
 Application Note

R20AN0507EJ0231 Rev.2.31 Page 1 of 68
Mar.20.25

RX Family
Flash Memory Data Management Module Using Firmware Integration
Technology
Summary
This application note describes methods of data management using the on-chip flash memory of RX MCUs
from Renesas and how to use them. The flash memory data management module (DATFRX) is an upper-
layer software module intended to be used for managing data in on-chip flash memory. A flash FIT module,
separate lower-layer software for controlling the flash memory of your specific MCU, is available for
download on the Renesas website.

Flash FIT module (on-chip flash memory programming)
RX Family Flash Module Using Firmware Integration Technology (R01AN2184)

Target Devices
• RX Family

Related Documents
• Firmware Integration Technology User’s Manual (R01AN1833)
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• Adding Firmware Integration Technology Modules to Projects (R01AN1723)
• Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)
• Renesas e2 studio Smart Configurator User Guide (R20AN0451)
• RX Family Flash Module Using Firmware Integration Technology (R01AN2184)

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 2 of 68
Mar.20.25

Contents

1. Overview ... 4
1.1 DATFRX .. 4
1.2 Overview of DATFRX .. 4
1.2.1 Definitions of Terms .. 4
1.2.2 Overview of Functions ... 5
1.2.3 Overview of DATFRX Layers .. 6
1.3 Overview of API ... 7
1.4 Processing Example .. 8
1.4.1 Flash Type 1 .. 8
1.4.2 Flash Type 3, 4 and 5 .. 10
1.5 State Transition Diagram ... 12
1.6 Limitations ... 13

2. API Information .. 14
2.1 Hardware Requirements ... 14
2.2 Software Requirements ... 14
2.3 Supported Toolchain ... 14
2.4 Interrupt Vector .. 14
2.5 Header Files .. 14
2.6 Integer Types ... 14
2.7 Compile Settings ... 15
2.7.1 Adding Data Numbers ... 16
2.8 Memory Usage .. 17
2.8.1 Flash Type 1a .. 17
2.8.2 Flash Type 1b .. 18
2.8.3 Flash Type 3 .. 19
2.8.4 Flash Type 4 .. 20
2.8.5 Flash Type 5 .. 21
2.9 Arguments ... 22
2.10 Return Values .. 22
2.11 Callback function ... 23
2.12 Adding the FIT Module to Your Project ... 24
2.13 for, while, and do while Expressions ... 24

3. API Functions .. 25
R_FLASH_DM_Open() ... 25
R_FLASH_DM_Close() .. 27
R_FLASH_DM_Init() ... 28
R_FLASH_DM_InitAdvance() .. 30
R_FLASH_DM_Format() .. 32

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 3 of 68
Mar.20.25

R_FLASH_DM_Read() ... 33
R_FLASH_DM_Write() ... 35
R_FLASH_DM_Erase() .. 37
R_FLASH_DM_Reclaim() .. 39
R_FLASH_DM_Control() ... 41
R_FLASH_DM_GetVersion() ... 44

4. Demo Project ... 45
4.1 Adding the Demo to the Workspace .. 45
4.2 Downloading the Demo ... 45

5. Appendix ... 46
5.1 Confirmed Operation Environment .. 46
5.2 Troubleshooting ... 48
5.3 Data Management ... 49
5.3.1 DATFRX Management Areas .. 49
5.3.2 Block Areas (Flash Type 1) ... 51
5.3.3 Block Management (Flash Types 3, 4, and 5) .. 55
5.3.4 Block States and How They Are Determined .. 58

6. Reference Documents ... 65

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 4 of 68
Mar.20.25

1. Overview
1.1 DATFRX
Upper-layer software used to manage data in the on-chip flash memory of RX MCUs manufactured by
Renesas Electronics.

1.2 Overview of DATFRX
1.2.1 Definitions of Terms
1.2.1.1 Flash Type
Lower-layer flash FIT modules are classified, according to the technology and sequencer used, into four
Flash Types: Flash Type 1, Flash Type 3, Flash Type 4, and Flash Type 5.

For details on Flash Type, please obtain and check the latest version of flash FIT module from Renesas
Electronics website.

RX Family Flash Module Using Firmware Integration Technology (R01AN2184)

In this application note, as shown in Table 1.1, there are items in which Flash Type 1 is divided into Flash
Type 1a and Flash Type 1b.

Table 1.1 Supported MCU Groups for Flash Type 1

Flash Type 1 Name
Flash Type 1a RX111, RX113, RX130, RX13T, RX230, RX231,

RX23E-A, RX23E-B, RX23W, RX24T, RX24U
Flash Type 1b Flash Type 1 MCU groups equipped with data flash

memory other than those listed above.

1.2.1.2 Block
The data flash memory is configured as multiple blocks, each of which contains several designated areas.

The block size and count differ depending on the MCU. For details on blocks, refer to the Flash Memory
section in the User’s Manual: Hardware of the MCU.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 5 of 68
Mar.20.25

1.2.2 Overview of Functions
An overview Flash Types and their functions is presented below.

Table 1.2 Overview of Functions

Function
Flash Type
1

Flash Types
3, 4, and 5

Data
management

API calls can be used to update and read data associated
with user-specified data numbers.

〇 〇

The data count and data size can be specified by the user. 〇 〇
Data is updated in empty blocks during data update
processing. The blocks where data updating takes place are
selected by DATFRX. DATFRX sets the block update
sequence in a manner that ensures that data updates are
not concentrated in specific blocks. Old data is not erased
during data update processing.

 〇

Block erase processing can be used to erase unneeded old
data in the blocks being managed. The blocks that are
erased are selected by DATFRX.

〇 〇

Power cutoff/reset
during data
update processing

Power cutoff/reset is detected when
the initialization function runs after the
restart.

〇 〇

If the data is not valid, an attempt is
made to restore the data from before
the update.

〇 〇

Power cutoff/reset
during block erase
processing

Power cutoff or reset during erasure of
the blocks being managed is detected
when the initialization function runs
after the restart.

〇 〇

Based on the state of the updated
data, a judgment is made as to
whether or not the data is valid. If the
data is not valid, an attempt is made to
restore the data from before the
update.
Note: If a block is mistakenly judged

to be valid, incorrect data could
be treated as valid data.

〇 〇

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 6 of 68
Mar.20.25

1.2.3 Overview of DATFRX Layers
The relationship between DATFRX and the flash FIT module is illustrated below.

Figure 1.1 Relationship between DATFRX and Flash FIT Module

[1] Application

The FIT module is distributed along with an example program illustrating control of the data flash
memory. It can be found in the FITDemos subdirectory.

[2] User API layer
An API for managing data in the data flash memory, it provides functionality not included in the lower-
layer device driver.

[3] Sub-module layer
A sub-module for managing data in the data flash memory, it provides functionality not included in the
lower-layer device driver.

[4] Driver interface layer
This layer connects to the lower-layer device driver.

DATFRX

Device driver
layer

Data management
layer

Hardware
layer Data flash memory interface

[1] Application

[2] User API layer

Flash FIT module

[3] Sub-module layer (flash types 1, 3, 4, and 5)

[4] Driver interface layer (data flash memory)

MCU’s on-chip data flash memory

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 7 of 68
Mar.20.25

1.3 Overview of API
Table 1.3 API Functions, lists the API functions contained in DATFRX.

The available functions differ depending on the Flash Type.

Table 1.3 API Functions

Function Name Description
Flash Type
1

Flash Types
3, 4, and 5

R_FLASH_DM_Open() DATFRX open processing 〇 〇
R_FLASH_DM_Close() DATFRX close processing 〇 〇
R_FLASH_DM_Init() Initialization processing (divided) 〇 〇
R_FLASH_DM_InitAdvance() Continuation of initialization processing

(divided)
 〇

R_FLASH_DM_Format() Format processing 〇 〇
R_FLASH_DM_Read() Data read processing 〇 〇
R_FLASH_DM_Write() Data update processing 〇 〇
R_FLASH_DM_Erase() Block erase processing 〇 〇
R_FLASH_DM_Reclaim() Reclaim processing 〇 
R_FLASH_DM_Control() State check processing 〇 〇
R_FLASH_DM_GetVersion() Version acquisition 〇 〇

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 8 of 68
Mar.20.25

1.4 Processing Example
1.4.1 Flash Type 1
1.4.1.1 Perspective (Processing Example of Main Function)
This is an example from R_FLASH_DM_Open () to R_FLASH_DM_Close () of DATFRX.

Figure 1.2 Processing Example of Main Function (Flash Type 1)

Start

DATFRX initialization
R_FLASH_DM_Open()

Block initialization (start)
R_FLASH_DM_Init()

Initialization of all blocks
finished?

Is there a block erase
request?

Block erase processing
R_FLASH_DM_Erase()

DATFRX processing end
R_FLASH_DM_Close()

End

Yes

No

Yes

main()

Data update processing
R_FLASH_DM_Write()

Continue processing?

Yes

No

Details are explained
in the “1.4.1.2Initialization flow”.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 9 of 68
Mar.20.25

1.4.1.2 Initialization flow
This is the frow from R_FLASH_DM_Init () to user data processing.

Figure 1.3 Example of processing after R_FLASH_DM_Init() (Flash Type 1)

Start

R_FLASH_DM_Open()

R_FLASH_DM_Init()

return value

main()

R_FLASH_DM_Format()

ucb_function

return value

return value

FLASH_DM_
SUCCESS

FLASH_DM_ERR_
REQUEST_FORMAT

FLASH_DM_ACCEPT

FLASH_DM_FINISH_FORMAT

R_FLASH_DM_Erase()

FLASH_DM_SUCCESS_
REQUEST_ERASE

return value

FLASH_DM_ACCEPT

ucb_function

return value

FLASH_DM_FINISH_ERASE

FLASH_DM_NO_
INVALID_BLOCK

End(Initialization of all blocks finished.)

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 10 of 68
Mar.20.25

1.4.2 Flash Type 3, 4 and 5
1.4.2.1 Perspective (Processing Example of Main Function)
This is an example from R_FLASH_DM_Open () to R_FLASH_DM_Close () of DATFRX.

Figure 1.4 Processing Example of Main Function (Flash Type 3, 4 and 5)

Start

DATFRX initialization
R_FLASH_DM_Open()

Block initialization (start)
R_FLASH_DM_Init()

Block initialization
(continuation)

R_FLASH_DM_InitAdvance()

Initialization of all blocks
finished?

Is there a block erase
request?

Block erase processing
R_FLASH_DM_Erase()

DATFRX processing end
R_FLASH_DM_Close()

End

Yes

No

Yes

main()

Data update processing
R_FLASH_DM_Write()

Continue processing?

Yes

No

Details are explained in the
“1.4.2.2 Initialization flow”.

No

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 11 of 68
Mar.20.25

1.4.2.2 Initialization flow
This is the frow from R_FLASH_DM_Init () to user data processing.

Figure 1.5 Example of processing after R_FLASH_DM_Init() (Flash Type 3, 4 and 5)

Start

R_FLASH_DM_
Open()

R_FLASH_DM_
Init()

return value

main()

R_FLASH_DM_
Format()

ucb_function

return value

return value

FLASH_DM_
SUCCESS

FLASH_DM_ERR_
REQUEST_FORMAT

FLASH_DM_
ACCEPT

FLASH_DM_
FINISH_FORMAT

R_FLASH_DM_
Erase()

FLASH_DM_SUCCESS_
REQUEST_ERASE

return value

FLASH_DM_
ACCEPT

ucb_function

return value

FLASH_DM_
FINISH_ERASE

FLASH_DM_NO_
INVALID_BLOCK

End
(Initialization of all blocks finished.)

R_FLASH_DM_
InitAdvance()

return value

FLASH_DM_
SUCCESS

FLASH_DM_ADVANCE

FLASH_DM_
ADVANCE

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 12 of 68
Mar.20.25

1.5 State Transition Diagram
Illustrates the state transitions of the FIT module.

Figure 1.6 State Transition Diagram

Flash memory data
management disabled

Programming, erasing, or reading
of flash memory

Flash memory data
management enabled

R_FLASH_DM_Open() R_FLASH_DM_Close()

R_FLASH_DM_Init()
R_FLASH_DM_InitAdvance()
R_FLASH_DM_Format()
R_FLASH_DM_Read()
R_FLASH_DM_Write()
R_FLASH_DM_Erase()
R_FLASH_DM_Reclaim()
R_FLASH_DM_Control()
R_FLASH_DM_GetVersion()

(Processing end)
(Error generation)

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 13 of 68
Mar.20.25

1.6 Limitations
Limitations are listed below.

Table 1.4 Limitations

Item Description
Power supply voltage DATFRX uses the flash FIT module to perform programming and block

erasing of the data flash memory. Ensure that the power supply voltage
conditions specified in the MCU’s User’s Manual: Hardware are met before
using API functions that execute program commands or block erase
commands.

Data flash memory
specifications

For the data flash memory specifications, including details of the flash
memory control registers and electrical characteristics, refer to the MCU’s
User’s Manual: Hardware.

Exclusion from other user
programs

Accessing the flash memory registers is prohibited until processing by
DATFRX finishes. Proper operation is not possible if these registers are
accessed before processing completes.
DATFRX uses the flash FIT module to access the flash memory registers as
necessary. No consideration has been given to parallel operation of user
programs that access the flash memory in the same manner during DATFRX
processing.

Resets during
programming, erasing, or
block checking

The user system must meet the following requirements until programming or
block erasing has completely finished:
Even if the power supply voltage drops, the MCU’s operating voltage must be
maintained until processing of program commands or block erase commands
finishes through the use of super capacitors, etc. For the operating voltage
and hold time, refer to the electrical characteristics in the MCU’s User’s
Manual: Hardware.
If a drop in the power supply voltage is detected during execution of a
program command or block erase command, refrain from calling an API
function to ensure that the next command is not issued. Also, the MCU and
flash memory may enter an unstable state if the power supply voltage drops
below the rated operating voltage. In this case, reset the MCU and run
DATFRX initialization processing.

Formatting and
initialization by the driver

Make sure that power is not interrupted and no reset occurs during formatting.
If a power cutoff or reset occurs, the block could be misidentified during
subsequent initialization processing because its format is in an unfinished
state.

Initialization processing Make sure that power is not interrupted and no reset occurs during
initialization processing. If a power cutoff or reset occurs, data loss could
occur during subsequent initialization processing.

API call limitations Operation cannot be guaranteed if such calls are issued by an interrupt
handler.

Argument setting
conventions and register
guarantee conventions

The argument setting conventions and register guarantee conventions of
DATFRX conform to the setting conventions and guarantee conventions of
the C compiler. Refer to the related manuals for details.

Sections Sections in areas with no initial value should be initialized to 0.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 14 of 68
Mar.20.25

2. API Information
The operation of the FIT module has been confirmed under the conditions listed below.

2.1 Hardware Requirements
The microcontroller used must support the following functionality.

 Data flash memory

2.2 Software Requirements
DATFRX is dependent on the following packages when used with FIT support.

 r_bsp

 r_flash_rx

2.3 Supported Toolchain
The operation of the FIT module has been confirmed with the toolchain listed in 5.1 Confirmed Operation
Environment.

2.4 Interrupt Vector
The FRDYI or FRDYIE interrupt is used to detect the completion of data writes to, and erasures from, the
data flash memory. Enable interrupts on the system before calling the DATFRX open processing function
R_FLASH_DM_Open(). For details of the FRDYI and FRDYIE interrupts, refer to application note for the
flash FIT module.

2.5 Header Files
All the API calls and interface definitions used are listed in r_flash_dm_rx_if.h.

Select the structure options per build by r_datfrx_rx_config.h, and include them according to the following
order.

2.6 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 15 of 68
Mar.20.25

2.7 Compile Settings
The configuration option settings for the control software are specified in r_datfrx_rx_config.h.

The option names and setting values are described below.

Set #define definitions for the flash FIT module r_flash_rx_config.h as follows:

#define FLASH_CFG_DATA_FLASH_BGO (1)

Table 2.1 Configuration options

Configuration options in r_datfrx_rx_config.h
Definition Description
FLASH_DM_CFG_FRDYI_INT_PRIORITY
The default value is “1”

Define the FRDYI/FRDYIE interrupt priority level.
The allowable setting range is 1 to 15.

FLASH_DM_CFG_DF_BLOCK_NUM
The default value is “8”

Define the number of blocks of data flash memory to be managed.
The allowable setting ranges are:
For Flash Type 1a: 3 to 8
For Flash Type 1b: 3 to 32
For Flash Types 3, 4, and 5: 3 to 1024
For information on blocks subject to data management, refer to
5.3, Data Management.
For the maximum block count value, refer to the User’s Manual:
Hardware of the MCU.

FLASH_DM_CFG_DF_DATA_NUM

The default value is “5”

Define the number of data of data flash memory to be managed.
The allowable setting ranges are:
For Flash Type 1: 1 to 255 (data numbers managed: No. 0 to No. 254)
For Flash Types 3, 4, and 5: 1 to 1024 (data numbers managed: No. 0
to No. 1023)

FLASH_DM_CFG_DF_SIZE_NOx
The default value of data number 0 is “1”.
“x” represents the data number.

Define the data size of each data number in the data flash memory to
be managed.
The allowable setting ranges are:
For Flash Type 1a: 1 to 256
For Flash Type 1b: 1 to 96
For Flash Types 3, 4, and 5: 1 to 1024
The setting values for unused data numbers are ignored.
However, No. 40 and above are not defined, so it is necessary to add
definitions separately. Alternatively, it is necessary to rewrite a portion of
the source code.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 16 of 68
Mar.20.25

2.7.1 Adding Data Numbers
In order to use data numbers of No. 40 and above when managing the data flash memory, it is necessary to
add separate definitions or to rewrite a portion of the source code.

In the example below, data numbers from No. 40 to No. 47 are added for data flash memory control.

2.7.1.1 Example Modification of r_datfrx_rx_config.h
Add the following lines of code.

Specify a data size value of your choice between the parentheses ().

[DATA FLASH : SET THE DATA LENGTH FOR THE DATA NUMBER]

#define FLASH_DM_CFG_DF_SIZE_NO40 (4)
#define FLASH_DM_CFG_DF_SIZE_NO41 (4)
#define FLASH_DM_CFG_DF_SIZE_NO42 (4)
#define FLASH_DM_CFG_DF_SIZE_NO43 (4)
#define FLASH_DM_CFG_DF_SIZE_NO44 (4)
#define FLASH_DM_CFG_DF_SIZE_NO45 (4)
#define FLASH_DM_CFG_DF_SIZE_NO46 (4)
#define FLASH_DM_CFG_DF_SIZE_NO47 (4)

2.7.1.2 Example Modification of r_dm_1.c, r_dm_3.c, r_dm_4.c, and r_dm_5.c
Remove the comment-start and comment-stop characters from const variable gc_dm_data_size[] for No. 40
to No. 47.

< Near line 428 in r_dm_1.c and near line 59 in r_dm_3.c, r_dm_4.c, and r_dm_5.c >

const uint16_t gc_dm_data_size[] =
{
 FLASH_DM_CFG_DF_SIZE_NO0, FLASH_DM_CFG_DF_SIZE_NO1,
FLASH_DM_CFG_DF_SIZE_NO2, FLASH_DM_CFG_DF_SIZE_NO3,
 FLASH_DM_CFG_DF_SIZE_NO4, FLASH_DM_CFG_DF_SIZE_NO5,
FLASH_DM_CFG_DF_SIZE_NO6, FLASH_DM_CFG_DF_SIZE_NO7,

(Omitted)

/* FLASH_DM_CFG_DF_SIZE_NO40, FLASH_DM_CFG_DF_SIZE_NO41,
FLASH_DM_CFG_DF_SIZE_NO42, FLASH_DM_CFG_DF_SIZE_NO43, */ ← Remove the comment-start and
comment-stop characters at the beginning and end of the line.
/* FLASH_DM_CFG_DF_SIZE_NO44, FLASH_DM_CFG_DF_SIZE_NO45,
FLASH_DM_CFG_DF_SIZE_NO46, FLASH_DM_CFG_DF_SIZE_NO47, */ ← Remove the comment-start and
comment-stop characters at the beginning and end of the line.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 17 of 68
Mar.20.25

2.8 Memory Usage
2.8.1 Flash Type 1a
Table 2.2 lists the required memory sizes.

Table 2.2 Memory Sizes (Flash Type 1a)

MCU Memory Size

RX231

ROM 4862 bytes
+ (4 bytes × Number of blocks (n))
+ (2 bytes × Number of management data items

added by the user (m))
RAM 41 bytes

+ (12 bytes × Number of blocks (n))
Stack (max) 128 bytes

Note 1. The required memory size differs depending on the version of the C compiler, the compiler options,
and the like.

Note 2. This is the value in the case of little-endian. The memory sizes indicated above differ depending on
the endian order.

Note 3. N = 3 to 8
Note 4. M : Increase in memory usage when the user adds management data for data numbers of No. 40

and above as described in “2.7.1 Adding Data Numbers”
Note 5. The size of the Flash FIT module (on-chip flash memory programming) is not included.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 18 of 68
Mar.20.25

2.8.2 Flash Type 1b
Table 2.3 lists the required memory sizes.

Table 2.3 Memory Sizes (Flash Type 1b)

MCU Memory Size

RX140

ROM 4862 bytes
+ (4 bytes × Number of blocks (n))
+ (2 bytes × Number of management data items

added by the user (m))
RAM 41 bytes

+ (12 bytes × Number of blocks (n))
Stack (max) 128 bytes

Note 1. The required memory size differs depending on the version of the C compiler, the compiler options,
and the like.

Note 2. This is the value in the case of little-endian. The memory sizes indicated above differ depending on
the endian order.

Note 3. n = 3 to 32
Note 4. m : Increase in memory usage when the user adds management data for data numbers of No. 40

and above as described in “2.7.1 Adding Data Numbers”
Note 5. The size of the Flash FIT module (on-chip flash memory programming) is not included.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 19 of 68
Mar.20.25

2.8.3 Flash Type 3
Table 2.4 lists the required memory sizes.

Table 2.4 Memory Sizes (Flash Type 3)

MCU Memory Size

RX660

ROM 5496 bytes
+ (2 bytes × Number of management data items

added by the user (m))
RAM 20 bytes

+ (3bytes × Number of blocks (n))
Stack (max) 160 bytes

Note 1. The required memory size differs depending on the version of the C compiler, the compiler options,
and the like.

Note 2. This is the value in the case of little-endian. The memory sizes indicated above differ depending on
the endian order.

Note 3. m : Increase in memory usage when the user adds management data for data numbers of No. 40
and above as described in “2.7.1 Adding Data Numbers”

Note 4 n = 3 to 1024
Note 5. The size of the Flash FIT module (on-chip flash memory programming) is not included.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 20 of 68
Mar.20.25

2.8.4 Flash Type 4
Table 2.5 lists the required memory sizes.

Table 2.5 Memory Sizes (Flash Type 4)

MCU Memory Size

RX671

ROM 5496 bytes
+ (2 bytes × Number of management data items
added by the user (m))

RAM 20 bytes
+ (3 bytes × Number of blocks (n))

Stack (max) 164 bytes
Note 1. The required memory size differs depending on the version of the C compiler, the compiler options,

and the like.
Note 2. This is the value in the case of little-endian. The memory sizes indicated above differ depending on

the endian order.
Note 3. m : Increase in memory usage when the user adds management data for data numbers of No. 40

and above as described in “2.7.1 Adding Data Numbers”
Note 4. n = 3 to 1024
Note 5. The size of the Flash FIT module (on-chip flash memory programming) is not included.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 21 of 68
Mar.20.25

2.8.5 Flash Type 5
Table 2.6 lists the required memory sizes.

Table 2.6 Memory Sizes (Flash Type 5)

MCU Memory Size

RX26T

ROM 5496 bytes
+ (2 bytes × Number of management data items
added by the user (m))

RAM 20 bytes
+ (3 bytes × Number of blocks (n))

Stack (max) 160 bytes
Note 1. The required memory size differs depending on the version of the C compiler, the compiler options,

and the like.
Note 2. This is the value in the case of little-endian. The memory sizes indicated above differ depending on

the endian order.
Note 3. m : Increase in memory usage when the user adds management data for data numbers of No. 40

and above as described in “2.7.1 Adding Data Numbers”
Note 4 n = 3 to 1024
Note 5. The size of the Flash FIT module (on-chip flash memory programming) is not included.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 22 of 68
Mar.20.25

2.9 Arguments
The structure for the arguments of the API functions is shown below. This structure is listed in
r_flash_dm_rx_if.h, along with the prototype declarations of the API functions.

typedef struct _flash_dm_info
{
 uint8_t data_no;
 uint8_t rsv[3];
 uint8_t * p_data;
} st_flash_dm_info_t;

2.10 Return Values
The API function return values and error codes are shown below. This enumerated type is listed in
r_flash_dm_rx_if.h, along with the prototype declarations of the API functions.

Table 2.7 Return Values

Return Value Description
FLASH_DM_SUCCESS Processing successful
FLASH_DM_ACCEPT Accept processing successful
FLASH_DM_SUCCESS_REQUEST_ERASE Processing successful, erase request
FLASH_DM_ADVANCE Advance request
FLASH_DM_FINISH_FORMAT Format successful
FLASH_DM_FINISH_WRITE Data update successful
FLASH_DM_FINISH_ERASE Block erase successful
FLASH_DM_FINISH_RECLAIM Reclaim successful
FLASH_DM_FINISH_INITIALIZE Initialization successful
FLASH_DM_NO_INVALID_BLOCK No invalid blocks
FLASH_DM_ERR_INIT Initialization processing failure
FLASH_DM_ERR_BUSY Busy state
FLASH_DM_ERR_ARGUMENT Parameter error
FLASH_DM_ERR_REQUEST_INIT Initialization request
FLASH_DM_ERR_REQUEST_FORMAT Format request
FLASH_DM_ERR_REQUEST_ERASE Block erase request
FLASH_DM_ERR_DATA_NOT_PRESENT Data number mismatch
FLASH_DM_ERR_CANT_RECLAIM Cannot run reclaim processing
FLASH_DM_ERR_REQUEST_RECLAIM Reclaim request
FLASH_DM_ERR_FORMAT Format failure
FLASH_DM_ERR_WRITE Data update failure
FLASH_DM_ERR_ERASE Block erase failure
FLASH_DM_ERR_RECLAIM Reclaim failure
FLASH_DM_ERR_OPEN Open failure
FLASH_DM_ERR_CLOSE Close failure
FLASH_DM_ERR Error

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 23 of 68
Mar.20.25

2.11 Callback function
Upon the successful or error completion of format processing, data update processing, block erase
processing, and reclaim processing, the user calls the specified callback function.

For information regarding how to register callback functions, see “3 API Functions”

Format

void user_cb_function(
 void* event
)

Parameters
*event

Stores the command result.

Return Values
None

Properties
Prototype declarations are contained in the user program.

Description
This function reports the end of format processing, data update processing, block erase processing, or
reclaim processing.

The report details are stored in argument void* event. For instructions for obtaining the report details, refer to
3, R_FLASH_DM_Open().

Table 2.8 Return value to callback function

Value Stored in Argument Meaning Flash Type
FLASH_DM_FINISH_FORMAT Format finished 1, 3, 4, 5
FLASH_DM_FINISH_WRITE Data update finished 1, 3, 4, 5
FLASH_DM_FINISH_ERASE Block erase finished 1, 3, 4, 5
FLASH_DM_FINISH_RECLAIM Reclaim finished 1
FLASH_DM_ERR_FORMAT Format failure 1, 3, 4, 5
FLASH_DM_ERR_WRITE Data update failure 1, 3, 4, 5
FLASH_DM_ERR_ERASE Block erase failure 1, 3, 4, 5
FLASH_DM_ERR_RECLAIM Reclaim failure 1
FLASH_DM_ERR Processing failure 1, 3, 4, 5

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 24 of 68
Mar.20.25

2.12 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends using “Smart
Configurator” described in (1) or (3). However, “Smart Configurator” only supports some RX devices. Please
use the methods of (2) or (4) for unsupported RX devices.

(1) Adding the FIT module to your project using “Smart Configurator” in e2 studio
By using the “Smart Configurator” in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using “FIT Configurator” in e2 studio

By using the “FIT Configurator” in e2 studio, the FIT module is automatically added to your project. Refer
to “Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using “Smart Configurator” on CS+

By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically added to
your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project in CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

2.13 for, while, and do while Expressions
This module uses for, while, and do while expressions (loop processing) for standby states such as waiting
for register values to be updated. These instances of loop processing are indicated by the keyword
WAIT_LOOP in the comments. Therefore, if you wish to incorporate failsafe processing into the instances of
loop processing, you can locate them in the code by searching for the keyword WAIT_LOOP.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 25 of 68
Mar.20.25

3. API Functions

R_FLASH_DM_Open()
This function is used first when starting data management processing. It reserves the work area used by
DATFRX and registers the callback function.

Format
e_flash_dm_status_t R_FLASH_DM_Open(
 uint32_t* p_flash_dm_work,
 p_flash_dm_callback func
)

Parameters
* p_flash_dm_work

Pointer to work area
The size of the area is as follows:
Flash Type 1: 140 bytes
Flash Types 3, 4, and 5: 261 + 2 bytes × FLASH_DM_CFG_DF_DATA_NUM
Prepare a work area that satisfies the above size requirement.

func
Pointer to callback function

Called when format processing, data update processing, block erase processing, or reclaim
processing completes normally or with an error.

Return Values
FLASH_DM_SUCCESS Normal end
FLASH_DM_ERR_ARGUMENT Parameter error

→ After checking the arguments, call the open function
again.

FLASH_DM_ERR_OPEN Flash FIT module open function error
→ Call the open function again.

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Calls the flash FIT module open function R_FLASH_Open().

Reentrant
Reentrancy is not supported.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 26 of 68
Mar.20.25

Example
static uint32_t g_flash_dm_work[314/sizeof(uint32_t)];

void user_cb_function(void * event) /* callback function */
{
 e_flash_dm_status_t callback_event = (e_flash_dm_status_t)event;

 /* Perform callback functionality here */
 switch(callback_event)
 {
 case FLASH_DM_FINISH_FORMAT:
 {
 nop();
 }
 break;
 case FLASH_DM_FINISH_WRITE:
 {
 nop();
 }
 break;
 /* : */
 /* : */
 default:
 {
 nop();
 }
 break;
 }
}

void main(void)
{
 if (FLASH_DM_SUCCESS != R_FLASH_DM_Open(&g_flash_dm_work, &user_cb_function))
 {
 /* Error */
 }

}

Special Notes:
None

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 27 of 68
Mar.20.25

R_FLASH_DM_Close()
Ends data management and releases the work area used by DATFRX.

Format
e_flash_dm_status_t R_FLASH_DM_Close(
 void
)

Parameters
None

Return Values
FLASH_DM_SUCCESS Normal end
FLASH_DM_ERR_CLOSE Close failure

→ Call R_FLASH_DM_Close() once again.

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Ends data management and releases the work area used by DATFRX.

Calls the flash FIT module close function R_FLASH_Close().

Reentrant
Reentrancy is not supported.

Example

if (FLASH_DM_SUCCESS != R_FLASH_DM_Close())
{
 /* Error */
}

Special Notes:
None

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 28 of 68
Mar.20.25

R_FLASH_DM_Init()
Initializes the driver.

Format
e_flash_dm_status_t R_FLASH_DM_Init(
 void
)

Parameters
None

Return Values
FLASH_DM_SUCCESS Normal end (Flash Type 1)

→ Flash Type 1 initialization has completed.
FLASH_DM_ADVANCE Initialization processing in progress (Flash Types 3, 4, and 5)

→ For Flash Types 3, 4, and 5, call
FLASH_DM_InitAdvance() to complete initialization until
FLASH_DM_SUCCESS is returned.

FLASH_DM_SUCCESS_REQUEST_ERASE Normal end and erase request (Flash Type 1)
→ Call the block erase function.

FLASH_DM_ERR_BUSY API execution in progress or flash memory in busy state
→ After the API execution in progress completes, call the
initialization function again.

FLASH_DM_ERR_REQUEST_FORMAT Unformatted or block header error (Flash Type 1)
→ Call format function.

FLASH_DM_ERR_REQUEST_INIT Uninitialized state
→ Call the initialization function.

FLASH_DM_ERR_INIT Initialization error
→ Confirm that R_FLASH_DM_Open() is running and call
R_FLASH_DM_Init() again.

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Initializes DATFRX.

Run this function before running any API functions other than the format function R_FLASH_DM_Format().

For Flash Types 3, 4, and 5, initialization processing is divided because it takes a long time to complete.

After a value of FLASH_DM_ADVANCE is returned, call R_FLASH_DM_InitAdvance() to finish initialization
processing.

Reentrant
Reentrancy is not supported.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 29 of 68
Mar.20.25

Example
 e_flash_dm_status_t ret;

 do
 {
 ret = R_FLASH_DM_Init();
 }while (FLASH_DM_ERR_BUSY == ret);
 if(ret == FLASH_DM_ERR_REQUEST_FORMAT)
 {
 ret = R_FLASH_DM_Format();
 }
 else if(ret == FLASH_DM_SUCCESS_REQUEST_ERASE)
 {
 ret = R_FLASH_DM_Erase();
 }
 else if(ret != FLASH_DM_ADVANCE)
 {
 ret = R_FLASH_DM_InitAdvance();
 }
 else
 {
 }

Special Notes:
The initialization processing is not non-blocking. The API waits internally for processing to finish.

Do not call this function from a callback function.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 30 of 68
Mar.20.25

R_FLASH_DM_InitAdvance()
Continues execution of initialization processing.

This function is for Flash Types 3, 4, and 5 only.

Format
e_flash_dm_status_t R_FLASH_DM_InitAdvance(
 void
)

Parameters
None

Return Values
FLASH_DM_SUCCESS Normal end
FLASH_DM_ADVANCE Initialization in progress (start next processing)

→ Call the R_FLASH_DM_InitAdvance function again.
FLASH_DM_ERR_BUSY API execution in progress or flash memory busy state

→ After the API execution in progress completes, call the
initialization function again.

FLASH_DM_ERR_REQUEST_FORMAT Unformatted or block header error
→ Call format function.

FLASH_DM_ERR_REQUEST_INIT Initialization error
→ Call the initialization function.

FLASH_DM_ERR_INIT Initialization error
→ Confirm that R_FLASH_DM_Open() is running and call
R_FLASH_DM_Init() again.

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Continues DATFRX initialization processing.

After starting initialization processing with R_FLASH_DM_Init(), call R_FLASH_DM_InitAdvance() to finish it.

Finish initialization processing before running any API functions other than the format function
R_FLASH_DM_Format().

Reentrant
Reentrancy is not supported.

Example

e_flash_dm_status_t ret;

do
{
 ret = R_FLASH_DM_InitAdvance();
}
while (FLASH_DM_ERR_BUSY == ret);

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 31 of 68
Mar.20.25

Special Notes:
The initialization processing is not non-blocking. The API waits internally for processing to finish.

Do not call this function from a callback function.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 32 of 68
Mar.20.25

R_FLASH_DM_Format()
Erases the data in the data flash memory.

Puts the data flash memory into a state in which initialization processing can be run.

(For Flash Type 1, it is not necessary to run initialization processing after format processing ends normally.)

Format
e_flash_dm_status_t R_FLASH_DM_Format(
 void
)

Parameters
None

Return Values
FLASH_DM_ACCEPT Processing accepted
FLASH_DM_ERR_BUSY API execution in progress or flash memory in busy state

→ After the currently running processing finishes, call the
format function again.

FLASH_DM_ERR_FORMAT Format failure (problem with work area)

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Starts format processing.

Calls the callback function when an error occurs or format processing finishes.

Reentrant
Reentrancy is not supported.

Example

e_flash_dm_status_t ret;

ret = FLASH_DM_Format();
if (FLASH_DM_ACCEPT != ret)
{
 /* Error */
}
else
{
 /* Initialization processing */
}

Special Notes:
For Flash Types 3, 4, and 5, format processing does not initialize the driver. After format processing,
immediately run driver initialization processing.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 33 of 68
Mar.20.25

R_FLASH_DM_Read()
Reads the data associated with the specified data number.

Format
e_flash_dm_status_t R_FLASH_DM_Read(
 st_flash_dm_info_t * p_flash_dm_info
)

Parameters
* p_flash_dm_info

DATFRX information structure
data_no

Read target data number
The allowable range of data numbers is 0 to (FLASH_DM_CFG_DF_DATA_NUM − 1).

*p_data
Storage destination buffer for read data
The size of the area is the value specified by FLASH_DM_CFG_DF_SIZE_NOx.

Return Values
FLASH_DM_SUCCESS Normal end
FLASH_DM_ERR_ARGUMENT Parameter error

→ If the open function has not been called, call the open
function and then call this function. If the open function has
been called, check the arguments, then call the data read
function again.

FLASH_DM_ERR_BUSY API execution in progress or flash memory busy state
→ After the currently running processing finishes, call the
data read function again.

FLASH_DM_ERR_DATA_NOT_PRESENT No data at specified data number in flash memory
→ Check the data number, then call the data read function
again.

FLASH_DM_ERR_REQUEST_INIT Uninitialized state
→ Call the initialization function.

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Reads the specified data from the data flash memory and stores it in the specified buffer.

If the data read function is run with a data number specified that is currently having its data updated, the old
data previously written to the data flash memory is read because the new data from the update has not been
established.

Reentrant
Reentrancy is not supported.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 34 of 68
Mar.20.25

Example
st_flash_dm_info_t flash_dm_info;
static uint8_t g_test_r_buff[FLASH_DM_CFG_DF_SIZE_NO0];

flash_dm_info.data_no = 0;
flash_dm_info.p_data = &g_test_r_buff[0];
if (FLASH_DM_SUCCESS != R_FLASH_DM_Read(&flash_dm_info))
{
 /* Error */
}

Special Notes:
None

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 35 of 68
Mar.20.25

R_FLASH_DM_Write()
Updates the data associated with the specified data number.

Format
e_flash_dm_status_t R_FLASH_DM_Write(
 st_flash_dm_info_t * p_flash_dm_info
)

Parameters
* p_flash_dm_info

DATFRX information structure
data_no

Update target data number
The allowable range of data numbers is 0 to (FLASH_DM_CFG_DF_DATA_NUM − 1).

*p_data
Update data storage source buffer
The size of the area is the value specified by FLASH_DM_CFG_DF_SIZE_NOx.

Return Values
FLASH_DM_ACCEPT Processing accepted
FLASH_DM_ERR_REQUEST_INIT Uninitialized state

→ Call the initialization function.
FLASH_DM_ERR_ARGUMENT Parameter error

→ If the open function has not been called, call the open
function and then call this function. If the open function has
been called, check the arguments, then call the data read
function again.

FLASH_DM_ERR_REQUEST_ERASE No erased blocks, so data update processing not possible
(Flash Types 3, 4, and 5)
→ Call the block erase function.

FLASH_DM_ERR_REQUEST_RECLAIM No writable area within the active block for updating the data
of the specified data number (Flash Type 1)
→ Call the reclaim function.

FLASH_DM_ERR_BUSY API execution in progress or flash memory busy state
→ After the currently running processing finishes, call the
data update function again.

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Starts updating the data associated with the specified data number. Writes the data in the specified buffer to
the data flash memory.

Calls the callback function when an error occurs or the data update finishes.

Reentrant
Reentrancy is not supported.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 36 of 68
Mar.20.25

Example
e_flash_dm_status_t ret;
uint32_t status;
st_flash_dm_info_t flash_dm_info;
static uint8_t g_test_w_buff[FLASH_DM_CFG_DF_SIZE_NO0];

flash_dm_info.data_no = 0;
flash_dm_info.p_data = &g_test_w_buff[0];
if (FLASH_DM_ACCEPT != R_FLASH_DM_Write(&flash_dm_info))
{
 /* Reclaim or error */
}
do
{
 ret = R_FLASH_DM_Control(FLASH_DM_GET_STATUS, &status);
 if (FLASH_DM_SUCCESS == ret)
 {
 if(status == FLASH_DM_ACT_IDLE)
 {
 break;
 }
 }
}while(1);

Special Notes:
Data update error end is returned if an error occurs during programming. Call the data update function again.
The write destination address is updated and data update processing runs.

Do not change the value of p_data until data update processing finishes. If the value is changed, the update
data may be incorrect.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 37 of 68
Mar.20.25

R_FLASH_DM_Erase()
Erases a block.

Format
e_flash_dm_status_t R_FLASH_DM_Erase(
 void
)

Parameters
None

Return Values
FLASH_DM_ACCEPT Processing accepted
FLASH_DM_ERR_REQUEST_INIT Uninitialized state

→ Call the initialization function.
FLASH_DM_NO_INVALID_BLOCK No invalid blocks
FLASH_DM_ERR_BUSY API execution in progress or flash memory busy state

→ After the currently running processing finishes, call the
block erase function again.

FLASH_DM_ERR_ERASE Block erase failure (problem with work area)

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Erases an invalid block to create an erased block.

If this function is called when there are no invalid blocks, block erase processing does not run.

Calls the callback function when an error occurs or block erase finishes.

Reentrant
Reentrancy is not supported.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 38 of 68
Mar.20.25

Example
e_flash_dm_driver_status_t ret = FLASH_DM_SUCCESS;
uint32_t status;

if (FLASH_DM_ACCEPT != R_FLASH_DM_Erase())
{
 /* Error */
}
do
{
 ret = R_FLASH_DM_Control(FLASH_DM_GET_STATUS, &status);
 if (FLASH_DM_SUCCESS == ret)
 {
 if(status == FLASH_DM_ACT_IDLE)
 {
 break;
 }
 }
}
while(1);

Special Notes:
Block erase error end is returned if an error occurs during programming or block erasing. Call the block
erase function again. Block erase processing is performed on the physical block where the error occurred.
Note that repeated incidences of block erase error end may indicate deterioration of the data flash memory.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 39 of 68
Mar.20.25

R_FLASH_DM_Reclaim()
Starts reclaim processing.

Reserves the capacity needed for data updating.

This function is for Flash Type 1 only.

Format
e_flash_dm_status_t R_FLASH_DM_Reclaim(
 void
)

Parameters
None

Return Values
FLASH_DM_ACCEPT Processing accepted
FLASH_DM_ERR_REQUEST_INIT Uninitialized state

→ Call the initialization function.
FLASH_DM_ERR_REQUEST_ERASE No erased block, so reclaim processing cannot run

→ Call the block erase function.
FLASH_DM_ERR_CANT_RECLAIM No erased block or erase target block, so reclaim processing

cannot run
→ Call the format function.

FLASH_DM_ERR_BUSY API execution in progress or flash memory busy state
→ After the currently running processing finishes, call the
reclaim function again.

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

Description
Switches the active block and copies all valid data from the oldest reclaim block to the new active block. Sets
the reclaim block that was the source of the copied data as a garbage block.

Reclaim processing includes copying of all valid data in the block, so it takes some time to finish.

Reentrant
Reentrancy is not supported.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 40 of 68
Mar.20.25

Example
e_flash_dm_driver_status_t ret = FLASH_DM_SUCCESS;
uint32_t status;

if (FLASH_DM_ACCEPT != R_FLASH_DM_Reclaim())
{
 /* Error */
}
do
{
 ret = R_FLASH_DM_Control(FLASH_DM_GET_STATUS, &status);
 if (FLASH_DM_SUCCESS == ret)
 {
 if(status == FLASH_DM_ACT_IDLE)
 {
 break;
 }
 }
}
while(1);

Special Notes:
When the reclaim processing function R_FLASH_DM_Reclaim() is called, reclaim processing starts,
regardless of whether any writeable area remains in the active block. To increase the data update count, call
the reclaim function R_FLASH_DM_Reclaim() when there is no writeable area remaining in the active
block.*1

When reclaim processing ends normally, the setting of the copy source reclaim block is changed from
garbage block to erase target block. It is then necessary to run block erase processing before running
reclaim processing the next time.*2

If an error occurs during programming, reclaim error end is returned.*3

Note 1. This can be determined from the return value after calling the data update function
R_FLASH_DM_Write().

Note 2. It is possible to determine the appropriate timing for block erase from the return value after
calling the reclaim function R_FLASH_DM_Reclaim(). It is recommended that block erase
processing be run periodically when there is extra time available on the user system.

Note 3. To reconstruct the data when a reclaim error end occurs, run initialization processing and
then run the appropriate processing based on the return value. Afterwards, call the reclaim
function R_FLASH_DM_Reclaim() or the data update function R_FLASH_DM_Write(). Note that
calling the data update function R_FLASH_DM_Write() will return a value that serves as a call
request for the reclaim function R_FLASH_DM_Reclaim().

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 41 of 68
Mar.20.25

R_FLASH_DM_Control()
The control function is used to embed various functionalities.

Format
e_flash_dm_status_t R_FLASH_DM_Control(
 e_flash_dm_cmd_t cmd,
 uint32_t* pcfg
)

Parameters
cmd

Command to be run
*pcfg

Argument for specifying a setting passed to the command as a request. This argument may be set to
NULL if there is no command request.

Return Values
FLASH_DM_SUCCESS Normal end
FLASH_DM_ERR_REQUEST_INIT Uninitialized state

→ Call the initialization function.
FLASH_DM_ERR_ARGUMENT Parameter error

→ If the open function has not been called, call the open
function and then call this function. If the open function has
been called, check the arguments, then call the data read
function again.

FLASH_DM_ERR_BUSY API execution in progress or flash memory busy state
→ After the currently running processing finishes, call the
control function again.

FLASH_DM_ERR Module run error
→ Call the control function again.

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 42 of 68
Mar.20.25

Description
This is an extended function for embedding sequencer functionality other than read, write, and block erase.
The argument type differs depending on the command type.

Table 3.1 Control Function Options

Command Argument Operation
FLASH_DM_GET_WRITABLE_SIZE uint32_t* Flash Type 1:

Gets the size of the writeable area within the active
block*1 (unit: bytes), and stores it in an argument.
Data updating can be performed on user data equal
to or less than this value.*2
Flash Types 3, 4, and 5:
Gets the size of the writeable area based on the
erased blocks (unit: bytes), and stores it in an
argument.

FLASH_DM_GET_STATUS uint32_t* Determines whether or not an API function called by
the user is currently running, and stores the result in
an argument.
0x00:FLASH_DM_ACT_IDLE (idle)
0x01:FLASH_DM_ACT_WRITING (data update
processing in progress)
0x02:FLASH_DM_ACT_RECLAIMING (reclaim
processing in progress)
0x04:FLASH_DM_ACT_ERASING (block erase
processing in progress)
0x08:FLASH_DM_ACT_FORMATTING (format
processing in progress)
0x10:FLASH_DM_ACT_INITIALIZING (initialization
processing in progress)

FLASH_DM_GET_DATA_SIZE uint32_t* Gets the data size of the data number specified by
an argument, and stores the result in an argument.

FLASH_DM_GET_DATA_NUM uint32_t* Gets the user setting data count, and stores the
result in an argument.

Note 1. The programming unit size is necessary as a separator between the data header and the user
data. The size of the writeable area is equal to the size of the empty area, minus the programming
unit size and the data header size.

Note 2. If the block is uninitialized, it is not possible to get the size of the writeable area when format
processing, data update processing, or reclaim processing is in progress. Also, the size of the
writeable area cannot be obtained when any other API function is running.
In the case of data flash memory, the returned value has had a total of 8 bytes subtracted: 7 bytes
for the data header required for data update processing and 1 byte for the separator between the
data header and user data.

Reentrant
This function does not support reentrancy.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 43 of 68
Mar.20.25

Example 1: Obtaining the API Status
e_flash_dm_status_t ret;
uint32_t status;

do
{
 ret = R_FLASH_DM_Control(FLASH_DM_GET_STATUS, &status);
 if (FLASH_DM_SUCCESS == ret)
 {
 if(status == FLASH_DM_ACT_IDLE)
 {
 break;
 }
 }
}
while(1);

Example 2: Obtaining the Data Count
e_flash_dm_status_t ret;
uint32_t status;

ret = R_FLASH_DM_Control(FLASH_DM_GET_DATA_NUM, &status);
if (FLASH_DM_SUCCESS != ret)
{
 /* Error */
}

Special Notes:
None

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 44 of 68
Mar.20.25

R_FLASH_DM_GetVersion()
Gets the DATFRX version information.

Format
uint32_t R_FLASH_DM_GetVersion(
 void
)

Parameters
None

Return Values
Upper 2 bytes: Major version
Lower 2 bytes: Minor version

Properties
Prototype declarations are contained in r_flash_dm_rx_if.h.
example, Version 2.10 would be returned as 0x0002000a.

Description
Returns the version information.

Reentrant
Reentrancy is supported.

Example

uint32_t version;
version = R_FLASH_DM_GetVersion();

Special Notes:
None

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 45 of 68
Mar.20.25

4. Demo Project
The project listed below is contained in the FITDemos folder. This folder also contains the sample program
r_datfrx_rx_main.c.

Table 4.1 Project List

Conditions
Project MCU Flash Type Flash Memory Block Size IDE

RX231 Flash Type 1a Data flash 1024 bytes e2 studio type1_rx231_rsk_sample
RX140 Flash Type 1b Data flash 256 bytes e2 studio type1_rx140_rsk_sample
RX66T Flash Type 3 Data flash 64 bytes e2 studio type3_rx66t_rsk_sample
RX65N-2MB Flash Type 4 Data flash 64 bytes e2 studio type4_rx65n_2mb_rsk_sample
RX26T Flash Type 5 Data flash 64 bytes e2 studio type5_rx26t_mck_sample

The sample program opens DATFRX and performs initialization processing, performs data update, data
read, and verification check in sequence the number of times specified in the configuration option
FLASH_DM_CFG_DF_DATA_NUM, and then closes DATFRX.

When one set of data update, data read, and verification check completes, the data number is incremented
by 1. (In the demo, the data number rises in sequence from 0 to 4.)

During initialization processing, formatting is performed if required.

During data update processing, block erasing is performed if required.

4.1 Adding the Demo to the Workspace
The demo project is contained in the FITDemos subdirectory, which is created when the archive file in which
this application note is distributed is opened. To add the demo project to the workspace, select File →
Import, then select Add Existing Project to Workspace under General in the Import dialog box and click
the Next button. In the Import dialog box select the Select Archive File radio button, click the Browse
button, open the FITDemos subdirectory, select the zip file containing the demo, and click Done.

4.2 Downloading the Demo
The demo project is not included in the RX Driver Package. In order to use the demo project, you must
download the necessary FIT modules separately. From the Application Notes tab under Smart Browser,
right-click this application note and select Sample Code (Download) to begin the download.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 46 of 68
Mar.20.25

5. Appendix
5.1 Confirmed Operation Environment
This section describes confirmed operation environment for this module.

Table 5.1 Confirmed Operation Environment (Rev2.01)

Item Description
Integrated development
environment

Renesas Electronics e2 studio V7.2.0
Renesas Electronics CS+ V8.0.0

C compiler Renesas Electronics C/C++ compiler for RX Family V3.00.00
 Compile option: The following option is added to the default settings of the

integrated development environment.
-lang = c99

Endian order Big-endian/little-endian

Module revision Ver. 2.01

Board used Renesas Starter Kit for RX231 (product No.: R0K505231xxxxxx)
Renesas Starter Kit for RX210 (product No.: R0K505210xxxxxx)
Renesas Starter Kit for RX66T (product No.: RTK50566T0Cxxxxxxx)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2S1xxxxxx)

Table 5.2 Confirmed Operation Environment (Rev2.10)

Item Description
Integrated development
environment

Renesas Electronics e2 studio 2023-01

C compiler Renesas Electronics C/C++ compiler for RX Family V3.05.00
 Compile option: The following option is added to the default settings of the

integrated development environment.
-lang = c99

Endian order Big-endian/little-endian

Module revision Ver. 2.10

Board used Renesas Flexible Motor Control Kit for RX26T MCU Group
(product No.: RTK0EMXE70xxxxxxxx)

Table 5.3 Confirmed Operation Environment (Rev2.20)

Item Description
Integrated development
environment

Renesas Electronics e2 studio 2023-07

C compiler Renesas Electronics C/C++ compiler for RX Family V3.05.00
 Compile option: The following option is added to the default settings of the

integrated development environment.
-lang = c99

Endian order Big-endian/little-endian

Module revision Ver. 2.20

Board used Renesas Starter Kit for RX140 (product No.: RTK55140xxxxxxxxxx)

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 47 of 68
Mar.20.25

Table 5.4 Confirmed Operation Environment (Rev2.30)

Item Description
Integrated development
environment

Renesas Electronics e2 studio 2024-01

C compiler Renesas Electronics C/C++ compiler for RX Family V3.06.00
 Compile option: The following option is added to the default settings of the

integrated development environment.
-lang = c99

Endian order Big-endian/little-endian

Module revision Ver. 2.30

Board used Renesas Starter Kit for RX231 (product No.: R0K505231xxxxxx)
Renesas Starter Kit for RX66T (product No.: RTK50566T0Cxxxxxxx)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2S1xxxxxx)
Renesas Flexible Motor Control Kit for RX26T MCU Group
(product No.: RTK0EMXE70xxxxxxxx)
Renesas Starter Kit for RX140 (product No.: RTK55140xxxxxxxxxx)

Table 5.5 Confirmed Operation Environment (Rev2.31)

Item Description
Integrated development
environment

Renesas Electronics e2 studio 2025-01

C compiler Renesas Electronics C/C++ compiler for RX Family V3.07.00
 Compile option: The following option is added to the default settings of the

integrated development environment.
-lang = c99

Endian order Big-endian/little-endian

Module revision Ver. 2.31

Board used -

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 48 of 68
Mar.20.25

5.2 Troubleshooting
1. Q: I added the FIT module to my project, but when I build it I get the error “Could not open source file

‘platform.h’.”
 A: The FIT module may not have been added to the project properly. Refer to the documents listed below

to confirm the method for adding FIT modules:
1. Using CS+

Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)
2. Using e2 studio

Adding Firmware Integration Technology Modules to Projects (R01AN1723)

 When using the FIT module, the RX Family board support package FIT module (BSP module) must

also be added to the project. Refer to the application note “RX Family: Board Support Package Module
Using Firmware Integration Technology” (R01AN1685) for instructions for adding the BSP module.

2. Q: I added the FIT module to the project, but when I build it I get the error “This MCU is not supported by

the current r_datfrx_rx module.”
 A: The FIT module you added may not support the target device chosen in the user project. Check to

make sure the FIT module supports the target device.

3. Q: How can I calculate the number of blocks for the configuration option

(FLASH_DM_CFG_DF_BLOCK_NUM)?
 A: See the file “DATFRX_BlockNumberCalculation_e_RevXXX.xlsx”(XXX : version number) in the

r_datfrx_rx\doc\en folder.

4. Q: Tell me the precautions when reprogramming of code flash memory using the flash FIT module and

reprogramming of data flash memory using the DATFRX continuously.
 A: When reprogramming of code flash memory using the flash FIT module and reprogramming of data

flash memory using the DATFRX continuously,
Execute the close function at the end of one reprogramming process, and then start the other
reprogramming process (execute the open function).

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 49 of 68
Mar.20.25

5.3 Data Management
The DATFRX data management areas are described below.

5.3.1 DATFRX Management Areas
The data flash block areas are illustrated below.

The read addresses in the boxes below match those indicated in User’s Manual: Hardware.

5.3.1.1 1 Block = 1,024 Bytes (Flash Type 1a)

Table 5.6 1 Block = 1,024 Bytes (Flash Type 1a)

1 block = 1,024 bytes
Read address

Blocks managed by
flash FIT module

0x0010 0000
0x0010 03FF DB0000

0x0010 0400
0x0010 07FF DB0001

0x0010 0800
0x0010 0BFF DB0002

0x0010 0C00
0x0010 0FFF DB0003

0x0010 1000
0x0010 13FF DB0004

0x0010 1400
0x0010 17FF DB0005

0x0010 1800
0x0010 1BFF DB0006

0x0010 1C00
0x0010 1FFF DB0007

5.3.1.2 1 Block = 256 Bytes (Flash Type 1b)

Table 5.7 1 Block = 256 Bytes (Flash Type 1b)

1 block = 256 bytes
Read address

Blocks managed by
flash FIT module

0x0010 0000
0x0010 00FF DB0000

0x0010 0100
0x0010 01FF DB0001

: :
0x0010 1F00
0x0010 1FFF DB0031

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 50 of 68
Mar.20.25

5.3.1.3 1 Block = 64 Bytes (Flash Type 3, 4, and 5)

Table 5.8 1 Block = 64 Bytes (Flash Type 3, 4, and 5)

1 block = 64 bytes
Read address

Blocks managed by
flash FIT module
(Max. 1024 blocks)

0x0010 0000
0x0010 003F

Block 0 (64 bytes)

0x0010 0040
0x0010 007F

Block 1 (64 bytes)

: :
0x0010 FFC0
0x0010 FFFF

Block 1023 (64 bytes)

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 51 of 68
Mar.20.25

5.3.2 Block Areas (Flash Type 1)
The block format is described below. Each block is divided into a block header area, data header area, and
user data area. There is also an empty area between the data header area and user data area.

5.3.2.1 Block Header (Flash Type 1)
The block header area is used to manage the block. It contains the erase start flag, erase end flag, initialized
flag, etc.

The block is managed by the block header area. The flags listed below are recorded in the block header
area. The state of the block flags is checked during initialization processing to determine the block type.

Table 5.9 Data (Flash Type 1)

Flag Name Processing Command 1 Command 2
Erase start flag Block erase

processing
Before erase command runs
0x00

Erase command successful
0xFF

Erase end flag Block erase
processing

Block erase end
0xAA



Initialized flag Block erase
processing

Initialized block creation end
0x00



Active flag Reclaim
processing

Active flag switching end
0x00



Full flag Reclaim
processing

Reclaim processing start
0x00



Reclaim flag Reclaim
processing

Reclaim processing end 

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 52 of 68
Mar.20.25

5.3.2.2 Data Header (Flash Type 1)
The data header area is used to manage the user data. A data header is created each time a data update
request is received. If a second data update request is received for the same data number, a new data
header with the same data number is created within the active block. The data header with the higher
address is determined to be newest (valid). During initialization processing the data headers of reclaim
blocks and the active block are checked, and data headers are programmed such that their addresses
increase starting immediately after the block header. The data header format is shown below.

Table 5.10 Data Flash Memory (Flash Type 1)

(1 block: 1,024 bytes) program unit: 1 byte
Offset Description Size
0x000 Data header update start flag 1 byte
0x001 Data number 1 byte
0x002 Data address (lower bits)*1 1 byte
0x003 Data address (upper bits)*1 1 byte
0x004 Data header update end flag 1 byte
0x005 Data update end flag 1 byte
0x006 Valid flag 1 byte

Note 1. This is the data allocation when little-endian byte order is used. When big-endian byte order is
used, the data allocation for the data address (lower bits) and data address (upper bits) is
reversed.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 53 of 68
Mar.20.25

Table 5.11 Flag Types

Flag Name Processing
Data header update start flag A value of 0x7F is programmed when a data header write starts. This

indicates the existence of a data header. The flag is checked during
initialization processing, and if the value is other than 0x7F or 0xFF,
the data header is determined to be invalid.

Data number Data numbers are set by the user in r_datfrx_config.h. A separate data
size can be specified for each data number. For the setting method,
refer to 2.7, Compile Settings.

Data address The actual address at which user data is stored.
Data header update end flag After the data number and data address are programmed, a value of

0xBF is programmed to this flag. This indicates that the data number
and data address have been programmed. The flag is checked during
initialization processing, and if the value is other than 0xBF, the data
header is determined to be unprogrammed and is treated as invalid.

Data update end flag After the user data is programmed, a value of 0xDF is programmed to
this flag. This indicates that programming of user data has finished.
The flag is checked during initialization processing, and if the value is
other than 0xDF, programming of the user data is determined to be
incomplete and the data header is treated as invalid.

Valid flag After the data update end flag is programmed, a value of 0x0F is
programmed to this flag. This indicates the validity of the data header.
The flag is checked during initialization processing, and if the value is
other than 0x0F, data update processing is determined not to have
finished and the data header is treated as invalid.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 54 of 68
Mar.20.25

5.3.2.3 Data (Flash Type 1)

Table 5.12 Data Flash Memory (Flash Type 1)

(1 block: 1,024 bytes) program unit: 1 byte
Offset Description Size Area
0x000 Erase start flag 2 bytes

Block header area

0x002 Erase end flag 8 bytes
0x00A Initialized flag 2 bytes
0x00C Active flag 2 bytes
0x00E Full flag 2 bytes
0x010 Reclaim flag 2 bytes
0x012 Data header (a) 7 bytes

Data header area
0x019 Data header (b) 7 bytes
0x020 Data header (c) 7 bytes
: :
: Data header (n) 7 bytes

↓

↑

Empty area

0x400 - Size (a..n) User data (n) Size (n)

User data area
: :
0x400 - Size (a..c) User data (c) Size (c)
0x400 - Size (a..b) User data (b) Size (b)
0x400 - Size (a) User data (a) Size (a)

Size (a): Data size of user data a
Size (a..c): Total data size of user data a to user data n

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 55 of 68
Mar.20.25

5.3.3 Block Management (Flash Types 3, 4, and 5)
5.3.3.1 Block Header (Flash Types 3, 4, and 5)
Flash Types 3, 4, and 5 do not have a block header area.

5.3.3.2 Data Header (Flash Types 3, 4, and 5)
The state of the block is checked directly during initialization processing to determine the block type.

The management information within each block is summarized below.

Table 5.13 Data Flash Memory (Flash Types 3, 4, and 5)

Flag Name Processing Command
data_type Identification of the data type. data_type value*1

1: First block in long format
2: Intermediate block in long format
4: End block in long format
8: Short format block
For format 1, data_type = 1 or data_type = 8.
For format 2, data_type = 2 or data_type = 4.

chain Extraction of the block number
containing the next portion of
user data for cases where the
user data will not fit in a single
block.

For long format, stores the block number information of
the next block where user data is stored.
When data_type = 4 or data_type = 8, stores a value of
0xFFFF because there is no next block number containing
user data.

data_No Extraction of the data number
where the user data is stored.

Can be set such that data number < data count.

ser_No Identification of whether user
data is new or old.

The serial number is incremented for each data update,
regardless of the pass/fail status.
Update count: 0xFFFFFFFF max.
The maximum value of 0xFFFFFFFF is the upper limit
imposed by the software. It is not equivalent to the
maximum number of data updates supported by the data
flash memory.

crc_ccitt Determining if stored
management information is
correct.

CRC codes are generated for the following management
information:
(1) data_No
(2) ser_No

write_end Confirming that data updating
has finished.

This flag is programmed as the last step of data update
processing.
A data value of 0x0000 is programmed to the flag.
When data update processing ends successfully, this flag
remains in the unerased state.

erase_start Determining whether or not
block erase processing ended
with an error.

This flag is programmed before erasing starts.
A data value of 0x0000 is programmed to the flag.
When this flag is in the unerased state, block erase
processing is determined to have ended with an error.
The flag is erased when block erase processing finishes
successfully.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 56 of 68
Mar.20.25

Flag Name Processing Command
erase_end Confirming completion of block

erase processing.
This flag is programmed as the last step of block erase
processing.
A data value of 0x0000 is programmed to the flag.
When block erase processing ends successfully, this flag
remains in the unerased state.

Note 1. Short format is suitable for cases where the user data will fit in a single block, and it is configured
as format 1. Long format is used when the user data extends over more than one block (cases
where the user data will not fit in a single block). They are configured as format 1 and format 2.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 57 of 68
Mar.20.25

5.3.3.3 Data (Flash Types 3, 4, and 5)
Short format is suitable for cases where the user data will fit in a single block, and it is configured as format
1. Long format is used when the user data extends over more than one block (cases where the user data will
not fit in a single block). They are configured as format 1 and format 2.

(1) Format 1

Format 1 is suitable for the start block when storing one unit of user data.

Table 5.14 Format 1

Flash Types 3, 4, and 5

Data Symbol
64 Bytes
Address Size
0x00 1 Data type data_type
0x01 2 Chain information chain
0x03 2 Data number data_No
0x05 4 Serial number ser_No
0x09 2 CRC code crc_ccitt
0x0B 41 User data data
0x34 4 Write end flag write_end
0x38 4 Erase start flag erase_start
0x3C 4 Erase end flag erase_end

(2) Format 2

Format 2 suitable for the second and subsequent blocks in cases where the user data extends over more
than one block (long format).

Table 5.15 Format 2

Flash Types 3, 4, and 5

Data Symbol
64 Bytes
Address Size
0x00 1 Data type data_type
0x01 2 Chain information chain
0x03 53 User data data
0x38 4 Erase start flag erase_start
0x3C 4 Erase end flag erase_end

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 58 of 68
Mar.20.25

5.3.4 Block States and How They Are Determined
5.3.4.1 Flash Type 1
(1) Block States (Flash Type 1)
Each physical block (Flash Type 1) managed by DATFRX is classified into one of the states listed below.

Table 5.16 Block States and How They Are Determined

Block State Description Determination
Erase target A block in this state has been set as a block

erase target, meaning that it needs to be
erased. Block erase processing changes the
state from erase target block to initialized block.

When the value of the erase start flag is
other than 0xFF, the block is determined
to be an erase target block. If even one
of the bytes of data in the erase end flag
has a value other than 0xAA, the block is
determined to be an erase target block.

Initialized A block in this state has no user data written to
it and is ready to be used. One initialized block
is necessary. Format processing sets the
second block as the initialized block. Block
erase processing creates an initialized block.

If the block is not an erased block and
the value of the active flag is 0xFF, the
block is determined to be the initialized
block.

Active A block in this state has user data written to it
and is the target block for data updates. One
active block is necessary. Format processing
sets the start block as the active block. Reclaim
processing (switching the active block and
copying valid data) changes the state from
active block to full block. Then the initialized
block is changed to the active block.
Consequently, after formatting, the active block
changes in sequence (beginning from the start
block).

If the block is not the initialized block and
the value of the full flag is 0xFF, the
block is determined to be the active
block. If more than one block is
determined to be set as the active block,
an error is determined to have occurred.
Format processing is necessary to
correct such errors.

Full A block in this state is an active block on which
no additional area remains for data updates.
This setting is only used during reclaim
processing. After reclaim processing ends the
state changes from full block to reclaim block.

If the block is not the active block and
the value of the reclaim flag is 0xFF, the
block is determined to be the full block. If
more than one block is determined to be
set as the full block, an error is
determined to have occurred. Format
processing is necessary to correct such
errors.

Reclaim A block in this state is a read-only block on
which no additional area remains for data
updates. Reclaim processing uses the oldest
reclaim block as the copy source block and
copies the valid data to the new active block.
When reclaim processing ends, the copy
source block is set as a garbage block.

If a block cannot be determined to be in
any of the other states, it is determined
to be a reclaim block.

Garbage A block in this state is a copy source block
which no longer contains any valid data due to
reclaim processing, or a block in which a block
header error was detected during initialization
processing. Block erase processing treats
garbage blocks as erase target blocks.

If the next block after the active block is
not the initialized block, it is set as a
garbage block. When there is one full
block and one active block, the active
block is set as a garbage block.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 59 of 68
Mar.20.25

Block State Description Determination
Erased A block in this state has only the erase end flag

programmed after the block erase command
completes. If block erase processing is halted
midway, the block is treated as one determined
to have a block header error by initialization
processing.

If the block is not an erase target block
and the value of the initialized flag is
0xFF, the block is determined to be an
erased block.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 60 of 68
Mar.20.25

(2) Block State Transitions (Flash Type 1)
The state transitions of the physical blocks (Flash Type 1) managed by DATFRX are shown below.

Figure 5.1 Block State Transitions (Flash Type 1)

[Data update processing]
R_FLASH_DM_Write()
Normal end

Erase target
block

Active block

Full block

Reclaim block

Garbage block

[Data update processing]
R_FLASH_DM_Write()
Normal end

[Data update processing]
R_FLASH_DM_Write()
No empty space in data area

[Reclaim processing]
R_FLASH_DM_Reclaim()
Normal end

[Erase processing]
R_FLASH_DM_Erase()

Erased block

[Reclaim processing]
R_FLASH_DM_Reclaim()
Copying of data from oldest
reclaim block to new active
bl k

[Reclaim processing]
R_FLASH_DM_Reclaim()
Start

Arrows with solid lines: State transitions
Arrows with dashed lines: Processing

[Initialization processing]
R_FLASH_DM_Init()

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 61 of 68
Mar.20.25

(3) Block State Determination Flowchart (Flash Type 1)
The states of physical blocks (Flash Type 1) managed by DATFRX are determined as shown below.

Figure 5.2 Block State Determination Flowchart (Flash Type 1)

Start

Erase target block

Read block information

Erase start flag
! = 0xFF

Erase end flag
! = 0xAA

Erased block

Yes

No

Initialized flag
== 0xFF

Active flag
== 0xFF

Initialized block

Active block Full flag == 0xFF Active block =< 1

Format processing

Full block

Reclaim block

Reclaim flag
== 0xFF

Full block =< 1

Garbage block

Format processing

Is next block after
active block the
initialized block?

• 1 full block
• 1 active block

Uninitialized block

Active block

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

End

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 62 of 68
Mar.20.25

5.3.4.2 Flash Types 3, 4, and 5
(1) Block States (Flash Types 3, 4, and 5)
Each physical block (Flash Types 3, 4, and 5) managed by DATFRX is classified into one of the states listed
below.

Table 5.17 Block States (Flash Types 3, 4, and 5)

Block State Description Flag Flag State Used to Determine
Valid block A block in which valid

user data is stored.*1
data_type Block is in unerased state, and value matches

specifications.
chain Block is in unerased state, and block number is

less than the total block count.
data_No Block is in unerased state, and data number is

less than the registered data count.
ser_No Block is in unerased state, and the number is the

highest among those with the same data number.
crc_ccitt Block is in unerased state, and the codes

generated from data_No and ser_No match.
data A block in which the portions where data is stored

are in the unerased state, and the other portions
are in the erased state.

write_end Block is in unerased state.
erase_start Block is in erased state.
erase_end Block is in unerased state.

Erased block A block from which
the data has been
successfully erased.
Data update
processing is
performed on erased
blocks.

data_type Block is in erased state.
chain Block is in erased state.
data_No Block is in erased state.
ser_No Block is in erased state.
crc_ccitt Block is in erased state.
data Block is in erased state.
write_end Block is in erased state.
erase_start Block is in erased state.
erase_end Block is in unerased state.

Invalid block A block of a state
other than the above.
Block erase
processing is
performed on invalid
blocks.

A block that cannot be determined to be a valid block or an erased
block is determined to be an invalid block.

Note 1. For format 2, if the start block is a valid block, the intermediate blocks and end block are also
determined to be valid blocks.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 63 of 68
Mar.20.25

(2) Block State Transitions (Flash Types 3, 4, and 5)
The state transitions of the physical blocks (Flash Types 3, 4, and 5) managed by DATFRX are shown
below.

Figure 5.3 Block States (Flash Types 3, 4, and 5)

Erased block Valid block

Invalid block

[Data update processing]
R_FLASH_DM_Write()

[Data update processing]
R_FLASH_DM_Write()

[Block erase processing]
R_FLASH_DM_Erase()

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 64 of 68
Mar.20.25

(3) Block State Determination Flowchart (Flash Types 3, 4, and 5)
The states of physical blocks (Flash Types 3, 4, and 5) managed by DATFRX are determined as shown
below.

Figure 5.4 Block State Determination Flowchart (Flash Types 3, 4, and 5)

Start

Erased block

Read block

Initial 2 bytes are
blank?

Valid block

Yes

No

Check result

True

False

All blocks are
blank?

Yes

Valid block check

Invalid block

End

No

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 65 of 68
Mar.20.25

6. Reference Documents
User’s Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

Support for Technical Updates
The FIT module reflects the contents of the following technical updates:

None

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 66 of 68
Mar.20.25

Revision History

Rev. Date
Description
Page Summary

2.01 Feb. 01, 2019 — First edition issued
2.10 Apr. 21.2023 4 In “1.2.1.1 Flash Type”, flash type 2 deleted, and flash type 5

added.
In “Table 1.1 ”, flash type 2 deleted, and flash type 5 added.

5 In “Table 1.2 Overview of Functions”, flash type 2 deleted,
flash type 5 added, and the description modified.

6 In “Figure 1.1 Relationship between DATFRX and Flash FIT
Module”,
flash type 2 deleted, and flash type 5 added.

7 In “Table 1.3 API Functions”, flash type 2 deleted, and flash
type 5 added.

10 “1.4.2 Flash Type 2, 3 and 4” changed to “1.4.2 Flash Type 3,
4 and 5”.
“Figure 1.4 Processing Example of Main Function (Flash
Type 2, 3 and 4)” changed to “Figure 1.4 Processing Example
of Main Function (Flash Type 3, 4 and 5)”. Part of the figure
changed.

11 “Figure 1.5 Example of processing after R_FLASH_DM_Init()
(Flash Type 2, 3 and 4))” changed to “Figure 1.5 Example of
processing after R_FLASH_DM_Init() (Flash Type 3, 4 and 5)”.
The figure modified.

12 “1.4.3 Callback Function” deleted
15 In “Table 2.1 Configuration options”, flash type 2 deleted,

flash type 5 added, and the contents modified.
16 In “2.7.1.2 Example Modification of r_dm_1.c, r_dm_3.c,

r_dm_4.c, and r_dm_5.c”, r_dm_2,c deleted, and r_dm_5.c
added.

17 to 21 In “2.8 Memory Usage”, memory sizes for each flash type
updated to those of the latest products, and table contents
changed.
The memory sizes for flash type 2 deleted. The memory sizes
for flash type 5 added.

23 In “Table 2.8 Return value to callback function”, in the “Flash
type” column, “2” deleted and “5” added.

25 to 43 In descriptions in “3 API Functions”, flash type 2 deleted, and
flash type 5 added.

43 In “R_FLASH_DM_GetVersion”, “Return Value” and
“Description” changed.

45 “4 Pin Settings” deleted
45 In “4 Demo Project”, in “Table 4.1 Project List”, a project of

RX26T added.
The description changed.

46 “Table 6-1 Confirmed Operation Environment” changed to
“Table 5.1 Confirmed Operation Environment (Rev2.01)”.
”Table 5.2 Confirmed Operation Environment (Rev2.10)”
added.

48 In “5.2 Troubleshooting”, item 3. added.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 67 of 68
Mar.20.25

 49 “Flash Type 2, 3, and 4” changed to “Flash Type 3, 4, and 5”.
“6.3.1 DATFRX Management Areas” changed to “5.3.1
DATFRX Management Areas”. The description changed. The
management block table for flash type 2 deleted. Contents of
“Table 5.5 1 Block = 1,024 Bytes (Flash Type 1a)” and “Table
5.7 1 Block = 64 Bytes (Flash Type 3, 4, and 5)” changed.

55 to 57 “Flash Type 2, 3, and 4” changed to “Flash Type 3, 4, and 5”.
In “Table 5.13 Format 1”, the “Flash Type 2” column deleted,
and ”Flash Types 3 and 4” changed to “Flash Type 3, 4, and
5”.
In “Table 5.14 Format 2”, the “Flash Type 2” column deleted,
and ”Flash Types 3 and 4” changed to “Flash Type 3, 4, and
5”.

58 Descriptions in “Table 5.15 Block States and How They Are
Determined” changed.

61 to 64 “Flash Type 2, 3, and 4” changed to “Flash Type 3, 4, and 5”.
Contents of “Figure 5.2 Block State Determination Flowchart
(Flash Type 1)” changed.
Contents of “Figure 5.3 Block States (Flash Types 3, 4, and
5)” changed.
Contents of “Figure 5.4 Block State Determination Flowchart
(Flash Types 3, 4, and 5)” changed.

65 Items in “6 Reference Documents” changed.

2.20 Aug. 31.2023 4 “1.2.1 Definitions of Terms” and “Table 1.1” changed.

 13 “Table 1.4 Limitations” changed.

 15 “Table 2.1 Configuration options” changed.

 16 “2.7.1.2 Example Modification of r_dm_1.c, r_dm_3.c,
r_dm_4.c, and r_dm_5.c” changed.

 17 to 21 “2.8 Memory Usage” changed.

 38 In “R_FLASH_DM_Erase”, “Example” changed.

 40 In “R_FLASH_DM_Reclaim”, “Example” changed.

 43 In “R_FLASH_DM_Control”, “Example1” and “Example2”
changed.

 45 In “Table 4.1 Project List”, projects of RX231 and RX140
added.

 46 “Table 5.3 Confirmed Operation Environment (Rev2.20)”
added.

 49 “5.3.1.1 1 Block = 1,024 Bytes (Flash Type1)” changed to
“5.3.1.1 1 Block = 1,024 Bytes (Flash Type 1a)”.
“Table 5.3 1 Block = 1,024 Bytes (Flash Type 1)” changed
to ”Table 5.5 1 Block = 1,024 Bytes (Flash Type 1a)”.
“5.3.1.2 1 Block = 256 Bytes (Flash Type 1b)” and ”Table 5.6 1
Block = 256 Bytes (Flash Type 1b)” added.

RX Family Flash Memory Data Management Module Using Firmware Integration
Technology

R20AN0507EJ0231 Rev.2.31 Page 68 of 68
Mar.20.25

2.30 Mar. 14. 24 4 “Table 1.1 Supported MCU Groups for Flash Type 1” changed.
“1.2.1.3 BGO” deleted.

 5 “Table 1.2 Overview of Functions” changed.

 7 “1.3 Overview of API” changed.
“1.3.1 BGO Operating Settings” deleted.

 15 “2.7Compile Settings” changed.

 17 to 21 “2.8 Memory Usage” changed.

 47 “Table 5.4 Confirmed Operation Environment (Rev2.30)”
added.

 48 In “5.2 Troubleshooting”, item 4. added.

2.31 Mar. 20. 25 45 Fixed a typo in “4 Demo Project”

 47 “Table 5.5 Confirmed Operation Environment (Rev2.31)”
added.

 program Changed disclaimers in source files.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 DATFRX
	1.2 Overview of DATFRX
	1.2.1 Definitions of Terms
	1.2.1.1 Flash Type
	1.2.1.2 Block

	1.2.2 Overview of Functions
	1.2.3 Overview of DATFRX Layers

	1.3 Overview of API
	1.4 Processing Example
	1.4.1 Flash Type 1
	1.4.1.1 Perspective (Processing Example of Main Function)
	1.4.1.2 Initialization flow

	1.4.2 Flash Type 3, 4 and 5
	1.4.2.1 Perspective (Processing Example of Main Function)
	1.4.2.2 Initialization flow

	1.5 State Transition Diagram
	1.6 Limitations

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Compile Settings
	2.7.1 Adding Data Numbers
	2.7.1.1 Example Modification of r_datfrx_rx_config.h
	2.7.1.2 Example Modification of r_dm_1.c, r_dm_3.c, r_dm_4.c, and r_dm_5.c

	2.8 Memory Usage
	2.8.1 Flash Type 1a
	2.8.2 Flash Type 1b
	2.8.3 Flash Type 3
	2.8.4 Flash Type 4
	2.8.5 Flash Type 5

	2.9 Arguments
	2.10 Return Values
	2.11 Callback function
	2.12 Adding the FIT Module to Your Project
	2.13 for, while, and do while Expressions

	3. API Functions
	4. Demo Project
	4.1 Adding the Demo to the Workspace
	4.2 Downloading the Demo

	5. Appendix
	5.1 Confirmed Operation Environment
	5.2 Troubleshooting
	5.3 Data Management
	5.3.1 DATFRX Management Areas
	5.3.1.1 1 Block = 1,024 Bytes (Flash Type 1a)
	5.3.1.2 1 Block = 256 Bytes (Flash Type 1b)
	5.3.1.3 1 Block = 64 Bytes (Flash Type 3, 4, and 5)

	5.3.2 Block Areas (Flash Type 1)
	5.3.2.1 Block Header (Flash Type 1)
	5.3.2.2 Data Header (Flash Type 1)
	5.3.2.3 Data (Flash Type 1)

	5.3.3 Block Management (Flash Types 3, 4, and 5)
	5.3.3.1 Block Header (Flash Types 3, 4, and 5)
	5.3.3.2 Data Header (Flash Types 3, 4, and 5)
	5.3.3.3 Data (Flash Types 3, 4, and 5)

	5.3.4 Block States and How They Are Determined
	5.3.4.1 Flash Type 1
	(1) Block States (Flash Type 1)
	(2) Block State Transitions (Flash Type 1)
	(3) Block State Determination Flowchart (Flash Type 1)

	5.3.4.2 Flash Types 3, 4, and 5
	(1) Block States (Flash Types 3, 4, and 5)
	(2) Block State Transitions (Flash Types 3, 4, and 5)
	(3) Block State Determination Flowchart (Flash Types 3, 4, and 5)

	6. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

