

# RL78/G13, 78K0/Kx2

Migration Guide from 78K0 to RL78: Serial interfaces CSI10 and CSI11 to Serial Array Unit

#### Introduction

This application note describes how to migrate the Serial interfaces CSI10 and CSI11 of the 78K0/Kx2 to the serial array unit (SAU) of the RL78/G13.

#### **Target Device**

RL78/G13, 78K0/Kx2

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

### **Contents**

| 1. | Functions of Serial interfaces CSI10 and CSI11 and Serial array unit       | 3  |
|----|----------------------------------------------------------------------------|----|
| 2. | Difference between Serial interfaces CSI10 and CSI11 and Serial Array Unit | 5  |
| 3. | Comparison between Registers                                               | 7  |
| 4. | Sample Code for Serial Array Unit                                          | 9  |
| 5. | Documents for Reference                                                    | 9  |
| Re | vision History                                                             | 10 |

#### 1. Functions of Serial interfaces CSI10 and CSI11 and Serial array unit

Table 1.1 shows the functions of the Serial interfaces CSI10 and CSI11, and Table 1.2 shows the functions of the serial array unit (SAU).

Table 1.1 Functions of Serial interfaces CSI10 and CSI11

| Function               | Explanation                                                         |  |
|------------------------|---------------------------------------------------------------------|--|
| 3-wire serial I/O mode | Clock synchronous communication function by 3 lines of serial clock |  |
|                        | (SCK1n) and serial data (SI1n, SO1n).                               |  |

Table 1.2 Functions of Serial Array Unit

| Function                                                                | Explanation                                                                                                                                                     |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3-wire serial I/O                                                       | This is a clocked communication function that uses three lines: serial clock (SCK) and serial data (SI and SO) lines.                                           |  |
| UART                                                                    | This is a start-stop synchronization function using two lines: serial data transmission (TXD) and serial data reception (RXD) lines.                            |  |
| Simplified I <sup>2</sup> C (only master function with a single master) | This is a clocked communication function to communicate with two or more devices by using two lines: serial clock (SCL) and serial data (SDA).                  |  |
| LIN Communication (Note)                                                | LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol designed to reduce the cost of an automobile network. |  |

Note. The LIN-bus is accepted in UART2 (channels 0 and 1 of unit 1)

Remarks1. For 78K0/Kx2, n = 0, 1

For RL78/G13, m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

Each of the serial interfaces CSI10 and CSI11 of the 78K0/Kx2 incorporates one channel of 3-line serial I/O (CSI). Figure 1.1 shows a block diagram of the serial interfaces CSI10 and CSI11.

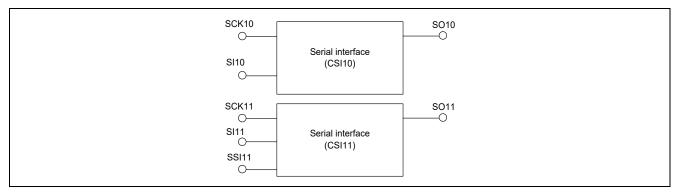



Figure 1.1 Block Diagram of Serial interfaces CSI10 and CSI11

A single serial array unit (SAU) in the RL78/G13 has up to four serial channels. Each channel can achieve 3-wire serial (CSI), UART, and simplified I<sup>2</sup>C communication.

Figure 1.2 shows a CSI block diagram of the serial array unit 0 (SAU0) of the RL78/G13.

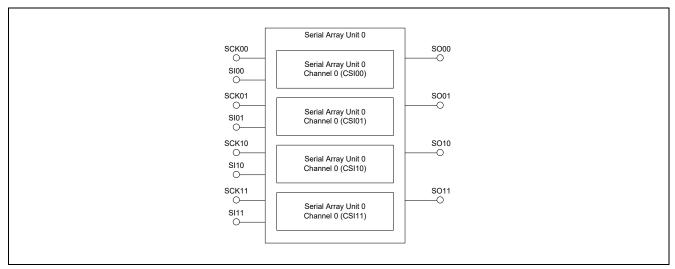



Figure 1.2 Block Diagram of Serial Array Unit 0 (SAU0) CSI

Table 1.3 shows the SAU functions corresponding to the Serial interfaces CSI10 and CSI11.

Table 1.3 Correspondence between Functions

| table to conseptitude between another |                             |  |
|---------------------------------------|-----------------------------|--|
| 78K0/Kx2                              | RL78/G13                    |  |
| Serial interfaces CSI10 and CSI11     | Serial Array Unit (SAU)     |  |
| 3-wire serial I/O mode                | 3-wire serial I/O           |  |
| -                                     | UART                        |  |
| -                                     | Simplified I <sup>2</sup> C |  |

The 3-wire serial I/O mode of the Serial interfaces CSI10 and CSI11 correspond to the 3-wire serial I/O of the SAU.

#### 2. Difference between Serial interfaces CSI10 and CSI11 and Serial Array Unit

Table 2.1 and Table 2.2 shows the differences between the 3-wire serial I/O mode.

Table 2.1 Differences between 3-wire serial I/O mode (1/2)

| Item                     | 78K0/Kx2                                   | RL78/G13                               |  |
|--------------------------|--------------------------------------------|----------------------------------------|--|
| Serial interfaces        |                                            | Serial Array Unit (SAU)                |  |
|                          |                                            | - , , ,                                |  |
| T 6 1 1 1                | CSI10, CSI11                               | CSImn                                  |  |
| Transfer data length     | 8 bits                                     | 7 bits / 8 bits                        |  |
|                          | - During master communication              | - During master communication          |  |
|                          | 6.25 MHz (Note1)                           | 16 MHz (CSI00 only) (Note2),           |  |
| Maximum transfer rate    | - During slave communication               | 8 MHz (CSImn) (Note3)                  |  |
|                          | 2.5 MHz                                    | - During slave communication           |  |
|                          |                                            | 4 MHz                                  |  |
| First bit specification  | CSIM1n register                            | SCRmn register                         |  |
|                          | DIR1n = 0: MSB first                       | DIRmn = 0: MSB first                   |  |
|                          | DIR1n = 1: LSB first                       | DIRmn = 1: LSB first                   |  |
| Selection of data and    | CSIC1n register                            | SCRmn register                         |  |
| clock phase              | Combination of CKP1n and DAP1n bits        | Combination of CKPmn and DAPmn bits    |  |
| Disables operation       | CSIM1n register                            | STm register                           |  |
|                          | CSIE1n = 0                                 | STmn = 1                               |  |
| Enables operation        | CSIM1n register                            | SSm register                           |  |
|                          | CSIE1n = 1                                 | SSmn = 1                               |  |
| Setting of operation     | CSIM1n register                            | SCRmn register                         |  |
| mode                     | TRMD1n bit = 1: Transmit/receive mode      | TXEmn = 1, RXEmn = 1:                  |  |
|                          | TRMD1n bit = 0: Receive mode               | Transmission/reception                 |  |
|                          |                                            | TXEmn = 1, RXEmn = 0:                  |  |
|                          |                                            | Transmission only                      |  |
|                          |                                            | TXEmn = 0, RXEmn = 1:                  |  |
|                          |                                            | Reception only                         |  |
| Transmit buffer register | SOTB1n register                            | Lower 8 bits of SDRmn register (SIOp)  |  |
| Receive data register    | SIO1n register                             | Lower 8 bits of SDRmn register (SIOp)  |  |
| Data transmission is     | Write transmit data to SOTB1n register     | Write transmit data to SIOp register   |  |
| started (Master mode)    | (When TRMD1n = 1)                          | (When TXEmn = 1)                       |  |
| Data reception is        | - Write transmit data to SOTB1n register   | - Write transmit data to SIOp register |  |
| started (Master mode)    | (When TRMD1n = 1)                          | (When TXEmn = 1, RXEmn = 1)            |  |
|                          | - Read reception data from SIO1n register. | - Write FFH as dummy data to           |  |
|                          | (When TRMD1n = 0)                          | SDRmn register                         |  |
|                          |                                            | (When TXEmn = 0, RXEmn = 1)            |  |

Note1. (A) and (A2) Grade Products are 5MHz.

Note2. Target products G (Industrial applications) is 4MHz.

Note3. Target products G (Industrial applications) is 2MHz.

Remarks 1. For 78K0/Kx2, n = 0, 1

For RL78/G13, m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)



Table 2.2 Differences between 3-wire serial I/O mode (2/2)

|                                        |                                            | ,                                          |
|----------------------------------------|--------------------------------------------|--------------------------------------------|
| Item                                   | 78K0/Kx2                                   | RL78/G13                                   |
|                                        | Serial interfaces                          | Serial Array Unit (SAU)                    |
|                                        | CSI10, CSI11                               | CSImn                                      |
| Interrupt                              | Transmission completion interrupt          | SMRmn register                             |
|                                        |                                            | MDmn0 = 0: Transfer end interrupt          |
|                                        |                                            | MDmn0 = 1: Buffer empty interrupt          |
| Interrupt occur timing                 | After transfer of transmit/receive data is | - MDmn0 = 0                                |
|                                        | completed.                                 | After transfer of transmit/receive data is |
|                                        |                                            | completed.                                 |
|                                        |                                            | - MDmn0 = 1                                |
|                                        |                                            | When data is transferred from the SDRmn    |
|                                        | 2011                                       | register to the shift register.            |
| Communication status                   | CSIM1n register                            | SSRmn register                             |
| flag                                   | CSOT1n = 0: Communication is stopped.      | TSFmn = 0: Communication is stopped or     |
|                                        | CSOT1n = 1: Communication is in            | suspended.                                 |
| 5 6                                    | progress.                                  | TSFmn = 1: Communication is in progress.   |
| Buffer register status                 | None                                       | SSRmn register                             |
| indication flag                        |                                            | BFFmn = 0:                                 |
|                                        |                                            | Valid data is not stored in the SDRmn      |
|                                        |                                            | register.                                  |
|                                        |                                            | BFFmn = 1:                                 |
|                                        |                                            | Valid data is stored in the SDRmn          |
|                                        |                                            | register.                                  |
| Overrun error detection                | None                                       | SSRmn register                             |
| flag                                   |                                            | OVFmn = 0: No error occurs.                |
|                                        |                                            | OVFmn = 1: An error occurs.                |
| Serial clock I/O pin                   | SCK1n pin                                  | SCKmn pin                                  |
| Serial data input pin                  | SI1n pin                                   | Slmn pin                                   |
| Serial data output pin                 | SO1n pin                                   | SOmn pin                                   |
| Serial interface chip select input pin | SSI11 pin (CSI11 only)                     | None (Substituted by port manipulation)    |

Remarks1. For 78K0/Kx2, n = 0, 1

For RL78/G13, m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

#### 3. Comparison between Registers

Table 3.1 and Table 3.2 compares the registers for the 78K0/Kx2 Serial interfaces CSI10 and CSI11 and the registers for the RL78/G13 Serial Array Unit used as CSImn.

Table 3.1 Comparison between Registers (1/2)

| Item                                   | 78K0/Kx2             | RL78/G13                           |
|----------------------------------------|----------------------|------------------------------------|
| Clock supply to serial array unit      | None                 | PER0 register                      |
|                                        |                      | SAUmEN bit                         |
| Disables operation                     | CSIM1n register      | STm register                       |
|                                        | CSIE1n bit           | STmn bit                           |
| Enables operation                      | CSIM1n register      | SSm register                       |
|                                        | CSIE1n bit           | SSmn bit                           |
| Mode control Selection                 | CSIM1n register      | SCRmn register                     |
|                                        | TRMD1n bit           | TXEmn bit, RXEmn bit               |
| First bit specification                | CSIM1n register      | SCRmn register                     |
|                                        | DIR1n bit            | DIRmn bit                          |
| Communication status flag              | CSIM1n register      | SSRmn register                     |
|                                        | CSOT1n bit           | TSFmn bit                          |
| SSI11 pin use selection                | CSIM11 register      | None                               |
|                                        | SSE11 bit            |                                    |
| Selection of clock phase               | CSIC1n register      | SCRmn register                     |
|                                        | CKP1n bit            | CKPmn bit                          |
| Selection of data phase                | CSIC1n register      | SCRmn register                     |
|                                        | DAP1n bit            | DAPmn bit                          |
| Serial clock selection                 | CSIC1n register      | SMRmn register                     |
|                                        | CKS1n2 - CKS1n0 bits | CKSmn bit, CCSmn bit               |
|                                        |                      | SPSm register                      |
|                                        |                      | PRSmk3 - PRSmk0 bits               |
|                                        |                      | Upper 7 bits of SDRmn register     |
| Transmit buffer register               | SOTB1n register      | Lower 8 bits of SDRmn register     |
| Receive register                       | SIO1n register       | Lower 8 bits of SDRmn register     |
| Start trigger selection                | None                 | SMRmn register                     |
|                                        |                      | Set STSmn bit to 0                 |
| Controls inversion of level of receive | None                 | SMRmn register                     |
| data of channel n in UART mode         |                      | Set SISmn bit to 0                 |
| Setting of operation mode of           | None                 | SMRmn register                     |
| channel n                              |                      | Set MDmn2 bit to 0, MDmn1 bit to 0 |
| Selection of interrupt source of       | None                 | SMRmn register                     |
| channel n                              |                      | MDmn0 bit                          |
| Mask control of error interrupt signal | None                 | SCRmn register                     |
|                                        |                      | EOCmn bit                          |

Remarks1. For 78K0/Kx2, n = 0, 1

For RL78/G13, m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

Table 3.2 Comparison between Registers (2/2)

| Item                                                  | 78K0/Kx2 | RL78/G13                             |
|-------------------------------------------------------|----------|--------------------------------------|
| Setting of parity bit in UART mode                    | None     | SCRmn register                       |
|                                                       |          | Set PTCmn1 bit to 0, PTCmn0 bit to 0 |
| Setting of stop bit in UART mode                      | None     | SCRmn register                       |
|                                                       |          | Set SLCmn1 bit to 0, SLCmn0 bit to 0 |
| Setting of data length in CSI and                     | None     | SCRmn register                       |
| UART modes                                            |          | DLSmn1 bit, DLSmn0 bit               |
| Clear trigger of framing error flag                   | None     | SIRmn register                       |
|                                                       |          | FECTmn (not used)                    |
| Clear trigger of parity error flag                    | None     | SIRmn register                       |
|                                                       |          | PECTmn (not used)                    |
| Clear trigger of overrun error flag                   | None     | SIRmn register                       |
|                                                       |          | OVCTmn bit                           |
| Buffer register status indication flag                | None     | SSRmn register                       |
|                                                       |          | BFFmn bit                            |
| Framing error detection flag                          | None     | SSRmn register                       |
|                                                       |          | FEFmn (not used)                     |
| Parity/ACK error detection flag                       | None     | SSRmn register                       |
|                                                       |          | PEFmn (not used)                     |
| Overrun error detection flag                          | None     | SSRmn register                       |
|                                                       |          | OVFmn bit                            |
| Indication of operation enable/stop                   | None     | SEm register                         |
| status                                                |          | SEmn bit                             |
| Serial output enable/stop                             | None     | SOEm register                        |
| Clock output value actting when                       | None     | SOEmn bit                            |
| Clock output value setting when operation is disabled | None     | SOm register CKOmn bit               |
| Data output value setting when                        | None     | SOm register                         |
| operation is disabled                                 | None     | SOmn bit                             |
| Selects inversion of the level of the                 | None     | SOLm register                        |
| transmit data                                         |          | Set SOLmn bit to 0                   |
| Selection of whether to enable or                     | None     | SSCm register                        |
| disable the generation of                             |          | SSECm bit                            |
| communication error interrupts in the                 |          |                                      |
| SNOOZE mode                                           |          |                                      |
| Setting of the SNOOZE mode                            | None     | SSCm register                        |
|                                                       |          | SWCm bit                             |
| Switching channel 7 input of timer                    | None     | ISC register                         |
| array unit                                            |          | Set ISC1 bit to 0                    |
| Switching external interrupt (INTP0)                  | None     | ISC register                         |
| input                                                 | News     | Set ISC0 bit to 0                    |
| Use of noise filter                                   | None     | NFEN0 register                       |
|                                                       |          | Set SNFENn0 bit to 0                 |

Remarks 1. For 78K0/Kx2, n = 0, 1

For RL78/G13, m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

#### 4. Sample Code for Serial Array Unit

The sample code for Serial Array Unit is explained in the following application notes.

- RL78/G13 Serial Array Unit for 3-Wire Serial I/O (Master Transmission/Reception) CC-RL (R01AN2547)
- RL78/G13 Serial Array Unit for 3-Wire Serial I/O (Slave Transmission/Reception) CC-RL (R01AN2711)
- RL78/G13 Low-power Consumption Operation (CSI in SNOOZE Mode) CC-RL (R01AN2762)

#### 5. Documents for Reference

User's Manual:

- RL78/G13 User's Manual: Hardware (R01UH0146)
- 78K0/Kx2 User's Manual: Hardware (R01UH0008)

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News:

The latest information can be downloaded from the Renesas Electronics website.



## **Revision History**

|      |              |      | Description          |  |
|------|--------------|------|----------------------|--|
| Rev. | Data         | Page | Summary              |  |
| 1.00 | Jul.05, 2019 | -    | First edition issued |  |
|      |              |      |                      |  |

# General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

- 6. Voltage application waveform at input pin
  - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.).
- 7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not quaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

#### **Notice**

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## **Contact information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/