
 Application Note

R01AN3516EJ0100 Rev.1.00 Page 1 of 43
Mar.10.20

RX Family
Flash ROM Correction
Summary
With large-capacity flash memory or when performing low-speed serial programming on a user system, it can
take considerable time to rewrite all of the flash memory. This application note describes a method of flash
ROM correction in which patches are applied to the user program in a manner that rewrites the smallest area
possible.

Unless otherwise specified, the descriptions in this application note apply to the RX113.

Target Device
RX113 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to match the specifications of the alternative MCU.

Contents

1. Specifications .. 3

2. Operation Confirmation Conditions ... 5

3. Related Application Notes ... 6

4. Software .. 7
4.1 Operation Overview ... 7
4.1.1 Table Data Area and Patch Area Checking .. 8
4.1.2 ROM Correction Flowchart .. 9
4.1.3 Rewrite with BRK Instruction Flowchart .. 10
4.1.4 Copy Area Rewrite Procedure... 11
4.1.5 Rewrite with BRK Instruction Procedure ... 12
4.1.6 Write Procedure for Flags with Allocated Reserved Areas ... 13
4.1.7 Identifying BRK Exception (Unconditional Trap) Occurrence Address ... 14
4.1.8 Determination of Patch Processing to Be Run from Address where BRK Exception Occurred 15
4.1.9 Return Setting from BRK Exception Handler .. 16
4.1.10 Patch Program Execution and Return to User Program ... 17
4.2 Required Memory Sizes .. 18
4.3 File and Folder Structure ... 18
4.3.1 src Folder ... 19
4.3.2 src\r_bsp Folder .. 19
4.3.3 src\r_config Folder ... 19
4.3.4 src\r_flash_rx Folder .. 19
4.3.5 src\r_rom_correct Folder ... 19

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 2 of 43
Mar.10.20

4.4 Option-Setting Memory ... 20
4.5 Constants .. 21
4.6 Structure Listing... 22
4.7 Enumeration Listing ... 22
4.8 Variables .. 23
4.9 Functions ... 23
4.10 Function Specifications ... 24

5. Precautions .. 31
5.1 Precautions When Using This Application Note .. 31
5.2 Table Data Area and Patch Area Write Procedure Examples .. 31
5.3 Adapting Specifications to Other Products .. 34

6. Creating Data for Table Data Area and Patch Area .. 36
6.1 Patch Area Data Creation Example .. 36
6.2 Example of Procedure for Exporting Data from Patch Area ... 39

7. Sample Code ... 42

8. Reference Documents ... 42

Revision History .. 43

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 3 of 43
Mar.10.20

1. Specifications
This application note describes a method of updating a user program (referred to below as “ROM correction”)
in which a patch program and table data created by the user are written beforehand to the patch area shown
in Figure 1.1 and to the table data area shown in Figure 1.2, respectively.

The sample code is executed before the user program runs. When a location corresponding to a patch is
reached while the user program is running, the patch program runs, and after execution of the patch program
has finished, execution returns to the user program. Figure 1.3 shows an example of the operation of the
sample code described in this application note.

Even if writing of the patch program or table data area created by the user fails due to a momentary voltage
drop or the like, it is still possible to run the pre-update version of the program. In addition, if writing fails due
to a momentary voltage drop or the like while the patch program is being applied, the sample code will retry
the process and apply the updated program when the system is restarted.

Figure 1.1 Patch Area

Patch work area
(1.2 KB + 2.2 KB)

User program

Patch application area (1 block)

Table data area (1 block)

Patch area
Note: Dependent on available

space.

RAM

User area

0000 0000h

0000 7FFFh

FFFC 0000h

FFFF FFFFh

Patch application area
rewrite finished flag

Patch program

FLG_ADR

FLG_ADR+10h

PP_ADR

Copy area (1 block)

Reserved Reserved Reserved

FFFF F000h

Patch area rewrite
finished flag Rewrite address

Copy area rewrite
finished flag Reserved Reserved Reserved

Notes: 1. Each rewrite finished flag has three reserved areas with a
fixed size of 4 bytes each (total 12 bytes), and they are
allocated successively to an area 32 bytes in size. The user is
prohibited from writing to this area.

2. The patch application area rewrite finished flag has a value
of 7061 6368h (hex equivalent of “pach” in ASCII characters).

3. The copy area rewrite finished flag has a value of 636F
7079h (hex equivalent of “copy” in ASCII characters).

Configuration of each patch

Note: The patch area rewrite finished flag is the inverted value of the
rewrite address.

Addresses in red may be changed. Note that FLG_ADR and PP_ADR are
addresses inside the patch area.

FFFF C000h

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 4 of 43
Mar.10.20

Figure 1.2 Table Data Area

User program

Patch program

User area

User program

Patch program

Location
corresponding
to patch

Location to be run
due to update

User program

Patch program

User program

Patch program

Before user
program runs

User program

Patch program

User program
runs.

Program reaches
location

corresponding to
patch.

Patch program
runs.

After patch program
runs, return to user

program.

Location corresponding
to patch reached

Patch program runs

Return to user-specified
address

Patch program ends

Figure 1.3 Application Note Operation Example

Patch present/absent
determination

FLG_ADR0 PP_ADR0 Table data 0 rewrite
finished flag FLG_ADR1

Patch work area
(1.2 KB + 2.2 KB)

User program

Patch application area (1 block)

Table data area (1 block)

Patch area
Note: Dependent on available

space.

RAM

User area

0000 0000h

0000 7FFFh

FFFC 0000h

FFFF FFFFh

Copy area (1 block)
FFFF F000h

FFFF C000h

Configuration of table data area

FFFF C000h

FFFF C000h+10h
Reserved Reserved Reserved

PP_ADR1 Table data 1 rewrite
finished flag

... FLG_ADRn PP_ADRn Table data n rewrite
finished flag

Notes: 1. Each patch present/absent determination has three reserved
areas with a fixed size of 4 bytes each (total 12 bytes), and
the table data is written successively after the reserved areas.
The patch present/absent determination has a value of AA55
AA55h.

2. The table data rewrite finished flag is the inverted value of
FLG_ADR.

Addresses in red may be changed.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 5 of 43
Mar.10.20

2. Operation Confirmation Conditions
Table 2.1 lists the conditions under which the operation of the sample code referenced in this application
note has been confirmed.

Table 2.1 Operation Confirmation Conditions

Item Description
MCU used R5F51138AFP (RX113 Group)
Operating frequencies Main clock: 16 MHz

Subclock stopped
PLL: 32 MHz (main clock: × 1/4 × 8)
HOCO stopped
System clock (ICLK): 32 MHz (PLL × 1/1)
FlashIF clock (FCLK): 32 MHz (PLL × 1/1)

Operating voltage 3.3 V
Integrated development
environment

Renesas Electronics
e2 studio Version 7.7.0

C compiler Renesas Electronics
C/C++ Compiler Package for RX Family V3.02.00

Compiler option
Default settings of integrated development environment

iodefine.h version Ver. 1.1
Endian order Little endian or big endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Renesas Starter Kit for RX113 (product number: R0K505113C010BR)

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 6 of 43
Mar.10.20

3. Related Application Notes
Application notes related to this application note are listed below. Refer to them in conjunction with this
application note.

• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family Flash Module Using Firmware Integration Technology (R01AN2184)

Sample code from the above application notes is incorporated into the sample code accompanying this
application note. If a newer version is available, use it instead. Visit the Renesas Electronics Corporation
website to check for and download the latest version.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 7 of 43
Mar.10.20

4. Software
4.1 Operation Overview
To use ROM correction, create a table data area and patch area to match your specifications. Note that the
sample code imposes an upper limit of four on the number of times the patch present/absent determination,
patch application area rewrite finished flag, and copy area rewrite finished flag may be written.

Figure 4.1 Table Data Area for ROM Correction

Execute the sample code before running the user program. After the processing corresponding to the patch
area and table data area created by the user completes, the user program is run. Figure 4.2 is a flowchart of
operation when the sample code is used.

Figure 4.2 Flowchart of Operation Using Sample Code

AA55 AA55h

FLG_ADR0 PP_ADR0 Table data 0 rewrite
finished flag FLG_ADR1

Patch work area
(1.2 KB + 2.2 KB)

User program

Patch application area (1 block)

Table data area (1 block)

Patch area
Note: Dependent on available

space.

RAM

User area

0000 0000h

0000 7FFFh

FFFC 0000h

FFFF FFFFh

Copy area (1 block)
FFFF F000h

FFFF C000h

FFFF C000h

FFFF C000h+10h
Reserved Reserved Reserved

PP_ADR1 Table data 1 rewrite
finished flag

... FLG_ADRn PP_ADRn Table data n rewrite
finished flag

Blank Blank Blank

Patch application area
rewrite finished flag

FLG_ADR0

FLG_ADR0+10h
Reserved Reserved Reserved

Copy area rewrite
finished flag Reserved Reserved Reserved

Patch program 0

PP_ADR0
Patch area rewrite

finished flag Rewrite address

Patch application area
rewrite finished flag

FLG_ADRn

FLG_ADRn+10h
Reserved Reserved Reserved

Copy area rewrite
finished flag Reserved Reserved Reserved

Patch program n

PP_ADRn
Patch area rewrite

finished flag Rewrite address

The table data is judged to be finished if the locations corresponding to
FLG_ADRx, PP_ADRx, and the table data x rewrite finished flag are all blank.

Addresses in red may be changed.

Start

ROM correction

User program

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 8 of 43
Mar.10.20

4.1.1 Table Data Area and Patch Area Checking
When performing ROM correction, the sample code performs the steps shown in Figure 4.3 to check the
table data area and patch area.

Figure 4.3 Table Data Area and Patch Area Checking

Patch present/absent
determination

FLG_ADR0 PP_ADR0 Table data 0 rewrite
finished flag FLG_ADR1

Patch work area
(1.2 KB + 2.2 KB)

User program

Patch application area (1 block)

Table data area (1 block)

Patch area
Note: Dependent on available

space.

RAM

User area

0000 0000h

0000 7FFFh

FFFC 0000h

FFFF FFFFh

Copy area (1 block)
FFFF F000h

FFFF C000h

FFFF C000h

FFFF C000h+10h Reserved Reserved Reserved

PP_ADR1 Table data 1 rewrite
finished flag

... FLG_ADRn PP_ADRn Table data n rewrite
finished flag

Patch program 0

FLG_ADR0

PP_ADR0

Reserved Reserved Reserved

Patch area 0 rewrite
finished flag Rewrite address 0

Copy area 0 rewrite
finished flag Reserved Reserved Reserved

[5] Check target patch
application area.

[1] Check if patch is
present/absent.

[4] Check if rewrite of patch area has finished.
• If rewrite is finished: inverted value of rewrite

address 0
• If rewrite is not finished: blank
• If other than above: write failed due to

momentary voltage drop, etc.

[3] Check target
patch area.

[2] Check if table data
write has finished.

[6] Check if rewrite of patch application area 0 has finished.
• If rewrite is finished: 7061 6368h
• If rewrite is not finished: blank
• If other than above: write failed due to momentary voltage

drop, etc.

Addresses in red may be changed.

Patch application area
rewrite finished flag

FLG_ADR0+10h

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 9 of 43
Mar.10.20

4.1.2 ROM Correction Flowchart
Figure 4.4 is a flowchart of ROM correction.

Figure 4.4 ROM Correction Flowchart

ROM correction

AA55AA55h?

Read patch present/
absent determination

Rewrite with BRK
instruction

No

Yes

tbl_adr = 0, (Write upper
limit count − 1)*4, 4

Write upper limit count
(= 4)

tbl_adr

y = 0, n, 1

Rewrite finished?

No

Yes

Read table data y
rewrite finished flag

y

Read PP_ADRy

Store table data
registration count

Read patch area y
rewrite finished flag

Rewrite finished?

No

Yes

Read patch application
area y rewrite finished flag

Rewrite finished?

No

Yes

z = 0,
Write upper limit count − 1,

1

Write upper limit count
(= 4)

z

return

Read FLG_ADRy

Blank?

No

Yes (table data finished)

Checks table data.

Checks patch area.

Blank?

No

Yes

Checks if FLG_ADRy, PP_ADRy,
and table data y rewrite finished
flag areas are all blank.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 10 of 43
Mar.10.20

4.1.3 Rewrite with BRK Instruction Flowchart
The sample code uses the BRK exception handler, which is called when an address that has been rewritten
by ROM correction with the value 00h is executed, as the trigger for running the patch program. Figure 4.5 is
a flowchart of the rewrite with BRK instruction processing.

Figure 4.5 Rewrite with BRK Instruction Flowchart

Rewrite with BRK
instruction

Rewrite with BRK
instruction processing

return

See 4.1.5, Rewrite with BRK Instruction Procedure.

Write 7061 6368h to
patch application area

rewrite finished flag

Rewrite finished?
Yes

No

Read copy area rewrite
finished flag

Copy area rewrite
processing

See 4.1.4, Copy Area
Rewrite Procedure.

Write 636F 7079h to
copy area rewrite

finished flag

Blank?
Yes

No

a = 0,
Write upper limit count − 1,

1

Write upper limit count
(= 4)

a

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 11 of 43
Mar.10.20

4.1.4 Copy Area Rewrite Procedure
Considering the possibility of write failure due to a momentary voltage drop or the like while the patch
application area is being rewritten, the sample code stores to the copy area the contents of the patch
application area before it is rewritten. Figure 4.6 shows the copy area rewrite procedure.

Figure 4.6 Copy Area Rewrite Procedure

Patch application area (1 block)

User area RAM area

Patch application area (1 block)

User area RAM area

Block erase

Copy.

Patch application area (1 block)

User area RAM area

Patch application area (1 block)

Patch application area (1 block)

Patch application area (1 block)

Patch application area (1 block)

[1] Copy patch application area to RAM.

[2] Erase 1 KB block of copy area.

[3] Copy 1 KB from patch application area from RAM to copy area.

Copy area

Copy area

Copy area
Write.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 12 of 43
Mar.10.20

4.1.5 Rewrite with BRK Instruction Procedure
Figure 4.7 shows the rewrite with BRK instruction procedure.

Figure 4.7 Rewrite with BRK Instruction Procedure

Patch application area (1 block)

User area RAM area

Program before rewrite
of patch application area

Copy area

Patch application area (1 block)

User area RAM area

Program before
rewrite of patch application area

Copy.

Block erase

User area RAM area

Program before
rewrite of patch application area

Location corresponding
to rewrite address

Program before
rewrite of patch application area

Change to 00h.

User area RAM area

Program before
rewrite of patch application area

Write.

[1] Copy patch application area rewrite program to RAM.

[2] Change location corresponding to rewrite address in RAM to 00h.

[3] Erase 1 KB block of patch application area.

[4] Write 1 KB with location rewritten with BRK instruction from RAM to patch application area.

Copy area

Copy area

Copy area

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 13 of 43
Mar.10.20

4.1.6 Write Procedure for Flags with Allocated Reserved Areas
The processing to write the patch application area rewrite finished flag, copy area rewrite finished flag, and
patch present/absent determination, each of which have reserved areas allocated to them, proceeds as
follows: If the target area is blank, the item is written to it. If the target area is not blank, a write failure is
judged to have occurred due to a momentary voltage drop or the like, the area located at the address 4h
ahead of the previous target area becomes the target, and the check to determine if it is blank is repeated.

Figure 4.8 shows the write procedure using the patch application area rewrite finished flag as an example.

Figure 4.8 Write Procedure with Patch Application Area Rewrite Finished Flag as Example

Blank Blank Blank Blank
Patch application
area rewrite
finished flag

Blank, so use as
write target.

[1] If first area for patch application area rewrite finished flag is blank

Not blank Blank Blank Blank
Patch application
area rewrite
finished flag

[1] Not blank, so don’t
use as write target.

[2] If first area for patch application area rewrite finished flag is not blank

[2] Blank, so use as
write target.

Not blank Not blank Not blank Not blank
Patch application
area rewrite
finished flag

[1] Not blank, so don’t
use as write target.

[3] If all areas for patch application area rewrite finished flag are not blank

[2] Not blank, so don’t
use as write target.

[3] Not blank, so don’t
use as write target.

[4] Not blank, so don’t
use as write target.

7061 6368h Blank Blank Blank
Patch application
area rewrite
finished flag

Not blank 7061 6368h Blank Blank
Patch application
area rewrite
finished flag

Write.

Write.

Patch application area rewrite finished flag cannot be written, so
go to error processing.

FFFF C400h FFFF C404h FFFF C408h FFFF C40ChAddress

FFFF C400h FFFF C404h FFFF C408h FFFF C40ChAddress

FFFF C400h FFFF C404h FFFF C408h FFFF C40ChAddress

FFFF C400h FFFF C404h FFFF C408h FFFF C40ChAddress

FFFF C400h FFFF C404h FFFF C408h FFFF C40ChAddress

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 14 of 43
Mar.10.20

4.1.7 Identifying BRK Exception (Unconditional Trap) Occurrence Address
The sample code uses the BRK exception, which occurs when an address that has been rewritten by ROM
correction with the value 00h is executed, as the trigger for running the patch program.

When execution of the user program reaches an address to which 00h has been written, that is the rewrite
address target location, a BRK exception is generated. The address where the BRK exception occurred is
identified by checking the program counter (PC) of the stack area in the BRK exception handler. Figure 4.9
illustrates operation when a BRK exception occurs.

Note: Continues in Figure 4.10.
Figure 4.9 Operation when BRK Exception Occurs

User program

Table data area (1 block)

[1] BRK exception is generated
when 00h is executed.

PC (BRK exception occurrence
address + 1h)

PSW

[2] Exception occurrence address is
identified by checking PC of stack area
in BRK exception handler.

Stack area when BRK
exception occursPatch area

Area where
patch update is complete

00h

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 15 of 43
Mar.10.20

4.1.8 Determination of Patch Processing to Be Run from Address where BRK Exception
Occurred

The BRK exception handler compares, via the table data area, the address where the BRK exception
occurred with the rewrite addresses in the patch area. It is assumed that addresses are registered in the
table data in ascending order, and the comparison proceeds in order, starting from the largest address.
Using this method ensures that the latest patch program will applied even if multiple patches have been
applied to the same address. Figure 4.10 illustrates the operation whereby the patch processing to be
executed is determined from the address at which the BRK exception occurred.

Note: Even of rewrite address 0 and rewrite address 1 are the same address, the above processing will not

apply patch program 0 (the old patch).

 Continues in Figure 4.11.

Figure 4.10 Determination of Patch Processing to Be Run from Address where BRK Exception
Occurred

Table data area (1 block)

Patch area

PC (BRK exception
occurrence address + 1h)
= rewrite address 1 + 1h

PSW

Stack area in
BRK exception handler

AA55 AA55h

FLG_ADR0 PP_ADR0 Table data 0 rewrite
finished flag FLG_ADR1

Reserved Reserved Reserved

PP_ADR1 Table data 1 rewrite
finished flag FLG_ADR2 PP_ADR2

Table data 2 rewrite
finished flag

PP_ADR0

Patch program 0

PP_ADR1

[6] Compare in order,
starting from largest address
registered in table data.

[4] Compare in order, starting
from largest address registered
in table data.

PP_ADR2

Patch program 1

Blank Blank Blank

Patch program 2

[7] Check for match with address
where BRK exception occurred.
⇒ Match

[5] Check for match with address
where BRK exception occurred.

Patch area 1 rewrite
finished flag Rewrite address 1

Patch area 0 rewrite
finished flag Rewrite address 0

Patch area 2 rewrite
finished flag Rewrite address 2

[3] Not registered in
table data

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 16 of 43
Mar.10.20

4.1.9 Return Setting from BRK Exception Handler
After the patch processing to be executed is determined, the start address of the patch program to be run is
set in the program counter (PC) of the stack area in the BRK exception handler, causing execution to return
to the patch program after the BRK exception handler. Figure 4.11 illustrates return setting from the BRK
exception handler.

Note: Continues in Figure 4.12.

Figure 4.11 Return Setting from BRK Exception Handler

Table data area (1 block)

Patch area

PSW

Stack area in
BRK exception handler

PP_ADR0

Patch program 0

PP_ADR1

PP_ADR2

Patch program 1

Patch program 2

Patch area 1 rewrite
finished flag Rewrite address 1

PP_ADR1+8h

PC patch program 1
start address

⇒ PP_ADR1 + 8h

[8] Check start address of
matching patch program.

[9] Overwrite with start address
of matching patch program 1.

Patch area 2 rewrite
finished flag Rewrite address 2

Patch area 0 rewrite
finished flag Rewrite address 0

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 17 of 43
Mar.10.20

4.1.10 Patch Program Execution and Return to User Program
After the BRK exception handler finishes, execution returns to the patch program to be run, and the patch
program is executed. After the patch program runs, execution returns to the user program by means of an
instruction specified by the user beforehand. Figure 4.12 illustrates the return from the patch program to the
user program.

Figure 4.12 Patch Program Execution

Table data area (1 block)

Patch area

PP_ADR0

Patch program 0

PP_ADR1

PP_ADR2

Patch program 1

Patch program 2

Patch area 1 rewrite
finished flag Rewrite address 1

PP_ADR1+8h

User program

Area where
patch update is complete

00h

[11] After patch program runs,
return to user program.

[10] After return from BRK exception
handler, run matching patch program 1.

Patch area 0 rewrite
finished flag Rewrite address 0

Patch area 2 rewrite
finished flag Rewrite address 2

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 18 of 43
Mar.10.20

4.2 Required Memory Sizes
Table 4.1 lists the required memory sizes.

Table 4.1 Required Memory Sizes

Memory Used Size Remarks
ROM 1,028 bytes In r_rom_correct.c module
RAM 20 bytes In r_rom_correct.c module
Patch work area 1,300 bytes In r_rom_correct.c module

Size depends on capacity of patch application area to be copied.
2,531 bytes Capacity used in r_flash_rx module

Note: The required memory sizes differ depending on the version of the C compiler and the compile options
used. Refer to the applicable application notes for the sizes of r_bsp and r_flash_rx.

4.3 File and Folder Structure
Figure 4.13 shows the source file and folder structure of the sample code. Note that files generated
automatically by the integrated development environment are omitted.

 HardwareDebug [Executable files, etc.]
 src

smc_gen
r_bsp [Renesas Board Support Package]

board BSP settings for each RSK
rskrx113 RX113 RSK
user For user settings

doc BSP application note
en English version
jp Japanese version

mcu BSP information for each MCU
all Common to all MCUs
rx113 For RX113

 register_access RX113 register access
r_config [API settings file]
r_flash_rx [Simple flash API]

doc Simple flash API application note
ref Flash API driver settings file
src Flash API driver

flash_type_1 For flash type 1
flash_type_2 For flash type 2
flash_type_3 For flash type 3
targets 　 ROM information for each MCU

rx113 Flash definitions for RX113
 r_rom_correct [ROM correction]

Figure 4.13 ROM Correction Folder Structure

The sample code uses the following packages:

• r_bsp (Renesas board support package)
• r_flash_rx (RX Family simple flash module)

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 19 of 43
Mar.10.20

4.3.1 src Folder
This folder contains a sample source file and header file used by the ROM correction program.

Table 4.2 Sample Files Used

File Name Description Notes
main.c Source file of main routine
main.h Header file of main routine

4.3.2 src\r_bsp Folder
This folder contains the source files and header files of the Renesas Board Support Package module. For
details, refer to the RX Family Board Support Package Module application note.

4.3.3 src\r_config Folder
Table 4.3 lists the files in the folder containing the setting files for the target MCU.

Table 4.3 Header Files

File Name Description Notes
r_bsp_config.h BSP settings header file For RSK RX113
r_flash_rx_config.h Flash write settings file

4.3.4 src\r_flash_rx Folder
This folder contains the source files and header files of the flash FIT module. For details, refer to the Flash
Module Firmware Integration Technology application note.

4.3.5 src\r_rom_correct Folder
This folder contains the source file and header file of the ROM correction program.

Table 4.4 ROM Correction

File Name Description Notes
r_rom_correct.c ROM correction source file
r_rom_correct.h ROM correction header file

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 20 of 43
Mar.10.20

4.4 Option-Setting Memory
Table 4.5 lists the option-setting memory settings used in the sample code. Modify the setting values as
necessary to match your system.

Table 4.5 Option-Setting Memory Settings in Sample Code

Symbol Address Setting Value Description
OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh • IWDT stopped after a reset

• Timeout duration: 2,048 cycles
• IWDT clock division ratio: 1/128
• Window start position/end position:

Not specified
• Resets enabled
• Count stop in sleep mode enabled

OFS1 FFFF FF88h to FFFF FF8Bh FFFF FFFFh • Voltage monitor reset disabled at startup
• HOCO oscillation disabled after a reset

MDE FFFF FF80h to FFFF FF83h FFFF FFFFh Little endian

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 21 of 43
Mar.10.20

4.5 Constants
Table 4.6 lists the constants used in the sample code.

Table 4.6 Constants Used in Sample Code

Constant Name Setting Value Description
APPLY_PATCH AA55 AA55h Data indicating patch present in patch

present/absent determination
PATCH_TARGET_REWRITE 7061 6368h Data indicating rewrite finished in

patch application area rewrite finished
flag

COPY_AREA_REWRITE 636F 7079h Data indicating rewrite finished in
copy area rewrite finished flag

LMT_WRITE_TIMES 4 Write count upper limit value of patch
application area rewrite finished flag,
copy area rewrite finished flag, and
patch present/absent determination

REWRITE_FLG_AREA_SIZE LMT_WRITE_TIMES * 4 Area size of patch application area
rewrite finished flag, copy area rewrite
finished flag, and patch
present/absent determination

BRK_CODE 00h Code indicating BRK instruction
FLASH_RETRY_TIMES 3 Retry count when flash-related error

occurs*1
FLASH_BLOCK_TOP_MASK FFFF FC00h Mask for acquiring start address of

flash block
TABLE_DATA_AREA_TOP_ADR FFFF C000h Start address of table data area
APPLY_PATCH_ADR TABLE_DATA_AREA_TOP_

ADR
Start address of patch present/absent
determination

TABLE_DATA_TOP_ADR TABLE_DATA_AREA_TOP_
ADR +
REWRITE_FLG_AREA_SIZE

Table data start address (excluding
patch present/absent determination)

PATCH_AREA_TOP_ADR TABLE_DATA_AREA_TOP_
ADR +
FLASH_CF_BLOCK_SIZE

Start address of patch area

COPY_AREA_TOP_ADR FFFF F000h Start address of copy area
TABLE_DATA_NUM_MAX (COPY_AREA_TOP_ADR-

TABLE_DATA_TOP_ADR)/
(sizeof(table_data_t)

Maximum table data count

Note: 1. In the sample code, when a flash-related error occurs, an error is reported when the error
continues up to the retry count specified by this setting.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 22 of 43
Mar.10.20

4.6 Structure Listing
Figure 4.14 lists the structures used in the sample code.

Figure 4.14 Structures Used in Sample Code

4.7 Enumeration Listing
Figure 4.15 lists the enumerated types used in the sample code. Also included is flash_err_t, a structure for
the RX Family simple flash module used by the sample code, so refer to it as well.

Figure 4.15 Enumerated Types Used in Sample Code

typedef struct
{

uint32_t flg_adr; /* FLG_ADR */
uint32_t pp_adr; /* PP_ADR */
unit32_t table_rewrite_flg; /* Table data rewrite finished flag */

} table_data_t;

typedef struct
{

uint32_t patch_rewrite_flg; /* Patch area rewrite finished flag */
uint32_t rewrite_adr; /* Rewrite address */
uint8_t * ppatch_prg; /* Pointer to start address of patch program */

} patch_data_t;

typedef enum
{

ROM_CORRECT_SUCCESS = 0,
ROM_CORRECT_ERR_BUSY,
ROM_CORRECT_ERR_ACCESSW,
ROM_CORRECT_ERR_FAILURE,
ROM_CORRECT_ERR_CMD_LOCKED,
ROM_CORRECT_ERR_LOCKBIT_SET,
ROM_CORRECT_FREQUENCY,
ROM_CORRECT_ALIGNED,
ROM_CORRECT_BOUNDARY,
ROM_CORRECT_OVERFLOW,
ROM_CORRECT_ERR_BYTES,
ROM_CORRECT_ERR_ADDRESS,
ROM_CORRECT_ERR_BLOCKS,
ROM_CORRECT_ERR_PARAM,
ROM_CORRECT_ERR_NULL_PTR,
ROM_CORRECT_TIMEOUT,
ROM_CORRECT_ERR_TABLE, /* Table data area error */
ROM_CORRECT_ERR_PATCH, /* Patch area error */
ROM_CORRECT_ERR_COPY_AREA_FLG, /* Copy area rewrite finished flag write error */
ROM_CORRECT_ERR_PATCH_AREA_FLG, /* Patch application area rewrite finished flag write error */
ROM_CORRECT_NOT_APPLY /* No valid data in patch present/absent determination */

} rom_correct_err_t;

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 23 of 43
Mar.10.20

4.8 Variables
Table 4.7 lists the variables used in the sample code.

Table 4.7 static Type Variables

Type Variable Name Description Used by Function
static uint8_t table_data_num Table data registration count • R_ROM_Correct

• setting_patch

4.9 Functions
Table 4.8 lists the functions used in the sample code.

Table 4.8 Functions

Function Name Description
R_ROM_Correct ROM correction processing
R_ROM_MakePatch Go to applicable patch program (BRK exception handler)
get_brk_address Get BRK exception occurrence address
set_return_adr Set return address to corresponding patch program
chk_apply_patch Patch present/absent determination processing
setting_patch Set patch to register
chk_patch Check patch to register
chk_table_data Check table data
chk_patch_area Check patch area
chk_rewrite_patch_target_area Check patch application area rewrite
rewrite_patch_target_area Patch application area rewrite processing
chk_rewrite_copy_area Check copy area rewrite
rewrite_copy_area Copy area rewrite processing
rewrite_brk_code Rewrite patch application area with BRK instruction
call_R_FLASH_Open Flash FIT module initialization, including retry in case of error
call_R_FLASH_Erase Erase flash, including retry in case of error
call_R_FLASH_BlankCheck Flash blank check, including retry in case of error
call_R_FLASH_Write Write to flash, including retry in case of error

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 24 of 43
Mar.10.20

4.10 Function Specifications
The following tables list the sample code function specifications.

R_ROM_Correct
Outline ROM correction function
Header r_rom_correct.h
Declaration rom_correct_err_t R_ROM_Correct (void)
Description ROM correction processing
Arguments None
Return Value ROM correction setting result

ROM_CORRECT_SUCCESS: Success
ROM_CORRECT_ERR_BUSY: Software command running, or flash FIT module

not initialized
ROM_CORRECT_ERR_FAILURE: Flash blank check, erase, or write failure
ROM_CORRECT_ERR_BYTES: Flash write or blank check size error
ROM_CORRECT_ERR_ADDRESS: Invalid address setting
ROM_CORRECT_ERR_BLOCKS: Invalid flash block number
ROM_CORRECT_ERR_TABLE: Table data area setting error
ROM_CORRECT_ERR_PATCH: Patch area setting error
ROM_CORRECT_ERR_WR_COPY_FLAG:

Copy area rewrite finished flag write error
ROM_CORRECT_ERR_WR_PATCH_FLAG:

Patch application area rewrite finished flag write
error

ROM_CORRECT_NOT_APPLY: No valid data in patch present/absent
determination

Remarks Except for ROM_CORRECT_NOT_APPLY, the last registered table data setting result
is sent as the return value.
If setting result information is needed for each table data item, register each table data
item and patch area individually.

R_ROM_MakePatch
Outline Go to applicable patch program (BRK exception handler)
Header r_rom_correction.h
Declaration void R_ROM_MakePatch (void)
Description Determines the applicable patch program from the address at which the BRK exception

occurred and transitions to it.
Arguments None
Return Value None
Remarks This function is a BRK exception handler.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 25 of 43
Mar.10.20

get_brk_address
Outline Get BRK exception occurrence address
Header r_rom_correction.h
Declaration uint32_t get_brk_address (void)
Description Gets the address at which the BRK exception occurred.
Arguments None
Return Value Address where BRK exception occurred + 1
Remarks This function is declared in #pragma inline_asm.

If the R_ROM_MakePatch function is altered to change the capacity of the stack
where the data is saved, this function should be modified to match.

Set_return_adr
Outline Set return address to corresponding patch program
Header r_rom_correction.h
Declaration uint32_t set_return_adr (uint32_t return_adr)
Description Sets the address to return to from the BRK exception handler.
Arguments uint32_t return_adr: State address of applicable patch program
Return Value None
Remarks This function is declared in #pragma inline_asm.

If the R_ROM_MakePatch function is altered to change the capacity of the stack
where the data is saved, this function should be modified to match.

chk_apply_patch
Outline Patch present/absent determination processing
Header r_rom_correction.h
Declaration static rom_correct_err_t chk_apply_patch (void)
Description Checks the patch present/absent determination.
Arguments None
Return Value Patch present/absent checking result

ROM_CORRECT_SUCCESS: Patch present
ROM_CORRECT_NOT_APPLY: No valid data in patch present/absent

determination
Remarks

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 26 of 43
Mar.10.20

setting_patch
Outline Set patch to register
Header r_rom_correction.h
Declaration static rom_correct_err_t setting_patch (void)
Description Registers the patch set in the table data area and patch area, and stores the table data

count.
Arguments None
Return Value Execution result

ROM_CORRECT_SUCCESS: Success
ROM_CORRECT_ERR_BUSY: Software command running, or flash FIT module

not initialized
ROM_CORRECT_ERR_FAILURE: Flash blank check, erase, or write failure
ROM_CORRECT_ERR_BYTES: Flash write or blank check size error
ROM_CORRECT_ERR_ADDRESS: Invalid address setting
ROM_CORRECT_ERR_BLOCKS: Invalid flash block number
ROM_CORRECT_ERR_TABLE: Table data area setting error
ROM_CORRECT_ERR_PATCH: Patch area setting error
ROM_CORRECT_ERR_WR_COPY_FLAG:

Copy area rewrite finished flag write error
ROM_CORRECT_ERR_WR_PATCH_FLAG:

Patch application area rewrite finished flag write
error

Remarks

chk_patch
Outline Check patch to register
Header r_rom_correction.h
Declaration rom_correct_err_t chk_patch (const table_data_t table_data)
Description Checks the patch set in the table data area and patch area.
Arguments const table_data_t table_data: Target table data
Return Value Execution result

ROM_CORRECT_SUCCESS: Success
ROM_CORRECT_ERR_BUSY: Software command running, or flash FIT module

not initialized
ROM_CORRECT_ERR_FAILURE: Flash blank check, erase, or write failure
ROM_CORRECT_ERR_BYTES: Flash write or blank check size error
ROM_CORRECT_ERR_ADDRESS: Invalid address setting
ROM_CORRECT_ERR_BLOCKS: Invalid flash block number
ROM_CORRECT_ERR_TABLE: Table data area setting error
ROM_CORRECT_ERR_PATCH: Patch area setting error
ROM_CORRECT_ERR_WR_COPY_FLAG:

Copy area rewrite finished flag write error
ROM_CORRECT_ERR_WR_PATCH_FLAG:

Patch application area rewrite finished flag write
error

Remarks

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 27 of 43
Mar.10.20

chk_table_data
Outline Check table data
Header r_rom_correction.h
Declaration rom_correct_err_t chk_table_data (const table_data_t table_data)
Description Checks whether the target table data is set correctly.
Arguments const table_data_t table_data: Target table data
Return Value Target table data checking result

ROM_CORRECT_SUCCESS: Target table data correct
ROM_CORRECT_ERR_TABLE: Target table data not correct

Remarks

chk_patch_area
Outline Check patch area
Header r_rom_correction.h
Declaration rom_correct_err_t chk_patch_area (const uint32_t pp_adr)
Description Checks whether the target patch area is set correctly.
Arguments const uint32_t pp_adr: PP_ADR of target table data
Return Value Target patch area checking result

ROM_CORRECT_SUCCESS: Target patch area correct
ROM_CORRECT_ERR_PATCH: Target patch area not correct

Remarks

chk_rewrite_patch_target_area
Outline Check patch application area rewrite
Header r_rom_correction.h
Declaration rom_correct_err_t chk_rewrite_patch_target_area (const table_data_t table_data)
Description Checks rewriting of the patch application area.
Arguments const table_data_t table_data: Target table data
Return Value Execution result

ROM_CORRECT_SUCCESS: Success
ROM_CORRECT_ERR_BUSY: Software command running, or flash FIT module

not initialized
ROM_CORRECT_ERR_FAILURE: Flash blank check, erase, or write failure
ROM_CORRECT_ERR_BYTES: Flash write or blank check size error
ROM_CORRECT_ERR_ADDRESS: Invalid address setting
ROM_CORRECT_ERR_BLOCKS: Invalid flash block number
ROM_CORRECT_ERR_WR_COPY_FLAG:

Copy area rewrite finished flag write error
ROM_CORRECT_ERR_WR_PATCH_FLAG:

Patch application area rewrite finished flag write
error

Remarks

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 28 of 43
Mar.10.20

rewrite_patch_target_area
Outline Patch application area rewrite processing
Header r_rom_correction.h
Declaration rom_correct_err_t rewrite_patch_target_area (const table_data_t_t table_data)
Description Rewrites the patch application area.
Arguments const table_data_t table_data: Target table data
Return Value Execution result

ROM_CORRECT_SUCCESS: Success
ROM_CORRECT_ERR_BUSY: Software command running, or flash FIT module

not initialized
ROM_CORRECT_ERR_FAILURE: Flash blank check, erase, or write failure
ROM_CORRECT_ERR_BYTES: Flash write or blank check size error
ROM_CORRECT_ERR_ADDRESS: Invalid address setting
ROM_CORRECT_ERR_BLOCKS: Invalid flash block number
ROM_CORRECT_ERR_WR_COPY_FLAG:

Copy area rewrite finished flag write error
ROM_CORRECT_ERR_WR_PATCH_FLAG:

Patch application area rewrite finished flag write
error

Remarks

chk_rewrite_copy_area
Outline Check copy area rewrite
Header r_rom_correction.h
Declaration rom_correct_err_t chk_rewrite_copy_area (const table_data_t table_data)
Description Checks rewriting of the copy area.
Arguments const table_data_t table_data: Target table data
Return Value Execution result

ROM_CORRECT_SUCCESS: Success
ROM_CORRECT_ERR_BUSY: Software command running, or flash FIT module

not initialized
ROM_CORRECT_ERR_FAILURE: Flash blank check, erase, or write failure
ROM_CORRECT_ERR_BYTES: Flash write or blank check size error
ROM_CORRECT_ERR_ADDRESS: Invalid address setting
ROM_CORRECT_ERR_BLOCKS: Invalid flash block number
ROM_CORRECT_ERR_WR_COPY_FLAG:

Copy area rewrite finished flag write error
Remarks

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 29 of 43
Mar.10.20

rewrite_copy_area
Outline Copy area rewrite processing
Header r_rom_correction.h
Declaration static flash_err_t rewrite_copy_area (const uint32_t pp_adr)
Description Rewrites the copy area with data from the patch application area.

The data is saved to the copy area before rewriting with the BRK instruction in case a
momentary voltage drop or the like while writing to the patch application area causes
the write to fail.

Arguments const uint32_t pp_adr: PP_ADR of target table data
Return Value Execution result

FLASH_SUCCESS: Success
FLASH_ERR_BUSY: Software command running, or flash FIT module not

initialized
FLASH_ERR_FAILURE: Flash erase or write failure
FLASH_ERR_BYTES: Flash write size error
FLASH_ERR_ADDRESS: Invalid address setting
FLASH_ERR_BLOCKS: Invalid flash block number

Remarks

rewrite_brk_code
Outline Rewrite patch application area with BRK instruction
Header r_rom_correction.h
Declaration static flash_err_t rewrite_brk_code (const uint32_t pp_adr)
Description Rewrites the rewrite address in the patch application area with the BRK instruction.

The data is saved to the copy area before rewriting with the BRK instruction in case a
momentary voltage drop or the like while writing to the patch application area causes
the write to fail.

Arguments const uint32_t pp_adr: PP_ADR of target table data
Return Value FLASH_SUCCESS: Success

FLASH_ERR_BUSY: Software command running, or flash FIT module not
initialized

FLASH_ERR_FAILURE: Flash erase or write failure
FLASH_ERR_BYTES: Flash write size error
FLASH_ERR_ADDRESS: Invalid address setting
FLASH_ERR_BLOCKS: Invalid flash block number

Remarks

call_R_FLASH_Open
Outline Flash FIT module initialization, including retry in case of error
Header r_rom_correction.h
Declaration static flash_err_t call_R_FLASH_Open (void)
Description Initializes the flash FIT module. Includes retry in case of error.
Arguments None
Return Value FLASH_SUCCESS: Success

FLASH_ERR_BUSY: Software command running, or flash FIT module not
initialized

Remarks

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 30 of 43
Mar.10.20

call_R_FLASH_Erase
Outline Erase flash, including retry in case of error
Header r_rom_correction.h
Declaration static flash_err_t call_R_FLASH_Erase (uint32_t block_start_address, uint32_t

num_blocks)
Description Erased the flash memory. (Includes retry in case of error.)
Arguments uint32_t block_start_address: Start address of erase target block

uint32_t num_blocks: Number of target blocks to be erased
Return Value FLASH_SUCCESS: Success

FLASH_ERR_BUSY: Software command running, or flash FIT module not
initialized

FLASH_ERR_FAILURE: Flash erase failure
FLASH_ERR_ADDRESS: Invalid address setting
FLASH_ERR_BLOCKS: Invalid flash block number

Remarks

call_R_FLASH_BlankCheck
Outline Flash blank check, including retry in case of error
Header r_rom_correction.h
Declaration static flash_err_t call_R_FLASH_BlankCheck (uint32_t address, uint32_t num_bytes,

flash_res_t *result)
Description Performs a blank check on the flash memory. (Includes retry in case of error.)
Arguments uint32_t address: Blank check start address

uint32_t num_bytes: Blank check byte count
flash_res_t *result: Pointer to blank check result

Return Value FLASH_SUCCESS: Success
FLASH_ERR_BUSY: Software command running, or flash FIT module not

initialized
FLASH_ERR_FAILURE: Blank check of flash memory failure
FLASH_ERR_BYTES: Flash memory blank check size error
FLASH_ERR_ADDRESS: Invalid address setting

Remarks

call_R_FLASH_Write
Outline Write to flash, including retry in case of error
Header r_rom_correction.h
Declaration static flash_err_t call_R_FLASH_Write (uint32_t src_address, uint32_t dest_address,

uint32_t num_bytes)
Description Writes to the flash memory. (Includes retry in case of error.)
Arguments uint32_t src_address: Start address where write data is stored

uint32_t dest_address: Start address of write destination
uint32_t num_bytes: Write byte count

Return Value FLASH_SUCCESS: Success
FLASH_ERR_BUSY: Software command running, or flash FIT module not

initialized
FLASH_ERR_FAILURE: Write to flash memory failure
FLASH_ERR_BYTES: Flash memory write size error
FLASH_ERR_ADDRESS: Invalid address setting

Remarks

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 31 of 43
Mar.10.20

5. Precautions
5.1 Precautions When Using This Application Note
• The user should write data to the table data area and patch area beforehand using self-rewrite in P/E

mode, or the like. Note that when using a serial programmer it is not possible to use a boot program to
write the data.

• When writing data to the table data area and patch area, do not write FFh to the reserved areas and
empty areas.

• The user’s R_ROM_Correct function sends the last setting result registered in the table data as its return
value. If setting result information is needed for each table data item, register each table data item and
patch area individually.

5.2 Table Data Area and Patch Area Write Procedure Examples
Examples of the procedures for writing to the table data area and patch area implemented by the user are
described below. Figure 5.1 shows a table data area write procedure example. Figure 5.2 shows a write
procedure example where the write failed due to a momentary voltage drop or the like. Note that the user
should make sure to run a blank check before writing data.

1. Only when applying a patch for the first time, write AA55 AA55h to the patch present/absent
determination in the table data area. It is not necessary to write AA55 AA55h to the patch present/absent
determination when applying a patch the second or subsequent times.

2. Write data to the table data area and to the patch area, in that order.

2-1. After writing to the table data area, write the table data rewrite finished flag (inverted value of
FLG_ADR).

2-2. After writing to the patch area, write the patch area rewrite finished flag (inverted value of rewrite
address).

2-3. Repeat steps 2-1 and 2-2 to write additional patch data. If the write fails due to a momentary voltage
drop or the like, retry the write in the next empty area. Note that the table data consists of 12-byte
sets comprising FLG_ADR, PP_ADR, and the table data rewrite finished flag. For FLG_ADR(m),
add 0Ch to the FLG_ADR(m − 1) write address.

Note: Since PP_ADR changes when a write to the patch area fails, you will need to redo the procedure from

step 2-1. Also, do not perform an erase if a write fails; write the data to the next area.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 32 of 43
Mar.10.20

Blank Blank Blank ...

...
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag

FLG_ADRx Blank Blank ...

...
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag

[1] Blank, so use as
write target.

FLG_ADRx PP_ADRx Blank ...

...
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag

FLG_ADRx Blank Blank ...

...
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag

[3] Blank, so use as
write target.

Write to PP_ADR.

FLG_ADRx PP_ADRx Table data x rewrite
finished flag ...

...
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag

FLG_ADRx PP_ADRx Blank ...

...
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag
[5] Blank, so use as
write target.

[2] Write FLG_ADRx

[4] Write PP_ADRx

[6] Write table data x rewrite
finished flag.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 33 of 43
Mar.10.20

Figure 5.1 Table Data Area Write Procedure Example

Figure 5.2 Table Data Area Write Procedure Example where Write Failed Due to

Momentary Voltage Drop, Etc.

FLG_ADRx Not blank
(write failure) Blank Blank

Blank Blank
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag

FLG_ADRx Blank Blank ...

...
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag

[1] Blank, so use as
write target.

Write to PP_ADR.

FLG_ADRx Not blank
(write failure) Blank Blank

Blank Blank
Table data area

FLG_ADR PP_ADR
Table data rewrite

finished flag

Write failure
due to momentary
voltage drop, etc.

FLG_ADR

PP_ADR Table data rewrite
finished flag

[2] Write failure.

[3] Treat as invalid area.

FLG_ADRx Not blank
(write failure) Blank Blank

Blank Blank
Table data area

FLG_ADR

PP_ADR Table data rewrite
finished flag

Change write target to next and
retry write of FLG_ADR.

[4] Blank, so use as
write target.

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 34 of 43
Mar.10.20

5.3 Adapting Specifications to Other Products
When adapting the source code accompanying this application note to other products, it may be necessary
to increase the size of the user stack in some cases. Figure 5.3 and Figure 5.4 show examples of using a
32 KB patch application area on the RX65N.

Also, when using the flash FIT module, change the setting of FLASH_CFG_CODE_FLASH_ENABLE to 1,
and refer to 2.15, Programming Code Flash from RAM, in RX Family Flash Module Using Firmware
Integration Technology (R01AN2184) when adding sections.

Figure 5.3 Conceptualization of Patch Area when Using 32 KB Patch Application Area on RX65N

Patch work area
(32.5 KB + 3.2 KB)

Note: 3.2 KB when using flash FIT
module.

Patch application area (1 block)

Table data area (1 block)

Patch area
Note: Dependent on available

space.

RAM

User area

0000 0000h

0003 FFFFh

FFF0 0000h

FFFF FFFFh

Patch application area
rewrite finished flag

Patch program

FLG_ADR

FLG_ADR+200h

PP_ADR

Copy area (1 block)

Reserved Reserved Reserved

FFFE 8000h

Patch area rewrite
finished flag Rewrite address

Copy area rewrite
finished flag Reserved Reserved Reserved

Notes: 1. Each rewrite finished flag has three reserved areas with a
fixed size of 128 bytes each (total 384 bytes), and they are
allocated successively to an area 1,024 bytes in size. The
user is prohibited from writing to this area.

2. The patch application area rewrite finished flag has a value
of 7061 6368h (hex equivalent of “pach” in ASCII characters).

3. The copy area rewrite finished flag has a value of 636F
7079h (hex equivalent of “copy” in ASCII characters).

Configuration of each patch

Note: The patch area rewrite finished flag is the inverted value of the
rewrite address.

Addresses in red may be changed. Note that FLG_ADR and PP_ADR are
addresses inside the patch area.

FFFC 0000h

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 35 of 43
Mar.10.20

Figure 5.4 Conceptualization of Patch Area when Using 32 KB Table Data Area on RX65N

Patch present/absent
determination

FLG_ADR0 PP_ADR0 Table data 0 rewrite
finished flag FLG_ADR1

Patch work area (32.5 KB + 3.2 KB)
Note: 3.2 KB when using flash FIT

module.

RAM

User area

0000 0000h

0003 FFFFh

FFF0 0000h

FFFF FFFFh

FFFE 8000h

FFFC 0000h

Configuration of table data area

FFFC 0000h

FFFC 0000h+200h
Reserved Reserved Reserved

PP_ADR1 Table data 1 rewrite
finished flag

... FLG_ADRn PP_ADRn Table data n rewrite
finished flag

Notes: 1. Each patch present/absent determination has three reserved
areas with a fixed size of 128 bytes each (total 384 bytes),
and the table data is written successively after the reserved
areas. The patch present/absent determination has a value of
AA55 AA55h.

2. The table data rewrite finished flag is the inverted value of
FLG_ADR.

Addresses in red may be changed.

Patch application area (1 block)

Table data area (1 block)

Patch area
Note: Dependent on available

space.

Copy area (1 block)

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 36 of 43
Mar.10.20

6. Creating Data for Table Data Area and Patch Area
The method of creating data for the table data area and patch area set by the user is described below, using
the patch area as an example.

6.1 Patch Area Data Creation Example
Figure 6.1 shows an example of settings for patch area 0.

Figure 6.1 Example Patch Area Settings

FFFF D000h
Blank

Patch program 0

FLG_ADR0

PP_ADR0
(FFFF D020h)

Blank Blank Blank

Patch area 0 rewrite
finished flag Rewrite address 0

Blank Blank Blank Blank
FLG_ADR0+10h

Patch area 0

Patch area

Rewrite finished flag area in
patch application area 0

Rewrite finished flag
area in copy area 0

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 37 of 43
Mar.10.20

The patch area PP_ADR0 is set using #pragma section and, after specifying the patch area rewrite finished
flag and rewrite address with const declarations, the patch program code follows. For information on the
write procedure, refer to 5.2, Table Data Area and Patch Area Write Procedure Examples.

Figure 6.2 Patch Area Code Example

In the section above the address is set in e2 studio. In the menu bar, click Project → C/C++ Project
Settings.

Figure 6.3 Example Section Settings (1/2)

#pragma section PP_ADR0

/* Patch area rewrite finished flag */
const uint32_t g_rewrite_flg0 = XXXXXXXX;
/* Rewrite address */
const uint32_t g_rewrite_adr0 = YYYYYYYY;

void patch_prg0(void)
{

Applicable patch program processing;
.
.
.
Processing for jump to specified user program;

}

#pragma section /* End of section */

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 38 of 43
Mar.10.20

The Properties for RomCorrect window appears, as shown in Figure 6.4. In C/C++ Build → Settings →
Linker → Section Viewer, add sections CPP_ADR0 and PPP_ADR0, set the corresponding address, and
click the OK button.
When you build this project after this, an executable file will be generated with the section data allocated to
the specified addresses.

Figure 6.4 Example Section Settings (2/2)

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 39 of 43
Mar.10.20

6.2 Example of Procedure for Exporting Data from Patch Area
The procedure for exporting data from a specified memory area is described below.

Connect e2 studio to the user system, download the program, and then in the menu bar click Window →
Show View → Memory to display the Memory window (see Figure 6.5).

Figure 6.5 Displaying Memory Window

The Memory window appears, as shown in Figure 6.6. In the Memory window, click the Add Memory
Monitor button.

Figure 6.6 Memory Window

The Monitor Memory window appears, as shown in Figure 6.7. Enter the address of the memory area you
wish to view, then click the OK button.

Figure 6.7 Monitor Memory Window

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 40 of 43
Mar.10.20

The memory area at the specified address is displayed as shown in Figure 6.8.

Figure 6.8 Memory Area Display

The method of exporting data from the specified memory area is as follows. Click the Export button in the
Memory window (see Figure 6.9).

Figure 6.9 Exporting Data from a Memory Area

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 41 of 43
Mar.10.20

The Export Memory window appears, as shown in Figure 6.10. For Format: select the file format in which
to save the data. The memory area to be exported is Length: (bytes), beginning at Start address: and
ending immediately before End address:. For File name: specify the name of the file to be saved, then click
the OK button.

Figure 6.10 Export Memory Window

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 42 of 43
Mar.10.20

7. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

8. Reference Documents
User’s Manual: Hardware

RX113 Group User’s Manual: Hardware (R01UH0448)
(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

User’s Manual: Development Tools

RX Family CC-RX Compiler User’s Manual (R20UT3248)
(The latest version can be downloaded from the Renesas Electronics website.)

RX Family Flash ROM Correction

R01AN3516EJ0100 Rev.1.00 Page 43 of 43
Mar.10.20

Revision History

Rev. Date
Description
Page Summary

1.00 Mar. 10, 2020  First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	2. Operation Confirmation Conditions
	3. Related Application Notes
	4. Software
	4.1 Operation Overview
	4.1.1 Table Data Area and Patch Area Checking
	4.1.2 ROM Correction Flowchart
	4.1.3 Rewrite with BRK Instruction Flowchart
	4.1.4 Copy Area Rewrite Procedure
	4.1.5 Rewrite with BRK Instruction Procedure
	4.1.6 Write Procedure for Flags with Allocated Reserved Areas
	4.1.7 Identifying BRK Exception (Unconditional Trap) Occurrence Address
	4.1.8 Determination of Patch Processing to Be Run from Address where BRK Exception Occurred
	4.1.9 Return Setting from BRK Exception Handler
	4.1.10 Patch Program Execution and Return to User Program

	4.2 Required Memory Sizes
	4.3 File and Folder Structure
	4.3.1 src Folder
	4.3.2 src\r_bsp Folder
	4.3.3 src\r_config Folder
	4.3.4 src\r_flash_rx Folder
	4.3.5 src\r_rom_correct Folder

	4.4 Option-Setting Memory
	4.5 Constants
	4.6 Structure Listing
	4.7 Enumeration Listing
	4.8 Variables
	4.9 Functions
	4.10 Function Specifications

	5. Precautions
	5.1 Precautions When Using This Application Note
	5.2 Table Data Area and Patch Area Write Procedure Examples
	5.3 Adapting Specifications to Other Products

	6. Creating Data for Table Data Area and Patch Area
	6.1 Patch Area Data Creation Example
	6.2 Example of Procedure for Exporting Data from Patch Area

	7. Sample Code
	8. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

