
 Application Note

R01AN4436EJ0100 Rev.1.00 Page 1 of 10

Feb.28.19

RX Family

Using Register Bank Save Function

Introduction

Except in some products, the RXv3 CPU provides register bank save function in order to perform fast
collective saving and restoring of CPU registers. This application note describes these functions and their
use in interrupt handlers.

Unless otherwise indicated, this application note refers to the RX72T Group. For information regarding the
specifications of other MCUs, see the hardware edition of the user’s manual for those particular MCUs.

Target Device

RX Family with register bank save function

Contents

1. Register Bank Save Function .. 2

1.1 Save Register Banks ... 2

1.2 Saving and Restoring Registers .. 3

2. Using Save Register Banks in Interrupt Handlers .. 4

2.1 Interrupt Handlers .. 4

2.2 Assigning Bank Numbers .. 4

2.3 Execution Cycle-Reducing Effect of Using Save Register Banks ... 5

2.3.1 Execution Cycles Required to Save and Restore Registers ... 5

2.3.2 Execution Cycle Count Comparative Example ... 5

2.3.3 Determining Whether to Use Save Register Banks .. 5

2.4 Execution Cycle Count When Multiple Interrupts Occur ... 6

3. Writing Code in C (CC-RX Compiler) ... 7

4. Important Notes ... 8

4.1 “-bank” Assembler Option ... 8

4.2 Save Register Banks After Reset .. 8

5. Reference Documents ... 9

Revision History .. 10

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 2 of 10

Feb.28.19

1. Register Bank Save Function

In order to perform fast collective saving and restoring of CPU registers, the RXv3 CPU provides dedicated

save register banks and instructions for using these banks. Using these save register banks, it is possible to

perform fast register saving at the beginning of interrupt handlers, and high-speed register restoring at the

end of interrupt handlers.

1.1 Save Register Banks

The save register banks can only be accessed with the SAVE instruction and RSTR instruction. Each of
these banks is used to save and restore the values of the following CPU registers: all general purpose
registers (R1 to R15) except for R0, the USP, the FPSW, and the accumulators (ACC0, ACC1).

Each save register bank is assigned a unique number (bank number). For the RX72T Group, 16 save
register banks are provided, as shown in Figure 1.1.

Figure 1.1 RX72T Group Save Register Banks

ACC1

ACC0

FPSW

USP

R15

R1

ACC1

ACC0

FPSW

USP

R15

R1

ACC1

ACC0

FPSW

USP

R15

R1

ACC1

ACC0

FPSW

USP

R15

R1

CPU registers

Registers related

to DSP instructions

Save register banks

Bank 0

Bank 1

ACC1

ACC0

General-purpose

registers

Control registers

SAVE

instruction

(save)

RSTR

instruction

(restore)

EXTB

FPSW

FINTV

BPSW

BPC

PSW

PC

INTB

USP

ISP

R15

R1

R0

ACC1

ACC0

FPSW

USP

R15

R1

Bank 15

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 3 of 10

Feb.28.19

1.2 Saving and Restoring Registers

The RXv3 CPU is equipped with one buffer for register saving. If the SAVE instruction has been executed,
the registers are saved to the specified save register bank via this buffer. Figure 1.2 shows an example of
saving and restoring registers via the buffer. If the bank number that was last specified by the SAVE
instruction is specified by the RSTR instruction, the registers can be restored quickly by restoring them not
from the save register bank but rather from the buffer. If, on the other hand, a bank number other than the
last one that was specified by the SAVE instruction is specified by the RSTR instruction, the registers will be
restored not from the buffer but rather from the save register bank.

Figure 1.2 Example of Saving and Restoring Registers via Buffer

Target CPU registers

intA SAVE

instruction

(save)

Buffer

(contents of intA)
Bank 3

Target CPU registers

intB SAVE

instruction

(save)

Buffer

(contents of intB)
Bank 5

Target CPU registers

intB RSTR

instruction

(restore)

Buffer

(contents of intB)

Target CPU registers

intA RSTR

instruction

(restore)

Bank 3

R15 etc.

R1

R15 etc.

R1

R15 etc.

R1

R15 etc.

R1

R15 etc.

R1

R15 etc.

R1

R15 etc.

R1

R15 etc.

R1

R15 etc.

R1

R15 etc.

R1

intA_handler: ; (IPR=3)

 SETPSW I

 SAVE #3 ; 1 cycle

 ; Processing

 RSTR #3 ; 6 cycles

 RTE

intB_handler: ; (IPR=5)

 SETPSW I

 SAVE #5 ; 1 cycle

 ; Processing

 RSTR #5 ; 3 cycles

 RTE

Multiple

interrupts

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 4 of 10

Feb.28.19

2. Using Save Register Banks in Interrupt Handlers

2.1 Interrupt Handlers

Figure 2.1 shows an overview of an interrupt handler. Collective saving and restoring of registers is
performed using a SAVE instruction and RSTR instruction at the beginning and end of an interrupt handler.
For details of SAVE and RSTR instructions, see RX Family RXv3 Instruction Set Architecture User’s Manual:
Software. Within any particular interrupt handler, be sure to specify the same bank number in the SAVE
instruction and RSTR instruction.

Figure 2.1 Overview of Interrupt Handler

2.2 Assigning Bank Numbers

If a save register bank is used in an interrupt handler, before restoring the saved registers it is necessary to
ensure that the bank is not erroneously overwritten when multiple interrupts occur.

As shown in Table 2.1, if bank numbers are assigned such that the interrupt priority level of the interrupt
handler matches the bank number used in that interrupt handler, the save register banks can be used by all
of the interrupt handlers. Moreover, since multiple interrupts of the same interrupt priority level will not occur,
there is no risk that the registers that have been saved will be overwritten.

Table 2.1 Example of Recommended Bank Number Assignment Method

Interrupt Priority Level of Interrupt Handler Bank Number Used by Interrupt Handler

1 1

2 2

3 3

: :

15 15

For example, if there are three interrupt handlers for interrupt A (priority level 5), interrupt B (priority level 6),
and interrupt C (priority level 5), respectively, interrupts A and C will use bank 5, and interrupt B will use bank
6.

PC/PSW

saving etc.

Register

saving

(SAVE

instruction)

Processing

routine

Register

restoring

(RSTR

instruction)

RTE

instruction /

RTFI

instruction

PC/PSW

restoring etc.

Hardware

pre-processing
User-created interrupt handler

Hardware

post-processing

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 5 of 10

Feb.28.19

2.3 Execution Cycle-Reducing Effect of Using Save Register Banks

When save register banks are not used, the number of execution cycles required to save and restore
registers depends upon the number of registers being saved. For this reason, the larger the number of
registers that must be saved by an interrupt handler, the greater the effect of using a save register bank.

2.3.1 Execution Cycles Required to Save and Restore Registers

The number of execution cycles required to save and restore registers when save register banks are and are
not used is shown below.

1. When save register banks are not used: 2N + 12A + 4C (cycles)

Here, N is the number of target general purpose registers (R1 to R15), A is the number of target

accumulators (ACC0, ACC1), and C is USP/FPSW target count.

Note that the cycle count may increase depending on the usage conditions (for example, the stack

placement address).

2. When save register banks are used: 4 to 7 cycles

The cycle count will be 4 cycles if during execution of an interrupt handler another interrupt that uses the

save register bank is not accepted, or 7 cycles otherwise.

2.3.2 Execution Cycle Count Comparative Example

An execution cycle count example for the case in which the 10 registers R1 to R10 are saved and restored is
shown below. When a save register bank is used, saving and restoring is fast, executing in 4 cycles. It was
thus possible in this example to reduce the cycle count by 16 cycles.

1. When save register banks are not used

interrupt_handler:

PUSHM R1-R10 ; 10 cycles

 : ; Processing that uses R1 to R10

POPM R1-R10 ; 10 cycles

RTE

2. When save register banks are used

interrupt_handler:

SAVE #1 ; 1 cycle

 : ; Processing that uses R1 to R10

RSTR #1 ; 3 to 6 cycles

RTE

2.3.3 Determining Whether to Use Save Register Banks

It is recommended that save register banks be used when writing code in C (with the CC-RX compiler)
without paying attention to the execution cycle count, or when any of the conditions below applies. In cases
other than these, refer to 2.3.1 Execution Cycles Required to Save and Restore Registers to decide whether
or not to use the save register banks.

If other interrupts (multiple interrupts) that use save register banks are used:

 If four or more general purpose registers are targeted for saving and restoring

 If one or more accumulators are targeted for saving and restoring

 If the USP and FPSW are among the targets for saving and restoring

If other interrupts (multiple interrupts) that use save register banks are not used:

 If two or more general purpose registers are targeted for saving and restoring

 If one or more accumulators are targeted for saving and restoring

 If the USP or FPSW is among the targets for saving and restoring

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 6 of 10

Feb.28.19

2.4 Execution Cycle Count When Multiple Interrupts Occur

Figure 2.2 shows the execution cycle counts of the SAVE and RSTR instructions if multiple interrupts occur
in which some of the interrupts use the save register banks and some do not.

Figure 2.2 Execution Cycle Count When Multiple Interrupts Occur

If the bank number specified by the RSTR instruction is the same as the bank number specified by the most-
recently executed SAVE instruction then the execution cycle count for the RSTR instruction will be 3 cycles,
and if the bank number is different then the count will be 6 cycles.

intA_handler: ; (IPR=3)

 SETPSW I

 SAVE #3 ; 1 cycle

 ; Processing

 RSTR #3 ; 6 cycles

 RTE

intB_handler: ; (IPR=5)

 SETPSW I

 SAVE #5 ; 1 cycle

 ; Processing

 RSTR #5 ; 6 cycles

 RTE

intC_handler: ; (IPR=6)

 SETPSW I

 PUSH.L R1 ; 1 cycle

 ; Processing

 POP R1 ; 1 cycle

 RTE

intD_handler: ; (IPR=7)

 SETPSW I

 SAVE #7 ; 1 cycle

 ; Processing

 RSTR #7 ; 3 cycles

 RTE

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 7 of 10

Feb.28.19

3. Writing Code in C (CC-RX Compiler)

When “bank=N” (N = 0 to 15) is specified in “#pragma interrupt”, instructions that use the save register bank
will be generated in the interrupt handler. For details, see the CC-RX Compiler User’s Manual.

Code example specifying vector number 64 and bank 3

In an interrupt handler in which “bank=N” has been specified, the save register bank will be used regardless
of the number of registers to be saved. For N, be sure to specify the bank number to be used. Moreover, only
use “bank=N” with MCUs that provide register bank save function.

#pragma interrupt handler(vect=64, bank=3) _handler:

void handler(void) { .RVECTOR 64, _handler

 SAVE #03H

: :

} RSTR #03H

 RTE

Compilation

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 8 of 10

Feb.28.19

4. Important Notes

4.1 “-bank” Assembler Option

When writing code that utilizes the register bank save function without using an integrated development
environment like CS+ or e2 studio, specify the “-bank” assembler option. For details, see the CC-RX
Compiler User’s Manual.

If an integrated development environment like CS+ or e2 studio is used, the “-bank” assembler option will be
added automatically.

4.2 Save Register Banks After Reset

The values in the save register banks after a reset are undefined. If a RSTR instruction is executed without
executing a SAVE instruction, undefined values will be stored in registers R1 to R15 etc.

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 9 of 10

Feb.28.19

5. Reference Documents

User’s Manual: Hardware

RX72T Group User’s Manual: Hardware (R01UH0803)

(The latest version can be downloaded from the Renesas Electronics website.)

User’s Manual: Software

RX Family RXv3 Instruction Set Architecture User’s Manual: Software (R01US0316)

(The latest version can be downloaded from the Renesas Electronics website.)

User’s Manual: C compiler

CC-RX Compiler User’s Manual (R20UT3248)

(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

RX Family Using Register Bank Save Function

R01AN4436EJ0100 Rev.1.00 Page 10 of 10

Feb.28.19

Revision History

Rev. Date

Description

Page Summary

1.00 Feb.28.19  First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Register Bank Save Function
	1.1 Save Register Banks
	1.2 Saving and Restoring Registers

	2. Using Save Register Banks in Interrupt Handlers
	2.1 Interrupt Handlers
	2.2 Assigning Bank Numbers
	2.3 Execution Cycle-Reducing Effect of Using Save Register Banks
	2.3.1 Execution Cycles Required to Save and Restore Registers
	2.3.2 Execution Cycle Count Comparative Example
	2.3.3 Determining Whether to Use Save Register Banks

	2.4 Execution Cycle Count When Multiple Interrupts Occur

	3. Writing Code in C (CC-RX Compiler)
	4. Important Notes
	4.1 “-bank” Assembler Option
	4.2 Save Register Banks After Reset

	5. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

