories, hard disk drives, and optical disk storage devices that are connected via the USB.
Communication using the MSC is performed using the bulk-only transfer protocol or CBI (control, bulk,
or interrupt) transfer protocol. The bulk-only transfer protocol uses only bulk transfer to transfer data.
The CBI transfer protocol uses control and interrupt transfers in addition to bulk transfer and is used only
for full-speed floppy disk drives.
The sample program uses the mass storage class (MSC) bulk-only transfer protocol.
For details about the USB mass storage class (MSC) specifications, see the MSC standard specification
Universal Serial Bus Mass Storage Class Bulk-Only Transport Revision 1.0.

(1) Data transfer
The bulk-only transfer protocol transfers commands, statuses, and data by using bulk transfer.
The host uses bulk-out transfer to transmit commands to a device.
If a command that involves data transfer is transmitted, data is input or output using bulk-in or
bulk-out transfer.
The device uses bulk-in transfer to transmit the status (command execution result) to the host.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

Host Device

Bulk-out Command
transmission (CBW)

Bulk-in
Data transfer

Status response
(CSW)

Bulk-in

Bulk-out

Bulk-out

Bulk-in

Bulk-out

Bulk-in

Host Device Host Device

Reading data Writing data No data transfer

Figure 3-1. Data Transfer Flowchart

(2) CBW format
The packet structure when a command is transmitted is defined as a command block wrapper
(CBW).

Table 3-2. CBW Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 to 3 dCBWSignature

4 to 7 dCBWTag

8 to 11 dCBWDataTransferLength

12 bmCBWFlags

13 Reserved bCBWLUN

14 Reserved bCBWCBLength

15 to 30 CBWCB

dCBWSignature: Signature. Fixed to 0x43425355 (little endian)
dCBWTag: Tag whose number is defined by the host and that matches a command

to a status
dCBWDataTransferLength: Length of the data transferred during the data phase. This is 0 if there is

no data.

bmCBWFlags: Transfer direction (bit 7). 0 = bulk-out, 1 = bulk-in. Bits 0 to 6 are fixed to
0.

bCBWLUN: If multiple drives are connected to one USB device, the numbers of
those drives are specified.

bCBWCBLength: Command packet length

CBWCB: Command packet data

R01AN1037EJ0100 Rev.1.00 Page 8 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 9 of 145
Mar. 23, 2012

(3) CSW format
The packet structure when a status is transmitted is defined as a command status wrapper (CSW).

Table 3-3. CSW Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 to 3 dCSWSignature

4 to 7 dCSWTag

8 to 11 dCSWDataResidue

12 bCSWStatus

dCSWSignature: Signature. Fixed to 0x53425355 (little endian)
dCSWTag: By matching this to dCBWTag when transferring a command, the host checks for

a match in the phase.

dCSWDataResidue: Remaining data. If the data returned by the host is shorter than the data
requested by the host, due to causes such as when an error occurred during data
transfer, the remaining amount of data is set up here. Therefore, even if the status
(bCSWStatus) indicates that the CBW processing was successful, if a value
other than 0 is specified here, it means that the data returned from the device was
short.

dCSWStatus: CBW processing result status

Table 3-4. Parameters Indicating CBW Processing Results

dCSWStatus Description

0x00 Successful

0x01 Failed

0x02 Phase error

0x03 to 0xFF Reserved

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 10 of 145
Mar. 23, 2012

3.3.2 Subclass (MSC)
For MSC devices, specify the format in which commands are transmitted from the host to the target
device as the subclass.

(1) Subclass types
Table 3-5 shows the subclass codes that are specified for the USB mass storage class.

Table 3-5. Subclass Codes for the USB Mass Storage Class

Subclass Code Standard

0x00 SCSI command set not reported (normally not used)

0x01 Reduced block commands (RBC), T10 Project 1240-D

0x02 MMC-5 (ATAPI)

0x03 SFF-8070i

0x04 USB floppy interface (UFI)

0x05 QIC-157 (IDE QIC tape drive)

0x06 SCSI transparent command set

0x07 Lockable mass storage

0x08 IEEE1667

0x09 to 0xFE Reserved

0xFF Specific to device vendor

(2) SCSI command
To connect a USB memory or USB card reader, specify the SCSI transfer command set (0x06) as
the subclass. SCSI (Small Computer System Interface) is an interface standard for connecting
peripherals to a computer by using bus lines.
Transfer data and set up functions by specifying a SCSI command by using CBWCB (command
packet data) of the CBW. For the SCSI commands supported by the sample program, see 4.1.5
Supported SCSI commands.

3.3.3 Communication device class (CDC)
The communication device class (CDC) is a class for communication devices to be connected to the
host computer, which includes modems, fax machines, and network cards. As computers no longer offer
the RS-232C interface, CDC is commonly used for devices that provide USB serial conversion capability
for UART communication with a computer. While various models of CDC are defined according to the
target device, the sample program uses the Abstract Control Model.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 11 of 145
Mar. 23, 2012

3.4 Requests

For the USB standard, communication starts with the host issuing a command, known as a request, to all
function devices. A request includes data such as the direction and type of processing and address of the
function device. Each function device decodes the request, judges whether the request is addressed to it,
and responds only if the request is addressed to it.

3.4.1 Types
There are three types of requests: standard requests, class requests, and vendor requests.
For details about requests that the sample program supports, see 4.1.3 Supported requests.

(1) Standard requests
Standard requests are used for all USB-compatible devices. A request is a standard request if the
values of bits 6 and 5 in the bmRequestType field are both 0. For details about the processing of
standard requests, see the Universal Serial Bus Specification Rev. 2.0.

Table 3-6. Standard Requests

Request Name Target Descriptor Overview

Device Reads the settings of the power supply (self or bus) and

remote wakeup.

GET_STATUS

Endpoint Reads the halt status.

Device Clears remote wakeup. CLEAR_FEATURE

Endpoint Cancels the halt status (DATA PID = 0).

Device Specifies remote wakeup or test mode. SET_FEATURE

Endpoint Specifies the halt status.

GET_DESCRIPTOR Device, configuration, string Reads the target descriptor.

SET_DESCRIPTOR Device, configuration, string Changes the target descriptor (optional).

GET_CONFIGURATION Device Reads the currently specified configuration values.

SET_CONFIGURATION Device Specifies the configuration values.

GET_INTERFACE Interface Reads the alternatively specified value among the currently

specified values of the target interface.

SET_INTERFACE Interface Specifies the alternatively specified value of the target

interface.

SET_ADDRESS Device Specifies the USB address.

SYNCH_FRAME Endpoint Reads frame-synchronous data.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 12 of 145
Mar. 23, 2012

(2) Class requests
Class requests are unique to classes. A request is a class request if the values of bits 6 and 5 in the
bmRequestType field are 0 and 1, respectively.
The MSC bulk-only transfer protocol must support the following requests:
 GET_MAX_LUN (bRequest = 0xFE)
 This request is used to acquire the logical unit number of the MSC device.
 MASS_STORAGE_RESET (bRequest = 0xFF)
 This request is used to reset the interfaces related to the MSC device.

The sample program implements response processing for class requests corresponding to the
Abstract Control Model of the CDC. The requests for which a response can be sent are listed
below.
 Send Encapsulated Command

This request is used to issue commands in the CDC interface’s control protocol format.
 Get Encapsulated Response

This request is used to request a response in the CDC interface’s control protocol format.
 Set Line Coding

This request is used to specify the serial communication format.
 Get Line Coding

This request is used to acquire the current communication format of the device.
 Set Control Line State

This request is used for RS-232/V.24 format control signals.

(3) Vendor requests
Vendor requests are requests that are uniquely defined by each vendor. To make vendor requests
available for use, the vendor must provide a host driver that supports the requests. A request is a
vendor request if bits 6 and 5 in the bmRequestType field are 1 and 0, respectively.

3.4.2 Format
USB requests have an 8-byte length and consist of the following fields:

Table 3-7. USB Request Format

Offset Field Description

0 bmRequestType Request attribute

 Bit 7 Data transfer direction

 Bits 6, 5 Request type

 Bits 4 to 0 Target descriptor

1 bRequest Request code

2 wValue Lower

3 Higher

Any value used by the request

4 wIndex Lower

5 Higher

Index or offset used by the request

6 wLength Lower

7 Higher

Number of bytes transferred at the data stage (the

data length)

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 13 of 145
Mar. 23, 2012

3.5 Descriptors

For the USB standard, a descriptor is information that is specific to a function device and is encoded in a
specified format. A function device transmits a descriptor in response to a request transmitted from the
host.

3.5.1 Types
The following six types of descriptors are defined:

 Device descriptor

This descriptor exists in every device and includes basic information such as the supported USB
specification version, device class, protocol, maximum packet length that can be used when
transferring data to endpoint 0, vendor ID, and product ID.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Device request.

 Configuration descriptor
At least one configuration descriptor exists in every device and includes information such as the
device attribute (power supply method) and power consumption.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

 Interface association descriptor
This descriptor can associate multiple interface descriptors with a single function. This descriptor
includes interface information that configures the function, such as the first interface ID number, the
number of interface channels, and the class.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

 Interface descriptor
This descriptor is required for each interface and includes information such as the interface
identification number, interface class, and supported number of endpoints.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

 Endpoint descriptor
This descriptor is required for each endpoint specified for an interface descriptor and defines the
transfer type (direction), maximum packet length that can be used for a transfer, and transfer interval.
However, endpoint 0 does not have this descriptor.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

 String descriptor
This descriptor includes any character string.
This descriptor is transmitted in response to a GET_DESCRIPTOR_String request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 14 of 145
Mar. 23, 2012

3.5.2 Format
The size and fields of each descriptor type vary as described below. The data sequence of each field is
in little endian format.

Table 3-8. Device Descriptor Format

Field Size

(Bytes)

Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bcdUSB 2 USB specification release number

bDeviceClass 1 Class code

bDeviceSubClass 1 Subclass code

bDeviceProtocol 1 Protocol code

bMaxPacketSize0 1 Maximum packet size of endpoint 0

idVendor 2 Vendor ID

idProduct 2 Product ID

bcdDevice 2 Device release number

iManufacturer 1 Index to the string descriptor representing the manufacturer

iProduct 1 Index to the string descriptor representing the product

iSerialNumber 1 Index to the string descriptor representing the device production number

bNumConfigurations 1 Number of configurations

Remark Vendor ID: The identification number each company that develops a USB device acquires
from USB-IF

 Product ID: The identification number each company assigns to a product after acquiring the
vendor ID

Table 3-9. Configuration Descriptor Format

Field Size

(Bytes)

Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

wTotalLength 2 Total number of bytes of the configuration, interface association, and endpoint

descriptors

bNumInterfaces 1 Number of interfaces in this configuration

bConfigurationValue 1 Identification number of this configuration

iConfiguration 1 Index to the string descriptor specifying the source code for this configuration

bmAttributes 1 Features of this configuration

bMaxPower 1 Maximum current consumed in this configuration (in 2 A units)

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 15 of 145
Mar. 23, 2012

Table 3-10. Interface Association Descriptor Format

Field Size

(Bytes)

Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bFirstInterface 1 Number of the first interface channel incorporated in the USBF

bInterfaceCount 1 Number of interfaces incorporated in the USBF

bFunctionClass 1 Code of the class supported by the USBF

bFunctionSubClass 1 Code of the subclass supported by the USBF

bFunctionProtocol 1 Code of the protocol supported by the USBF

iFunction 1 Index to the string descriptor specifying the source code for this interface

Table 3-11. Interface Descriptor Format

Field Size

(Bytes)

Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bInterfaceNumber 1 Identification number of this interface

bAlternateSetting 1 Whether the alternative settings are specified for this interface

bNumEndpoints 1 Number of endpoints of this interface

bInterfaceClass 1 Class code

bInterfaceSubClass 1 Subclass code

bInterfaceProtocol 1 Protocol code

iInterface 1 Index to the string descriptor specifying the source code for this interface

Table 3-12. Endpoint Descriptor Format

Field Size

(Bytes)

Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bEndpointAddress 1 Transfer direction of this endpoint

Address of this endpoint

bmAttributes 1 Transfer type of this endpoint

wMaxPacketSize 2 Maximum packet size of this transfer

bInterval 1 Polling interval of this endpoint

Table 3-13. String Descriptor Format

Field Size

(Bytes)

Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bString Any Any data string

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 16 of 145
Mar. 23, 2012

4. SAMPLE PROGRAM SPECIFICATIONS

This chapter provides details about the features and processing of multifunctions when using the
V850E2/ML4 microcontrollers, and the specifications of the functions of these programs.
For details about the sample program for each class, see the application note.

4.1 Overview

4.1.1 Overview of USB multifunction driver
The USB multifunction driver enables multiple function controllers to be implemented in one device.
USB multifunction processing executed by this sample program can handle the mass storage class
(MSC) and communication device class (CDC) protocols. As a result, the host recognizes the connected
device as a device that has two function controllers. In addition, the function controller for the CDC has
two interface channels: control and data. This enables the device to use three interface channels in total,
including one interface channel for the MSC controller.

Table 4-1. USB Multifunction Organization

Function Interface Class

Function 0 Interface 0 MSC (Bulk-Only)

Interface 1 CDC (Control) Function 1

Interface 2 CDC (Data)

The interface descriptors are used to report the ID of each interface to the host. The interface
association descriptor (IAD) is used to report that interfaces 1 and 2 use the same function (CDC) to the
host.
For a device that has an IAD, the classes shown in the table below must be specified by using the device
descriptor.

Table 4-2. Device Descriptor Classes

Class SubClass Protocol Description

0xEF 0x02 0x01 Device with IAD

Table 4-3. Interface Descriptor Classes

Interface Class SubClass Protocol Description

Interface 0 0x08 0x06 0x50 MSC bulk-only

Interface 1 0x02 0x02 0x00 CDC control

Interface 2 0x02 0x0A 0x00 CDC data

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 17 of 145
Mar. 23, 2012

4.1.2 Features
The sample program can perform the following processing:

(1) Main routine

The system waits for an interrupt after initialization. If a suspend or resume interrupt occurs,
suspend or resume processing is performed. For details, see 4.2.7 Suspend/resume processing.
The CDC protocol is used to read data stored at an endpoint for bulk-out transfer (reception) and
write the data to an endpoint for bulk-in transfer (transmission).

(2) Initialization
The USBF is set up for use by manipulating various registers. This setup includes specifying
settings for the CPU registers of the V850E2M/ML4 and specifying settings for the registers of the
USBF. For details, see 4.2.1 CPU initialization and 4.2.2 USBF initialization.

(3) Interrupt servicing

The INTUSFA0I1 interrupt handler is used to monitor the statuses of the endpoint for control
transfer (endpoint 0) and the endpoint for bulk-out transfer (reception) (endpoint 2) and processes
the received requests and data. The INTUSFA0I2 interrupt handler is used to perform processing
when a resume interrupt occurs. For details, see 4.2.3 USBF interrupt servicing (INTUSFA0I1)
and 4.2.4 USBF resume interrupt servicing (INTUSFA0I2).

(4) SCSI command processing (MSC)

The received CBW data is analyzed to determine whether it is a SCSI command. If a SCSI
command is received, processing corresponding to the command is executed. For details, see
4.1.5 Supported SCSI commands.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 18 of 145
Mar. 23, 2012

4.1.3 Supported requests
Table 4-4 shows the USB requests defined by the hardware (the V850E2/ML4) and firmware (the
sample program).

Table 4-4. USB Request Processing

Codes Request Name

0 1 2 3 4 5 6 7

Processing

Standard requests

GET_INTERFACE 0x81 0x0A 0x00 0x00 0xXX 0xXX 0x01 0x00 Automatic hardware response

GET_CONFIGURATION 0x80 0x08 0x00 0x00 0x00 0x00 0x01 0x00 Automatic hardware response

GET_DESCRIPTOR Device 0x80 0x06 0x00 0x01 0x00 0x00 0xXX 0xXX Automatic hardware response

GET_DESCRIPTOR Configuration 0x80 0x06 0x00 0x02 0x00 0x00 0xXX 0xXX Automatic hardware response

GET_DESCRIPTOR String 0x80 0x06 0x00 0x03 0x00 0x00 0xXX 0xXX Firmware response

GET_STATUS Device 0x80 0x00 0x00 0x00 0x00 0x00 0x02 0x00 Automatic hardware response

GET_STATUS Interface 0x81 0x00 0x00 0x00 0xXX 0xXX 0x02 0x00 Automatic hardware STALL

response

GET_STATUS Endpoint n 0x82 0x00 0x00 0x00 0xXX 0xXX 0x02 0x00 Automatic hardware response

CLEAR_FEATURE Device 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 Automatic hardware response

CLEAR_FEATURE Interface 0x01 0x01 0x00 0x00 0xXX 0xXX 0x00 0x00 Automatic hardware STALL

response

CLEAR_FEATURE Endpoint n 0x02 0x01 0x00 0x00 0xXX 0xXX 0x00 0x00 Automatic hardware response

SET_DESCRIPTOR 0x00 0x07 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX Firmware STALL response

SET_FEATURE Device 0x00 0x03 0x01 0x00 0x00 0x00 0x00 0x00 Automatic hardware response

SET_FEATURE Interface 0x02 0x03 0xXX 0xXX 0xXX 0xXX 0x00 0x00 Automatic hardware STALL

response

SET_FEATURE Endpoint n 0x02 0x03 0x00 0x00 0xXX 0xXX 0x00 0x00 Automatic hardware response

SET_INTERFACE 0x01 0x0B 0xXX 0xXX 0xXX 0xXX 0x00 0x00 Automatic hardware response

SET_CONFIGURATION 0x00 0x09 0xXX 0xXX 0x00 0x00 0x00 0x00 Automatic hardware response

SET_ADDRESS 0x00 0x05 0xXX 0xXX 0x00 0x00 0x00 0x00 Automatic hardware response

Class requests (MSC)

MASS_STORAGE_RESET 0x21 0xFE 0x00 0x00 0xXX 0xXX 0x00 0x00 Firmware response

GET_MAX_LUN 0xA1 0xFF 0x00 0x00 0xXX 0xXX 0x01 0x00 Firmware response

Class requests (CDC)

SEND_ENCAPSULATED_COMMAND 0x21 0x00 0x00 0x00 0xXX 0xXX 0xXX 0xXX Firmware response

GET_ENCAPSULATED_RESPONSE 0xA1 0x01 0x00 0x00 0xXX 0xXX 0xXX 0xXX Firmware response

SET_LINE_CODING 0x21 0x20 0x00 0x00 0xXX 0xXX 0xXX 0xXX Firmware response

GET_LINE_CODING 0xA1 0x21 0x00 0x00 0xXX 0xXX 0xXX 0xXX Firmware response

SET_CONTROL_LINE_STATE 0xA1 0x22 0x00 0x00 0xXX 0xXX 0xXX 0xXX Firmware response

Other requests Other than the above Firmware STALL response

Remark Hardware: V850E2/ML4
 Firmware: Sample program

 0xXX: Undefined value

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 19 of 145
Mar. 23, 2012

(1) Standard requests

The sample program responds to requests not automatically responded to by the V850E2/ML4
microcontrollers by using the following requests.

(a) GET_DESCRIPTOR_string

The host issues this request to acquire the string descriptor of the function device.
If this request is received, the sample program transmits the requested string descriptor to the
host through a control read transfer.

(b) SET_DESCRIPTOR
The host issues this request to specify the descriptor of the function device.
If this request is received, the sample program returns a STALL response.

(2) Class requests (MSC)

The sample program responds to class requests of the USB MSC bulk-only transfer protocol by
using the following requests:

(a) GET_MAX_LUN
This request is used to acquire the number of logical units of the MSC device.
The host specifies the LUN in the bCBWLUN field when it transmits the CBW.
When a GET_MAX_LUN request is received, the sample program returns 0 (the number of
logical units = 1).

Table 4-5. Format of the GET_MAX_LUN Request

bmRequestType bRequest wValue wIndex wLength Data

0xA1 0xFE 0x0000 0x0000 0x0001 1 byte

(b) MASS_STORAGE_RESET
This request is used to reset the interfaces related to the MSC device.
The sample program resets the interface of the USB function controller it uses when it
receives a MASS_STORAGE_RESET request.

Table 4-6. Format of the MASS_STORAGE_RESET Request

bmRequestType bRequest wValue wIndex wLength Data

0x21 0xFF 0x0000 0x0000 0x0000 None

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 20 of 145
Mar. 23, 2012

(3) Class requests (CDC)
The sample program responds to class requests of the USB CDC by using the following requests.

(a) SendEncapsulatedCommand

This request is used to issue commands in the CDC interface’s control protocol format.
Upon receiving this request, the sample program loads the data corresponding to the request
and executes transmission processing.

(b) GetEncapsulatedResponse
This request is used to request a response in the CDC interface’s control protocol format.
The sample program does not currently support this request.

(c) SetLineCoding
This request is used to specify the serial communication format.
Upon receiving this request, the sample program loads the data corresponding to the request,
sets the communication rate, etc., and transmits a NULL packet through control read transfer.

(d) GetLineCoding
This request is used to acquire the current communication format of the device.
Upon receiving this request, the sample program reads the communication rate and other
settings, and executes the transmission processing through control read transfer.

(e) SetControlLineState
This request is for RS-232/V.24 format control signals.
Upon receiving this request, the sample program transmits a NULL packet through control
read transfer.

(4) Undefined requests
If an undefined request is received, the sample program returns a STALL response.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 21 of 145
Mar. 23, 2012

4.1.4 Descriptor settings
The settings of each descriptor specified by the sample program are shown below. These settings are
included in header file usbf850_desc.h.

(1) Device descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_device request.
The settings are stored in the USFA0DDn registers (where n = 0 to 17) when the USBF is initialized,
because the hardware automatically responds to a GET_DESCRIPTOR_device request.

Table 4-7. Device Descriptor Settings

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x12 Descriptor size: 18 bytes

bDescriptorType 1 0x01 Descriptor type: Device

bcdUSB 2 0x0200 USB specification release number: USB 2.0

bDeviceClass 1 0xEF

bDeviceSubClass 1 0x02

bDeviceProtocol 1 0x01

Class code that has interface association descriptor

bMaxPacketSize0 1 0x40 Maximum packet size of endpoint 0: 64

idVendorNote 2 0x045B Vendor ID: Renesas Electronics

idProductNote 2 0x0218 Product ID: V850E2/ML4

bcdDevice 2 0x0001 Device release number: 1st version

iManufacturer 1 0x01 Index to the string descriptor representing the manufacturer: 1

iProduct 1 0x02 Index to the string descriptor representing the product: 0

iSerialNumber 1 0x03 Index to the string descriptor representing the device production

number: 3

bNumConfigurations 1 0x01 Number of configurations: 1

Note: Set the vendor ID and product ID appropriately for the actual user system.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 22 of 145
Mar. 23, 2012

(2) Configuration descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the USFA0CIEn registers (where n = 0 to 255) when the USBF is
initialized, because the hardware automatically responds to a GET_DESCRIPTOR_configuration
request.

Table 4-8. Configuration Descriptor Settings

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x02 Descriptor type: Configuration

wTotalLength 2 0x004F Total number of bytes of the configuration, interface, and endpoint

descriptors: 79 bytes

bNumInterfaces 1 0x03 Number of interfaces in this configuration: 3

bConfigurationValue 1 0x01 Identification number of this configuration: 1

iConfiguration 1 0x00 Index to the string descriptor specifying the source code for this

configuration: 0

bmAttributes 1 0xC0 Features of this configuration: Self-powered, no remote wakeup

bMaxPower 1 0x1B Maximum current consumed in this configuration: 54 mA

(3) Interface association descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the USFA0CIEn registers (where n = 0 to 255) when the USBF is
initialized, because the hardware automatically responds to a GET_DESCRIPTOR_configuration
request.
In this sample program, the USBF for the MSC has one interface channel (interface 0), and the
USBF for the CDC has two interface channels: one for control (interface 1) and one for data
(interface 2). Use this descriptor to indicate that the USBF for the CDC consists of two interface
channels.

Table 4-9. Interface Association Descriptor Settings

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x08 Descriptor size: 8 bytes

bDescriptorType 1 0x0b Descriptor type: Interface association

bFirstInterface 1 0x01 Number of first interface that configures this function: 1

bInterfaceCount 1 0x02 Number of interfaces in this function: 2

bFunctionClass 1 0x02 Class code in this function: CDC

bFunctionSubClass 1 0x00 Subclass code in this function: None

bFunctionProtocol 1 0x00 Protocol code in this function: None

iFunction 1 0x00 Index to the string descriptor specifying the source code for this

function: 0

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 23 of 145
Mar. 23, 2012

(4) Interface descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the USFA0CIEn registers (where n = 0 to 255) when the USBF is
initialized, because the hardware automatically responds to a GET_DESCRIPTOR_configuration
request.
This sample program uses three interfaces: interface 0 for MSC, interfaces 1 and 2 for CDC, each
of which is used for control and data, respectively.

Table 4-10. Interface Descriptor Settings (MSC)

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x04 Descriptor type: Interface

bInterfaceNumber 1 0x00 Identification number of this interface: 0

bAlternateSetting 1 0x00 Whether the alternative settings are specified for this interface: no

bNumEndpoints 1 0x02 Number of endpoints of this interface: 2

bInterfaceClass 1 0x08 Class code: mass storage class

bInterfaceSubClass 1 0x06 Subclass code: SCSI transparent command set

bInterfaceProtocol 1 0x50 Protocol code: Bulk-only transfer

iInterface 1 0x00 Index to the string descriptor specifying the source code for this

interface: 0

Table 4-11. Interface Descriptor Settings (CDC Control)

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x04 Descriptor type: Interface

bInterfaceNumber 1 0x01 Identification number of this interface: 1

bAlternateSetting 1 0x00 Whether the alternative settings are specified for this interface: No

bNumEndpoints 1 0x01 Number of endpoints of this interface: 1

bInterfaceClass 1 0x02 Class code: Communication interface class

bInterfaceSubClass 1 0x02 Subclass code: Abstract Control Model

bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used

iInterface 1 0x00 Index to the string descriptor specifying the source code for this

interface: 0

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 24 of 145
Mar. 23, 2012

Table 4-12. Interface Descriptor Settings (CDC Data)

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x04 Descriptor type: Interface

bInterfaceNumber 1 0x02 Identification number of this interface: 2

bAlternateSetting 1 0x00 Whether the alternative settings are specified for this interface: No

bNumEndpoints 1 0x02 Number of endpoints of this interface: 2

bInterfaceClass 1 0x0A Class code: Communication interface class

bInterfaceSubClass 1 0x00 Subclass code: Abstract Control Model

bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used

iInterface 1 0x00 Index to the string descriptor specifying the source code for this

interface: 0

(5) Endpoint descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the USFA0CIEn registers (where n = 0 to 255) when the USBF is
initialized, because the hardware automatically responds to a GET_DESCRIPTOR_configuration
request.
There are five types of endpoint descriptors, because the sample program uses three endpoints.

The endpoint address can be switched by enabling or disabling the define definitions shown
below, which are in the header file usbf850.h. (The default setting is enabled.)
 #define USE_EP_BKI1
 #define USE_EP_BKO1

Table 4-13. Combination of Endpoints

 MSC CDC

 Bulk In Bulk Out Bulk In Bulk Out

When define is enabled EP1 EP2 EP3 EP4

When define is disabled EP3 EP4 EP1 EP2

Table 4-14. Endpoint Descriptor Settings for Endpoint 1 (Bulk-In)

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: Endpoint

bEndpointAddress 1 0x81 Transfer direction of this endpoint: IN

Address of this endpoint: 1

bmAttributes 1 0x02 Transfer type of this endpoint: Bulk

wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x00 Polling interval of this endpoint: 0 ms

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 25 of 145
Mar. 23, 2012

Table 4-15. Endpoint Descriptor Settings for Endpoint 2 (Bulk-Out)

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: Endpoint

bEndpointAddress 1 0x02 Transfer direction of this endpoint: OUT

Address of this endpoint: 2

bmAttributes 1 0x02 Transfer type of this endpoint: Bulk

wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x00 Polling interval of this endpoint: 0 ms

Table 4-16. Endpoint Descriptor Settings for Endpoint 3 (Bulk-In)

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: Endpoint

bEndpointAddress 1 0x83 Transfer direction of this endpoint: IN

Address of this endpoint: 3

bmAttributes 1 0x02 Transfer type of this endpoint: Bulk

wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x00 Polling interval of this endpoint: 0 ms

Table 4-17. Endpoint Descriptor Settings for Endpoint 4 (Bulk-Out)

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: Endpoint

bEndpointAddress 1 0x04 Transfer direction of this endpoint: OUT

Address of this endpoint: 4

bmAttributes 1 0x02 Transfer type of this endpoint: Bulk

wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x00 Polling interval of this endpoint: 0 ms

Table 4-18. Endpoint Descriptor Settings for Endpoint 7 (Interrupt-In)

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: Endpoint

bEndpointAddress 1 0x87 Transfer direction of this endpoint: IN

Address of this endpoint: 7

bmAttributes 1 0x03 Transfer type of this endpoint: Interrupt

wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x0A Polling interval of this endpoint: 10 ms

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 26 of 145
Mar. 23, 2012

(6) String descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_string request.
If a GET_DESCRIPTOR_string request is received, the sample program extracts the settings of
this descriptor from usbf850_desc.h and stores them into the USFA0E0W register of the USBF.

Table 4-19. String Descriptor Settings

(a) String 0

Field Size

(Bytes)

Specified

Value

Description

bLength 1 0x04 Descriptor size: 4 bytes

bDescriptorType 1 0x03 Descriptor type: String

bString 2 0x09, 0x04 Language code: English (U.S.)

(b) String 1

Field Size

(Bytes)

Specified

Value

Description

bLengthNote 1 1 0x40 Descriptor size: 64 bytes

bDescriptorType 1 0x03 Descriptor type: String

bStringNote 2 62 – Vendor: Renesas Electronics Corporation

Notes 1. The specified value depends on the size of the bString field.
 2. The vendor can freely set up the size and specified value of this field.

(c) String 2

Field Size

(Bytes)

Specified

Value

Description

bLengthNote 1 1 0x10 Descriptor size: 16 bytes

bDescriptorType 1 0x03 Descriptor type: String

bStringNote 2 14 – Product type: MultDrv (Multifunction driver)

Notes 1. The specified value depends on the size of the bString field.
 2. The vendor can freely set up the size and specified value of this field.

 (d) String 3

Field Size

(Bytes)

Specified

Value

Description

bLengthNote 1 1 0x1A Descriptor size: 26 bytes

bDescriptorType 1 0x03 Descriptor type: String

bStringNote 2 24 – Serial number: 0216EF020110 (V850E2/ML4)

Notes 1. The specified value depends on the size of the bString field.
 2. The vendor can freely set up the size and specified value of this field.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 27 of 145
Mar. 23, 2012

4.1.5 Supported SCSI commands
For the MSC sample program, the SCSI transfer command set (0x06) is specified as the subclass.
Table 4-20 shows the SCSI commands supported by the sample program. The sample program returns
a STALL response if it receives a command that is not shown in Table 4-20.

Table 4-20. SCSI Commands Supported by the Sample Program

Command Name Code Bulk

Transfer

Direction

Description

TEST_UNIT_READY 0x00 NO DATA Checks the type and configuration of the device.

REQUEST_SENSE 0x03 IN Acquires sense data.

READ6 0x08 IN Reads data.

WRITE6 0x0A OUT Writes data.

SEEK 0x0B NO DATA Seeks the data position.

INQUIRY 0x12 IN Acquires configuration information and attributes.

MODE_SELECT 0x15 OUT Specifies various parameters.

MODE_SENSE6 0x1A IN Reads the values of various parameters.

START_STOP_UNIT 0x1B NO DATA Loads or unloads media and starts and stops motors.

PREVENT 0x1E NO DATA Enables or disables media removal.

READ_FORMAT_CAPACITIES 0x23 IN Acquires memory capacity information.

READ_CAPACITY 0x25 IN Acquires capacity information.

READ10 0x28 IN Reads data.

WRITE10 0x2A OUT Writes data.

WRITE_VERIFY 0x2E OUT Writes and verifies data to be valid.

VERIFY 0x2F NO DATA Verifies data to be valid.

SYNCHRONIZE_CACHE 0x35 NO DATA Writes the data left in the cache.

WRITE_BUFF 0x3B OUT Writes data to buffer memory.

MODE_SELECT10 0x55 OUT Specifies various parameters.

MODE_SENSE10 0x5A IN Reads the values of various parameters.

(1) TEST_UNIT_READY command (0x00)
This command reports the logical unit status to the initiator (host). For the sample program, this
command initializes the sense data and ends normally.

Table 4-21. TEST_UNIT_READY Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x00)

1 Logical unit number (LUN) Reserved

2 to 4 Reserved

5 Reserved Flag Link

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 28 of 145
Mar. 23, 2012

(2) REQUEST_SENSE command (0x03)
This command transmits sense data to the host. For the sample program, this command transmits
the sense data shown in Table 4-22 to the host.

Table 4-22. REQUEST_SENSE Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x03)

1 Logical unit number (LUN) Reserved

2 Page code

3 Reserved

4 Additional data length

5 Reserved Flag Link

Table 4-23. REQUEST_SENSE Data Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 VALID Response code

1 Reserved

2 Filemark EOM ILI Reserved Sense key

3 to 6 Information

7 Additional sense data length (n 7 bytes)

8 to 11 Command-specific information

12 ASC (additional sense code)

13 ASCQ (additional sense code qualifier)

14 FRU (field replaceable unit) code

15 SKSV Sense-key-specific information

16 Sense-key-specific information

17 Sense-key-specific information

18 to n Additional sense data (variable data length)

Table 4-24. Sense Data

Sense Key ASC ASCQ Description

0x00 0x00 0x00 No sense

0x05 0x00 0x00 Invalid request

0x05 0x20 0x00 Invalid command operation code

0x05 0x24 0x00 Invalid field in command packet

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 29 of 145
Mar. 23, 2012

(3) READ6 command (0x08)
This command transfers the data of the logic data blocks in the specified range to the host.

Table 4-25. READ6 Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x08)

1 Logical unit number (LUN) Logical block address (LBA)

2 and 3 Logical block address (LBA)

4 Transfer data length

5 Reserved Flag Link

(4) WRITE6 command (0x0A)
This command writes the received data to a specified block in the storage device.

Table 4-26. WRITE6 Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x0A)

1 Logical unit number (LUN) Logical block address (LBA)

2 and 3 Logical block address (LBA)

4 Transfer data length

5 Reserved Flag Link

(5) SEEK command (0x0B)
This command seeks the specified position in the recording medium. For the sample program, this
command initializes the sense data and ends normally.

Table 4-27. SEEK Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x0B)

1 Logical unit number (LUN) Logical block address (LBA)

2 and 3 Logical block address (LBA)

4 Reserved

5 Reserved Flag Link

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 30 of 145
Mar. 23, 2012

(6) INQUIRY command (0x12)
This command reports configuration information and attributes of the device to the host. For the
sample program, this command transmits the INQUIRY_TABLE values to the host.

Table 4-28. INQUIRY Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x12)

1 Logical unit number (LUN) Reserved CMDDT EVPD

2 Page code

3 Reserved

4 Additional data length

5 Reserved Flag Link

Table 4-29. INQUIRY Data Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Identifier Device type

1 RMB Device type modifier

2 ISO version ECMA version ANSI version

3 AENC TmIOP Response data format

4 Additional data length (n – 4 bytes)

5 and 6 Reserved

7 RelAdr WBus32 WBus16 Sync Linked Reserved CmdQue SftRe

8 to 15 Vendor ID (ASCII code)

16 to 31 Product ID (ASCII code)

32 to 35 Product version (ASCII code)

36 to 55 Vendor-specific information

56 to 95 Reserved

96 to n Additional vendor-specific information (variable data length)

UINT8 INQUIRY_TABLE[INQUIRY_LENGTH]={

 0x00, /*Qualifier, device type code*/

 0x80, /*RMB, device type modification child*/

 0x02, /*ISO Version, ECMA Version, ANSI Version*/

 0x02, /*AENC, TrmIOP, response data form*/

 0x1F, /*addition data length*/

 0x00,0x00,0x00, /*reserved*/

 'R','e','n','e','s','a','s',' ', /*vender ID*/

 'S','t','o','r','a','g','e','F','n','c','D','r','i','v','e','r',

 /*product ID*/

 '0','.','0','1' /*Product Revision*/

};

Figure 4-1. INQUIRY_TABLE

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 31 of 145
Mar. 23, 2012

(7) MODE_SELECT command (0x15)
This command specifies and changes various parameters such as for the device data format. For
the sample program, this command writes values to MODE_SELECT_TABLE.

Table 4-30. MODE_SELECT Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x15)

1 Logical unit number (LUN) PF Reserved SP

2 and 3 Reserved

4 Additional data length

5 Reserved Flag Link

Table 4-31. MODE_SELECT Data Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Mode parameter length

1 Media type

2 Device-specific parameter

3 Block descriptor length

4 Density code

5 to 7 Number of blocks

8 Reserved

9 to 11 Block length

12 PS 1 Page code

13 Page length (n 13 bytes)

14 to n Mode parameter (variable data length)

UINT8 MODE_SELECT_TABLE[MODE_SELECT_LENGTH]={

 0x17, /*length of the mode parameter*/

 0x00, /*medium type*/

 0x00, /*device peculiar parameter*/

 0x08, /*length of the block descriptor*/

 0x00, /*density code*/

 0x00,0x00,0xC0, /*number of the blocks*/

 0x00, /*Reserved*/

 0x00,0x02,0x00, /*length of the block*/

 0x01, /*PS, page code*/

 0x0A, /*length of the page*/

 0x08,0x0B,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /*mode parameter*/

};

Figure 4-2. MODE_SELECT_TABLE

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 32 of 145
Mar. 23, 2012

(8) MODE_SENSE6 command (0x1A)
This command transmits mode selection parameter values and attributes of the device to the host.
For the sample program, this command transmits the MODE_SENSE_TABLE values to the host.

Table 4-32. MODE_SENSE6 Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x14)

1 Logical unit number (LUN) Reserved DBD Reserved

2 PC Page code

3 Reserved

4 Additional data length

5 Reserved Flag Link

Table 4-33. MODE_SENSE6 Data Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Mode parameter length

1 Media type

2 Device-specific parameter

3 Block descriptor length

4 Density code

5 to 7 Number of blocks

8 Reserved

9 to 11 Block length

12 PS Reserved Page code

13 Page length (n – 13 bytes)

14 to n Mode parameter (variable data length)

UINT8 MODE_SENSE_TABLE[MODE_SENSE_LENGTH]={
 0x17, /*length of the mode parameter*/
 0x00, /*medium type*/
 0x00, /*device peculiar parameter*/
 0x08, /*length of the block descriptor*/
 0x00, /*density code*/
 0x00,0x00,0xC0,/*number of the blocks*/
 0x00, /*Reserved*/
 0x00,0x02,0x00,/*length of the block*/
 0x81, /*PS, page code*/
 0x0A, /*length of the page*/
 0x08,0x0B,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /*mode parameter*/
};

Figure 4-3. MODE_SENSE_TABLE

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 33 of 145
Mar. 23, 2012

(9) START_STOP_UNIT command (0x1B)
This command enables or disables accessing a device. For the sample program, this command
initializes the sense data and ends normally.

Table 4-34. START_STOP_UNIT Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x1B)

1 Logical unit number (LUN) Reserved IMMED

2 Reserved

3 Reserved

4 Reserved Load/Eject Start

5 Reserved Flag Link

(10) PREVENT command (0x1E)
This command enables or disables media removal. For the sample program, this command ends
normally without performing any processing.

Table 4-35. PREVENT Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x1E)

1 Reserved

2 Reserved

3 Reserved

4 Reserved Persistent Prevent

5 Reserved Flag Link

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 34 of 145
Mar. 23, 2012

(11) READ_FORMAT_CAPACITIES command (0x23)
This command reports the device capacity (the number of blocks and block length) to the host. For
the sample program, this command transmits the READ_FORMAT_CAPACITY_TABLE values to
the host.

Table 4-36. READ_FORMAT_CAPACITIES Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x23)

1 Logical unit number (LUN) Reserved

2 to 6 Reserved

7 to 8 Transfer data length

9 Reserved Flag Link

Table 4-37. READ_FORMAT_CAPACITIES Data Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 to 2 Reserved

3 Capacity list length (bytes)

5 to 7 Number of blocks

8 Reserved Descriptor code

9 to 11 Block length

12 to 15 Number of blocks

16 Reserved

17 to 19 Block length

UINT8 READ_FORMAT_CAPACITY_TABLE[READ_FORM_CAPA_LENGTH]={
 0x00,0x00,0x00, /* Reserved */
 0x08, /* Capacity List length */
 0x00,0x00,0x00,0x30, /* Number of blocks */
 0x01, /* Descriptor Code */
 0x00,0x02,0x00, /* Block length */
 0x00,0x00,0x00,0x30, /* Number of blocks */
 0x00, /* Reserved */
 0x00,0x02,0x00 /* Block length */
};

Figure 4-4. READ_FORMAT_CAPACITY_TABLE

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 35 of 145
Mar. 23, 2012

(12) READ_CAPACITY command (0x25)
This command reports the data capacity of the device to the host. For the sample program, this
command transmits the values of READ_CAPACITY_TABLE to the host.

Table 4-38. READ_CAPACITY Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x25)

1 Logical unit number (LUN) Reserved RA

2 to 8 Reserved

9 Reserved Flag Link

Table 4-39. READ_CAPACITY Data Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 to 3 Logical block address (LBA)

4 to 7 Block length (bytes)

UINT8 READ_CAPACITY_TABLE[8]={ /*big endian*/
 0x00,0x00,0x00,0x2F, /*number of the outline reason blocks - 1*/
 0x00,0x00,0x02,0x00 /*size of the data block (bytes)*/
};

Figure 4-5. READ_CAPACITY_TABLE

(13) READ10 command (0x28)
This command transfers the data of the logic data blocks in the specified range to the host.

Table 4-40. READ10 Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x28)

1 Logical unit number (LUN) OPD FUA Reserved RA

2 to 5 Logical block address (LBA)

6 Reserved

7 and 8 Transfer data length

9 Reserved Flag Link

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 36 of 145
Mar. 23, 2012

(14) WRITE10 command (0x2A)
This command writes the received data to the specified block in the device.

Table 4-41. WRITE10 Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x2A)

1 Logical unit number (LUN) OPD FUA EBP TSR RA

2 to 5 Logical block address (LBA)

6 Reserved

7 and 8 Transfer data length

9 Reserved Flag Link

(15) WRITE_VERIFY command (0x2E)
This command writes the received data to the specified block in the device. Next, the command
checks the validity of the data. For the sample program, this command only writes the received
data.

Table 4-42. WRITE_VERIFY Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x2E)

1 Logical unit number (LUN) OPD FUA EBP BYTCHK RA

2 to 5 Logical block address (LBA)

6 Reserved

7 and 8 Transfer data length

9 Reserved Flag Link

(16) VERIFY command (0x2F)
This command checks the validity of the data in the device. For the sample program, this command
ends normally without performing any processing.

Table 4-43. VERIFY Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x2F)

1 Logical unit number (LUN) OPD Reserved BYTCHK RA

2 to 5 Logical block address (LBA)

6 Reserved

7 and 8 Transfer data length

9 Reserved Flag Link

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 37 of 145
Mar. 23, 2012

(17) SYNCHRONIZE_CACHE command (0x35)
This command matches the values of cache memory and a medium for blocks in the specified
range. For the sample program, this command initializes the sense data and ends normally.

Table 4-44. SYNCHRONIZE_CACHE Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x35)

1 Logical unit number (LUN) Reserved IMMED RA

2 to 5 Logical block address (LBA)

6 Reserved

7 and 8 Transfer data length

9 Reserved Flag Link

(18) WRITE_BUFF command (0x3B)
This command writes data to memory (the data buffer). For the sample program, this command
reads and then discards data, and then ends normally.

Table 4-45. WRITE_BUFF Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x3B)

1 Logical unit number (LUN) OPD FUA EBP Reserved RA

2 to 5 Logical block address (LBA)

6 Reserved

7 and 8 Transfer data length

9 Reserved Flag Link

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 38 of 145
Mar. 23, 2012

(19) MODE_SENSE10 command (0x5A)
This command reports mode selection parameter values and attributes of the device to the host.
For the sample program, this command transmits the values of MODE_SENSE10_TABLE to the
host.

Table 4-46. MODE_SENSE10 Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x5A)

1 Reserved LLBAA DBD Reserved

2 PC Page code

3 to 6 Reserved

7 and 8 Added data length

9 Reserved Flag Link

Table 4-47. MODE_SENSE10 Data Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Mode parameter length

1 Media type

2 Device-specific parameter

3 Block descriptor length

4 Density code

5 to 7 Number of blocks (0x0000C0)

8 Reserved

9 to 11 Block length (0x000200)

12 PS Reserved Page code

13 Page length (n 13 bytes)

14 to n Mode parameter (variable data length)

UINT8 MODE_SENSE10_TABLE[MODE_SENSE10_LENGTH]={
 0x00,0x1A, /*length of the mode parameter*/
 0x00, /*medium type*/
 0x00, /*device peculiar parameter*/
 0x00,0x00, /*Reserved*/
 0x00,0x08, /*length of the block descriptor*/
 0x00, /*density code*/
 0x00,0x00,0xC0, /*number of blocks*/
 0x00, /*Reserved*/
 0x00,0x02,0x00, /*length of the block*/
 0x81, /*PS, page code*/
 0x0A, /*length of the page*/
 0x08,0x0B,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /*mode parameter*/
};

Figure 4-6. MODE_SENSE10_TABLE

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 39 of 145
Mar. 23, 2012

(20) MODE_SELECT10 command (0x55)
This command specifies and changes various parameters such as for the device data format. For
the sample program, this command writes values to MODE_SELECT10_TABLE.

Table 4-48. MODE_SELECT10 Command Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Operation code (0x55)

1 Logical unit number (LUN) PF Reserved SP

2 to 6 Reserved

7 and 8 Additional data length

9 Reserved Flag Link

Table 4-49. MODE_SELECT10 Data Format

Bit

Bytes

7 6 5 4 3 2 1 0

0 Mode parameter length

1 Media type

2 Device-specific parameter

3 Block descriptor length

4 Density code

5 to 7 Number of blocks

8 Reserved

9 to 11 Block length

12 PS 1 Page code

13 Page length (n 13 bytes)

14 to n Mode parameter (variable data length)

UINT8 MODE_SELECT10_TABLE[MODE_SELECT10_LENGTH]={
 0x00,0x1A, /*length of the mode parameter*/
 0x00, /*medium type*/
 0x00, /*device peculiar parameter*/
 0x00,0x00, /*Reserved*/
 0x00,0x08, /*length of the block descriptor*/
 0x00, /*density code*/
 0x00,0x00,0xC0, /*number of the blocks*/
 0x00, /*Reserved*/
 0x00,0x02,0x00, /*length of the block*/
 0x01, /*PS, page code*/
 0x0A, /*length of the page*/
 0x08,0x0B,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /*mode parameter*/
};

Figure 4-7. MODE_SELECT10_TABLE

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

4.2 Operation of Each Section
The processing sequence below is performed when the sample program is executed. This section
describes each processing.

CPU initialization

Start

USB function controller initialization

Sample application execution

Figure 4-8. Sample Program Processing Flowchart

R01AN1037EJ0100 Rev.1.00 Page 40 of 145
Mar. 23, 2012

4.2.1 CPU initialization
The settings necessary to use the USBF are specified.

Start CPU initialization

Enable HCLK output

Initialize HBUS

Initialize VBUS signal

Initialize USB clock

End CPU initialization

Figure 4-9. CPU Initialization Flowchart

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 41 of 145
Mar. 23, 2012

(1) Enabling HCLK output
Outputting HCLK is enabled so as to enable the USBF connected to the H bus. The SFRCTL2
register used for specifying the settings must be written by using a special writing sequence.

(2) Initializing the H bus
The H bus is initialized according to the specified conditions. For details, see the V850E2/ML4
microcontroller hardware user's manual.

(3) Initializing the USB clock
The setting of alternate function pin P2_11, which is connected to UCLK, is specified. In this
sample program, UCLK is used to input the USB clock.

(4) Initializing the VBUS signal
The VBUS signal is initialized.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

4.2.2 USBF initialization
The settings necessary to use the USBF are specified.

Start of USBF initialization processing

Pull down the D+ signal

Initialize the USBF buffer

End of USBF initialization

Initialize the request data register area

Specify interface and endpoint information

Specify NAK response for control endpoint

Initialize driver's internal flags

Pull up the D+ signal

Cancel NAK response for control endpoint

Initialize the EPC circuit

Supply UCLK

Figure 4-10. USBF Initialization Flowchart

(1) Pulling down the D+ signal

0 is written to the P2_4 of the CPU. This sets the D+ signal to low level output, meaning that device
connection is not reported to the host.

(2) Specifying UCLK supply
Set the SFRCTL3 register to “0x48” to enable clock supply to the USB function controller.

(3) Initializing the EPC circuit
Set the USFA0EPCCTL register to “0x00000000” to cancel the EPC reset.

(4) Initializing the USB function buffer
Set the USFBC register to “0x00000003” to enable the USBF buffer and enable the floating
countermeasure.

(5) Setting the control endpoint to respond using the NAK character
1 is written to the EP0NKA bit of the USFA0E0NA register so that the hardware responds to all
requests, including requests that are automatically responded to, with a NAK.
The EP0NKA bit is used by software until the data used by requests that are automatically
responded to has been added to prevent the hardware from returning unintended data for such
requests.

R01AN1037EJ0100 Rev.1.00 Page 42 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 43 of 145
Mar. 23, 2012

(6) Initializing the request data register area
The descriptor data transmitted in response to a GET_DESCRIPTOR request is added to various
registers.
The following registers are accessed:

(a) 0x01 is written to the USFA0DSTL register to disable remote wakeup and operate the USBF

as a self-powered device.
(b) 0x00 is written to the USFA0EnSL registers (where n = 0 to 2) to indicate that endpoint n

operates normally.
(c) The total data length (number of bytes) of the required descriptor is written to the

USFA0DSCL register to determine the range of the USFA0CIEn registers (where n = 0 to
255).

(d) The device descriptor data is written to the USFA0DDn registers (where n = 0 to 17).
(e) The data of the configuration, interface, and endpoint descriptors is written to the USFA0CIEn

registers (where n = 0 to 255).
(f) 0x00 is written to the USFA0MODC register to enable automatic responses to

GET_DESCRIPTOR_configuration requests.

(7) Specifying interface and endpoint information
Information such as the number of supported interfaces, whether the alternative setting is used,
and the relationship between the interfaces and endpoints is specified for various registers.
The following registers are accessed:

(a) 0x81 is written to the USFA0AIFN register to enable interfaces 0, 1, and 2.
(b) 0x00 is written to the USFA0AAS register to disable the alternative setting.
(c) 0x20 is written to the USFA0E1IM register to link endpoint 1 to interface 0.
(d) 0x20 is written to the USFA0E2IM register to link endpoint 2 to interface 0.
(e) 0x60 is written to the USFA0E3IM register to link endpoint 3 to interface 2.
(f) 0x60 is written to the USFA0E4IM register to link endpoint 4 to interface 2.
(g) 0x40 is written to the USFA0E7IM register to link endpoint 7 to interface 1.

(8) Disabling the control endpoint to respond using the NAK character
0 is written to the EP0NKA bit of the USFA0E0NA register to restart responses corresponding to
each request, including requests that are automatically responded to.

(9) Setting up the interrupt mask registers
Masking is specified for each USBF interrupt source.
The following registers are accessed:

(a) 0x00 is written to the USFA0ICn register (n = 0 to 4) to clear all interrupt sources.
(b) 0xF7 is written to the USFA0FIC0 register and 0x0F is written to the USFA0FIC1 register to

clear all transfer FIFOs.
(c) 0x1B is written to the USFA0IM0 register to mask interrupt sources indicated by the

USFA0IS0 register other than those of the BUSRST, RSUSPD, and SETRQ interrupts.
(d) 0x7E is written to the USFA0IM1 register to mask interrupt sources indicated by the

USFA0IS1 register other than those of the CPUDEC interrupt.
(e) 0xF1 is written to the USFA0IM2 register to mask all interrupt sources indicated by the

USFA0IS2 register.
(f) 0xEE is written to the USFA0IM3 register to mask interrupt sources indicated by the

USFA0IS3 register other than those of the BKO1DT and BKO2DT interrupt.
(g) 0x20 is written to the USFA0IM4 register to mask all interrupt sources indicated by the

USFA0IS4 register.
(h) 0x0003 is written to the USFA0EPCINTE register to enable interrupts when the

EPC_INT0BEN and EPC_INT1BEN bits are set.
(i) 0 is written to ICUSFA0I1 and to ICUSFA0I2 to enable INTUSFA0I1 and INTUSFA0I2.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

(10) Initialization of driver's internal flags

The flags (usbf850_busrst_flg, usbf850_rsuspd_flg, and usbf850_rdata_flg) used in
the driver are initialized.

(11) Pulling up the D+ signal
0x0010 is written to the P2 register of the CPU to output 1 from P2_4. This outputs a high level
signal from the D+ pin to report to the host that a device has been connected. For the sample
program, the connections shown in Figure 4-11 are assumed.

VBUS

D+

D−

INTUSFA0I1

UDPF

UDMF

P2_4

R2
Microcontroller with
USB function controller

USB connector

27 kΩ ±5%

27 kΩ ±5%

50 kΩ or more

R1

1.5 kΩ ±5%

UVDD

UVDD

Figure 4-11. USBF Connection Example

R01AN1037EJ0100 Rev.1.00 Page 44 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

4.2.3 USBF interrupt servicing (INTUSFA0I1)
The INTUSFA0I1 interrupt handler is used to monitor the statuses of the endpoint for control transfer
(endpoint 0) and the endpoint for bulk-out transfer (reception) (endpoint 2, endpoint 4) and to perform
processing corresponding to received requests and data.

R01AN1037EJ0100 Rev.1.00 Page 45 of 145
Mar. 23, 2012

RSUSPD interrupt servicing

Start INTUSFA0I1 interrupt

SETRQ interrupt servicing

BUSRST interrupt servicing

BKO1DT interrupt servicing

CPUDEC interrupt servicing

End INTUSFA0I1 interrupt

Figure 4-12. INTUSFA0I1 Interrupt Handler Processing Flowchart

(1) RSUSPD interrupt servicing

If the RSUSPD bit of the USFA0IS0 register is 1, an RSUSPD interrupt is judged to have occurred.
If an RSUSPD interrupt occurred, the following processing is performed:
 The interrupt source is cleared. (0 is written to the RSUSPDC bit of the USFA0IC0 register.)
 Whether the processing is suspended or has resumed is determined.

(2) Suspend processing
If the RSUM bit of the USFA0EPS1 register is 1, the processing is judged to have been suspended.
If the resume/suspend flag (rs_flag) is already set to SUSPEND (0x00) when processing is
suspended, the subsequent processing is not performed and INTUSFA0I1 interrupt servicing
ends.
If the resume/suspend flag (rs_flag) is not set to SUSPEND, it is set to SUSPEND to clear all
USB interrupt sources. This omits the subsequent INTUSBF0 interrupt servicing.
If the processing is suspended, all USB interrupt sources are cleared. This omits all subsequent
INTUSFA0I1 interrupt servicing.

(3) BUSRST interrupt servicing
If the BUSRST bit of the USFA0IS0 register is 1, a BUSRST interrupt is judged to have occurred.
If a BUSRST interrupt occurred, the following processing is performed:
 The interrupt source is cleared. (0 is written to the BUSRST bit of the USFA0IC0 register.)
 The bus reset interrupt flag (usbf_busrst_flg) is set to 1.
 The bulk endpoint FIFOs are cleared.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 46 of 145
Mar. 23, 2012

(4) SETRQ interrupt servicing
If the SETRQ bit of the UF0IS0 register is 1, an SETRQ interrupt is judged to have occurred.
If a SETRQ interrupt occurred, the following processing is performed:
 The interrupt source is cleared. (0 is written to the SETRQ bit of the UF0IC0 register.)
 A request that is automatically responded to (SET_XXXX) is processed.

(5) Processing an automatically responded request (SET_XXXX)
If the SETCON bit of the UF0SET register is 1, a SET_CONFIGURATION request is received and
automatic processing is judged to have been performed.
If automatic processing was performed, the bus reset interrupt flag (usbf_busrst_flg) is set to
0.

Remark To check whether a configured status has been entered, check the values of the UF0CNF
register.

(6) CPUDEC interrupt servicing
If the CPUDEC bit of the USFA0IS1 register is 1, a CPUDEC interrupt is judged to have occurred.
If a CPUDEC interrupt occurred, the following processing is performed:
 The port interrupt source is cleared. (0 is written to the PORT bit of the USFA0IC1 register.)
 The received data is read from the FIFOs and request data is created.
 Request processing

(7) Request processing
Whether the request is one to which the hardware does not automatically respond (a standard,
class, or vendor request) is determined and processing according to the type of request is
executed.
Endpoint 0 is used for a control transfer. During the enumeration processing when a device is
plugged in, almost all standard device requests are automatically processed by the hardware. Here,
the standard, class, and vendor requests that are not automatically processed are processed.

(8) BKOnDT interrupt servicing
If the BKOnDT bit of the USFA0IS3 register is set to 1, an interrupt is judged to have occurred.
If a BKO1DT interrupt occurred, the following processing is performed:
 The BKO1DT interrupt source is cleared. (0 is written to the BKO1DT bit of the USFA0IC3

register.)
 The CBW data reception function (usbf850_rx_cbw) is called to receive CBW data.

If a BKO2DT interrupt occurred, the following processing is performed:
 The BKO2DT interrupt source is cleared. (0 is written to the BKO2DT bit of the USFA0IC3

register.)
 The flag indicating that CDC data has been received (usbf850_cdc_rdata_flg) is

updated.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

4.2.4 USBF resume interrupt servicing (INTUSFA0I2)
The INTUSFA0I2 interrupt handler is used to perform processing when a resume interrupt occurs.
During this processing, the resume/suspend flag (rs_flag) is set to RESUME (0x01).
When rs_flag is set to RESUME, the processing is performed in the main routine.

Start of INTUSFA0I2 interrupt servicing

Setting the resume/suspend flag

End of INTUSFA0I2 interrupt servicing

Figure 4-13. INTUSFA0I2 Interrupt Handler Processing Flowchart

R01AN1037EJ0100 Rev.1.00 Page 47 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

4.2.5 CBW data reception processing
During CBW data reception processing, data is read from the FIFOs of the bulk-out endpoint (endpoint
2) and then CBW data command analysis processing is called.

Start of CBW data reception processing

CBW data error processing

End of CBW data reception processing

Is MASS_STORAGE_RESET being

processed?

No

Yes

Is the CBW format used?

Yes

No

USB data reception processing

Is the CBW being processed?

Yes

Clearing the FIFOs of endpoint 1

Clearing the CBW-in-processing flag

CBW data command analysis processing

Setting the CBW-in-processing flag

No

Figure 4-14. CBW Data Reception Processing Flowchart

(1) Judging whether processing is under execution by using the MASS_STORAGE_RESET
processing flag
If the MASS_STORAGE_RESET processing flag (mass_storage_reset) is set to 1, processing
is judged to be under execution.
If processing is under execution, the CBW data error processing function (usbf850_cbw_error)
is called to end CBW data reception processing.

(2) Judging the CBW format
The size (length) of the data stored at the bulk-out endpoint (endpoint 2) is acquired from the UF0
bulk-out 1 length register (USFA0BO1L). If the data length is 31 bytes, the data is judged to match
the CBW format.
If the data is not in the CBW format, CBW data reception processing ends.
If the data is in the CBW format, the USB data reception processing function
(usbf850_multiple_data_receive) is called to continue processing.

R01AN1037EJ0100 Rev.1.00 Page 48 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 49 of 145
Mar. 23, 2012

(3) Judging whether processing is under execution by using the CBW-processing-in-progress
flag
If the CBW-processing-in-progress flag (cbw_in_cbw) is set to USB_CBW_PROCESS (0x01),
processing is judged to be under execution.
If processing is under execution, the FIFOs of endpoint 1 are cleared and the
CBW-processing-in-progress flag (cbw_in_cbw) is set to USB_CBW_END (0x00).

(4) Setting the CBW-processing-in-progress flag
The CBW-processing-in-progress flag (cbw_in_cbw) is set to USB_CBW_PROCESS (0x01).

(5) CBW command analysis processing
The CBW data command analysis processing function (usbf850_storage_cbwchk) is called to
perform processing for the received SCSI command.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

4.2.6 SCSI command processing
If CBW data is received via the USB, the CBW data command analysis processing function
(usbf850_storage_cbwchk) is called to perform processing for the received SCSI command.

Start of SCSI command processing

CBW data error processing

End of SCSI command processing

No

Yes

Data length = 0?

Yes

No

No-data command processing

Command packet length
= 0?

Yes

No
Bulk-out command?

Write command processing

Read command processing

CSW issuance

Figure 4-15. SCSI Command Processing Flowchart

(1) Judging SCSI commands
If the command packet length (bCBWCBLength) is 0x00, the received command is judged not to be
a SCSI command.
If the received command is not a SCSI command, the CBW data error processing function
(usbf850_cbw_error) is called to finish SCSI command processing.

(2) Judging NO DATA commands
If the length of data to transmit in the data phase (dCBWDataTransferLength) is 0x00000000,
the received command is judged to be a NO DATA command.
If the received command is a NO DATA command, the NO DATA command processing function
(usbf850_no_data) is called to execute the processing corresponding to the received command.
When command processing ends, the CSW response processing function (usbf850_csw_ret)
is called to transmit the CSW.

(3) Judging the data transfer direction
If bit 7 of the transfer direction (bmCBWFlags) is 0, the received command is judged to be a write
command, the data-out command processing function (usbf850_multiple_data_send) is
called, and then processing corresponding to the received command is executed.
If bit 7 of bmCBWFlags is 1, the received command is judged to be a read command, the data-in
command processing function (usbf850_multiple_data_receive) is called, and then
processing corresponding to the received command is executed.
When command processing ends, the CSW response processing function (usbf850_csw_ret)
is called, and then the CSW is transmitted.

R01AN1037EJ0100 Rev.1.00 Page 50 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

4.2.7 Suspend/resume processing
In the main routine, suspend/resume processing is performed according to the following sequence.

Start of main routine

Initialization processing

Is usbf850_rsuspd_flg set?

Yes

No

__DI() processing

__halt() processing

Setting usbf850_rsuspd_flg

__EI() processing

Figure 4-16. Suspend/Resume Processing Flowchart

(1) Monitoring the resume/suspend flag (usbf850_rsuspd_flg)
The resume/suspend flag (usbf850_rsuspd_flg) that is set by the sample program is
monitored. If this flag is set to SUSPEND (0x00), the USB bus is suspended.

(2) Disabling CPU interrupts
The occurrence of a CPU interrupt when the resume/suspend flag (usbf850_rsuspd_flg) is set
to "SUSPEND (0x00)" is disabled.

(3) CPU HALT processing
The processor is stopped and enters HALT mode. The processor exits HALT mode and resumes
processing when a maskable interrupt, NMI, or reset occurs. In this sample program, the processor
resumes processing when the resume interrupt INTUSFA0I2 occurs.

(4) Setting the resume/suspend flag (rs_flag)
The resume/suspend flag (usbf850_rsuspd_flg) is set to RESUME (0x01).

(5) Enabling CPU interrupts
The occurrence of CPU interrupts is enabled. Resume processing then finishes.

R01AN1037EJ0100 Rev.1.00 Page 51 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 52 of 145
Mar. 23, 2012

4.3 Function Specifications

This section describes the functions implemented in the sample program.

4.3.1 Functions
The functions of each source file included in the sample program are described below.

Table 4-50. Functions in the Sample Program (1/2)

Source File Function Name Description

main.c main Main routine

cpu_init Initialization the CPU

SetProtectReg Allows access to write-protected registers

usbf850.c usbf850_init Initializes the USBF.

 usbf850_intusbf0 Monitors endpoint 0 and controls response to request.

 usbf850_intusbf1 Resume interrupt servicing

 usbf850_multiple_data_send Transmits USB data. (MSC)

 usbf850_data_send Transmits USB data. (CDC)

 usbf850_multiple_data_receive Receives USB data. (MSC)

 usbf850_data_receive Receives USB data. (CDC)

 usbf850_rdata_length Acquires the USB reception data length.

 usbf850_send_EP0 Transmits USB data for endpoint 0.

 usbf850_receive_EP0 Receives USB data for endpoint 0.

 usbf850_send_null Transmits a NULL packet to Bulk/Interrupt In endpoint.

 usbf850_sendnullEP0 Transmits a NULL packet for endpoint 0.

 usbf850_sendstallEP0 Performs a STALL response for endpoint 0.

 usbf850_ep_status Notifies the FIFO status for Bulk/Interrupt In endpoint.

 usbf850_fifo_clear Clears the FIFO for endpoints other than endpoint 0.

 usbf850_standardreq Processes standard requests.

 usbf850_getdesc Processes GET_DESCRIPTOR requests.

usbf850_classreq Processes MSC class requests. usbf850_storage.c

usbf850_blkonly_mass_storage_reset Processes MASS_STORAGE_RESET requests.

 usbf850_max_lun Processes GET_MAX_LUN requests.

 usbf850_rx_cbw Receives CBW data.

 usbf850_storage_cbwchk Analyzes the CBW data commands.

 usbf850_cbw_error Processes errors in CBW data.

 usbf850_no_data Executes SCSI NO DATA commands.

 usbf850_data_in Executes SCSI write commands.

 usbf850_data_out Executes SCSI read commands.

 usbf850_csw_ret Executes CSW responses.

 usbf850_bulkin_stall Controls the STALL response for bulk-in transfer.

 usbf850_bulkout_stall Controls the STALL response for bulk-out transfer.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 53 of 145
Mar. 23, 2012

Table 4-51. Functions in the Sample Program (2/2)

Source File Function Name Description

scsi_cmd.c scsi_command_to_ata Executes SCSI commands.

 ata_test_unit_ready Executes the TEST_UNIT_READY command.

 ata_seek Executes the SEEK command.

 ata_start_stop_unit Executes the START_STOP_UNIT command.

 ata_synchronize_cache Executes the SYNCHRONIZE_CACHE command.

 ata_request_sense Executes the REQUEST_SENSE command.

 ata_inquiry Executes the INQUIRY command.

 ata_mode_select Executes the MODE_SELECT6 command.

 ata_mode_select10 Executes the MODE_SELECT10 command.

 ata_mode_sense Executes the MODE_SENSE6 command.

 ata_mode_sense10 Executes the MODE_SENSE10 command.

 ata_read_format_capacities Executes the READ_FORMAT_CAPACITIES

command.

 ata_read_capacity Executes the READ_CAPACITY command.

 ata_read6 Executes the READ6 command.

 ata_read10 Executes the READ10 command.

 ata_write6 Executes the WRITE6 command.

 ata_write10 Executes the WRITE10 command.

 ata_verify Executes the VERIFY command.

 ata_write_verify Executes the WRITE_VERIFY command.

 ata_write_buff Executes the WRITE_BUFFER command.

 scsi_to_usb Transmits USB data (SCSI command).

usbf850_communication.c usbf850_cdc_classreq Processes CDC class requests.

 usbf850_send_encapsulated_command Processes Send Encapsulated Command requests.

 usbf850_get_encapsulated_response Processes Get Encapsulated Command requests.

 usbf850_set_line_coding Processes Set Line Coding requests.

 usbf850_get_line_coding Processes Get Line Coding requests.

 usbf850_set_control_line_state Processes Set Control Line State requests

 usbf850_buff_init Clears the FIFO of the endpoint for CDC data transfer.

 usbf850_get_bufinit_flg Notifies the execution status of FIFO initialization.

 usbf850_send_buf Transmits CDC data.

 usbf850_recv_buf Registers CDC's class request processing function.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

4.3.2 Correlation of the functions
Some functions call other functions during the processing. The following figures show the correlation of
the functions.

Figure 4-17. Calling Functions During main Processing

R01AN1037EJ0100 Rev.1.00 Page 54 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

usbf850_intusbf0

usbf850_sendstallEP0

usbf850_standardreq

usbf850_sendstallEP0

usbf850_getdesc

usbf850_rx_cbw

usbf850_sendstallEP0

usbf850_cbw_error

usbf850_data_receive

usbf850_storage_cbwchk

usbf850_cbw_error

usbf850_no_data

usbf850_data_out

usbf850_intusbf1Note

usbf850_bulkin_stall

usbf850_bulkout_stall

usbf850_data_in

usbf850_bulkin_stall
l

usbf850_bulkout_stall

usbf850_classreq

usbf850_cdc_classreq

usbf850_max_lun

usbf850_blkonly_mass_storage_reset

usbf850_sendstallEP0

Note This function does not call other functions.

Figure 4-18. Calling Functions During USB Interrupt Servicing

R01AN1037EJ0100 Rev.1.00 Page 55 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

usbf850_no_data

usbf850_data_out

usbf850_data_in

usbf850_csw_ret

usbf850_multiple_data_send

usbf850_csw_ret

usbf850_multiple_data_send

usbf850_bulkout_stall

usbf850_sendstallEP0

usbf850_bulkin_stall

usbf850_bulkout_stall

usbf850_csw_ret

usbf850_multiple_data_send

scsi_command_to_ata

scsi_command_to_ata

scsi_command_to_ata

usbf850_storage_cbwchk

usbf850_rx_cbw

Figure 4-19. Calling Functions During CBW or CSW Processing

R01AN1037EJ0100 Rev.1.00 Page 56 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

scsi_command_to_ata

ata_test_unit_ready

ata_seek

ata_start_stop_unit

ata_read_capacity

usbf850_multiple_data_send

ata_synchronize_cache

ata_request_sense

ata_inquiry

ata_mode_select

ata_mode_select10

ata_mode_sense

ata_mode_sense10

ata_read_format_capacities

ata_read10

ata_read6

ata_write10

ata_write6

ata_verify

ata_write_buff

ata_write_verify

usbf850_data_send

scsi_to_usb

usbf850_multiple_data_send

scsi_to_usb

usbf850_multiple_data_receive

Figure 4-20. Calling Functions During SCSI Command Processing

R01AN1037EJ0100 Rev.1.00 Page 57 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

Figure 4-21. Calling Functions During Processing for USB Communication Class (1/2)

R01AN1037EJ0100 Rev.1.00 Page 58 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

Figure 4-22. Calling Functions During Processing for USB Communication Class (2/2)

R01AN1037EJ0100 Rev.1.00 Page 59 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 60 of 145
Mar. 23, 2012

4.3.3 Function features
This section describes the features of the functions implemented in the sample program.

(1) Function description format

The functions are described in the following format.

Function name

Overview

An overview of the function is provided.

C coding format

The format in which the function is written in C is provided.

Parameters

The parameters (arguments) of the function are described.

Parameter Description

Parameter type and name Parameter summary

Return values

The values returned by the function are described.

Symbol Description

Return value type and name Return value summary

Description

The feature of the function is described.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 61 of 145
Mar. 23, 2012

(2) Functions for the main routine

main

Overview
Main processing

C coding format
void main(void)

Parameters

None

Return values

None

Description

This function is called first when the sample program is executed.
The resume/suspend flag (usbf850_rsuspd_flg) is monitored after the USB initialization function
(usbf850_init) is called. Suspend processing is performed when usbf850_rsuspd_flg is set to

SUSPEND (0x00).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 62 of 145
Mar. 23, 2012

cpu_init

Overview
Initializes the CPU.

C coding format
void cpu_init(void)

Parameters

None

Return values

None

Description

This function is called during initialization.
This function specifies the settings necessary to use the USBF, such as initializing the H bus and USB

clock.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 63 of 145
Mar. 23, 2012

SetProtectReg

Overview
Allows access to write-protected registers.

C coding format
void SetProtectReg(volatile UINT32 *dest_reg, UINT32 wr_dt, volatile UINT8 *prot_reg)

 Parameters

Parameter Description

volatile UINT32 *dest_reg Address of the write-protected register

UINT32 wr_dt Value to write

volatile UINT8 *prot_reg Address of the protection command register

Return values

None

Description

This function is used to write data to write-protected registers.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 64 of 145
Mar. 23, 2012

(3) Functions for the USBF

usbf850_init

Overview
Initializes the USBF.

C coding format
void usbf850_init(void)

Parameters

None

Return values

None

Description

This function is called during initialization.

This function specifies the settings required for using the USBF, such as allocating and specifying the
data area, and masking interrupt requests.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 65 of 145
Mar. 23, 2012

usbf850_intusbf0

Overview
Executes the INTUSFA0I1 interrupt handler.

C coding format
void usbf850_intusbf0(void)

Parameters

None

Return values

None

Description

This function is called as the USB interrupt (INTUSFA0I1) handler.
The statuses of the endpoint for control transfer (endpoint 0) and the endpoint for bulk-out transfer
(reception) (endpoint 2, endpoint 3) are monitored and processing corresponding to the received

requests and commands is performed.
The RSUSPD, BUSRST, SETRQ, and CPUDEC interrupts are monitored at endpoint 0. If a CPUDEC
interrupt occurs, the request data is decoded and response processing is performed by calling the

corresponding function.
The BKO1DT interrupt is monitored at endpoint 2. If a BKO1DT interrupt occurs, the CBW data
reception function (usbf850_rx_cbw) is called and processing corresponding to the command is

performed.
The BKO2DT interrupt is monitored at endpoint 3. If a BKO2DT interrupt occurs, a flag indicating that
CDC data has been received (usbf850_cdc_rdata_flg) is updated.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 66 of 145
Mar. 23, 2012

usbf850_intusbf1

Overview
Executes the INTUSFA0I2 interrupt handler.

C coding format
void usbf850_intusbf1(void)

Parameters

None

Return values

None

Description

This function is called as the USB resume interrupt (INTUSFA0I2) handler.
The resume/suspend flag (usbf850_rsuspd_flg) is set to RESUME (0x01).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 67 of 145
Mar. 23, 2012

usbf850_multiple_data_send

Overview
Transmits USB data (MSC).

C coding format
INT32 usbf850_multiple_data_send(UINT8 *data, INT32 len, INT8 ep)

Parameters

Parameter Description

UINT8 *data Transmission data buffer pointer

INT32 len Transmission data length

INT8 ep Data transmission endpoint number

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

Description

This function can be used to transmit multiple packets.

This function stores the data stored in the transmission data buffer into the FIFO for the specified
endpoint, byte by byte.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 68 of 145
Mar. 23, 2012

usbf850_data_send

Overview
Transmits USB data (CDC).

C coding format
INT32 usbf850_data_send(UINT8 *data, INT32 len, INT8 ep)

Parameters

Parameter Description

UINT8 *data Transmission data buffer pointer

INT32 len Transmission data length (<Max packet size)

INT8 ep Data transmission endpoint number

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

Description

This function is used to transmit a single packet.

This function stores the data stored in the transmission data buffer into the FIFO for the specified
endpoint, byte by byte.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 69 of 145
Mar. 23, 2012

usbf850_multiple_data_receive

Overview
Receives USB data (MSC).

C coding format
INT32 usbf850_multiple_data_receive(UINT8 *data, INT32 len, INT8 ep)

Parameters

Parameter Description

UINT8 *data Reception data buffer pointer

INT32 len Reception data length

INT8 ep Data reception endpoint number

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

Description

This function is used to receive multiple packets, but can only be used for the MSC.

This function reads data from the FIFO for the specified endpoint byte by byte and stores the data into
the reception data buffer.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 70 of 145
Mar. 23, 2012

usbf850_data_receive

Overview
Receives USB data. (CDC)

C coding format
INT32 usbf850_data_receive(UINT8 *data, INT32 len, INT8 ep)

Parameters

Parameter Description

UINT8 *data Reception data buffer pointer

INT32 len Reception data length (< Max Packet Size)

INT8 ep Data reception endpoint number

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

Description

This function is used to receive a single packet.

This function reads data from the FIFO for the specified endpoint byte by byte and stores the data into
the reception data buffer.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 71 of 145
Mar. 23, 2012

usbf850_rdata_length

Overview
Acquires the USB reception data length.

C coding format
void usbf850_rdata_length(INT32 *len , INT8 ep)

Parameters

Parameter Description

INT32* len Reception data length storage address pointer

INT8 ep Data reception endpoint number

Return values

None

Description

This function reads the reception data length of the specified endpoint.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 72 of 145
Mar. 23, 2012

usbf850_send_EP0

Overview
Transmits USB data for endpoint 0.

C coding format
INT32 usbf850_send_EP0(UINT8* data, INT32 len)

Parameters

Parameter Description

UINT* data Transmission data buffer pointer

INT32 len Transmission data size

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

Description

This function stores the data stored in the transmission data buffer into the transmission FIFO for
endpoint 0 byte by byte.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 73 of 145
Mar. 23, 2012

usbf850_receive_EP0

Overview
Receives USB data for endpoint 0.

C coding format
INT32 usbf850_receive_EP0(UINT8* data, INT32 len)

Parameters

Parameter Description

UINT* data Reception data buffer pointer

INT32 len Reception data size

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

Description

This function reads data from the reception FIFO for endpoint 0 byte by byte and stores the data into
the reception data buffer.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 74 of 145
Mar. 23, 2012

usbf850_send_null

Overview
Transmits a NULL packet to Bulk/Interrupt In Endpoint.

C coding format
INT32 usbf850_send_null(INT8 ep)

Parameters

Parameter Description

INT8 ep Data transmission endpoint number

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

Description

This function clears the FIFO of the specified endpoint (for transmission), sets the bit that indicates

the end of the data to 1, and transmits a NULL packet from the USBF.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 75 of 145
Mar. 23, 2012

usbf850_sendnullEP0

Overview
Transmits a NULL packet for endpoint 0.

C coding format
void usbf850_sendnullEP0(void)

Parameters

None

Return values

None

Description

This function clears FIFO for endpoint 0, sets the bit that indicates the end of the data to 1, and then
transmits a NULL packet from the USBF.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 76 of 145
Mar. 23, 2012

usbf850_sendstallEP0

Overview
Performs a STALL response for endpoint 0.

C coding format
void usbf850_sendstallEP0(void)

Parameters

None

Return values

None

Description

This function sets the bit indicating the use of STALL handshaking to make the USBF perform a
STALL response.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 77 of 145
Mar. 23, 2012

usbf850_ep_status

Overview
Notifies the FIFO status for Bulk/Interrupt In endpoint.

C coding format
INT32 usbf850_ep_status(INT8 ep)

Parameters

Parameter Description

INT8 ep Data transmission endpoint number

Return values

Symbol Description

DEV_OK Normal completion

DEV_RESET Bus reset being processed

DEV_ERROR Abnormal termination

Description
This function notifies the FIFO status of the specified endpoint (for transmission).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 78 of 145
Mar. 23, 2012

usbf850_fifo_clear

Overview
Clears the FIFO for Bulk/Interrupt endpoint.

C coding format
void usbf850_fifo_clear(INT8 in_ep, INT8 out_ep)

Parameters

Parameter Description

INT8 in_ep Data transmission endpoint

INT8 out_ep Data reception endpoint

Return values

None

Description
This function clears the FIFO of the specified endpoint (Bulk/Interrupt) and clears the data reception
flag (usbf850_rdata_flg).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 79 of 145
Mar. 23, 2012

usbf850_standardreq

Overview
Processes standard requests to which the USBF does not automatically respond.

C coding format
void usbf850_standardreq(void)

Parameters

None

Return values

None

Description

This function is called when endpoint 0 is monitored.
If a GET_DESCRIPTOR request is decoded, this function calls the GET_DESCRIPTOR request
processing function (usbf850_getdesc). For other requests, this function calls the function for

processing STALL responses for endpoint 0 (usbf850_sendstallEP0).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 80 of 145
Mar. 23, 2012

usbf850_getdesc

Overview
Processes GET_DESCRIPTOR requests.

C coding format
void usbf850_getdesc(void)

Parameters

None

Return values

None

Description

This function is called during the processing of standard requests to which the USBF does not
automatically respond.
If a decoded request requests a string descriptor, this function calls the USB data transmission
function (usbf850_data_send) and transmits a string descriptor from endpoint 0. If a decoded

request requests any other descriptor, this function calls the function for processing STALL responses
for endpoint 0 (usbf850_sendstallEP0).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 81 of 145
Mar. 23, 2012

(4) Functions for USB mass storage class processing

usbf850_classreq

Overview
Processes MSC class requests.

C coding format
void usbf850_classreq(USB_SETUP *req_data)

Parameters

Parameter Description

USB_SETUP *req_data Request data storage pointer address

Return values

None

Description

This function is called by the CPUDEC interrupt source of the INTUSFA0I1 interrupt servicing. If the
decoded request is a CDC-specific request, the respective request processing function is called. In all

other cases, STALL is transmitted to endpoint 0.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 82 of 145
Mar. 23, 2012

usbf850_blkonly_mass_storage_reset

Overview
Processes MASS_STORAGE_RESET requests.

C coding format
void usbf850_blkonly_mass_storage_reset(void)

Parameters

None

Return values

None

Description

This function clears the FIFOs of endpoints 1 and 2 and then sets up these endpoints to issue a
STALL response.
After that, this function transmits a NULL packet from endpoint 0.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 83 of 145
Mar. 23, 2012

usbf850_max_lun

Overview
Processes GET_MAX_LUN requests.

C coding format
void usbf850_max_lun(void)

Parameters

None

Return values

None

Description

This function transmits the number of logical units of the MSC device.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 84 of 145
Mar. 23, 2012

usbf850_rx_cbw

Overview
Receives CBW data.

C coding format
void usbf850_rx_cbw(void)

Parameters

None

Return values

None

Description

This function reads CBW data from the FIFOs of the bulk-in endpoint (endpoint 2) and then calls the
CBW data command analysis processing function (usbf850_storage_cbwchk).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 85 of 145
Mar. 23, 2012

usbf850_storage_cbwchk

Overview
Analyzes the CBW data commands.

C coding format
INT32 usbf850_storage_cbwchk(void)

Parameters

None

Return values

The status when the CBW was checked is returned.

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

Description

This function analyzes the CBW data, determines the command type (NO DATA, DATA IN (write

command), or DATA OUT (read command)), and executes each command processing.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 86 of 145
Mar. 23, 2012

usbf850_cbw_error

Overview
Processes errors in CBW data.

C coding format
void usbf850_cbw_error(void)

Parameters

None

Return values

None

Description

This function sets up the bulk-in endpoint (endpoint 1) and bulk-out endpoint (endpoint 2) to issue a
STALL response.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 87 of 145
Mar. 23, 2012

usbf850_no_data

Overview
Executes SCSI NO DATA commands.

C coding format
void usbf850_no_data(void)

Parameters

None

Return values

None

Description

This function executes a NO DATA command and then transmits the result in the CSW format.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 88 of 145
Mar. 23, 2012

usbf850_data_in

Overview
Executes SCSI data-in commands.

C coding format
void usbf850_data_in(void)

Parameters

None

Return values

None

Description

This function executes a data-in (write) command and then transmits the result in the CSW format.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 89 of 145
Mar. 23, 2012

usbf850_data_out

Overview
Executes SCSI data-out commands.

C coding format
void usbf850_data_out(void)

Parameters

None

Return values

None

Description

This function executes a data-out (read) command and then transmits the result in the CSW format.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 90 of 145
Mar. 23, 2012

usbf850_csw_ret

Overview
Processes CSW responses.

C coding format
INT32 usbf850_csw_ret(UINT8 status)

Parameters

Parameter Description

UINT8 status Command processing result

Return values

CSW transmission processing result

Symbol Description

DEV_OK Normal completion

Description

This function creates CSW format data from the processing result and then transmits the data via the
USB.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 91 of 145
Mar. 23, 2012

usbf850_bulkin_stall

C coding format
void usbf850_bulkin_stall(void)

Parameters

None

Return values

None

Description

This function clears the FIFO of endpoint 1 and then sets up the endpoint to issue a STALL response.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 92 of 145
Mar. 23, 2012

usbf850_bulkout_stall

C coding format
void usbf850_bulkout_stall(void)

Parameters

None

Return values

None

Description

This function clears the FIFO of endpoint 2 and then sets up the endpoint to issue a STALL response.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 93 of 145
Mar. 23, 2012

(5) SCSI command processing functions

scsi_command_to_ata

Overview
Executes SCSI commands.

C coding format
INT32 scsi_command_to_ata(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32
lDataSize, INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

The results of executing SCSI commands are returned.

Symbol Description

DEV_OK Normal completion

DEV_ERR_NODATA A transfer direction error occurred for a NO DATA command.

DEV_ERR_READ A transfer direction error occurred for a read command.

DEV_ERR_WRITE A transfer direction error occurred for a write command.

DEV_ERROR The execution result of a command is other than the above statuses or a

request is invalid.

Description

This function determines the SCSI command type and executes the command.

If there are no corresponding commands, the sense data is updated assuming the sense keys to be
invalid requests.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 94 of 145
Mar. 23, 2012

ata_test_unit_ready

Overview
Executes the TEST_UNIT_READY command.

C coding format
INT32 ata_test_unit_ready(INT32 TransFlag)

Parameters

Parameter Description

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_NODATA A transfer direction error occurred for a NO DATA command.

Description

This function clears the sense data (sense key = 0x00). If the bulk transfer direction of the above

command is not NO DATA, the sense data is updated assuming the sense key to be an invalid
request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 95 of 145
Mar. 23, 2012

ata_seek

Overview
Executes the SEEK command.

C coding format
INT32 ata_seek(INT32 TransFlag)

Parameters

Parameter Description

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_NODATA A transfer direction error occurred for a NO DATA command.

Description

This function clears the sense data (sense key = 0x00). If the bulk transfer direction of the above

command is not NO DATA, the sense data is updated assuming the sense key to be an invalid
request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 96 of 145
Mar. 23, 2012

ata_start_stop_unit

Overview
Executes the START_STOP_UNIT command.

C coding format
INT32 ata_start_stop_unit(INT32 TransFlag)

Parameters

Parameter Description

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_NODATA A transfer direction error occurred for a NO DATA command.

Description

This function clears the sense data (sense key = 0x00). If the bulk transfer direction of the above

command is not NO DATA, the sense data is updated assuming the sense key to be an invalid
request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 97 of 145
Mar. 23, 2012

ata_synchronize_cache

Overview
Executes the SYNCHRONIZE_CACHE command.

C coding format
INT32 ata_synchronize_cache(INT32 TransFlag)

Parameters

Parameter Description

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_NODATA A transfer direction error occurred for a NO DATA command.

Description

This function clears the sense data (sense key = 0x00). If the bulk transfer direction of the above

command is not NO DATA, the sense data is updated assuming the sense key to be an invalid
request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 98 of 145
Mar. 23, 2012

ata_request_sense

Overview
Executes the REQUEST_SENSE command.

C coding format
INT32 ata_request_sense(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32
lDataSize, INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values
Processing result

Symbol Description

DEV_OK Normal completion

DEV_ERR_NODATA A transfer direction error occurred for a NO DATA command.

DEV_ERR_READ A transfer direction error occurred for a read command.

Description

This function transmits the sense data.

If the data size is 0 and the transfer direction is not NO DATA, the sense data is updated assuming the
sense key to be an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 99 of 145
Mar. 23, 2012

ata_inquiry

Overview
Executes the INQUIRY command.

C coding format
INT32 ata_inquiry(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize,
INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_READ A transfer direction error occurred for a read command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then transmits inquiry data. If the CMDDT
and EVPD bits of command byte 1 are both "1", the sense data is updated assuming the sense key to
be an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 100 of 145
Mar. 23, 2012

ata_mode_select

Overview
Processes the MODE_SELECT(6) command.

C coding format
INT32 ata_mode_select(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize,
INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_WRITE A transfer direction error occurred for a write command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then updates the MODE_SELECT data
table by using the received data.
If the transfer direction or data size is invalid, the sense data is updated assuming the sense key to be

an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 101 of 145
Mar. 23, 2012

ata_mode_select10

Overview
Executes the MODE_SELECT(10) command.

C coding format
INT32 ata_mode_select10(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32
lDataSize, INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_WRITE A transfer direction error occurred for a write command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then updates the MODE_SELECT(10)
data table by using the received data.
If the transfer direction or data size is invalid, the sense data is updated assuming the sense key to be

an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 102 of 145
Mar. 23, 2012

ata_mode_sence

Overview
Executes the MODE_SENSE(6) command.

C coding format
INT32 ata_mode_sense(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize,
INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_READ A transfer direction error occurred for a read command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then transmits MODE_SENSE data.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 103 of 145
Mar. 23, 2012

ata_mode_sence10

Overview
Executes the MODE_SENSE(10) command.

C coding format
INT32 ata_mode_sense10(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize,
INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_READ A transfer direction error occurred for a read command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then transmits MODE_SENSE(10) data.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 104 of 145
Mar. 23, 2012

ata_read_format_capacities

Overview
Executes the READ_FORMAT_CAPACITIES command.

C coding format
INT32 ata_read_format_capacities(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32
lDataSize, INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_READ A transfer direction error occurred for a read command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then transmits
READ_FORMAT_CAPACITIES data.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 105 of 145
Mar. 23, 2012

ata_read_capacity

Overview
Executes the READ_CAPACITY command.

C coding format
INT32 ata_read_capacity(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32
lDataSize, INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_READ A transfer direction error occurred for a read command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then transmits READ_CAPACITY data.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 106 of 145
Mar. 23, 2012

ata_read6

Overview
Executes the READ(6) command.

C coding format
INT32 ata_read6(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize, INT32
TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_READ A transfer direction error occurred for a read command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then transmits the data read from the data
area.
The address from which to start reading data is calculated using the LBA (local block address) of the

SCSI command and the block size.
If the transfer direction, SCSI command flag, or link bit is invalid, the sense data is updated assuming
the sense key to be an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 107 of 145
Mar. 23, 2012

ata_read10

Overview
Executes the READ(10) command.

C coding format
INT32 ata_read10(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize, INT32
TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_READ A transfer direction error occurred for a read command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then transmits the data read from the data
area.
The address from which to start reading data is calculated using the LBA (local block address) of the

SCSI command and the block size.
If the transfer direction, SCSI command flag, or link bit is invalid, the sense data is updated assuming
the sense key to be an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 108 of 145
Mar. 23, 2012

ata_write6

Overview
Executes the WRITE(6) command.

C coding format
INT32 ata_write6(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize, INT32
TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_WRITE A transfer direction error occurred for a write command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then writes the received data to the data
area.
The address from which to start writing the data is calculated using the LBA (local block address) of

the SCSI command and the block size.
If the transfer direction, SCSI command flag, or link bit is invalid, the sense data is updated assuming
the sense key to be an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 109 of 145
Mar. 23, 2012

ata_write10

Overview
Executes the WRITE10 command.

C coding format
INT32 ata_write10(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize,
INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_WRITE A transfer direction error occurred for a write command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then writes the received data to the data
area.
The address from which to start writing the data is calculated using the LBA (local block address) of

the SCSI command and the block size.
If the transfer direction, SCSI command flag, or link bit is invalid, the sense data is updated assuming
the sense key to be an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 110 of 145
Mar. 23, 2012

ata_verify

Overview
Executes the VERIFY command.

C coding format
INT32 ata_verify(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize, INT32
TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_NODATA A transfer direction error occurred for a NO DATA command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function writes the received data to the data area.
The address from which to start writing the data is calculated using the LBA (local block address) of
the SCSI command and the block size.

If the transfer direction or the BYTCHK bit of a SCSI command is invalid, the sense data is updated
assuming the sense key to be an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 111 of 145
Mar. 23, 2012

ata_write_verify

Overview
Executes the WRITE_VERIFY command.

C coding format
INT32 ata_write_verify(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize,
INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_WRITE A transfer direction error occurred for a write command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00) and then writes the received data to the data
area.
The address from which to start writing the data is calculated using the LBA (local block address) of

the SCSI command and the block size.
If the transfer direction, SCSI command flag, or link bit is invalid, the sense data is updated assuming
the sense key to be an invalid request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 112 of 145
Mar. 23, 2012

ata_write_buff

Overview
Executes the WRITE_BUFF command.

C coding format
INT32 ata_write_buff(UINT8 *ScsiCommandBuf, UINT8 *pbData, INT32 lDataSize,
INT32 TransFlag)

Parameters

Parameter Description

UINT8 *ScsiCommandBuf SCSI command storage buffer pointer

UINT8 *pbData Command data storage buffer pointer

INT32 lDataSize Data size

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERR_WRITE A transfer direction error occurred for a write command.

DEV_ERROR The status of a command is other than the above or a request is invalid.

Description

This function clears the sense data (sense key = 0x00), and then reads and discards the received
data.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 113 of 145
Mar. 23, 2012

scsi_to_usb

Overview
Transmits USB data (SCSI command).

C coding format
INT32 scsi_to_usb(UINT8 *pbData, INT32 TransFlag)

Parameters

Parameter Description

UINT8 *pbData Command data storage buffer pointer

INT32 TransFlag Direction of data transfer

Return values

Symbol Description

DEV_OK Normal completion

DEV_ERROR_READ A transfer direction error occurred for a read command.

Description

This function calls the USB data transmission processing function
(usbf850_multiple_data_send) to transmit data from the bulk-out endpoint (endpoint 1).

If the transfer direction is invalid, the sense data is updated assuming the sense key to be an invalid
request.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 114 of 145
Mar. 23, 2012

(6) Functions for USB communication class processing

usbf850_cdc_classreq

Overview
Processes CDC class requests.

C coding format
void usbf850_cdc_classreq(USB_SETUP *req_data)

Parameters

Parameter Description

USB_SETUP *req_data Request data storage pointer address

Return values

None

Description

This function is called by the CPUDEC interrupt source of the INTUSFA0I1 interrupt servicing. If the

decoded request is a CDC-specific request, the respective request processing function is called. In all
other cases, STALL is transmitted to endpoint 0.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 115 of 145
Mar. 23, 2012

usbf850_send_encapsulated_command

Overview
Processes Send Encapsulated Command requests.

C coding format
void usbf850_send_encapsulated_command(void)

Parameters

None

Return values

None

Description

This function calls the data reception processing function (usbf850_data_receive) to load the

data received at endpoint 0, and then calls the data transmission processing function
(usbf850_data_send) to transmit the data from endpoint 2 by using bulk-in transfer.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 116 of 145
Mar. 23, 2012

usbf850_set_line_coding

Overview
Processes Set Line Coding requests.

C coding format
void usbf850_set_line_coding(void)

Parameters

None

Return values

None

Description

This function calls the data reception processing function (usbf850_data_receive) to load the

data received at endpoint 0, and writes it to the UART_MODE_INFO structure. Moreover, after setting
the UART mode, including the transfer rate and data length based on that value, this function calls the
NULL packet transmission processing function for endpoint 0 (usbf850_sendnullEP0).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 117 of 145
Mar. 23, 2012

usbf850_get_line_coding

Overview
Processes Get Line Coding requests.

C coding format
void usbf850_get_line_coding(void)

Parameters

None

Return values

None

Description

This function calls the data transmission processing function (usbf850_data_send) to transmit the

value of the UART_MODE_INFO structure from endpoint 0.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 118 of 145
Mar. 23, 2012

usbf850_set_control_line_state

Overview
Processes Set Control Line State requests.

C coding format
void usbf850_set_control_line_state(void)

Parameters

None

Return values

None

Description

This function calls the NULL packet transmission processing function for endpoint 0
(usbf850_sendnullEP0).

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 119 of 145
Mar. 23, 2012

4.4 Data Structures

The sample program uses the following structures:

(1) USB device request structure
This structure is defined in usbf850.h.

typedef struct {

 UINT8 RequstType; /*bmRequestType */

 UINT8 Request; /*bRequest */

 UINT16 Value; /*wValue */

 UINT16 Index; /*wIndex */

 UINT16 Length; /*wLength */

 UINT8* Data; /*index to Data */

} USB_SETUP;

Figure 4-23. USB Device Request Structure

(2) CBW data structure
This structure is defined in usbf850_storage.h.

typedef struct { /* CBW(Command Block Wrapper) DATA */

 UINT8 dCBWSignature[4]; /* Signature */

 UINT8 dCBWTag[4]; /* Tag */

 UINT8 dCBWDataTransferLength[4]; /* Transfer data length */

 UINT8 bmCBWFlags;

/* Defines the transfer direction (OUT, IN, or NO DATA) */

 UINT8 bCBWLUN; /* Target device number */

 UINT8 bCBWCBLength; /* Number of valid bytes of CBWCB */

 UINT8 CBWCB[16]; /* CBWCB (command) */

} CBW_INFO,*PCBW_INFO;

Figure 4-24. CBW Data Structure

(3) CSW data structure
This structure is defined in usbf850_storage.h.

typedef struct { /* CSW(Command Status Wrapper) DATA */

 UINT8 dCSWSignature[4]; /* Signature */

 UINT8 dCSWTag[4]; /* Tag */

 UINT8 dCSWDataResidue[4]; /* Difference between the specified

transfer data length and length of processed data */

 UINT8 bmCSWStatus; /* Processing result status*/

} CSW_INFO,*PCSW_INFO;

Figure 4-25. CSW Data Structure

(4) SCSI sense data structure
This structure is defined in scsi_cmd.c.

typedef struct _SCSI_SENSE_DATA {

 UINT8 sense_key;

 UINT8 asc;

 UINT8 ascq;

} SCSI_SENSE_DATA, *PSCSI_SENSE_DATA;

Figure 4-26. SCSI Sense Data Structure

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

5. DEVELOPMENT ENVIRONMENT

This chapter provides an example of creating an environment for developing an application program that
uses the USB multifunction sample program for the V850E2/ML4 and the procedure for debugging the
application.

5.1 Used Products

This section describes the hardware and software tool products used for development.

5.1.1 System components
Figure 5-1 shows the components used in a system that uses the sample program.

Host

V850E2/ML4 CPU board

Remark For a diagram and details about the ports on the V850E2/ML4 CPU board, see 6. OVERVIEW OF V850E2/ML4

CPU BOARD.

Figure 5-1. System Components Used in Development Environment

R01AN1037EJ0100 Rev.1.00 Page 120 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 121 of 145
Mar. 23, 2012

5.1.2 Program development
The following hardware and software are necessary to develop a system that uses the sample program:

Table 5-1. Example of the Components Used in a Program Development Environment

Components Product Example Remark

Hardware Host A PC/ATTM-compatible computer using

Windows XP, Windows Vista, or Windows 7

Integrated development tool CubeSuite+ V1.00.01 Software

Compiler CX V1.20

5.1.3 Debugging
The following hardware and software are necessary to debug a system that uses the sample program:

Table 5-2. Example of the Components Used in a Debugging Environment

Components Product Example Remark

Host A PC/AT-compatible computer using

Windows XP, Windows Vista, or Windows 7

Target board V850E2/ML4 CPU board Made by Renesas Electronics

Emulator E1 emulator Made by Renesas Electronics

Hardware

USB cable miniB-to-A connector cable

Software Integrated development tool/debugger CubeSuite+ V1.00.01

Device file V850 device-specific

information for CubeSuite+

V1.00.02 Files

Project files Note

Note Files used when creating a system by using CubeSuite+ are included with the sample program.

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

5.2 Setting up the CubeSuite+ Environment

This section describes the preparations required for developing and debugging a system using CubeSuite+
by using the products described in 5.1 Used Products.

5.2.1 Preparing the host environment
Create a dedicated workspace on the host for debugging.

(1) Installing the CubeSuite+ integrated development tool

Install CubeSuite+. For details, see the CubeSuite+ User’s Manual.

(2) Installing the driver
Store the set of files provided with the sample program in any directory without changing the folder
structure.

Folder for storing the include files

Folder for storing the Windows inf files

Folder for storing CubeSuite+ compiler projects

Folder for storing source files

Any folder include

inf

prj

src

Figure 5-2. Folder Structure of Sample Program (CubeSuite+ Version)

R01AN1037EJ0100 Rev.1.00 Page 122 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

(3) Setting up the workspace
The procedure for using project files included with the sample program is described below.

<1> Start CubeSuite+ and then select Open on the File menu.

Figure 5-3. Selecting Open

<2> In the Open File dialog box, specify the CubeSuite+ project file in the prj folder, which is

the sample program installation directory.

Figure 5-4. Specifying the CubeSuite+ Project File

R01AN1037EJ0100 Rev.1.00 Page 123 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

(4) Setting up the building tool
The procedure to select the version of CX to be used as the build tool and use V850E2E1 as the
debugging tool is described below.

<1> On the CubeSuite+ Project Tree window, select CX (Build Tool).

Figure 5-5. Selecting the Building Tool

<2> Select Version Select and specify Always latest version which was installed for Using

compiler package version.

Figure 5-6. Specifying the Compiler Package

R01AN1037EJ0100 Rev.1.00 Page 124 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

<3> In the Project Tree window, right-click V850E2 E1(JTAG)(Debug Tool), point to Using
Debug Tool, and then select V850E2 E1(JTAG).

Figure 5-7. Selecting the Debugging Tool

R01AN1037EJ0100 Rev.1.00 Page 125 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

5.2.2 Setting up the target environment
Connect the target device to use for debugging.

(1) Connecting to the debugging port

Connect the V850E2/ML4 CPU board to the host by using an E1 cable for debugging. Also connect
the USB miniB type connector of the V850E2/ML4 CPU board to the USB connector of the host.

Host

V850E2/ML4 CPU board

Remark For a diagram and details about the ports of the V850E2/ML4 CPU board, see 6. OVERVIEW OF V850E2/ML4 CPU

BOARD.

Figure 5-8. Connecting the V850E2/ML4 CPU Board

(2) Installing the host driver

Drivers must be installed to connect the V850E2/ML4 CPU board to the host by using the USB
miniB type connector.
Use the standard Windows CDC and MSD host drivers. For details, see 5.4 Checking the
Operation.

R01AN1037EJ0100 Rev.1.00 Page 126 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

5.3 CubeSuite+ Environment Debugging

This section describes the procedure for debugging an application program that was developed using the
workspace described in 5.2 Setting up the CubeSuite+ Environment

5.3.1 Generating a load module

To write a program to the target device, use a C compiler to generate a load module by converting a file
written in C or assembly language.
On the CubeSuite+ Build menu, select Build Project to generate a load module.

Figure 5-9. Selecting Build Project

R01AN1037EJ0100 Rev.1.00 Page 127 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

5.3.2 Loading and executing the load module
Execute the generated load module by writing (loading) it to the target.

(1) Writing the load module

The procedure for writing the load module to the V850E2/ML4 CPU board by using CubeSuite+ is
described below.

<1> On the Debug menu, select Download to start the debugger.

Figure 5-10. Starting the Debugger

<2> Downloading the load module is started by the debugging tool.

Figure 5-11. Downloading the Load Module File

R01AN1037EJ0100 Rev.1.00 Page 128 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

(2) Executing the program

Click the button in the CubeSuite+ window or select Run on the Debug menu.

Figure 5-12. Executing the Program

R01AN1037EJ0100 Rev.1.00 Page 129 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

5.3.3 Setting up the target environment
Connect the target device to use for debugging.

(1) Connecting to the debugging port

Connect the V850E2/ML4 CPU board to the host by using an E1 cable for debugging. Also connect
the USB miniB type connector of the V850E2/ML4 CPU board to the USB connector of the host.

Host

V850E2/ML4 CPU board

Remark For a diagram and details about the ports of the V850E2/ML4 CPU board, see 6. OVERVIEW OF V850E2/ML4 CPU

BOARD.

Figure 5-13. Connecting the V850E2/ML4 CPU Board

(2) Installing the host driver

Drivers must be installed to connect the V850E2/ML4 CPU board to the host by using the USB
miniB type connector.
Use the standard Windows CDC and MSD host drivers. For details, see 5.4 Checking the
Operation.

R01AN1037EJ0100 Rev.1.00 Page 130 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

5.4 Checking the Operation

This section describes the procedure for checking the results after executing the sample program in the
CubeSuite+ environment.

(1) Connecting to the USB miniB connector

Connect the USB miniB type connector of the V850E2/ML4 CPU board to the USB port of the host
by using a USB cable.

(2) Installing the host driver

<1> When the V850E2/ML4 CPU board connection is recognized by the host, the "Found New
Hardware" message is displayed and the Found New Hardware Wizard starts.

<2> When the Welcome to the Found New Hardware Wizard window is displayed, select No,

not this time and then click the Next button.

Figure 5-14. Found New Hardware Wizard (1)

R01AN1037EJ0100 Rev.1.00 Page 131 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

<3> When the following window is displayed, select Install from a list or specific location
[Advanced] and then click the Next button.

Figure 5-15. Found New Hardware Wizard (2)

R01AN1037EJ0100 Rev.1.00 Page 132 of 145
Mar. 23, 2012

<4> Select and install the inf file belonging to the sample program.

Figure 5-16. Found New Hardware Wizard (3)

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

(3) Checking the connection of USB devices
Open the Device Manager window. Make sure that Renesas StorageFncDriver USB Device is
displayed in the Disk drives category, Renesas Electronics V850E2/ML4 Virtual UART(COMn)
is displayed in the Ports (COM & LPT) category, and USB Composite Device and USB Mass
Storage Device are displayed in the Universal Serial Bus controllers category.

Figure 5-17. Checking Device Connection in the Device Manager

R01AN1037EJ0100 Rev.1.00 Page 133 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

(4) Formatting removable disks
Open the My Computer window to display Removable Disk.

Figure 5-18. Checking Removable Disk

Remark (F:) in the screenshot is a drive letter automatically assigned by the OS. The drive letter
varies depending on the host setup.

<1> Click Removable Disk. When the Disk is not formatted dialog box is displayed, click the
Yes button.

Figure 5-19. Format Confirmation Dialog Box

R01AN1037EJ0100 Rev.1.00 Page 134 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

<2> In the Format Removable Disk dialog box, specify each setting, and then click the Start
button.

Figure 5-20. Format Menu and Completion Dialog Box

<3> When the disk has been formatted, a dialog box is displayed. Click the OK button.

R01AN1037EJ0100 Rev.1.00 Page 135 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

(5) Storing and extracting files
Confirm that files can be written to and read from the removable disk.

<1> Create a test.txt file and MSC Test folder in the local disk.

Figure 5-21. MSC Test Folder and Test Data File

R01AN1037EJ0100 Rev.1.00 Page 136 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

<2> Open the removable disk in the My Computer window, and then copy test.txt from the
local disk to the removable disk.

Figure 5-22. Copying the Test Data File

R01AN1037EJ0100 Rev.1.00 Page 137 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

<3> Open the MSC Test folder in the local disk, and then copy test.txt from the removable
disk to the Test folder.

Figure 5-23. Recopying the Test Data File

<4> Open test.txt in the MSC Test folder and confirm that the contents are the same as
those in test.txt in the local disk.

Figure 5-24. Checking the Test Data File

Remark 24 KB of the internal RAM is used as the data area. Therefore, the saved data is initialized when
the device is turned off or the reset switch is pressed.

Operation is not guaranteed if a file that has a size of 24 KB or more is written.

R01AN1037EJ0100 Rev.1.00 Page 138 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

(6) Checking the Operation of the COM Port
Start the terminal software on the host (Tera Term, etc.) and open the COM port recognized as
Renesas Electronics V850E2/ML4 Virtual UART(COM15). This is a program used to call back
the received data. Check that the key input to the terminal has been called back and is displayed.

Figure 5-25. Checking the Operation of the COM Port

R01AN1037EJ0100 Rev.1.00 Page 139 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

6. OVERVIEW OF V850E2/ML4 CPU BOARD

6.1 Overview

The V850E2/ML4 CPU board and other optional boards are provided to evaluate the functionality and
performance of Renesas Electronics’ V850E2/ML4 microcontrollers and to develop and evaluate
application software for these microcontrollers.

E1 emulatorNote

USB
HostNote

CubeSuite+Note

CAN port

AC adapter

38-pin connector

E1 port connector
(14-pin)

Ether port

USB port
(host)

USB port
(function)

Serial portV850E2/ML4 CPU board
R0K0F4022C000BR

Note Not included in the CPU board and separately available.

Figure 6-1. Connecting the V850E2/ML4 CPU Board (Illustration)

6.2 Features

The V850E2/ML4 CPU board (No.: R0K0F4022C000BR) has the following features:

 One 16 MB SDRAM (16-bit bus connection) and one 16 KB EEPROM provided as standard external

memories.
 RS-232C, USB, Ethernet, and CAN connectors provided for interfacing with internal V850E2/ML4

peripherals.
 The USB connector is a standard series A receptacle. The basic pattern of the connector also enables

the mounting of a Mini-B receptacle for evaluating the USB host module.
 The data bus, address bus and internal peripheral pins of the V850E2/ML4 are connected to an

expansion connector, allowing users to connect a measuring instrument to evaluate the timing with
peripheral devices and to develop additional boards that accord with the applications being developed.

 Can use Renesas Electronics’ E1 on-chip emulator (14-pin connector).

R01AN1037EJ0100 Rev.1.00 Page 140 of 145
Mar. 23, 2012

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 141 of 145
Mar. 23, 2012

6.3 Main Specifications

The main specifications of the V850E2/ML4 CPU board are as follows:

 CPU PD70F4022 (V850E2/ML4)
 Operating frequency 200 MHz (clock multiplied by 20 by using PLL)
 Interface USB connector 2 (USB host A type 1, USB function miniB type 1)
 UART connector
 CAN connector
 Ethernet connector
 Supported platform Host: PC/AT compatible computer with USB interface
 OS: Windows 7, Vista, XP

 Operating voltage 5.0 V
 Package dimensions W125 D170 (mm)

V850E2/ML4 Microcontrollers Example of USB Multifunction Operation

R01AN1037EJ0100 Rev.1.00 Page 142 of 145
Mar. 23, 2012

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

Windows and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Description
Rev.

Date Page Summary

1.00 Mar. 23, 2012 — First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins

are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are
not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are
not guaranteed from the moment when power is supplied until the power reaches the level at which
resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator) during
a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover,
when switching to a clock signal produced with an external resonator (or by an external oscillator)
while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm that the

change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different part numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

	1. INTRODUCTION
	1.1 Caution
	1.2 Readers
	1.3 Purpose
	1.4 Organization
	1.5 How to Read This Manual

	2. OVERVIEW
	2.1 Overview
	2.1.1 Features of the USBF
	2.1.2 Features of the sample program
	2.1.3 Files included in the sample program

	2.2 V850E2/ML4 Microcontrollers
	2.2.1 Applicable products
	2.2.2 Features

	3. OVERVIEW OF USB
	3.1 Transfer Format
	3.2 Endpoints
	3.3 Class
	3.3.1 Mass storage class (MSC)
	3.3.2 Subclass (MSC)
	3.3.3 Communication device class (CDC)

	3.4 Requests
	3.4.1 Types
	3.4.2 Format

	3.5 Descriptors
	3.5.1 Types
	3.5.2 Format

	4. SAMPLE PROGRAM SPECIFICATIONS
	4.1 Overview
	4.1.1 Overview of USB multifunction driver
	4.1.2 Features
	4.1.3 Supported requests
	4.1.4 Descriptor settings
	4.1.5 Supported SCSI commands

	4.2 Operation of Each Section
	4.2.1 CPU initialization
	4.2.2 USBF initialization
	4.2.3 USBF interrupt servicing (INTUSFA0I1)
	4.2.4 USBF resume interrupt servicing (INTUSFA0I2)
	4.2.5 CBW data reception processing
	4.2.6 SCSI command processing
	4.2.7 Suspend/resume processing

	4.3 Function Specifications
	4.3.1 Functions
	4.3.2 Correlation of the functions
	4.3.3 Function features

	4.4 Data Structures

	5. DEVELOPMENT ENVIRONMENT
	5.1 Used Products
	5.1.1 System components
	5.1.2 Program development
	5.1.3 Debugging

	5.2 Setting up the CubeSuite+ Environment
	5.2.1 Preparing the host environment
	5.2.2 Setting up the target environment

	5.3 CubeSuite+ Environment Debugging
	5.3.1 Generating a load module
	5.3.2 Loading and executing the load module
	5.3.3 Setting up the target environment

	5.4 Checking the Operation

	6. OVERVIEW OF V850E2/ML4 CPU BOARD
	6.1 Overview
	6.2 Features
	6.3 Main Specifications

