

R32C/100 Series Real-Time Clock Operation Using Timer A

R01AN0859EJ0100 Rev. 1.00 Aug. 24, 2012

Abstract

This document describes real-time clock operation using the timer function in the R32C/100 Series MCU.

Products

R32C/116 Group R32C/117 Group R32C/118 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Specifications		
2.	Operation Confirmation Conditions		
3.	Reference Application Notes		
4.	Hardware		
4.1	Pin Used		
5.	Software		
5.1	Operation Overview		
5.2	Constants		
5.3	Variables		
5.4	Functions		
5.5	Function Specifications		
5.6	Flowcharts1		
5.6	6.1 Main Processing		
5.6	5.2 Timer A0 Initial Setting 12		
5.6	5.3 Time Setting		
5.6			
5.6			
5.6	6.6 Sub Clock Oscillation Setting 16		
5.6	5		
5.6	6.8 Power Control Processing 19		
5.6	5.9 Timer A0 Interrupt Handling		
6.	Sample Code21		
7.	Reference Documents		

1. Specifications

This document describes real-time clock operation using timer A0 in timer mode. Enter wait mode after setting the operating mode to low power mode (base clock source is the sub clock). Use the timer A0 interrupt to exit wait mode. The date, day, and time data are updated in the timer A0 interrupt handler. The date, day, and time data start counting from 00:00:00, Saturday, January 1, 2000.

The count continues until 23:59:59, Saturday, December 31, 2099, and then resets to the initial date and time. The counter takes the leap day into account.

Table 1.1 lists the Peripheral Functions and Their Applications. Figure 1.1 shows the Relationship Between Date, Day, and Time Data. Figure 1.2 shows the Transition Between Operating Modes.

Table 1.1	Peripheral Functions and Their Applications
-----------	---

Peripheral Function	Application
Timer A0 in timer mode	1 second counter
Timer A1	Generates wait time for sub clock oscillation

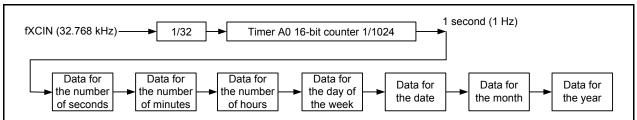


Figure 1.1 Relationship Between Date, Day, and Time Data

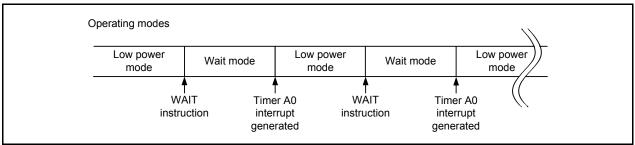


Figure 1.2 Transition Between Operating Modes

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Item	Contents
MCU used	R5F64189DFD (R32C/118 Group)
	When in PLL mode
	Main clock: 16 MHz
	• PLL clock: 100 MHz
	Base clock: 50 MHz
	CPU clock: 50 MHz
	Peripheral bus clock: 25 MHz
	 Peripheral function clock source: 25 MHz
Operating frequencies	
	When in low power mode
	Main clock is stopped
	PLL clock is stopped
	Base clock: 32.768 kHz (sub clock: 32.768 kHz)
	CPU clock: 32.768 kHz
	Peripheral bus clock: 16.384 kHz
	Peripheral function clock source is stopped
Operating voltage	5 V
Integrated development	Renesas Electronics Corporation
environment	High-performance Embedded Workshop Version 4.08
	Renesas Electronics Corporation
	R32C/100 Series C Compiler V.1.02 Release 01
C compiler	Compile options
o complier	-DSTACKSIZE=0X300 -DISTACKSIZE=0X300
	-DVECTOR_ADR=0x0FFFFBDC -c -finfo -dir "\$(CONFIGDIR)"
	(Default setting is used in the integrated development environment.)
Operating mode	Single-chip mode
Sample code version	Version 1.00

 Table 2.1
 Operation Confirmation Conditions

3. Reference Application Notes

Application notes associated with this application note are listed below. Refer to these application notes for additional information.

- R32C/100 Series Configuring PLL Mode (REJ05B1221-0100)
- R32C/100 Series Entering Low-speed Mode (REJ05B1222-0100)
- R32C/100 Series Configuring Wait Mode (REJ05B1223-0100)

4. Hardware

4.1 Pin Used

Table 4.1 lists the Pin Used and Its Function.

Table 4.1	Pin Used and Its Function

ſ	Pin Name	I/O	Function
Γ	P0_0	Output	Confirm period for transition to wait mode

5. Software

5.1 Operation Overview

Enter wait mode after setting the operating mode to low power mode. With timer A0 in timer mode, use a timer A0 interrupt with a 1 second period to exit wait mode. The date, day, and time data are updated in the timer A0 interrupt handler. Leap day determination is performed when the month changes. After the data is updated, a WAIT instruction is used to enter wait mode again.

Settings:

- Timer used: Timer A0
- Mode used: Timer mode
- Timer A0 count source: fC32
- Interrupt used: Timer A0 interrupt
- Gate function: Not used

Formula to calculate a 1 second counter:

 $1000 \text{ ms} = (1 \div \text{fC32}) \times (\text{TA0} + 1)$

= {1 ÷ (32.768 kHz ÷ 32)} × 1024

- = 0.9765625 ms × 1024
- (1) Initial setting

Set timer A0 and low power mode as the initial setting.

(2) Timer A0 count start

Set the TA0S bit in the TABSR register to 1 to start the timer A0 count. After the timer A0 count starts, the real-time clock starts counting from 00:00:00, Saturday, January 1, 2000.

- (3) WAIT instruction execution Execute the WAIT instruction to enter wait mode.
- (4) Timer A0 interrupt generation
- When timer A0 underflows, the timer A0 interrupt is generated and the MCU exits wait mode.(5) Timer A0 interrupt handling

Date, day, and time data are updated in the timer A0 interrupt handler. However, the values are stored in the variable in hexadecimal.

(6) Date, day, and time data initialization The count continues until 23:59:59, Saturday, December 31, 2099, and then resets to the initial date and time.

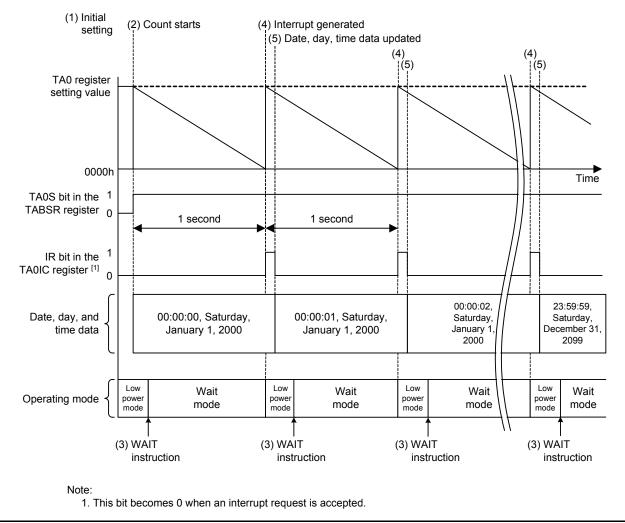


Figure 5.1 shows an Example of Real-Time Clock Operation.

Figure 5.1 Example of Real-Time Clock Operation

5.2 Constants

Table 5.1 lists the Constants Used in the Sample Code.

Constant Name	Setting Value	Contents
YEAR_MAX	2099	Data for the maximum number of years
MONTH_MAX	12	Data for the maximum number of months
WEEK_MAX	6	Data for the maximum number of weeks in a month
HOUR_MAX	23	Data for the maximum number of hours
MIN_MAX	59	Data for the maximum number of minutes
SEC_MAX	59	Data for the maximum number of seconds

5.3 Variables

Table 5.2 lists the Global Variables, and Table 5.3 lists the const Variable.

Туре	Variable Name	Contents	Function Used
unsigned short	year_cnt	Store data for number of years (2000 to 2099)	date_set, leap_day_check
unsigned char	month_cnt	Store data for number of months (1 to 12)	date_set, leap_day_check
unsigned char	day_cnt	Store data for number of days (1 to 31)	time_set, date_set, leap_day_check
unsigned char	week_cnt	Store data for day of the week 0: Sunday 1: Monday 2: Tuesday 3: Wednesday 4: Thursday 5: Friday 6: Saturday	time_set, date_set
unsigned char	hour_cnt	Store data for number of hours (00 to 23)	time_set
unsigned char	min_cnt	Store data for number of minutes (00 to 59)	time_set
unsigned char	sec_cnt	Store data for number of seconds (00 to 59)	time_set

Table 5.2 Global Variables

Table 5.3const Variable

Туре	Variable Name	Contents	Function Used
const unsigned char	day_max_tbl[12]	Data table for the maximum number of days per month	date_set

5.4 Functions

Table 5.4 lists the Functions.

Table 5.4 Functions

Function Name	Outline
timer_a0_int	Timer A0 initial setting
time_set	Time setting
date_set	Date setting
leap_day_check	Leap day determination
subclock_set	Sub clock oscillation setting
before_wait_mode_set	Wait mode preset processing
power_control	Power control processing
_timer_a0	Timer A0 interrupt handling

5.5 Function Specifications

The following tables list the sample code function specifications.

timer_a0_int		
Outline	Timer A0 initial setting	
Header	None	
Declaration	void timer_a0_init(void)	
Description	Initial settings to use timer A0 in timer mode.	
Argument	None	
Returned value	None	
Remark		

time_set		
Outline	Time setting	
Header	None	
Declaration	void time_set(void)	
Description	After setting the data for the seconds, minutes, hours, date, and day of the week, the date setting function is called.	
Argument	None	
Returned value	None	
Remark		

date_set			
Outline	Date setting		
Header	None		
Declaration	void date_set(void)		
Description	The leap day determination function is called, and depending on the result, the date, month, and year data is set.		
Argument	None		
Returned value	None		
Remark			

leap_day_check			
Outline	Leap day determination		
Header	None		
Declaration	unsigned char leap_day_check(void)		
Description	 Leap day is determined. Years that can be evenly divided by 4 are determined to have the leap day (February 29). However, years that can be divided by 4 or divided by 100, but cannot be divided by 400 are determined to not have a leap day. 		
Argument	None		
Returned value	urned value • Leap day: 1 • Not a leap day: 0		
Remark			

subclock_set		
Outline	Sub clock oscillation setting	
Header	None	
Declaration	void subclock_set(void)	
Description	After setting both bits PD8_6 and PD8_7 in the PD8 register to 0 (input mode) and the PU25 bit in the PUR2 register to 0 (pull-up resistor unused), set the CM04 bit in the CM0 register to 1 (XIN-XCIN oscillator).	
Argument	None	
Returned value	None	
Remark	Set the oscillation stabilization time according to the manufacturer's recommendation.	

before_wait_mode_set			
Outline	Wait mode preset processing		
Header	None		
Declaration	void before_wait_mode_set(void)		
Description	 Change the base clock source from the PLL clock to the sub clock and enter speed mode. Stop the main clock and PLL clock, and transition from low speed mode to low pomode. 		
Argument	None		
Returned value	None		
Remark			

power_control		
Outline	Power control processing	
Header	None	
Declaration	void power_control(void)	
Description Set the interrupt priority level for wake-up, execute the WAIT instruction, mode.		
Argument	None	
Returned value	None	
Remark		

_timer_a0		
Outline	Timer A0 interrupt handling	
Header	None	
Declaration	pid _timer_a0(void)	
Description	Call the timer_set function in the interrupt handler.	
Argument	None	
Returned value	None	
Remark		

5.6 Flowcharts

5.6.1 Main Processing

Figure 5.2 shows the Main Processing.

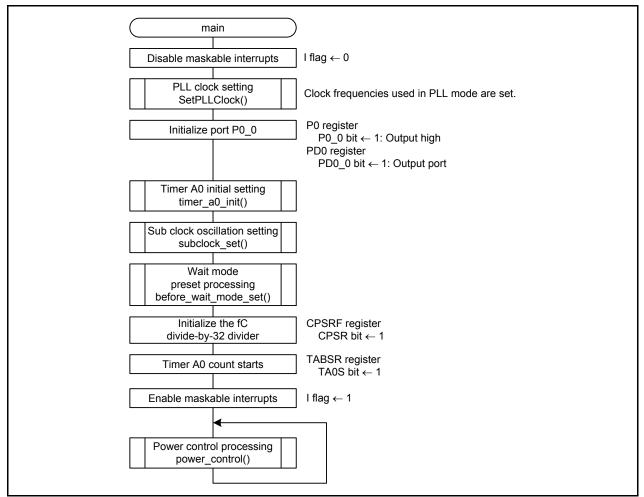


Figure 5.2 Main Processing

5.6.2 Timer A0 Initial Setting

Figure 5.3 shows the Timer A0 Initial Setting.

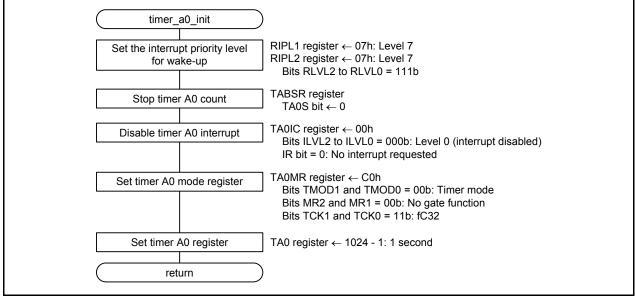
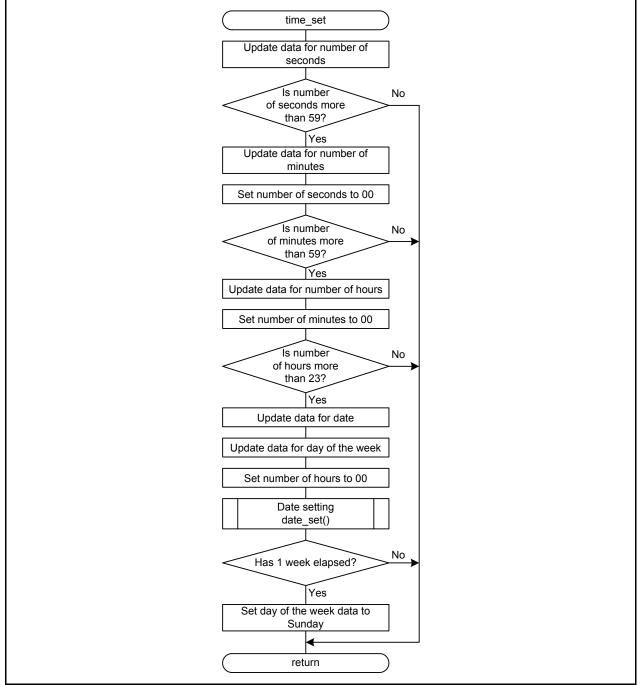



Figure 5.3 Timer A0 Initial Setting

5.6.3 Time Setting

Figure 5.4 shows the Time Setting.

RENESAS

5.6.4 Date Setting

Figure 5.5 shows the Date Setting.

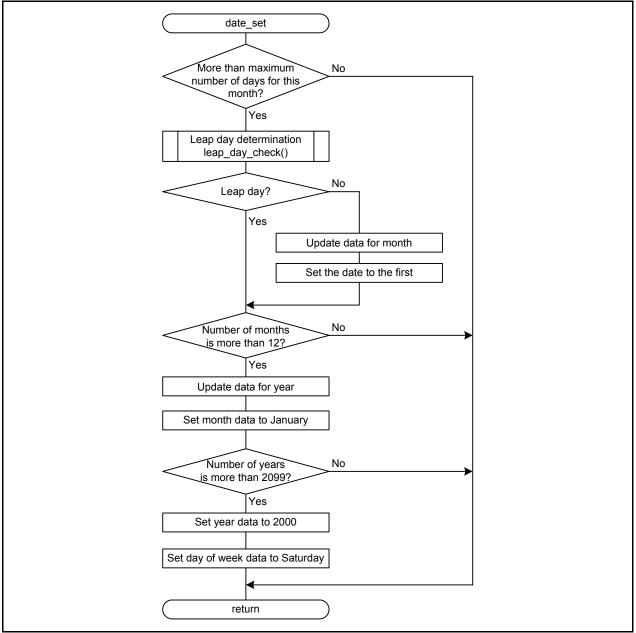


Figure 5.5 Date Setting

RENESAS

5.6.5 Leap Day Determination

Figure 5.6 shows the Leap Day Determination.

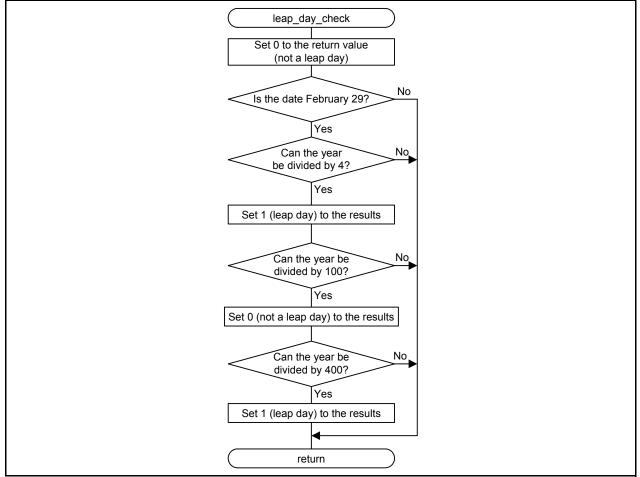


Figure 5.6 Leap Day Determination

5.6.6 Sub Clock Oscillation Setting

Figure 5.7 and Figure 5.8 show the sub clock oscillation setting.

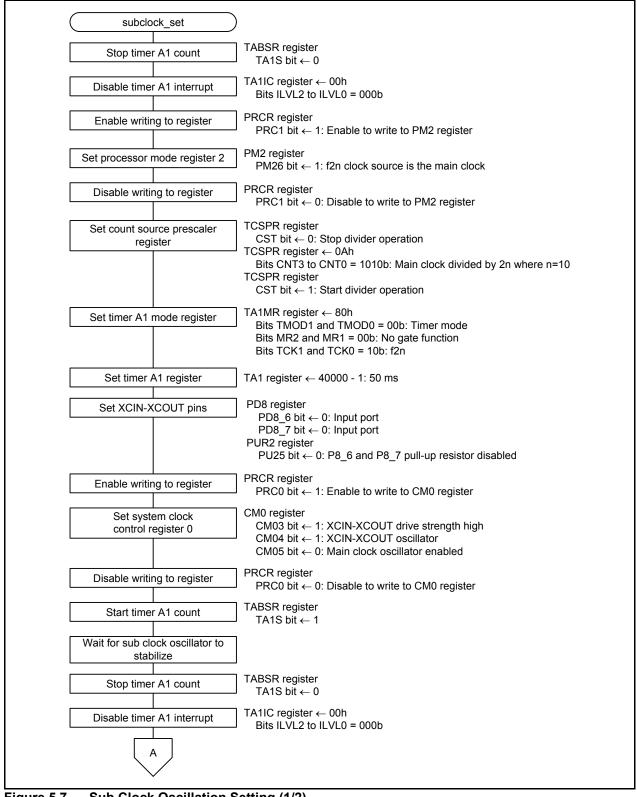
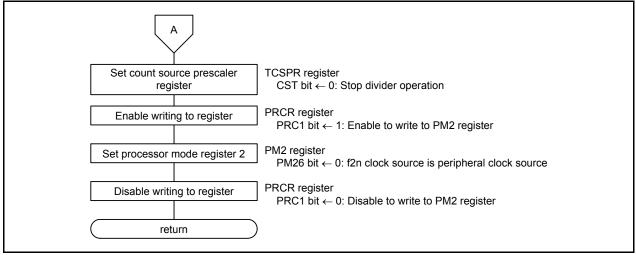
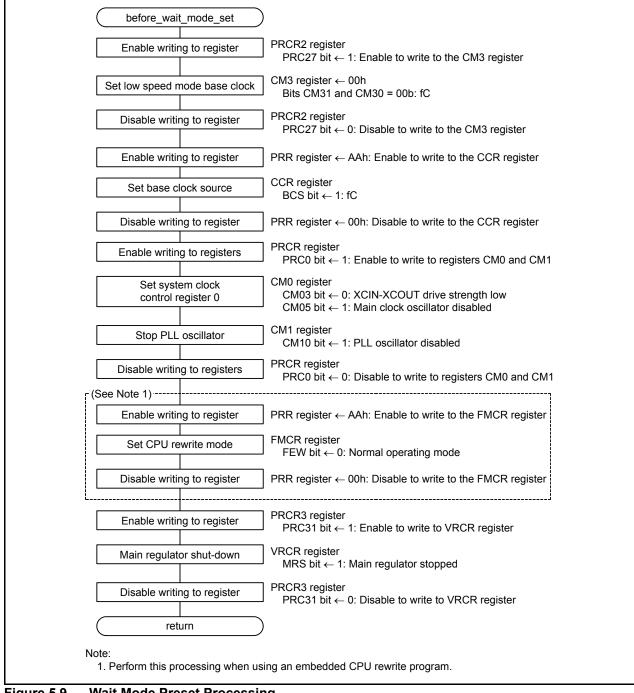
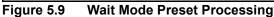


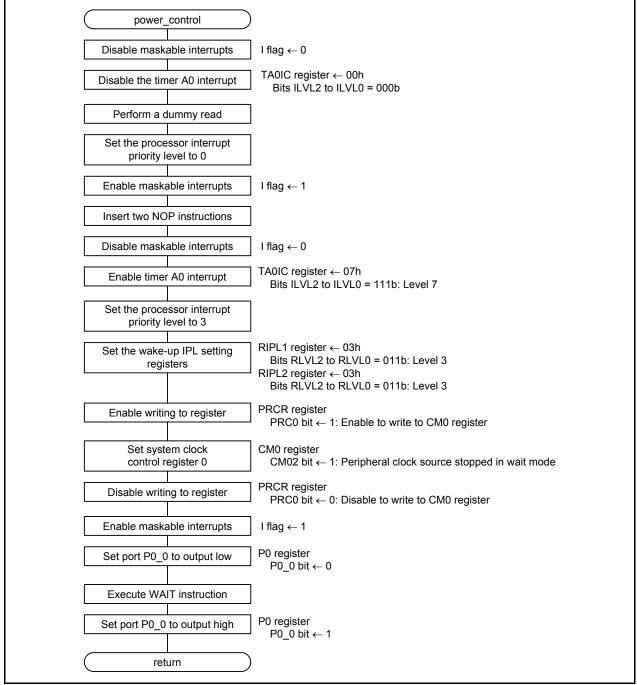
Figure 5.7Sub Clock Oscillation Setting (1/2)

RENESAS


Figure 5.8 Sub Clock Oscillation Setting (2/2)

5.6.7 Wait Mode Preset Processing


Figure 5.9 shows Wait Mode Preset Processing.

5.6.8 Power Control Processing

Figure 5.10 shows the Power Control Processing.

RENESAS

5.6.9 Timer A0 Interrupt Handling

Figure 5.11 shows the Timer A0 Interrupt Handling.

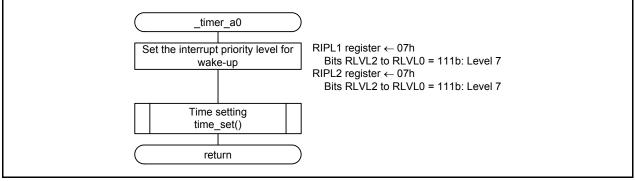


Figure 5.11 Timer A0 Interrupt Handling

6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

R32C/116 Group User's Manual: Hardware Rev.1.10 R32C/117 Group User's Manual: Hardware Rev.1.10 R32C/118 Group User's Manual: Hardware Rev.1.10 The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual R32C/100 Series C Compiler Package V.1.02 C Compiler User's Manual Rev.2.00 The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/contact/

Revision History	R32C/100 Series
	Real-Time Clock Operation Using Timer A

Rev.	Date	Description		
		Page	Summary	
1.00	Aug. 24, 2012	_	First edition issued	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

*Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-8000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarkst, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milloadr Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrase 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-11628-651-804 Renesas Electronics Furope GmbH Arcadiastrase 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-211-6503-1327 Renesas Electronics (Shangha) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-2455-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shangha) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazu Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-2757-1818, Fax: +86-2-1687-7858 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2868-9318, Fax: +852-2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 107, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +862-24175-9600, Fax: +882 2-9175-9670 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit f06-102 Lyflux Innovation Centre Singapore 339949 Tel: +65-213-0200, Fax: +65-213-0300 Renesas Electronics Kaiayaia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-37-95-9390, Fax: +60-37-95-9510