
 APPLICATION NOTE

R01AN3828EJ0100 Rev.1.00 Page 1 of 44

Apr 26, 2017

Renesas Sample Demo Software

USB Speaker Demo Software for RX231HMI Kit

Summary

This application note describes the operation and functionality of USB Speaker Demo Software for RX231 HMI Kit

(“the software”), which is audio playback software employing the RX231 that provides support for USB audio device

class 1.0.

Target Board

R0K5RX231D000BR (RX231 HMI Solution Kit)

Web page

< https://www.renesas.com/products/software-tools/boards-and-kits/evaluation-demo-solution-

boards/r0k5rx231d000br-rx231-hmi-solution-kit.html >

R01AN3828EJ0100
Rev.1.00

Apr 26, 2017

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 2 of 44

Apr 26, 2017

Contents

1. Introduction .. 4

2. Usage .. 6

3. Overview of Demo Software .. 9

3.1 Functionality .. 9

3.2 Software Configuration .. 10

3.3 Address Space .. 11

3.4 File Configuration ... 12

3.5 FIT Modules Used ... 14

3.5.1 Revisions to USB Basic Mini with FIT .. 14

4. Application .. 15

4.1 Initial Settings .. 15

4.2 Main Loop .. 15

4.2.1 Events .. 15

4.2.2 Operation Sequence ... 17

4.3 Interrupts.. 18

4.4 Low-Power State ... 18

4.5 Audio Data ... 19

4.5.1 RAM Buffer .. 19

4.5.2 Flow of Audio Data ... 20

4.5.3 Alterable Settings ... 21

4.6 Audio DAC Driver .. 21

4.6.1 Basic Functionality ... 21

4.6.2 Header File ... 21

4.6.3 API Functions .. 21

4.7 Descriptors .. 28

4.8 User Callback Function .. 29

5. Audio Device Class Driver .. 30

5.1 Basic Functionality ... 30

5.2 Class Requests ... 30

5.3 Class Driver Registration ... 31

5.3.1 Callback Functions ... 32

5.4 API Information ... 33

5.4.1 Hardware Requirements ... 33

5.4.2 Header File ... 33

5.4.3 Configuration... 33

5.5 API Function Specifications... 34

5.5.1 R_USB_PaudioOpen ... 35

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 3 of 44

Apr 26, 2017

5.5.2 R_USB_PaudioRegistration ... 36

5.5.3 R_USB_PaudioReceiveData .. 38

5.5.4 R_USB_PaudioDriver ... 39

6. Development Environment .. 40

7. Additional Notes ... 43

7.1.1 Processing of Unused Pins ... 43

7.2 Changing the USB ID .. 43

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 4 of 44

Apr 26, 2017

1. Introduction

The USB functionality of the RX231 supports isochronous data transfer. In isochronous transfer, data is transferred at

fixed intervals, and no retry is attempted when a data transfer error occurs. This makes it suitable for applications where

real-time performance is more important than data accuracy, such as audio or video playback.

USB Speaker Demo Software for RX231 HMI Kit, which is described in this application note, provides speaker

functionality that utilizes isochronous out transfer as specified in the USB audio device class 1.0 standard. Therefore,

when the RX231 HMI Kit, programmed with the software, is connected to a speaker with integrated amplifier or to

headphones, it functions as a “USB speaker” outputting audio from the USB host.

Note: The content of this document comprises reference examples based on the USB standard, but their operation in

an actual system is not guaranteed. When considering the incorporation of sample code into your system, make

sure to carefully consider the system as a whole. The final decision on whether or not to incorporate sample

code is the responsibility of the user.

Note: USB audio device classes are defined in the USB standard to enable control of the audio, voice, and music

functions of embedded devices. They include capabilities for controlling transfer of audio data as well as

functions, such as volume or tone, that directly affect the music environment.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 5 of 44

Apr 26, 2017

(a) Terms and Abbreviations

ADCD: Audio device class Driver

API: Application program interface

APL: Application

CS+: Renesas integrated development environment

e2 studio: Eclipse embedded studio

FIT: Firmware integration technology

LCD: Liquid crystal display

LPC: Low power consumption

RX231HMI Kit: RX231 human machine interface solution kit

SSI: Serial sound interface

USB: Universal serial bus

USB Basic Mini FIT: USB basic mini host and peripheral driver firmware integration technology

(b) Related Documents

Table 1.1 Related Documents

No. Document Title Revision Issuer

1. Universal Serial Bus Specification 2.0 USB-IF

2. Universal Serial Bus Device Class Definition for Audio Devices 1.0

3. Universal Serial Bus Device Class Definition for Terminal Types 1.0

4. Universal Serial Bus Device Class Definition for Audio Data Formats 1.0

5. PCM1774 Data Sheet Texas

Instruments

6. RX Family Board Support Package Module Using Firmware Integration

Technology (Document No.: R01AN1685EJ)

3.30 Renesas

Electronics

7. USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using

Firmware Integration Technology (Document No.: R01AN2166EJ)

1.02

8. SSI Module using Firmware Integration Technology

(Document No.: R01AN2150EJ)

1.20

9. Simple I2C Module Using Firmware Integration Technology

(Document No.: R01AN1691EJ)

1.60

10. LPC Module Using Firmware Integration Technology

(Document No.: R01AN2769EJ)

1.40

11. RX231 Group User’s Manual: Hardware (Document No.: R01UH0496EJ) 1.10

12. RX231 Group Human Machine Interface Solution Kit R0K5RX231D000BR

(Document No.: R01AN2586EJ)

1.02

13. RX231 HMI Solution Kit Base Demo Software (Function limited edition)

RTK5RX2310P000F0ZR (Document No.: R11AN0015EJ)

1.00

Note: USB-IF <http://www.usb.org/developers/docs/>

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 6 of 44

Apr 26, 2017

2. Usage

This section explains how to use the software. For detailed specifications of the RX231 HMI Kit, refer to item No. 12 in

Table 1.1, Related Documents.

Follow the procedure below to prepare the board:

1. Write the software to the RX231 HMI Kit using an integrated development environment (e2 studio or CS+) or

Renesas Flash Programmer.

2. As shown in Figure 2.1, short JP1 pins 2 and 3 for bus-powered operation. For self-powered operation, short JP1

pins 1 and 2.

JP1

3

JP1

1 2

(a) Bus-Powered

JP1 Pins 2 and 3 Shorted

(b) Self-Powered

JP1 Pins 1 and 2 Shorted

2

Figure 2.1 RX231 HMI Kit JP1 Jumper Settings

Note: Renesas Flash Programmer

< https://www.renesas.com/products/software-tools/tools/programmer/renesas-flash-programmer-programming-

gui.html>

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 7 of 44

Apr 26, 2017

3 As shown in Figure 2.2 and Figure 2.3, connect a speaker with integrated amplifier or headphones to the J2 jack,

and connect the USB host to the USB micro-B connector. Do not connect J3 to a speaker or headphones.

4. Once connected, the USB host installs the necessary drivers automatically.

5. The setup is ready to use if the LCD backlight of the RX231 HMI Kit turns on and “RENESAS RX231 USB Audio

Sample” is displayed.

6. Sound should issue from the speaker or headphones when music playback is initiated on the USB host. If no sound

is audible, confirm that “speaker (USB Audio Sample)” is selected as the playback device in Microsoft Windows.

BACK ENT

VBUS

DC_IN

Peri

Mode2

LCD1

CN2 (underside)

USB micro-B

J2 (underside)

USB host

PC

CN4

(underside)

Host

Mode1

Do not plug the speaker or

headphones into J3 (underside).

Speaker with integrated amplifier

or

headphones

JP1

R0K5RX231D000BR

Figure 2.2 Connections of RX231 HMI Kit, USB host, and Speaker with Integrated Amplifier or

Headphones (Bus-Powered Operation)

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 8 of 44

Apr 26, 2017

AC adapter

or stabilized

power

supply, 5 V

LCD1

USB micro-B

USB host

PC

VBUS

DC_IN

Peri

Mode2

CN4

(underside)

Host

Mode1

BACK ENT

CN2 (underside)

J2 (underside)

Speaker with integrated amplifier

or

headphones

Do not plug the speaker or

headphones into J3 (underside).

J1 (underside)

JP1

R0K5RX231D000BR

Figure 2.3 Connections of RX231 HMI Kit, USB host, and Speaker with Integrated Amplifier or

Headphones (Self-Powered Operation)

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 9 of 44

Apr 26, 2017

3. Overview of Demo Software

This section describes the functions and structure of the software, the FIT modules used, and the file configuration of

the project folder.

3.1 Functionality

The software provides the following functionality:

 USB communication with host

 Playback of sound sources sampled at 44.1 kHz, 16 bits, and 2 channels (stereo)

 Music play, stop, and pause

 Volume adjustment

 Mute setting

Note: No clock synchronization is performed.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 10 of 44

Apr 26, 2017

3.2 Software Configuration

Figure 3.1 shows the software configuration of the software.

The software uses the functionality of the RX231 as a basis and uses Firmware Integration Technology (FIT) from

Renesas to implement control. FIT APIs are used to control each driver, and the application (APL) uses the APIs

provided by the FIT modules and drivers to operate.

RX231

hardware

Firmware

Application

FIT

CGC SCISSI USBPORT

LCD

driver
Audio device class

driver

APL

Audio DAC

driver

BSP

LPC SSI I
2
C USB Basic Mini

Figure 3.1 Software Configuration

Supplement:

Refer to the hardware manual (item No. 11 in Table 1.1, Related Documents) for details of the various functions of the

RX231 hardware.

 BSP: RX Family board support package module with FIT

 LPC: LPC module with FIT

 SSI: SSI module with FIT

 I2C: simple I2C module with FIT

 USB Basic Mini: USB Basic Mini with FIT

The drivers are described in section 5, Audio Device Class Driver, and 4.6, Audio DAC Driver. The LCD driver is not

described in this document as it is already covered in “RX231kit_free” RTK5RX2310P000F0ZR, the free version of the

RX231 HMI Kit. For details of the free project, refer to item No. 13 in Table 1.1, Related Documents.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 11 of 44

Apr 26, 2017

3.3 Address Space

The RX231 HMI Kit incorporates the R5F52318ADFP (RX231, ROM: 512 KB, RAM: 64 KB) as its MCU.

Figure 3.2 shows the address space used exclusively by the software.

0000 0000h

FFFF8 0000h

FFFF FFFFh

0001 0000h

Area used by demo software (8.8 KB)
0000 2267h

FFFF8 89FAh

MCU of RX231 HMI Kit (R5F52318ADFP)

RAM 64 KB
Free RAM area

Free ROM area

Area used by demo software (35.3 KB)

On-chip ROM

512 KB

Figure 3.2 Address Space Used Exclusively by the Software

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 12 of 44

Apr 26, 2017

3.4 File Configuration

Table 3.1 shows the file configuration of the software. Note that the audio device class driver is indicated below as

ADCD.

For details of the FIT folders, refer to items No. 6 to No. 10 in Table 1.1, Related Documents.

Table 3.1 File Configuration of the Software

Folder Name/File Name Overview

RX231kit_paudio

 .cproject e2 studio file

 .HardwareDebuglinker

 .info

 .project

 RX231kit_Audio.rcpc

 demo_src APL source folder

 lcd.c LCD control function source file

 main.c Main function source file

 audio_apl.c APL source file

 audio_apl_descriptor.c USB descriptor source file

 inc Application include folder

 lcd.h LCD control function include file

 audio_apl.h Application include file

 r_dac Audio DAC driver folder

 r_dac_if.h API function include file

 readme.txt

 src Audio DAC driver source folder

 r_dac_api.c API function source file

 r_dac_driver.c driver function source file

 inc Audio DAC driver include folder

 r_dac.h Audio DAC driver function include file

 r_usb_paudio ADCD folder

 r_usb_paudio_if.h API function include file

 readme.txt

 ref ADCD reference folder

 r_usb_paudio_config_reference.h ADCD reference file

 src ADCD source folder

 r_usb_paudio_api.c API function source file

 r_usb_paudio_driver.c Driver function source file

 inc ADCD include folder

 r_usb_paudio.h ADCD driver function include file

 r_config Configuration folder

 r_usb_paudio_config.h ADCD configuration file

 r_bsp_config.h BSP module FIT configuration file

 r_lpc_rx_config.h LPC module FIT configuration file

 r_sci_iic_rx_config.h Simple I2C module FIT configuration file

 r_ssi_api_rx_config.h SSI module FIT configuration file

 r_usb_basic_mini_config.h USB Basic Mini FIT configuration file

 readme.txt

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 13 of 44

Apr 26, 2017

Folder Name/File Name Overview

 r_bsp BSP module FIT folder

 r_lpc_rx LPC module FIT folder

 r_sci_iic_rx simple I2C module FIT folder

 r_ssi_api_rx SSI module FIT folder

 r_usb_basic_mini USB Basic Mini FIT folder

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 14 of 44

Apr 26, 2017

3.5 FIT Modules Used

Table 3.2 lists the FIT modules used by the software. For details of each FIT module, refer to items No. 6 to No. 10 in

Table 1.1, Related Documents. Note that the FIT modules used by the software are available for download on the

Renesas website.

Table 3.2 FIT Modules Used by the Software

FIT Module Revision Folder Name Scope of Use

Board support package module with FIT 3.30 r_bsp All aspects of the software

USB Basic Mini FIT 1.02 r_usb_basic_mini ADCD

SSI module FIT 1.20 r_ssi_api_rx APL

Simple I2C module FIT 1.60 r_sci_iic_rx APL

Audio DAC driver

LCD driver

LPC module FIT 1.40 r_lpc_rx APL

3.5.1 Revisions to USB Basic Mini with FIT

The functionality of USB Basic Mini with FIT is used to operate the ADCD, but some changes have been made. Bear

this in mind when using the demo software as reference to develop your own software. Table 3.3 lists the changes.

Table 3.3 Location and Description of Changes to USB Basic Mini with FIT

Target File Target Function Description of Changes

r_usb_pdriver.c usb_pstd_set_interface3() This function contains no processing other than normal

value determination, so a call has been added to a

callback function to perform class request processing.

(Changing and notification of the Alternate value is

performed by the callback function.)

usb_pstd_get_interface1() Processing to return a fixed value (USB_0) has been

removed and processing added to call a callback function

to perform class request processing. (The Alternate value

is returned by the callback function.)

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 15 of 44

Apr 26, 2017

4. Application

The application (APL) included with the software operates using APIs provided by the drivers and FIT modules. It

implements the following functionality:

 Uses the SSI to transfer audio data received via USB to the PCM1774 audio DAC IC (audio DAC).

 Controls the audio DAC in response to mute or volume change indications from the USB host.

 Performs state transitions when USB Attach, Detach, Suspend, and Resume events are detected (including transition

to the low-power state).

 Performs on/off switching of the LCD backlight to match LCD indications and state transitions.

The APL is composed of three parts: initial settings, main loop, and interrupt handler. These three types of processing

are described below.

4.1 Initial Settings

The initial settings portion includes processing to clear event information, make initial settings for each driver, make

FIT initial settings, show the initial indication on the LCD, and stop operation of unused ICs and modules.

The processing for making the sequence of initial settings is implemented in the function audio_apl_init().

4.2 Main Loop

The main loop portion of the software is divided into sections of processing for various events that can occur. Each

event and the processing associated with it are described below.

4.2.1 Events

APL receives notifications from the ADCD and controls the various drivers in response. Each notification is managed

as an event. The main loop is constantly monitoring for the occurrence of events.

(a) Structure

Events and their associated data are managed using the following structure provided by APL.

typedef struct /* Structure for event management */

{

 uint8_t event[EVENT_MAX]; /* State for application */

 uint16_t data[EVENT_MAX]; /* Event's data */

 uint16_t event_cnt; /* Event count */

} audio_eventinfo_t;

Variables for storing the event and data are provided, and information on an event and its data can be obtained by

calling the function audio_event_get() with these variables as arguments.

Table 4.1 and Table 4.2 list the specifications of function audio_event_get and function audio_event_set, respectively.

Table 4.1 audio_event_get

Functionality Gets information on the event that has occurred.

Declaration void audio_event_get(uint8_t* event, uint8_t* data)

Arguments uint8_t* event Event name storage destination address

uint8_t* data Associated data storage destination address

Return values

Specifications Stores the event code in the variable event, which was passed as an argument, and the

associated data in the variable data, also passed as an argument.

If no event has occurred, APL_EV_NONE is stored in event.

If there is no data, DATA_NONE is stored in data.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 16 of 44

Apr 26, 2017

Table 4.2 audio_event_set

Functionality Stores information on an event

Declaration uint8_t audio_event_set(uint8_t event_name, uint16_t data)

Arguments uint8_t event Event name

uint16_t data Data

Return values
uint8_t

AUDIO_EVENT_SET_ERROR: Event count exceeded error

AUDIO_EVENT_SET_SUCCESS: Normal processing end

Specifications Stores the event and data passed as arguments.

The number of events that can be stored is specified as five in the initial settings (macro

definition: EVENT_MAX).

(b) List of Events

Table 4.3 lists the events defined by APL.

Table 4.3 Events and Associated Data

Event Name Event Description Data Name Data Description

APL_EV_NONE No event DATA_NONE No data

APL_EV_USB_STREAM USB transfer

start/stop notification

STREAM_PLAY Isochronous transfer start

STREAM_STOP Isochronous transfer stop

APL_EV_USB_VOL Volume change

notification

data Volume data specified by

USB audio device class

APL_EV_USB_MUTE Mute setting change

notification

USB_MUTE_ON Mute on

USB_MUTE_OFF Mute off

APL_EV_USB_RX_COMPLET

E

USB receive

complete notification

DATA_NONE No data

APL_EV_USB_STS_CHANGE USB transfer

start/stop notification

USB_STS_DETACH Next state code supplied

by USB Basic Mini with

FIT
USB_STS_DEFAULT

USB_STS_ADDRESS

USB_STS_SUSPEND

USB_STS_RESUME

Note: For details of the volume data, refer to the explanation under “Volume Control” in Universal Serial Bus

Device Class Definition for Audio Devices, Rev. 1.0 (No. 2 in Table 1.1, Related Documents).

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 17 of 44

Apr 26, 2017

4.2.2 Operation Sequence

The main loop performs the following processing. Figure 4.1 illustrates the operation sequence of APL.

(a) Uses function audio_event_get() to get the event and associated data, at the beginning of the loop.

(b) If the event is APL_EV_USB_STREAM, identifies the contents of the data and, if STREAM_PLAY, issues a USB

data receive request.

(c) If the event is APL_EV_USB_VOL, performs calculation to match the audio DAC specifications on the volume

data transferred from the USB host, and uses simple I2C communication to write the result to the audio DAC’s

digital volume register.

(d) If the event is APL_EV_USB_MUTE, first determines whether the data value is USB_MUTE_ON or

USB_MUTE_OFF. Uses simple I2C communication to write the data mute setting to the audio DAC’s mute register.

(e) If the event is APL_EV_USB_COMPLETE, issues a USB data receive request and, if the SSI start condition is met,

starts the SSI.

(f) If the event is APL_EV_USB_STS_CHANGE, performs state transition processing in accordance with the data

state code. The state transition processing is implemented by the function audio_change_sts().

No

Yes

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

main()

STREAM_PLAY

 STREAM_STOP
STREAM

PLAYes or STOP?

Audio DAC

IC control

Get event

audio_event_get()

Audio DAC

IC control

USB data receive

request

USB data receive

request

State transition

processing

SSI start determination

R_SSI_Start()

APL_EV_USB_STS

_CHANGE

APL_EV_USB_MUTE

APL_EV_USB_VOL

APL_EV_USB

_COMPLETE

APL_EV_USB_STREAM

(a)

(b)

(c)

(d)

(e)

(f)

Initial settings

audio_apl_init()

Figure 4.1 Main Loop Operation Sequence

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 18 of 44

Apr 26, 2017

4.3 Interrupts

Table 4.4 lists the interrupts used by APL.

Table 4.4 Interrupts Used by APL

Channel Interrupt Source Description

SSI0 SSITXI0

(transmit data empty interrupt)

Generated when the number of transmit data bytes

stored in the SSI transmit FIFO is equal to or less than

the value specified by the transmit FIFO threshold setting

bits.

(a) SSITXI0 Generation Timing

The software makes the SSI FIT configuration settings shown in Table 4.5.

Table 4.5 Partial Listing of SSI FIT Configuration Definitions

Configuration Definition Setting Value Overview

SSI_CH0_DATA_WIDTH 16 u PCM data width

SSI_CH0_TTRG_NUMBER 4 u Value at which TDE flag is set

With these settings, the RX231’s transmit FIFO threshold setting bits are set to 1h. In this case, the interrupt is

generated when two stages of the 32-bit 8-stage FIFO are empty.

Table 4.6 SSIFCR TTRG Setting

Bit Field Initial Value Setting Value

Transmit FIFO threshold setting bits (TTRG) 0h 1h

(b) Processing Using SSITXI0

SSITXI0 is enabled by the SSI transfer start processing. When this interrupt occurs, APL transfers 64 bits of data from

the RAM buffer to the SSI FIFO.

When USB isochronous transfer stops and there is no data to be fetched from the RAM buffer, the software performs

SSI transfer end processing. SSITXI0 is disabled at this point. From SSI transfer start to transfer end, APL continues to

transfer data from the RAM buffer to the SSI FIFO.

Note: For details on interrupts, refer to the RX231 hardware manual (item No. 11 in Table 1.1, Related Documents)

and the SSI FIT application note (item No. 8 in Table 1.1, Related Documents).

4.4 Low-Power State

When the software detects a Suspend instruction from the USB host, it transitions the RX231 HMI Kit to the low-power

state. Table 4.7 lists the states of the MCU, audio DAC, and LCD.

Note that the low-power state is canceled when a Resume instruction from the USB host is detected.

Table 4.7 Low-Power State

USB State Transition MCU (RX231) Audio DAC LCD

Suspend Software standby mode Low-power state Backlight off

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 19 of 44

Apr 26, 2017

4.5 Audio Data

The software transfers audio data using the bit rate and number of channels shown in Table 4.8.

Table 4.8 Audio Data Information

Sampling Frequency Bit Rate Number of Channels

44.1 kHz 16 bits 2 (stereo)

These specifications require that 44.1 samples be transferred each millisecond.

44.1 [samples/msec.] 16 [bits] 2 [channels] = 176.4 [bytes/msec.]

Thus, 176.4 bytes of audio data must be transferred each millisecond.

But the minimum transfer size for USB data transfer is 1 byte. To get around this, the transfer rate is reconciled by

repeatedly performing transfers of 176 bytes 9 times + 180 bytes 1 time.

The RAM buffer (see below) has a maximum packet size of 180 bytes, so 180 bytes is used as the size of one plane of

data.

4.5.1 RAM Buffer

The RAM buffer used to store audio data is composed of three planes, each 180 bytes in size. The RAM buffer structure

is shown below. This structure is provided by APL.

typedef struct /* Structure for PCM RAM buffer */

{

 uint8_t data[PCM_BUF_NUM][PCM_BUF_SIZE]; /* PCM data */

 uint8_t r_buf_num; /* The buffer number to write USB data */

 uint8_t w_buf_num; /* The buffer number to write in SSI */

 uint16_t w_pos; /* SSI write pointer */

 uint16_t r_len[PCM_BUF_NUM]; /* The length of stored data in each

 buffer */

} audio_buf_t;

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 20 of 44

Apr 26, 2017

4.5.2 Flow of Audio Data

The flow of audio data is described below. Figure 4.2 illustrates the entire flow sequence.

SET_INTERFACE request

(isochronous transfer start)

Host

USB FIFO RAM buffer 540 bytes (180 bytes 3) SSI FIFO

Host

USB FIFO SSI FIFO

Host

USB FIFO SSI FIFO

Start of SSI transfer by

accumulating audio data in the

RAM buffer, and enabling of SSI

interrupts USB FIFO

USB FIFO

USB data receive request in

response to

APL_EV_USB_STREAM

STREAM_PLAY event

DAC

Data transfer from RAM buffer to

SSI FIFO at SSITXI0 interrupt

Afterward, successive transfers

until SSI stop

Host

USB FIFO SSI FIFO

DAC

SET_INTERFACE (isochronous

transfer stop) request

SSI transfer stop when no more

audio data in RAM buffer

Generation of

APL_EV_USB_COMPLETE

when USB data receive finishes

Next data receive request in

response to this event

180 bytes

or

176 bytes

180 bytes

or

176 bytes

180 bytes

or

176 bytes

8 bytes

8 bytes

Next data read start address

Next data read start address

Next data read start address

(a)

(c)

(b)

(d)

(e)

(f)

After completion of initial settings

SET_INTERFACE request

(isochronous transfer start, event generation)
(a)

RAM buffer 540 bytes (180 bytes 3)

RAM buffer 540 bytes (180 bytes 3)

1. Isochronous transfer starts in response to a SET_INTERFACE request from the USB host.

2. An APL_EV_USB_STREAM STREAM_PLAY event is generated.

1. APL receives an APL_EV_USB_STREAM STREAM_PLAY event and issues a USB data receive request.

2. During this processing, audio data is transferred from the USB FIFO to the RAM buffer.

1. When reception of USB data finishes, an APL_EV_USB_COMPLETE event is generated.

2. In response to this event, APL issues the next USB data receive request.

3. After this, transfers of audio data take place repeatedly until isochronous transfer stops and there is no more USB

data to receive.

1. USB data is received repeatedly, and the data is stored in the RAM buffer.

2. When the number of planes of stored data exceeds FIRST_STOCK_CNT, SSI transfer starts and SSI interrupts

are enabled.

1. The interrupt handler of SSITXI0 (the SSI transmit buffer empty interrupt) transfers audio data from the RAM buffer

to the SSI FIFO.

2. After SSI transfer start, audio data is successively transferred from the RAM buffer to the SSI FIFO until SSI stop

(see below).

1. Writing of audio data to the RAM buffer stops when isochronous transfer ends in response to a SET_INTRFACE request

from the USB host.

2. The SSITXI0 handler determines that SSI reads have caught up with USB data writes and halts SSI transfer operation.

Figure 4.2 Flow of Audio Data Controlled by the Software

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 21 of 44

Apr 26, 2017

4.5.3 Alterable Settings

The buffer plane count and initial storage count at SSI transfer start can be changed. These definitions are contained in

audio_apl.h.

Table 4.9 APL Alterable Settings

Macro Name Initial Value Description

PCM_BUF_NUM 3 RAM buffer plane count

FIRST_STOCK_CNT 2 SSI transfer start condition

SSI transfer starts when the number of bytes of data in the

RAM buffer exceeds this value.

4.6 Audio DAC Driver

The audio DAC driver controls the PCM1774 audio DAC, manufactured by Texas Instruments, that is mounted on the

board of the RX231 HMI Kit.

The driver uses the simple I2C module with FIT. Before using the driver, apply initial settings to the simple I2C module.

4.6.1 Basic Functionality

The audio DAC driver performs the following processing

 Audio DAC power-on and initial settings

 Audio DAC power-off

 Audio DAC mute setting/volume change

 Audio DAC transition to low-power state

 Audio DAC cancellation of low-power state

4.6.2 Header File

All API calls and the interface definitions they support are contained in r_dac_if.h.

4.6.3 API Functions

The functionality of the API functions is described below. When using a different audio DAC, change the processing of

these functions as necessary.

Table 4.10 lists the API functions of the audio DAC driver and their functionality.

Table 4.10 API Functions of Audio DAC Driver

API Function Description

void R_DAC_Open(void) Audio DAC power-on and initial settings

void R_DAC_Close(void) Audio DAC power-off

uint8_t R_DAC_Control(uint8_t param_type, uint16_t data) Mute setting/volume change

void R_DAC_Suspend(void) Transition to low-power state

void R_DAC_Resume(void) Cancellation of low-power state

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 22 of 44

Apr 26, 2017

(a) R_DAC_Open

Audio DAC power-on and initial settings

Format

void R_DAC_Open(void)

Arguments

Return values

Description

Powers on the audio DAC and applies initial settings.

This function performs the following processing:

1. Powers on the SG-210 oscillator that supplies the SSI communication clock.

2. Initializes and powers on the audio DAC.

Supplement

Apply initial settings to the simple I2C module with FIT before calling this function.

Run this function before calling other audio DAC driver functions.

Example

void sample_main(void)

{

 /* I2C module initialize */

 sample_iic_init();

 /* power ON Audio DAC */

 R_DAC_Open();

 while(1)

 {

 /* main loop process */

 }

}

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 23 of 44

Apr 26, 2017

(b) R_DAC_Close

Audio DAC power-off

Format

void R_DAC_Close(void)

Arguments

Return values

Description

Powers off the audio DAC.

This function performs the following processing:

1. Powers off the audio DAC.

2. Powers off the oscillator (SG-210) that supplies the SSI communication clock.

Supplement

Example

void sample_task(void)

{

 :

 R_DAC_Close(); /* power OFF Audio DAC */

}

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 24 of 44

Apr 26, 2017

(c) R_DAC_Control

Audio DAC mute setting/volume change

Format

uint8_t R_DAC_Control(uint8_t param_type, uint16_t data)

Arguments

param_type Code of parameter to be changed

data Setting value

Return values

DAC_MUTE_PARAM_ERROR Illegal mute setting

DAC_VOLUME_PARAM_ERROR Illegal volume setting value

DAC_PARAM_ERROR Illegal parameter code

DAC_CONTROL_SUCCESS Success

Description

Overwrites the setting value specified by an argument as the parameter to be changed.

Pass a value to the first argument param_type and a setting value to the second argument data as shown below.

 param_type DAC_MUTE_SET Change mute setting.

 data DAC_MUTE_ON Turn mute on.

 DAC_MUTE_OFF Turn mute off.

 param_type DAC_VOL_SET Change volume setting.

 data Volume setting value (USB data)

The function uses simple I2C communication to write to the audio DAC register the parameter code determined from

the first argument and the setting value from the second argument.

Supplement

Sample code of a usage example is shown on the next page.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 25 of 44

Apr 26, 2017

Example

void sample_main(void)

{

 uint8_t event;

 uint16_t data;

 uint8_t err;

 /* I2C module initialize */

 sample_iic_init();

 /* power ON Audio DAC */

 R_DAC_Open();

 :

 while(1)

 {

 /* Get an event and related data */

 audio_event_get(event, data);

 switch (event)

 {

 case APL_EV_USB_VOL:

 /* Set the Audio DAC volume register */

 R_DAC_Control(DAC_VOLUME_SET, data);

 if (err != DAC_CONTROL_SUCCESS)

 {

 /* error process */

 }

 break;

 case APL_EV_USB_MUTE:

 if (USB_MUTE_ON == data)

 {

 R_DAC_Control(DAC_MUTE_SET, USB_MUTE_ON);

 if (err != DAC_CONTROL_SUCCESS)

 {

 /* error process */

 }

 }

 else if (USB_MUTE_OFF == data)

 {

 R_DAC_Control(DAC_MUTE_SET, USB_MUTE_OFF);

 if (err != DAC_CONTROL_SUCCESS)

 {

 /* error process */

 }

 }

 break;

 default:

 /* No Action */

 break;

 }

 /* Other process */

 :

 }

}

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 26 of 44

Apr 26, 2017

(d) R_DAC_Suspend

Audio DAC transition to low-power state

Format

void R_DAC_Suspend(void)

Arguments

Return values

Description

Transitions the audio DAC to the low-power state.

This function performs the following processing:

1. Powers off some of the modules of the audio DAC.

2. Powers off the oscillator (SG-210) that supplies the SSI communication clock.

Supplement

Example

void sample_task(void)

{

 :

 R_DAC_Suspend(); /* Standby Audio DAC */

}

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 27 of 44

Apr 26, 2017

(e) R_DAC_Resume

Audio DAC return from low-power state

Format

void R_DAC_Resume (void)

Arguments

Return values

Description

Returns the audio DAC to the normal state after it was put into the low-power state by R_DAC_Suspend().

This function performs the following processing:

1. Powers on the oscillator (SG-210) that supplies the SSI communication clock.

2. Powers on the modules turned off by R_DAC_Suspend().

Supplement

Example

void sample_task(void)

{

 :

 R_DAC_Resume(); /* Resume Audio DAC */

}

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 28 of 44

Apr 26, 2017

4.7 Descriptors

The software’s descriptor information is contained in audio_apl_descriptor.c. In addition, the audio play, stop, mute,

and volume change functionality included in USB audio device class 1.0 is supported.

Make sure to use the customer’s own numbers for Product ID and Vendor ID.

Table 4.11 lists the descriptors provided by the software.

Table 4.11 Overview of Descriptors

Descriptor Description

Device descriptor Device-specific information

Configuration descriptor Descriptor related to device configuration

 Audio control interface descriptor Descriptor related to functionality provided by the

device

 Standard AC interface descriptor USB 2.0-compliant interface information

 Class-specific AC interface header

descriptor

Descriptor related to the audio device class version

(1.0) and succeeding class-specific, terminal, and unit

information

 Input terminal descriptor Descriptor indicating USB streaming of data input by

host

 Output terminal descriptor Descriptor related to the device type that is conveyed

to the host

 Audio control feature unit descriptor Descriptor related to elements controllable by the

device

 Audio streaming interface descriptor Descriptor related to audio data receive functionality

 Standard AS interface descriptor

(for alternate setting 0)

Descriptor related to interface for audio output stop

 Standard AS interface descriptor

(for alternate setting 1)

Descriptor related to interface for data stream

 Class-specific AS interface descriptor Descriptor related to linkage between input terminal

and data format type

 Class-specific AS format type descriptor Descriptor related to format of communication data

 Standard AS isochronous audio data

endpoint descriptor

USB 2.0-compliant endpoint information

 Class-specific AS isochronous audio data

endpoint descriptor

Descriptor related to endpoint for data stream

String descriptor Specifies character information (company name, etc.)

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 29 of 44

Apr 26, 2017

Table 4.12 lists the relationships between the descriptors and variables of the software.

Table 4.12 Relationships between Descriptors and Variables of the Software

Descriptor Name Type Variable Name

Device descriptor uint8_t g_audio_device_descriptor []

Configuration descriptor uint8_t g_audio_configuration []

Standard AC interface descriptor

Class-specific AC interface header descriptor

Input terminal descriptor

Output terminal descriptor

Audio control feature unit descriptor

Standard AS interface descriptor (for alternate setting 0)

Standard AS interface descriptor (for alternate setting 1)

Class-specific AS interface descriptor

Class-specific AS format type descriptor

Standard AS isochronous audio data endpoint descriptor

Class-specific AS isochronous audio data endpoint

descriptor

String descriptor uint8_t *g_audio_str_ptr[]*1

g_audio_string_descriptor1[]

g_audio_string_descriptor2[]

g_audio_string_descriptor3[]

g_audio_string_descriptor4[]

g_audio_string_descriptor5[]

Note 1. *g_audio_str_ptr[] is an array containing g_audio_string_descriptor1[] to

g_audio_string_descriptor5[].

4.8 User Callback Function

APL must provide a callback function in order to use the ADCD API function R_USB_PaudioReceiveData().

The callback function is passed as an argument a USB communication structure of type usb_utr_t, which contains the

transmit/receive remaining data length, status, and transmission completed information.

The software uses the callback function cb_audio_receive_complete() to manage the RAM buffer and store USB

reception completed events. The receive data length contained in the data communication structure is used for RAM

buffer management.

The function R_USB_PaudioReceiveData() uses the R_usb_pstd_TransferStart(), an API function of USB Basic Mini

with FIT. For a description of the processing and callback function details, refer to item No. 7 in Table 1.1, Related

Documents.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 30 of 44

Apr 26, 2017

5. Audio Device Class Driver

The ADCD is a driver that, in combination with the USB Basic Mini with FIT module, enables the RX231 HMI Kit to

operate as a USB audio device class 1.0-compliant device.

Calling the functions for ADCD initial settings, registration, and main loop processing causes the USB Basic Mini with

FIT module to be launched automatically. APL does not need to perform processing related to the USB Basic Mini with

FIT module.

The basic functionality, configuration definitions, and API functions of the ADCD are described below.

5.1 Basic Functionality

The ADCD provides the following functionality:

 Transfer of audio data using isochronous out transfer

 Transfer of audio parameters (mute setting and volume setting) using control transfer

 Control transfer receive end notification (callback) to APL

 USB state transition notification (callback) to APL

Notifications are described in detail in 5.3, Class Driver Registration.

5.2 Class Requests

Table 5.1 lists the class requests supported by the ADCD.

Table 5.1 Class Requests Supported by ADCD

Class Request Code Description

GET_CUR 0x81 Returns the current value of the audio parameter

specified by the control selector.

SET_CUR 0x01 Changes the current value of the audio parameter

specified by the control selector.

GET_MIN 0x82 Returns the minimum value of the audio parameter

specified by the control selector.

GET_MAX 0x83 Returns the maximum value of the audio parameter

specified by the control selector.

GET_RES 0x84 Returns the resolution of the audio parameter

specified by the control selector.

Note: Standard requests (with the exception of GET_INTERFACE and SET_INTERFACE) are processed by the USB

Basic Mini with FIT module. Refer to item No. 7 in Table 1.1, Related Documents. Note that the software uses

a partially modified version of the USB Basic Mini with FIT module. For details, see 3.5.1, Revisions to USB

Basic Mini with FIT.

USB audio device class 1.0 has units called “feature units” that control the basic functionality of each channel. The

controlled functionality is selected by control selectors. Finally, linkages to channels, enabled functionality, etc., are

specified by descriptors.

The ADCD has a single feature unit, and the supported control selectors are listed in Table 5.2.

Table 5.2 Functionality Supported by ADCD Using Control Selectors

Control Selector Code Description

MUTE_CONTROL 0x0100 Changes the mute setting.

VOLUME_CONTROL 0x0200 Changes the volume.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 31 of 44

Apr 26, 2017

5.3 Class Driver Registration

In order to use the ADCD, it is necessary to register descriptors and callback functions.

Registration is accomplished by calling the function R_USB_PaudioRegistration() after calling the initial settings

function R_USB_PaudioOpen(). The functions are described in detail in 5.5, API Function Specifications.

The structure usb_paudio_reg_t, shown in Table 5.3, is used to register descriptors and callback functions.

Table 5.3 usb_paudio_reg_t

Type Overview

usb_paudio_reg_t Structure for descriptor and callback function registration

Type Member Overview

uint16_t * pipetbl Register in this member the address of the pipe information table.

uint8_t * devicetbl Register in this member the address of the device descriptor table.

uint8_t * configtbl Register in this member the address of the configuration descriptor

table.

uint8_t ** stringtbl Register in this member the address of the string descriptor table.

usb_cbinfo_t statediagram Register in this member the callback function activated when a

USB state transition occurs.

usb_paudio_cb_t ctrlRxCB Register in this member the callback function called when an audio

control transfer is received. For details, see 5.3.1, Callback

Functions.

Note: The structure usb_cbinfo_t is provided by the USB Basic Mini with FIT module. For details, refer to

item No. 7 in Table 1.1, Related Documents.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 32 of 44

Apr 26, 2017

5.3.1 Callback Functions

When a SET_INTERFACE or SET_CUR (MUTE_CONTROL or VOLUME_CONTROL) command is sent by the

USB host, the ADCD calls the associated registered callback function. Callback functions are called by using the types

listed in Table 5.4, and events and associated data are passed as arguments.

Table 5.4 (*usb_paudio_cb_t)(uint8_t, uint16_t)

Type Overview

(*usb_paudio_cb_t)(uint8_t, uint16_t) Callback function type used for control notifications

Arguments Type Value Overview

uint8_t USB_PAUDIO_STREAM Audio output setting

USB_PAUDIO_MUTE Mute setting

USB_PAUDIO_VOLUME Volume setting

uint16_t STREAM_PLAY Audio output start

STREAM_STOP Audio output stop

MUTE_ON Mute on

MUTE_OFF Mute off

Volume setting value Volume setting value

Return

values

Table 5.5 shows the relationship between the timing of the call to the callback function and the arguments that are

passed.

Table 5.5 Relationship between Callback Function Timing and Arguments

1st Argument (uint8_t) 2nd Argument (uint16_t) Issue Timing

USB_PAUDIO_STREAM STREAM_PLAY When SET_INTERFACE Alternate = 1 request

received

STREAM_STOP When SET_INTERFACE Alternate = 0 request

received

USB_PAUDIO_MUTE MUTE_ON When SET_CUR MUTE_CONTROL

Parameter Block = 1 request received

MUTE_OFF When SET_CUR MUTE_CONTROL

Parameter Block = 0 request received

USB_PAUDIO_VOLUME Volume setting value When SET_CUR VOLUME_CONTROL request

received

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 33 of 44

Apr 26, 2017

5.4 API Information

The ADCD API conforms to the Renesas API instruction standard.

5.4.1 Hardware Requirements

The operation of the ADCD has been confirmed on the following hardware.

R0K5RX231D000BR (RX231 HMI Solution Kit)

5.4.2 Header File

API calls and the interface definitions they support are contained in r_usb_paudio_if.h.

5.4.3 Configuration

Settings for volume setting and the pipe used in the driver are contained in r_usb_paudio_config.h. Table 5.6 lists the

configuration definitions.

Table 5.6 ADCD Configuration Definitions

Macro Name Initial Value Overview

USB_CFG_PAUDIO_PIPE_OUT USB_PIPE1

(0x0001)

Pipe number of isochronous transfer out pipe

Select from the following:

USB_PIPE1 (0x0001)

USB_PIPE2 (0x0002)

USB_CFG_PAUDIO_VOL_MAX 0x0000 Volume maximum value

USB_CFG_PAUDIO_VOL_MIN 0xC100 Volume minimum value

USB_CFG_PAUDIO_VOL_RES 0x0100 Volume resolution

The USB functionality of the RX231 supports isochronous transfer on USB_PIPE1 and USB_PIPE2.

The initial values used in the software match the specifications of the audio DAC of the RX231 HMI Kit (digital

volume change range: 0 dB to −63 dB).

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 34 of 44

Apr 26, 2017

5.5 API Function Specifications

The API functions are described in detail below.

Table 5.7 lists the API functions of the ADCD.

Table 5.7 API Functions of ADCD

API Function Description

void R_USB_PaudioOpen(void) ADCD initial settings

void R_USB_PaudioRegistration(usb_paudio_reg_t *paudio_reg) Table and callback registration

void R_USB_PaudioReceiveData(uint8_t *Table, usb_leng_t size,

usb_cb_t complete)

USB data receive request

void R_USB_PaudioDriver(void) USB Basic Mini with FIT schedule

management and task processing

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 35 of 44

Apr 26, 2017

5.5.1 R_USB_PaudioOpen

ADCD startup function

Format

void R_USB_PaudioOpen(void)

Arguments

Return values

Description

Launches the ADCD. Includes startup processing for the USB Basic Mini with FIT module.

Run this function before calling other ADCD functions.

This function performs the following processing:

1. Makes USB pin settings, USB module initialization, etc.

2. Calls R_USB_Open().

3. Calls R_usb_pstd_PcdOpen().

Supplement

Example

void sample_main(void)

{

 /* Audio Device Class driver initializing and registration */

 R_USB_PaudioOpen();

 sample_usb_registraion();

 while(1)

 {

 /* Main loop process */

 }

}

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 36 of 44

Apr 26, 2017

5.5.2 R_USB_PaudioRegistration

ADCD registration

Format

void R_USB_PaudioRegistration (usb_paudio_reg_t *paudio_reg)

Arguments

*paudio_reg Address of structure for registration

Return values

Description

Registers descriptors and callback functions.

Run this function immediately after R_USB_PaudioOpen().

This function performs the following processing:

1. Calls R_usb_pstd_DriverRegistration() to register the following in the USB Basic Mini with FIT module:

 Pipe information table

 Device descriptor table

 Configuration descriptor table

 String descriptor table

 Callback function that runs when USB state transition occurs

 ADCD control transfer processing function

2. Registers the callback function that is called when an audio control transfer is received.

Supplement

 For the information that is registered, see Table 5.3, usb_paudio_reg_t, in 5.3, Class Driver Registration.

 R_usb_pstd_DriverRegistration() is an API function of the USB Basic Mini with FIT module. For details, refer to

item No. 7 in Table 1.1, Related Documents.

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 37 of 44

Apr 26, 2017

Example

The code of the software’s APL function audio_usb_registration() is shown below as an example.

void audio_usb_registration(void)

{

 usb_paudio_reg_t audio_reg;

/* USB endpoint Table */

 audio_reg.pipetbl = &g_audio_ep_tbl[0];

 /* Device descriptor */

 audio_reg.devicetbl = &g_audio_device_descriptor[0];

 /* Configuration Descriptor */

 audio_reg.configtbl = &g_audio_configuration[0];

 /* String Descriptor */

 audio_reg.stringtbl = (uint8_t**)&g_audio_str_ptr[0];

 /* USB state transition callback */

 audio_reg.statediagram = cb_audio_change_device_state;

 /* USB control transfer complete callback */

 audio_reg.ctrlRxCB = cb_audio_usb_control_complete;

 /* Registration */

 R_USB_PaudioRegistration(&audio_reg);

} /* eof audio_usb_registration() */

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 38 of 44

Apr 26, 2017

5.5.3 R_USB_PaudioReceiveData

USB data receive request

Format

void R_USB_PaudioReceiveData(uint8_t *Table, usb_leng_t size, usb_cb_t complete)

Arguments

*Table Receive data storage buffer address

size Number of bytes of data to be received

complete Data receive end callback function address

Return values

Description

Sends a USB data receive request to the USB Basic Mini with FIT module.

Calls the callback function specified by the third argument at receive end. For information on the receive end callback

function, see 4.8, User Callback Function.

Supplement

Example

static audio_buf_t g_audio_buf;

#define PCM_BUF_SIZE (180)

void cb_sample_receive_complete(usb_utr_t * mess)

void sample_usb_receive(void)

{

 /* Receive USB data */

 R_USB_PaudioReceiveData(&g_audio_buf.data[0][0], PCM_BUF_SIZE,

 &cb_sample_receive_complete);

}

void cb_sample_receive_complete(usb_utr_t * mess)

{

 /* callback process */

}

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 39 of 44

Apr 26, 2017

5.5.4 R_USB_PaudioDriver

USB Basic Mini with FIT schedule management and task processing

Format

void R_USB_PaudioDriver(void)

Arguments

Return values

Description

Calls R_USB_cstd_Scheduler() to check for a task message.

If there is a message, calls R_usb_pstd_PcdTask(), an API function of the USB Basic Mini with FIT.

Supplement

This function should be called repeatedly from the main loop.

Example

void sample_main(void)

{

 /* Initialize Audio Device Class driver and registration */

 R_USB_PaudioOpen();

 sample_usb_registration();

 while(1)

 {

 /* main loop process */

 :

 R_USB_PaudioDriver();

 }

}

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 40 of 44

Apr 26, 2017

6. Development Environment

The software was developed, and its operation verified, in the environment outlined below. For instructions on using

tools, refer to the manual of each tool.

Evaluation board

R0K5RX231D000BR (RX231 HMI Solution Kit)

Tools

a) e² studio integrated development environment, ver. 5.3.0.0.023, from Renesas Electronics

b) C/C++ Compiler Package for RX Family, ver. 2.05.00, from Renesas Electronics

c) E1 emulator from Renesas Electronics

Other

a) USB host PC (Microsoft Windows® 7, Windows® 8.1, or Windows® 10)

Operation is supported by Windows standard drivers.

b) USB micro-B cable

c) Speaker with integrated amplifier or headphones

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 41 of 44

Apr 26, 2017

(a) Connection to E1

Connecting the E1 emulator makes it possible to overwrite and debug programs on the RX231. Follow the steps below

to connect the E1 emulator.

1. Make sure the RX231 HMI Kit is powered off.

2. Connect the E1 cable to CN4 on the RX231 HMI Kit.

Make sure to confirm the position of the “incorrect insertion prevention key” on the E1 cable.

For instructions on using the E1, refer to the user’s manuals of the E1 and the development environment.

To supply power from the E1, turn off the power supply (DC jack or USB) of the RX231 HMI Kit. Remove JP1 to cut

off power input from both the DC jack and USB to ensure safe usage.

 Correctly align the incorrect insertion prevention key

when connecting the E1 cable.

Underside of board

Figure 6.1 E1 Connection Diagram

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 42 of 44

Apr 26, 2017

(b) Using an e2 studio Project on CS+

The software was created in the e2 studio integrated environment. To use the software on CS+, import it by following

the steps below.

Launch CS+ and select

[Open e
2
 studio/CubeSuite+/

High-performance Embedded

Workshop/PM+ Project]

from the [Start] menu.

Select the [.rcpc] file extension

and click the [Open] button.

Select

[e
2
 studio Project File].

Select the MCU you will be using.Select the project.

Example: Sample

The project names differ,

depending on which application

note they are associated with.

Specify a project name and

creation location. Select

“Empty application (CC- RX)”

as the project type.

Figure 6.2 Reading an e2 studio Project into CS+

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 43 of 44

Apr 26, 2017

7. Additional Notes

7.1.1 Processing of Unused Pins

Refer to RX231 Group User’s Manual: Hardware, item No. 11 in Table 1.1, Related Documents.

7.2 Changing the USB ID

You cannot use the Vendor ID and Product ID values set in the software for your own products. Make sure to obtain a

Vendor ID from USB-IF.

Note: USB-IF <http://www.usb.org/home>

Renesas Sample Demo Software USB Speaker Demo Software for RX231HMI Kit

R01AN3828EJ0100 Rev.1.00 Page 44 of 44

Apr 26, 2017

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date

Description

Page Summary

1.00 Apr. 26, 2017 First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as

well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,

and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a

product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.

Colophon 6.0

(Rev.3.0-1 November 2016)

	Summary
	Target Board
	Contents
	1. Introduction
	(a) Terms and Abbreviations
	(b) Related Documents

	2. Usage
	3. Overview of Demo Software
	3.1 Functionality
	3.2 Software Configuration
	3.3 Address Space
	3.4 File Configuration
	3.5 FIT Modules Used
	3.5.1 Revisions to USB Basic Mini with FIT

	4. Application
	4.1 Initial Settings
	4.2 Main Loop
	4.2.1 Events
	(a) Structure
	(b) List of Events

	4.2.2 Operation Sequence

	4.3 Interrupts
	(a) SSITXI0 Generation Timing
	(b) Processing Using SSITXI0

	4.4 Low-Power State
	4.5 Audio Data
	4.5.1 RAM Buffer
	4.5.2 Flow of Audio Data
	4.5.3 Alterable Settings

	4.6 Audio DAC Driver
	4.6.1 Basic Functionality
	4.6.2 Header File
	4.6.3 API Functions
	(a) R_DAC_Open
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	(b) R_DAC_Close
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	(c) R_DAC_Control
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	(d) R_DAC_Suspend
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	(e) R_DAC_Resume
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	4.7 Descriptors
	4.8 User Callback Function

	5. Audio Device Class Driver
	5.1 Basic Functionality
	5.2 Class Requests
	5.3 Class Driver Registration
	5.3.1 Callback Functions

	5.4 API Information
	5.4.1 Hardware Requirements
	5.4.2 Header File
	5.4.3 Configuration

	5.5 API Function Specifications
	5.5.1 R_USB_PaudioOpen
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	5.5.2 R_USB_PaudioRegistration
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	5.5.3 R_USB_PaudioReceiveData
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	5.5.4 R_USB_PaudioDriver
	Format
	Arguments
	Return values
	Description
	Supplement
	Example

	6. Development Environment
	(a) Connection to E1
	(b) Using an e2 studio Project on CS+

	7. Additional Notes
	7.1.1 Processing of Unused Pins
	7.2 Changing the USB ID

	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Sales Offices

