

R8C/M12A Group

Input Capture Function of Timer RC

R01AN0106EJ0111 Rev.1.11 Mar. 31, 2011

1. Abstract

This document describes a setting method and an application example for using the input capture function in timer RC timer mode with the R8C/M12A Group.

2. Introduction

The application example described in this document applies to the following microcomputer (MCU) and parameter:

• MCU: R8C/M12A Group • XIN clock frequency: 20 MHz

This application note can be used with other R8C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.

3. Application Example

3.1 Program Outline

An external pulse width input to the TRCIOA pin is measured using the input capture function in timer RC timer mode. The measured results of the pulse width are calculated in the main process.

Settings

- Use timer mode.
- Use the TRCGRC register as the buffer register of the TRCGRA register.
- Select f1 (20 MHz) as the count source.
- Use the TRCCNT counter as the free-running counter.
- Detect both edges of the TRCIOA pin.
- Use the input capture function.
- Do not stop incrementing the TRCCNT register.
- Use the TRCIOA digital filter function.
- Use the clock selected for the count source as the digital filter clock.
- Disable TRCIOA output.
- Disable waveform output manipulation.
- Enable the input capture A interrupt.
- Enable the timer overflow interrupt.
- Do not use the timer RC interrupt.

Calculating the pulse width

Refer to Figure 3.2 for the formula.

Figure 3.1 shows a Block Diagram and Figure 3.2 shows a Timing Diagram. Table 3.1 lists the pin used and its function.

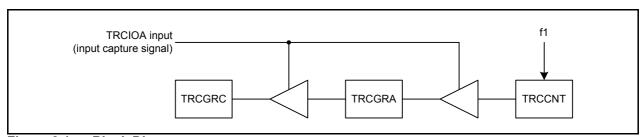


Figure 3.1 Block Diagram

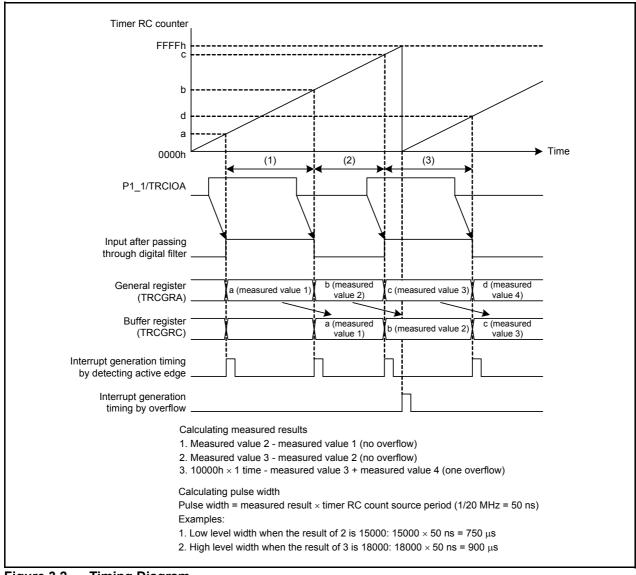


Figure 3.2 Timing Diagram

Table 3.1 Pin Used and Its Function

Pin Name	I/O	Function
P1_1/TRCIOA	Input	Input capture input

3.2 Memory

Table 3.2 Memory

Memory	Size	Remarks
ROM	291 bytes	In the r01an0106_src.c module
RAM	11 bytes	In the r01an0106_src.c module
Maximum user stack	10 bytes	
Maximum interrupt stack	18 bytes	

Memory size varies depending on the C compiler version and compile options.

The above applies to the following conditions:

C compiler: M16C Series, R8C Family C Compiler V.5.45 Release 01

Compile options: -c -finfo -dir "\$(CONFIGDIR)" -R8C

4. Software

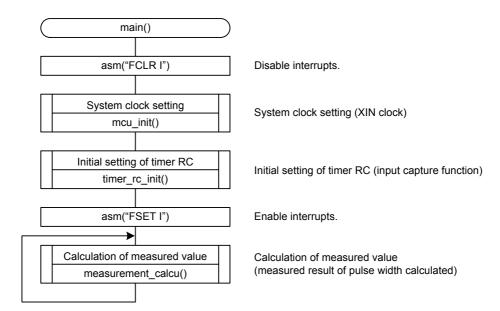
This section shows the initial setting procedures and values to set the example described in section **3. Application Example**. Refer to the latest **R8C/M12A Group** hardware user's manual for details on individual registers.

The \times in the register's Setting Value represents bits not used in this application, blank spaces represent bits that do not change, and the dash represents reserved bits or bits that have nothing assigned.

4.1 Function Tables

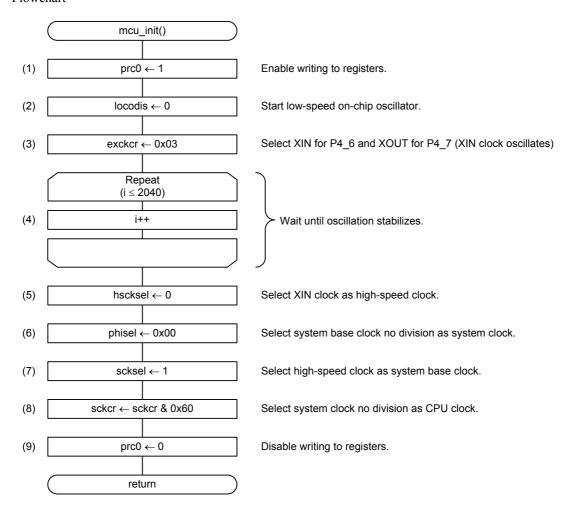
Declaration	void main (void)				
Outline	Main function	Main function			
Argument	Argument name		Meaning		
Argument	None		<u> </u>		
Variable (global)	Variable name		Contents		
variable (global)	None		_		
Returned value	Туре	Value	Meaning		
Treturned value	None —		<u> </u>		
Function	Initialize the system clock and timer RC.				

Declaration	void mcu_init (void)			
Outline	System clock setting	ng		
A	Argument name		Meaning	
Argument	None		_	
\/ariable (alabal)	Variable name		Contents	
Variable (global)	None		_	
Returned value	Туре	Value	Meaning	
Returned value	None —		_	
Function	Set the system cloc	ck (XIN clock).		


Declaration	void timer_rc_init (void)					
Outline	Initial setting of time	Initial setting of timer RC				
Argument	Argument name		Meaning			
Argument	None		Contents			
Variable (global)	Variable name		Contents			
variable (global)	None		_			
Returned value	Туре	Value	Meaning			
Tetarrica value	None —		_			
Function	Initialize SFRs to us	e the input capture funct	ion in timer RC timer mode.			

Declaration	void measurement_calcu (void)					
Outline	Measured value calculation					
Argument	Argument name		Meaning			
Argument	None		_			
	Variable name		Contents			
	unsigned char f_cap	oture	Capture flag			
Variable (global)	unsigned short ovf_	cnt	Overflow counter			
variable (global)	unsigned short pres	ent_value	Current measured value			
	unsigned short last_	value	Previous measured value			
	unsigned long meas	surement_value	Measured result			
Returned value	Туре	Value	Meaning			
Returned value	None	_	_			
Function	When the capture flag is 1, the measured result of the pulse width is calculated based on the current measured value and previous measured value read in the tim RC interrupt handling, and the number of overflows.					

Declaration	void _timer_rc (void)					
Outline	Timer RC interrupt h	Timer RC interrupt handling				
Argument	Argument name		Meaning			
Argument	None		_			
	Variable name		Contents			
	unsigned char f_cap	oture	Capture flag			
Variable (global)	unsigned short ovf_	cnt	Overflow counter			
	unsigned short pres	ent_value	Current measured value			
	unsigned short last_	value	Previous measured value			
Returned value	Туре	Value	Meaning			
Treturned value	None	_	_			
Function	When an active edge is detected (input capture) or the timer RC counter overflows timer RC interrupt handling is performed. When an input capture occurs, read the current measured value (TRCGRA register) and previous measured value (TRCGRC register), and set the capture flag to 1. When an overflow occurs, the number of overflows is counted.					


4.2 Main Function

• Flowchart

4.3 System Clock Setting

• Flowchart

- Register settings
- (1) Enable writing to registers EXCKCR, OCOCR, SCKCR, PHISEL, CKSTPR, CKRSCR, BAKCR, FRV1, and FRV2.

Protect Register (PRCR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value		_	_	Х	Х		Х	1

Bit	Symbol	Bit Name	Function	R/W
b0	PRC0	Protect hit 0	Enables writing to registers EXCKCR, OCOCR, SCKCR, PHISEL, CKSTPR, CKRSCR, BAKCR, FRV1, and FRV2 1: Enabled	R/W

(2) Start the low-speed on-chip oscillator.

High-Speed/Low-Speed On-Chip Oscillator Control Register (OCOCR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_	_	_	_	_		0	Х

Bit	Symbol	Bit Name	Function	R/W
b1	LOCODIS	Low-speed on-chip oscillator oscillation stop bit	0: Low-speed on-chip oscillator on	R/W

(3) Oscillate the XIN clock.

External Clock Control Register (EXCKCR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value		Х		_		1	1	1

Bit	Symbol	Bit Name	Function		
b0	CKPT0	Port P4 6 and P4 7 pin function select bits		P4_7 pin	R/W
b1	CKPT1	Port P4_6 and P4_7 pin function select bi	1 1: XIN	1 1: XOUT	R/W

- (4) Wait until the XIN clock oscillation stabilizes.
- (5) Set the XIN clock as the high-speed clock.

System Clock f Control Register (SCKCR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value		0	Х	_				

Bit	Symbol	Bit Name	Function	R/W
b6	HSCKSEL	High-speed on-chip oscillator/ XIN clock select bit	0: XIN clock	R/W

(6) Set the system base clock with no division as the system clock.

System Clock f Select Register (PHISEL)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	PHISEL0			R/W
b1	PHISEL1			R/W
b2	PHISEL2		These bits used to set the division ratio of the	R/W
b3	PHISEL3	System clock division select bits	system base clock (fBASE) to generate the system	R/W
b4	PHISEL4		clock (f). f = fBASE/(n + 1)	R/W
b5	PHISEL5		n: Binary value set by the PHISEL register	R/W
b6	PHISEL6			R/W
b7	PHISEL7			R/W

(7) Set the high-speed clock as the system base clock.

Clock Stop Control Register (CKSTPR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	1	_	_	_	_	Х	Х	Х

ſ	Bit	it Symbol Bit Name		Function				
ſ	b7	SCKSEL	System base clock select bit	1: fHSCK	R/W			

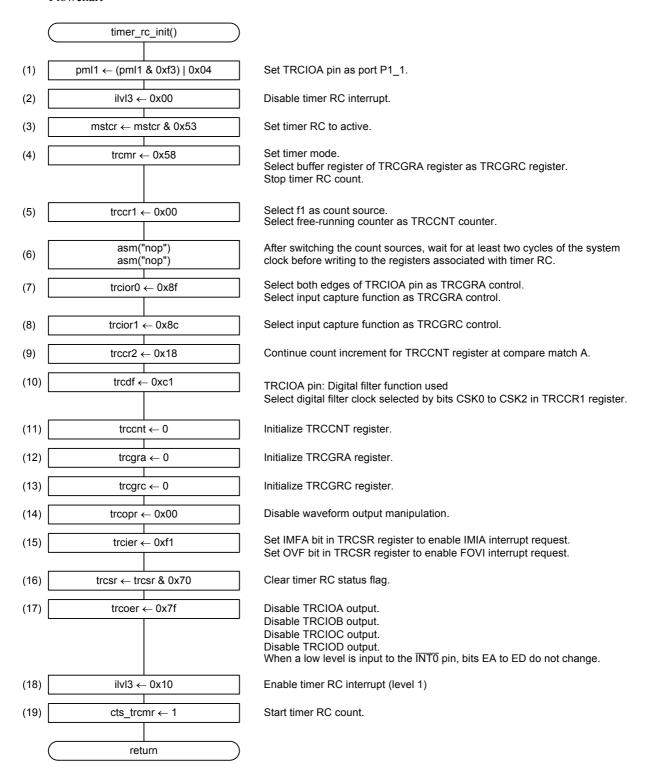
(8) Set the system clock with no division as the CPU clock.

System Clock f Control Register (SCKCR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_		Х	_	_	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	PHISSEL0			R/W
b1	PHISSEL1		b2 b1 b0 0 0: fs = System clock with no division	R/W
b2	PHISSEL2			R/W

(9) Disable writing to registers EXCKCR, OCOCR, SCKCR, PHISEL, CKSTPR, CKRSCR, BAKCR, FRV1, and FRV2.


Protect Register (PRCR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value		_	_	Х	Х	_	Х	0

Bit	Symbol	Bit Name	Function	R/W
b0	PRC0	Protect bit 0	Enables writing to registers EXCKCR, OCOCR, SCKCR, PHISEL, CKSTPR, CKRSCR, BAKCR, FRV1, and FRV2 0: Disabled	R/W

4.4 Initial Setting of Timer RC

Flowchart

- Register settings
- (1) Set TRCIOA as the port P1_1 function.

Port 1 Function Mapping Register 0 (PML1)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	Х	Х	Х	Х	0	1	Х	Х

Bit	Symbol	Bit Name	Function	R/W
b2	P11SEL0	Port P1_1 function select	b1 b0	R/W
b3	P11SEL1	bits	0 1: TRCIOA	R/W

(2) Disable the timer RC interrupt.

Interrupt Priority Level Register 3 (ILVL3)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_		0	0	_			_

Bit	Symbol	Bit Name	Function	R/W
b4	ILVL34		b5 b4	R/W
b5	ILVL35		0 0: Level 0 (interrupt disabled)	R/W

(3) Set timer RC to active.

Module Standby Control Register (MSTCR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value		Х	0	Х	_		Х	Х	

Bit	Symbol	Bit Name	Function	R/W
b5	MSTTRC	Timer RC standby bit	0: Active	R/W

(4) Set the timer RC mode register.

Timer RC Mode Register (TRCMR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	_	Х	1	1	Х	Х	Х

Ī	Bit	Symbol	Bit Name	Function	R/W
ĺ	b3	PWM2	PWM2 mode select bit	1: Timer mode or PWM mode	R/W
	b4	BUFEA	TRCGRC register function select bit	TRCGRC register is used as a buffer register for TRCGRA register	R/W
ĺ	b7	CTS	TRCCNT count start bit	0: Count is stopped	R/W

(5) Set timer RC control register 1.

Timer RC Control Register 1 (TRCCR1)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	0	0	0	Х	Х	Х	Х

Bit	Symbol	Bit Name	Function	R/W		
b4	CKS0			R/W		
b5	CKS1	Count source select bits	b6 b5 b4 0 0 0: f1			
b6	CKS2					
b7	CCLR	TRCCNT counter clear select bit	0: Free-running counter	R/W		

- (6) Wait for at least two cycles of the system clock.
- (7) Set timer RC I/O control register 0.

Timer RC I/O Control Register 0 (TRCIOR0)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_	Х	Х	Х		1	1	1

Bit	Symbol	Bit Name	Function	R/W
b0	IOA0	TRCGRA control A0 bit	b1 b0 b1 b0	R/W
b1	IOA1	TRCGRA control A1 bit	Other than 0 0, 0 1 Both edges on TRCIOA pin	R/W
b2	IOA2	TRCGRA control A2 bit	1: Input capture function	R/W

(8) Set timer RC I/O control register 1.

Timer RC I/O Control Register 1 (TRCIOR1)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	х	Х	Х	Х	Х	1	Х	Х	1

ĺ	Bit	Symbol	Bit Name	Function	R/W
ĺ	b2	IOC2	TRCGRC control C2 bit	1: Input capture function	R/W

(9) Set timer RC control register 2.

Timer RC Control Register 2 (TRCCR2)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	Х	Х	0		_	Х	Х	Х

Bit	Symbol	Bit Name	Function	R/W
b5	CSTP	Count stop bit	0: Increment is continued	R/W

(10) Set timer RC digital filter function select register.

Timer RC Digital Filter Function Select Register (TRCDF)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	1	1	_	Х	Х	Х	Х	1

Bit	Symbol	Bit Name	Function	R/W		
b0	DFA	TRCIOA digital filter function bit	1: Digital filter function used	R/W		
b6	DFCK0	Digital filter clock select bits	b7 b6 1 1: Clock selected by bits CSK0 to CSK2 in TRCCR1	R/W		
b7	DFCK1	Digital litter clock select bits	register			

(11) Initialize the timer RC counter to 0000h.

Timer RC Counter (TRCCNT)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	0	0	0	0	0	0	0
Bit	b15	b14	b13	b12	b11	b10	b9	b8
Setting Value	0	0	0	0	0	0	0	0

Bit	Function	Setting Range	R/W
b15-b0	16-bit readable/writable up counter.	0000h to FFFFh	R/W

(12) Initialize timer RC general register A to 0000h.

Timer RC General Register A (TRCGRA)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	0	0	0	0	0	0	0
Bit	b15	b14	b13	b12	b11	b10	b9	b8
Setting Value	0	0	0	0	0	0	0	0

Bit	Function	R/W
b15-b0	Current measured value (TRCCNT register value when an input capture occurs)	R/W

(13) Initialize timer RC general register C to 0000h.

Timer RC General Register C (TRCGRC)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	0	0	0	0	0	0	0
Bit	b15	b14	b13	b12	b11	b10	b9	b8
Setting Value	0	0	0	0	0	0	0	0

	Bit	Function	R/W
b1	15-b0	Previous measured value (TRCGRA register value when an input capture occurs)	R/W

(14) Set the timer RC waveform output manipulation register.

Timer RC Waveform Output Manipulation Register (TRCOPR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_	_	0	Х	х	х	х	Х

Bit	Symbol	Bit Name	Function	R/W
b5	OPE	Waveform output manipulation enable bit	0: Waveform output manipulation disabled	R/W

(15) Set the timer RC interrupt enable register.

Timer RC Interrupt Enable Register (TRCIER)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	1	_	_	_	0	0	0	1

Bit	Symbol	Bit Name	Function	R/W	
b0	IMIEA	Input capture/compare match A interrupt enable bit	Interrupt request (IMIA) by IMFA bit in TRCSR register is enabled	R/W	
b1	IMIEB Input capture/compare match B interrupt enable bit		O: Interrupt request (IMIB) by IMFB bit in TRCSR register is disabled		
b2		Input capture/compare match C interrupt enable bit	Interrupt request (IMIC) by IMFC bit in TRCSR register is disabled	R/W	
b3	IMIED	Input capture/compare match D interrupt enable bit	Interrupt request (IMID) by IMFD bit in TRCSR register is disabled	R/W	
b7	OVIE	Timer overflow interrupt enable bit	Interrupt request (FOVI) by OVF bit in TRCSR register is enabled	R/W	

(16) Initialize the timer RC status register.

Timer RC Status Register (TRCSR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	_	_	_	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W			
b0	IMFA	Input capture/compare match A flag	· · · · · · · · · · · · · · · · · · ·				
b1	IMFB	Input capture/compare match B flag	[Condition for potting to 0]	R/W			
b2	IMFC	Input capture/compare match C flag	[Condition for setting to 0] • When 0 is written to this bit after reading it as 1.	R/W			
b3	IMFD	Input capture/compare match D flag		R/W			
b7	OVF	Timer overflow flag					

(17) Set the timer RC output enable register.

Timer RC Output Enable Register (TRCOER)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	_	_	_	1	1	1	1

Bit	Symbol	Bit Name	Function	R/W		
b0	EA	TRCIOA output disable bit	Output disabled (independent of settings of registers TRCMR and TRCIOR0)	R/W		
b1	EB	registers TRCMR and TRCIOR0)				
b2	EC	TRCIOC output disable bit	Output disabled (independent of settings of registers TRCMR and TRCIOR1)	R/W		
b3	ED	TRCIOD output disable bit	Output level is fixed or high impedance depending on TRCOPR register setting	R/W		
b7	PTO	Timer output disable bit	0: Bits EA to ED do not change even if a low level is input to the INT0 pin	R/W		

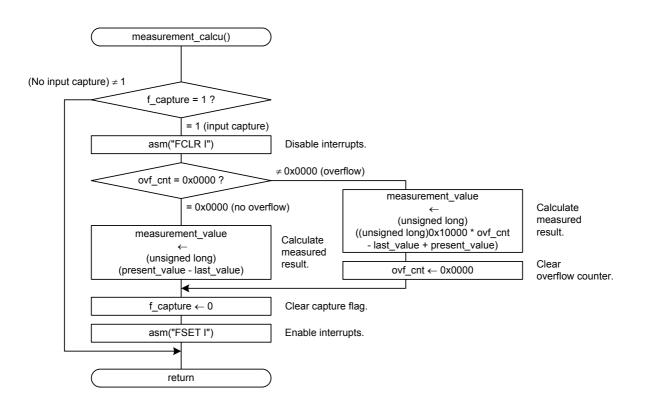
(18) Enable the timer RC interrupt.

Interrupt Priority Level Register 3 (ILVL3)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_	_	0	1			_	_

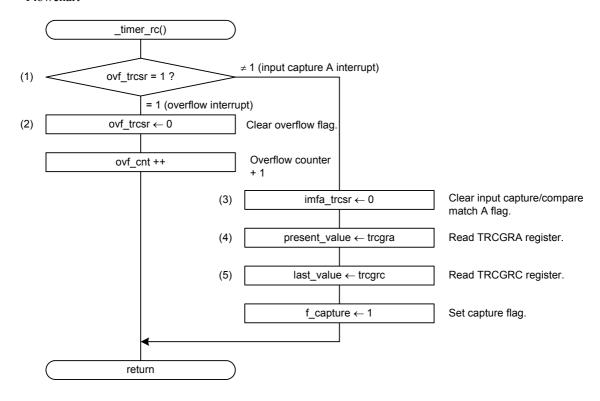
	Bit	Symbol	Bit Name	Function	R/W	
	b4		Interrupt priority level	b5 b4	R/W	
ĺ	b5	ILVL35	setting bits	0 1: Level 1		

(19) Start the timer RC count.


Timer RC Mode Register (TRCMR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	1	_	Х			Х	Х	Х	1

Bit	Symbol	Bit Name	Function	R/W
b7	CTS	TRCCNT count start bit	1: Count is started	R/W


4.5 Measured Value Calculation

• Flowchart

4.6 Timer RC Interrupt

• Flowchart

- Register settings
- (1) Determine the timer RC interrupt generation source.

Timer RC Status Register (TRCSR)

Bit	Symbol	Bit Name	Function	R/W
b7	OVF	Timer overflow flag	[Condition for setting to 1] When the TRCCNT register overflows from FFFFh to 0000h.	R/W

(2) Clear the overflow flag.

Timer RC Status Register (TRCSR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	_		_				

Bit	Symbol	Bit Name	Function	R/W
b7	OVF	Limer overtiow tiad	[Condition for setting to 0] When 0 is written to this bit after reading it as 1.	R/W

(3) Clear the input capture/compare match A flag.

Timer RC Status Register (TRCSR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value		_		_				0	

Ī	Bit	Symbol	Bit Name	Function	R/W
I	b0	IMFA		[Condition for setting to 0] When 0 is written to this bit after reading it as 1.	R/W

(4) Read the input capture register.

Timer RC General Register A (TRCGRA)

Ī	Bit	Function	R/W
	b15-b0	Current measured value (TRCCNT register value when an input capture occurs)	R/W

(5) Read the buffer register.

Timer RC General Register C (TRCGRC)

Bit	Function	R/W
b15-b0	Previous measured value (TRCGRA register value when an input capture occurs)	R/W

5. Sample Program

A sample program can be downloaded from the Renesas Electronics website.

To download, click "Application Notes" in the left-hand side menu of the R8C Family page.

6. Reference Documents

R8C/M12A Group User's Manual: Hardware Rev.1.00

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

Pavisian History	R8C/M12A Group
Revision History	Input Capture Function of Timer RC

Rev.	Date	Description		
ixev.	Date	Page	Summary	
1.00	Jan. 28, 2011	First edition issued		
	Mar. 10, 2011		R8C/M12A Group hardware user's manual Rev.1.00 reviewed	
		8	External clock control register (EXCKCR) revised	
1.10		9	System clock f select register (PHISEL) revised System clock f control register (SCKCR) revised	
		10, 12	(6) CPU revised as system	
1.11	Mar. 31, 2011	8	High-speed/low-speed on-chip oscillator control register (OCOCR) revised	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical "Specific": implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

enesas Electronics America Inc. 80 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. dl: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-2035-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-5887-7589

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipei, Taiwa Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: 482-2-558-5141

© 2011 Renesas Electronics Corporation. All rights reserved.