

# RX113 Group, RX130 Group

# Points of Difference Between RX113 Group and RX130 Group

### Summary

This application note is intended as a reference for confirming the points of difference between the I/O registers of the RX113 Group and RX130 Group.

### **Target Device**

RX130 Group 100-/64- pin versions

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

### Contents

| 1.   | Comparison of Functions of RX113 Group and RX130 Group | 3  |
|------|--------------------------------------------------------|----|
| 2.   | Comparative Overview of Functions                      | 5  |
| 2.1  | Operating Modes                                        | 5  |
| 2.2  | Address Space                                          | 6  |
| 2.3  | Resets                                                 | 7  |
| 2.4  | Option-Setting Memory                                  | 8  |
| 2.5  | Voltage Detection Circuit                              | 9  |
| 2.6  | Clock Generation Circuit                               |    |
| 2.7  | Low Power Consumption Functions                        | 15 |
| 2.8  | Register Write Protection Function                     |    |
| 2.9  | Interrupt Controller                                   | 21 |
| 2.10 | Bus                                                    | 23 |
| 2.11 | Event Link Controller                                  | 24 |
| 2.12 | I/O Ports                                              | 25 |
| 2.13 | Multi-Function Pin Controller                          |    |
| 2.14 | 8-Bit Timer                                            |    |
| 2.15 | Compare Match Timer                                    |    |
| 2.16 | Realtime Clock                                         |    |
| 2.17 | Serial Communication Interface                         |    |
| 2.18 | I <sup>2</sup> C Bus Interface                         |    |
| 2.19 | Serial Peripheral Interface                            | 57 |
| 2.20 | Capacitive Touch Sensing Unit                          |    |
| 2.21 | 12-Bit A/D Converter                                   |    |
| 2.22 | D/A Converter                                          |    |
| 2.23 | RAM                                                    | 70 |
| 2.24 | Flash Memory (ROM)                                     | 71 |



| 2.25  | Package (LFQFP64/100 only)73             |
|-------|------------------------------------------|
| 3.    | Comparison of Pin Functions74            |
| 4.    | Notes on Migration                       |
| 4.1   | Operating Voltage Range                  |
| 4.1.1 | Power Supply Voltage81                   |
| 4.2   | Key Points Regarding Pin Design81        |
| 4.2.1 | USB Pins                                 |
| 4.2.2 | Resonator Connection Pins                |
| 4.2.3 | A/D Converter Analog Input Pins82        |
| 4.2.4 | D/A Converter Analog Input Pins82        |
| 4.2.5 | Mode Setting Pins                        |
| 4.2.6 | General I/O Ports                        |
| 4.3   | Key Points Regarding Functional Design83 |
| 4.3.1 | Option-Setting Memory83                  |
| 4.3.2 | Operating Modes                          |
| 4.3.3 | Clock Generation Circuit                 |
| 4.3.4 | Serial Communication Interface           |
| 4.3.5 | I <sup>2</sup> C Bus Interface           |
| 4.3.6 |                                          |
| 5.    | Reference Documents                      |



# 1. Comparison of Functions of RX113 Group and RX130 Group

A comparison of the functions of the RX113 Group and RX130 Group is provided below. For details of the functions, see 2, Comparative Overview of Functions, and 5, Reference Documents.

Table 1.1 is a comparative listing of the functions of the RX113 and RX130.

### Table 1.1 Comparison of Functions of RX113 and RX130

| Function                                                                | RX113            | RX130            |
|-------------------------------------------------------------------------|------------------|------------------|
| CPU                                                                     | 0                | 0                |
| Operating mode                                                          | $\bigtriangleup$ | $\bigtriangleup$ |
| Address Space                                                           | $\bigtriangleup$ | $\triangle$      |
| Resets                                                                  | $\bigtriangleup$ | $\triangle$      |
| Option-setting memory                                                   | $\bigtriangleup$ | $\triangle$      |
| Voltage detection circuit (LVDAa): RX113, (LVDAb): RX130                | $\bigtriangleup$ | $\triangle$      |
| Clock generation circuit                                                | $\bigtriangleup$ | $\triangle$      |
| Clock frequency accuracy measurement circuit (CAC)                      | 0                | 0                |
| Low power consumption function                                          | $\bigtriangleup$ | $\triangle$      |
| Register write protection function                                      | $\bigtriangleup$ | $\triangle$      |
| Exception Handling                                                      | 0                | 0                |
| Interrupt controller (ICUb)                                             | $\bigtriangleup$ | $\triangle$      |
| Bus                                                                     | $\bigtriangleup$ | $\triangle$      |
| Data transfer controller (DTCa)                                         | 0                | 0                |
| Event link controller (ELC)                                             | $\bigtriangleup$ | $\triangle$      |
| I/O ports                                                               | $\bigtriangleup$ | $\triangle$      |
| Multi-function pin controller (MPC)                                     | $\bigtriangleup$ | $\triangle$      |
| Multi-function timer pulse unit 2 (MTU2a)                               | 0                | 0                |
| Port output enable 2 (POE2a)                                            | 0                | 0                |
| 8-bit timer (TMR)                                                       | $\bigtriangleup$ | $\triangle$      |
| Compare match timer (CMT)                                               | $\bigtriangleup$ | $\triangle$      |
| Realtime clock (RTCA)                                                   | $\bigtriangleup$ | $\triangle$      |
| Low-power timer (LPT)                                                   | 0                | 0                |
| Independent watchdog timer (IWDTa)                                      | 0                | 0                |
| USB2.0 Host/Function module                                             | 0                | ×                |
| Serial communication interface (SCIe, SCIf): RX113, (SCIg, SCIh): RX130 | $\bigtriangleup$ | $\triangle$      |
| IrDA interface                                                          | 0                | ×                |
| Remote control signal receiver (REMC)                                   | ×                | 0                |
| I <sup>2</sup> C bus interface (RIIC): RX113, (RIICa): RX130            | $\bigtriangleup$ | $\triangle$      |
| Serial sound interface (SSI)                                            | 0                | ×                |
| Serial peripheral interface (RSPI): RX113, (RSPIa): RX130               | $\bigtriangleup$ | $\triangle$      |
| CRC calculator (CRC)                                                    | 0                | 0                |
| LCD controller/driver (LCDC)                                            | 0                | ×                |
| Capacitive touch sensing unit (CTSU): RX113, (CTSUa): RX130             | $\bigtriangleup$ | $\triangle$      |
| 12-bit A/D converter (S12ADb): RX113, (S12ADE): RX130                   | $\bigtriangleup$ | $\triangle$      |
| 12-bit D/A converter (R12DAA): RX113, D/A converter (DAa): RX130        | $\bigtriangleup$ | $\bigtriangleup$ |
| Temperature sensor (TEMPSA)                                             | 0                | 0                |
| Comparator B (CMPBa)                                                    | 0                | 0                |
| Data operation circuit (DOC)                                            | 0                | 0                |
| RAM                                                                     | $\bigtriangleup$ | $\triangle$      |
| Flash memory (ROM)                                                      | $\bigtriangleup$ | $\triangle$      |
| Flash memory (E2 Data Flash)                                            | 0                | 0                |



| Function                   | RX113            | RX130       |
|----------------------------|------------------|-------------|
| Package (LFQFP64/100 only) | $\bigtriangleup$ | $\triangle$ |

Note: O: Function implemented,  $\times$ : Function not implemented,  $\triangle$ : Differences exist between implementation of function on RX113 and RX130.



### 2. Comparative Overview of Functions

This section lists points of difference between the peripheral functions of the RX113 and RX130 groups, comparing each function in overview and the registers of each function. Specifications implemented only on one group are shown in red, specifications that exist on both groups but with points of difference are shown in red for the RX130 Group, and specifications that exist on both groups are shown in black.

### 2.1 Operating Modes

Table 2.1 shows a comparative listing of the operating modes specifications.

| Table Lit Comparative Listing of Operating modes opeomoutions | Table 2.1 | <b>Comparative Listing</b> | g of Operating | g Modes S | pecifications |
|---------------------------------------------------------------|-----------|----------------------------|----------------|-----------|---------------|
|---------------------------------------------------------------|-----------|----------------------------|----------------|-----------|---------------|

| Item           | RX113                     | RX130                     |
|----------------|---------------------------|---------------------------|
| Operating mode | Single-chip mode          | Single-chip mode          |
|                | Boot mode (USB interface) |                           |
|                | Boot mode (SCI interface) | Boot mode (SCI interface) |
| Mode pins      | MD, <mark>UB#</mark>      | MD                        |



### 2.2 Address Space

Figure 2.1 shows the comparisons of memory maps.

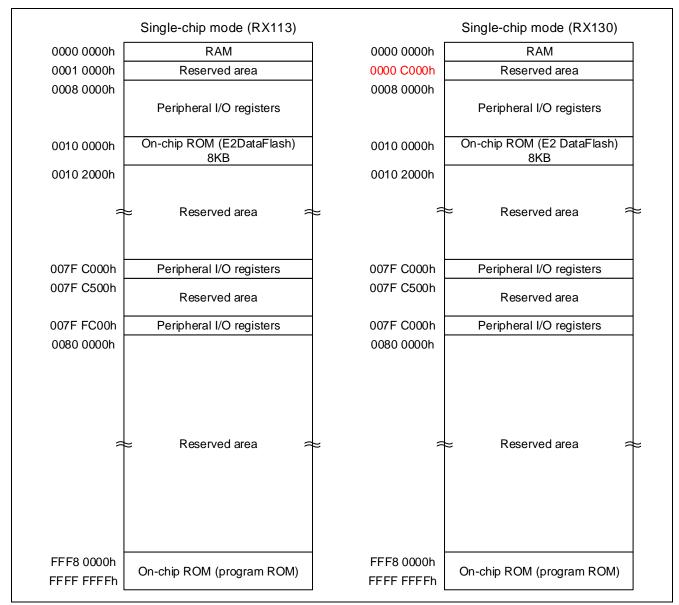



Figure 2.1 Memory Map in Each Operating Mode



# 2.3 Resets

Table 2.2 shows a comparative listing of the reset specifications, and Table 2.3 shows a comparative listing of the reset registers.

| Table 2.2 | Comparative Listing of Reset Specifications |  |
|-----------|---------------------------------------------|--|
|-----------|---------------------------------------------|--|

| ltem          | RX113                            | RX130                            |  |
|---------------|----------------------------------|----------------------------------|--|
| Name of reset | RES# pin reset                   | RES# pin reset                   |  |
|               | Power-on reset                   | Power-on reset                   |  |
|               |                                  | Voltage monitoring 0 reset       |  |
|               | Voltage monitoring 1 reset       | Voltage monitoring 1 reset       |  |
|               | Voltage monitoring 2 reset       | Voltage monitoring 2 reset       |  |
|               | Independent watchdog timer reset | Independent watchdog timer reset |  |
|               | Software reset                   | Software reset                   |  |

### Table 2.3 Comparative Listing of Reset Register

| Register | Bit    | RX113 | RX130                                |
|----------|--------|-------|--------------------------------------|
| RSTSR0   | LVD0RF |       | Voltage monitoring 0 reset detection |
|          |        |       | flag                                 |



### 2.4 Option-Setting Memory

Table 2.4 shows a comparative listing of the option-setting memory registers, and Figure 2.2 shows a comparative of the option-setting memory.

| Register | Bit                  | RX113                                                          | RX130                                 |
|----------|----------------------|----------------------------------------------------------------|---------------------------------------|
| OFS1     | STUPLVD1LVL<br>[3:0] | Startup voltage monitoring 1 reset detection level select bits | _                                     |
|          | STUPLVD1REN          | Startup voltage monitoring 1 reset enable bit                  | _                                     |
|          | FASTSTUP             | b0                                                             | b3                                    |
|          | LVDAS                |                                                                | Voltage detection 0 circuit start bit |
|          | VDSEL[1:0]           |                                                                | Voltage detection 0 level select bits |

| Table 2.4 | Comparative Listing of Option-Setting Memory Registers |
|-----------|--------------------------------------------------------|
|-----------|--------------------------------------------------------|

Note 1. Only the notation differs. The functionality is the same.

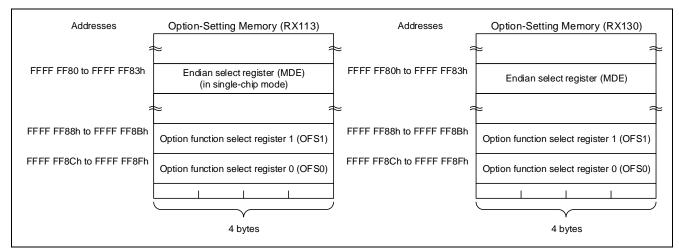



Figure 2.2 Comparative of Option-Setting Memory



### 2.5 Voltage Detection Circuit

Table 2.5 shows a comparative listing of the voltage detection circuit specifications, and Table 2.6 shows a comparative listing of the voltage detection circuit registers.

|                                    |                      | RX113                   |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      | RX130                                                                                                      |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      |
|------------------------------------|----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                               |                      | Voltage<br>Monitoring 0 | Voltage<br>Monitoring 1                                                                                                                                                                                                | Voltage<br>Monitoring 2                                                                                                                                                                                                                                                                              | Voltage<br>Monitoring 0                                                                                    | Voltage<br>Monitoring 1                                                                                                                                                                                                | Voltage<br>Monitoring 2                                                                                                                                                                                                                                                                              |
| VCC<br>monitoring                  | Monitored voltage    | _                       | Vdet1                                                                                                                                                                                                                  | Vdet2                                                                                                                                                                                                                                                                                                | Vdet0                                                                                                      | Vdet1                                                                                                                                                                                                                  | Vdet2                                                                                                                                                                                                                                                                                                |
|                                    | Detection<br>target  |                         | Voltage rises or<br>falls past Vdet1.                                                                                                                                                                                  | Voltage rises or<br>falls past Vdet2.<br>The<br>EXVCCINP2 bit<br>in LVCMPCR<br>can be used to<br>select between<br>VCC and the<br>voltage input to<br>the CMPA2 pin.                                                                                                                                 | Voltage falls<br>lower than<br>Vdet0.                                                                      | Voltage rises or<br>falls past Vdet1.                                                                                                                                                                                  | Voltage rises or<br>falls past Vdet2.<br>The<br>EXVCCINP2 bit<br>in LVCMPCR<br>can be used to<br>select between<br>VCC and the<br>voltage input to<br>the CMPA2 pin.                                                                                                                                 |
|                                    | Detection<br>voltage | _                       | Selectable from<br>10 levels using<br>LVDLVLR.LVD<br>1LVL[3:0] bits                                                                                                                                                    | Selectable from<br>four levels using<br>LVDLVLR.LVD<br>2LVL[1:0] bits                                                                                                                                                                                                                                | Selectable from<br>four levels using<br>OFS1 register.                                                     | Selectable from<br>14 levels using<br>LVDLVLR.LVD1<br>LVL[3:0] bits.                                                                                                                                                   | Selectable from<br>four levels using<br>LVDLVLR.LVD2<br>LVL[1:0] bits.                                                                                                                                                                                                                               |
|                                    | Monitor<br>flag      | _                       | LVD1SR.LVD1<br>MON flag:<br>Monitors if<br>higher or lower<br>than Vdet1.<br>LVD1SR.LVD1<br>DET flag:                                                                                                                  | LVD2SR.LVD2<br>MON flag:<br>Monitors if<br>higher or lower<br>than Vdet2.<br>LVD2SR.LVD2<br>DET flag:                                                                                                                                                                                                |                                                                                                            | LVD1SR.LVD1<br>MON flag:<br>Monitors if<br>higher or lower<br>than Vdet1.<br>LVD1SR.LVD1<br>DET flag:                                                                                                                  | LVD2SR.LVD2<br>MON flag:<br>Monitors if<br>higher or lower<br>than Vdet2.<br>LVD2SR.LVD2<br>DET flag:                                                                                                                                                                                                |
|                                    |                      |                         | Detects rise or<br>fall past Vdet1.                                                                                                                                                                                    | Detects rise or fall past Vdet2.                                                                                                                                                                                                                                                                     |                                                                                                            | Detects rise or fall past Vdet1.                                                                                                                                                                                       | Detects rise or fall past Vdet2.                                                                                                                                                                                                                                                                     |
| Voltage<br>detection<br>processing | Reset                | _                       | Voltage<br>monitoring 1<br>reset                                                                                                                                                                                       | Voltage<br>monitoring 2<br>reset                                                                                                                                                                                                                                                                     | Voltage<br>monitoring 0<br>reset                                                                           | Voltage<br>monitoring 1<br>reset                                                                                                                                                                                       | Voltage<br>monitoring 2<br>reset                                                                                                                                                                                                                                                                     |
|                                    |                      |                         | Reset when<br>Vdet1 > VCC:<br>Selectable<br>between CPU<br>operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet1 and CPU<br>operation<br>restarts a fixed<br>period of time<br>after Vdet1 ><br>VCC. | Reset when<br>Vdet2 > VCC or<br>CMPA2 pin<br>voltage:<br>Selectable<br>between CPU<br>operation<br>restarts a fixed<br>period of time<br>after VCC or<br>CMPA2 pin<br>voltage > Vdet2<br>and CPU<br>operation<br>restarts a fixed<br>period of time<br>after Vdet2 ><br>VCC or CMPA2<br>pin voltage. | Reset when<br>Vdet0 > VCC:<br>CPU operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet0. | Reset when<br>Vdet1 > VCC:<br>Selectable<br>between CPU<br>operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet1 and CPU<br>operation<br>restarts a fixed<br>period of time<br>after Vdet1 ><br>VCC. | Reset when<br>Vdet2 > VCC or<br>CMPA2 pin<br>voltage:<br>Selectable<br>between CPU<br>operation<br>restarts a fixed<br>period of time<br>after VCC or<br>CMPA2 pin<br>voltage > Vdet2<br>and CPU<br>operation<br>restarts a fixed<br>period of time<br>after Vdet2 ><br>VCC or CMPA2<br>pin voltage. |

### Table 2.5 Comparative Listing of Voltage Detection Circuit Specifications



|                                      |           | RX113                   |                                                                                                                                                                                                                                               |                                                                   | RX130                   |                                                                                                                                                                                                                              |                                                                   |
|--------------------------------------|-----------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Item                                 |           | Voltage<br>Monitoring 0 | Voltage<br>Monitoring 1                                                                                                                                                                                                                       | Voltage<br>Monitoring 2                                           | Voltage<br>Monitoring 0 | Voltage<br>Monitoring 1                                                                                                                                                                                                      | Voltage<br>Monitoring 2                                           |
| Voltage I<br>detection<br>processing | Interrupt |                         | Voltage<br>monitoring 1<br>interrupt<br>Selectable<br>between non-<br>maskable<br>interrupt and<br>interrupt and<br>interrupt.<br>Interrupt request<br>generated both<br>when Vdet1 ><br>VCC and when<br>VCC > Vdet1, or<br>one or the other. | generated both<br>when Vdet2 ><br>VCC or CMPA2<br>pin voltage and | <br>-<br>-              | Voltage<br>monitoring 1<br>interrupt<br>Selectable<br>between non-<br>maskable<br>interrupt and<br>interrupt.<br>Interrupt request<br>generated both<br>when Vdet1 ><br>VCC and when<br>VCC > Vdet1, or<br>one or the other. | generated both<br>when Vdet2 ><br>VCC or CMPA2<br>pin voltage and |
| Event link func                      | tion      | _                       | Available: Vdet1<br>pass-through                                                                                                                                                                                                              | other.                                                            | _                       | Available: Vdet1<br>pass-through<br>detection event                                                                                                                                                                          | other.                                                            |
|                                      |           |                         | detection event<br>output                                                                                                                                                                                                                     |                                                                   |                         | output                                                                                                                                                                                                                       |                                                                   |



| Register | Bit     | RX113                                 | RX130                                      |
|----------|---------|---------------------------------------|--------------------------------------------|
| LVDLVLR  | LVD1LVL | Voltage detection 1 level select bits | Voltage detection 1 level select bits      |
|          | [3:0]   | (standard voltage during drop in      | (standard voltage during drop in           |
|          |         | voltage)                              | voltage)                                   |
|          |         | b3 b0                                 | b3 b0                                      |
|          |         | 0 1 0 0: 3.10 V                       | 0 0 0 0: 4.29 V                            |
|          |         | 0 1 0 1: 3.00 V                       | 0 0 0 1: 4.14 V                            |
|          |         | 0 1 1 0: 2.90 V                       | 0 0 1 0: 4.02 V                            |
|          |         | 0 1 1 1: 2.79 V                       | 0 0 1 1: 3.84 V                            |
|          |         | 1 0 0 0: 2.68 V                       | 0 1 0 0: 3.10 V                            |
|          |         | 1 0 0 1: 2.58 V                       | 0 1 0 1: 3.00 V                            |
|          |         | 1 0 1 0: 2.48 V                       | 0 1 1 0: 2.90 V                            |
|          |         | 1 0 1 1: 2.06 V                       | 0 1 1 1: 2.79 V                            |
|          |         | 1 1 0 0: 1.96 V                       | 1 0 0 0: 2.68 V                            |
|          |         | 1 1 0 1: 1.86 V                       | 1 0 0 1: 2.58 V                            |
|          |         | Do not set to values other than the   | 1 0 1 0: 2.48 V                            |
|          |         | above.                                | 1 0 1 1: <mark>2.20 V</mark>               |
|          |         |                                       | 1 1 0 0: 1.96 V                            |
|          |         |                                       | 1 1 0 1: 1.86 V                            |
|          |         |                                       | Do not set to values other than the above. |
|          | LVD2LVL | Voltage detection 2 level select bits | Voltage detection 2 level select bits      |
|          | [1:0]   | (standard voltage during drop in      | (standard voltage during drop in           |
|          |         | voltage)                              | voltage)                                   |
|          |         | b5 b4                                 | b5 b4                                      |
|          |         | 0 0: 2.90 V                           | 0 0: 4.29 V                                |
|          |         | 0 1: 2.60 V                           | 0 1: <mark>4.14</mark> V                   |
|          |         | 1 0: 2.00 V                           | 1 0: <mark>4.02 V</mark>                   |
|          |         | 1 1: 1.80 V                           | 1 1: 3.84 V                                |

Table 2.6 Comparative Listing of Voltage Detection Circuit Registers



# 2.6 Clock Generation Circuit

Table 2.7 shows a comparative listing of the clock generation circuit specifications, and Table 2.8 shows a comparative listing of the clock generation circuit registers.

| Table 2.7 | <b>Comparative Listing of Clock Generation Circuit Specifications</b> | ; |
|-----------|-----------------------------------------------------------------------|---|
|-----------|-----------------------------------------------------------------------|---|

| ltem                     | RX113                                                                                                                                                                                                                                                                                                                                                                                                                                 | RX130                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uses                     | <ul> <li>Generates the system clock (ICLK) supplied to the CPU, DTC, ROM, and RAM.</li> <li>Generates the peripheral module</li> </ul>                                                                                                                                                                                                                                                                                                | <ul> <li>Generates the system clock (ICLK) supplied to the CPU, DTC, ROM, and RAM.</li> <li>Generates the peripheral module</li> </ul>                                                                                                                                                                                                                              |
|                          | <ul> <li>clocks (PCLKB, PCLKD) supplied to<br/>the peripheral module clocks.</li> <li>Peripheral module clock PCLKD is<br/>used as the operating clock for S12AD,<br/>and peripheral module clock PCLKB is<br/>used as the operating clock for the<br/>modules other than S12AD.</li> <li>Generates the FlashIF clock (FCLK)<br/>supplied to the FlashIF.</li> <li>Generates the USB clock (UCLK)<br/>supplied to the USB.</li> </ul> | <ul> <li>clocks (PCLKB, PCLKD) supplied to<br/>the peripheral module clocks.</li> <li>Peripheral module clock PCLKD is<br/>used as the operating clock for S12AD<br/>and peripheral module clock PCLKB is<br/>used as the operating clock for the<br/>modules other than S12AD.</li> <li>Generates the FlashIF clock (FCLK)<br/>supplied to the FlashIF.</li> </ul> |
|                          | <ul> <li>Generates the CAC clock (CACCLK)<br/>supplied to the CAC.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         | Generates the CAC clock (CACCLK)     supplied to the CAC                                                                                                                                                                                                                                                                                                            |
|                          | Generates the RTC-dedicated sub                                                                                                                                                                                                                                                                                                                                                                                                       | <ul><li>supplied to the CAC.</li><li>Generates the RTC-dedicated sub</li></ul>                                                                                                                                                                                                                                                                                      |
|                          | <ul> <li>clock (RTCSCLK) supplied to the RTC.</li> <li>Generates the IWDT-dedicated clock<br/>(IWDTCLK) supplied to the IWDT.</li> <li>Generates the LCD clock<br/>(LCDSRCCLK) supplied to the LCD.</li> <li>Generates the SSI clock (SSISCK)<br/>supplied to the SSI.</li> </ul>                                                                                                                                                     | <ul> <li>clock (RTCSCLK) supplied to the RTC</li> <li>Generates the IWDT-dedicated clock<br/>(IWDTCLK) supplied to the IWDT.</li> </ul>                                                                                                                                                                                                                             |
|                          | <ul> <li>Generates the LPT clock (LPTCLK)<br/>supplied to the LPT.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Generates the LPT clock (LPTCLK)<br/>supplied to the LPT.</li> </ul>                                                                                                                                                                                                                                                                                       |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                       | Generates the REMC clock (REMCLK) to be supplied to the REMC.                                                                                                                                                                                                                                                                                                       |
| Operating<br>frequencies | <ul> <li>ICLK: 32 MHz (max.)</li> <li>PCLKB: 32 MHz (max.)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>ICLK: 32 MHz (max.)</li> <li>PCLKB: 32 MHz (max.)</li> </ul>                                                                                                                                                                                                                                                                                               |
| noquonoloo               | <ul> <li>PCLKD: 32 MHz (max.)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>PCLKD: 32 MHz (max.)</li> </ul>                                                                                                                                                                                                                                                                                                                            |
|                          | <ul> <li>FCLK: 1 MHz to 32 MHz<br/>(for programming and erasing the ROM<br/>and E2 DataFlash)</li> </ul>                                                                                                                                                                                                                                                                                                                              | <ul> <li>FCLK: 1 MHz to 32 MHz<br/>(for programming and erasing the ROM<br/>and E2 DataFlash)</li> </ul>                                                                                                                                                                                                                                                            |
|                          | <ul> <li>32 MHz (max.):<br/>(for reading from the E2 DataFlash)</li> <li>UCLK: 48 MHz</li> </ul>                                                                                                                                                                                                                                                                                                                                      | 32 MHz (max.):<br>(for reading from the E2 DataFlash)                                                                                                                                                                                                                                                                                                               |
|                          | <ul> <li>CACCLK: Same frequency as each<br/>oscillator</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>CACCLK: Same frequency as each<br/>oscillator</li> </ul>                                                                                                                                                                                                                                                                                                   |
|                          | <ul> <li>RTCSCLK: 32.768 kHz</li> <li>IWDTCLK: 15 kHz</li> <li>LCDSRCCLK: Same as selected oscillator clock</li> </ul>                                                                                                                                                                                                                                                                                                                | <ul> <li>RTCSCLK: 32.768 kHz</li> <li>IWDTCLK: 15 kHz</li> </ul>                                                                                                                                                                                                                                                                                                    |
|                          | <ul> <li>LPTCLK: Same as selected oscillator<br/>clock</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     | LPTCLK: Same as selected oscillator<br>clock                                                                                                                                                                                                                                                                                                                        |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                       | REMCLK: Same as selected oscillator<br>clock                                                                                                                                                                                                                                                                                                                        |



| ltem                                       | RX113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RX130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main clock<br>oscillator                   | <ul> <li>Resonator frequency:<br/>1 MHz to 20 MHz (VCC ≥ 2.4 V)<br/>1 MHz to 8 MHz (VCC &lt; 2.4 V)</li> <li>External clock input frequency:<br/>20 MHz (max.)</li> <li>Connectable resonator or additional<br/>circuit: Ceramic resonator, crystal<br/>resonator</li> <li>Connection pins: EXTAL, XTAL</li> <li>Oscillation stop detection function:<br/>When oscillation stop of the main clock<br/>is detected, the system clock source is<br/>switched to LOCO, and MTU output<br/>can be forcedly driven to high-<br/>impedance.</li> </ul> | <ul> <li>Resonator frequency:<br/>1 MHz to 20 MHz (VCC ≥ 2.4 V)<br/>1 MHz to 8 MHz (VCC &lt; 2.4 V)</li> <li>External clock input frequency:<br/>20 MHz (max.)</li> <li>Connectable resonator or additional<br/>circuit: Ceramic resonator, crystal<br/>resonator</li> <li>Connection pins: EXTAL, XTAL</li> <li>Oscillation stop detection function:<br/>When oscillation stop of the main clock<br/>is detected, the system clock source is<br/>switched to LOCO, and MTU output<br/>can be forcedly driven to high-<br/>impedance.</li> <li>Drive capacity switching function</li> </ul> |
| Sub-clock<br>oscillator                    | <ul> <li>Resonator frequency: 32.768 kHz</li> <li>Connectable resonator or additional circuit: crystal resonator</li> <li>Connection pins: XCIN, XCOUT</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Resonator frequency: 32.768 kHz</li> <li>Connectable resonator or additional circuit: crystal resonator</li> <li>Connection pins: XCIN, XCOUT</li> <li>Drive capacity switching function</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |
| PLL circuit                                | <ul> <li>Input clock source: Main clock</li> <li>Input pulse frequency division ratio:<br/>Selectable from 1, 2, and 4</li> <li>Input frequency: 4 MHz to 8 MHz</li> <li>Frequency multiplication ratio:<br/>Selectable within range from ×6, ×8</li> <li>Oscillation frequency:<br/>32 MHz to 48 MHz (VCC ≥ 2.4 V)</li> </ul>                                                                                                                                                                                                                   | <ul> <li>Input clock source: Main clock</li> <li>Input pulse frequency division ratio:<br/>Selectable from 1, 2, and 4</li> <li>Input frequency: 4 MHz to 8 MHz</li> <li>Frequency multiplication ratio:<br/>Selectable within range from ×4 to ×8<br/>(increments of 0.5)</li> <li>Oscillation frequency:<br/>24 MHz to 32 MHz (VCC ≥ 2.4 V)</li> </ul>                                                                                                                                                                                                                                    |
| USB-dedicated<br>PLL circuit               | <ul> <li>Input clock source: Main clock</li> <li>Input pulse frequency division ratio:<br/>Selectable from 1, 2, and 4</li> <li>Input frequency: 4 MHz, 8 MHz</li> <li>Frequency multiplication ratio:<br/>Selectable within range from ×6, ×8</li> <li>Oscillation frequency: 48 MHz<br/>(VCC ≥ 2.4 V)</li> </ul>                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| High-speed<br>on-chip oscillator<br>(HOCO) | Oscillation frequency: 32 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oscillation frequency: 32 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Low-speed<br>on-chip oscillator<br>(LOCO)  | Oscillation frequency: 4 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oscillation frequency: 4 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IWDT-dedicated<br>on-chip oscillator       | Oscillation frequency: 15 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oscillation frequency: 15 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



| Register   | Bit         | RX113                                  | RX130                                      |
|------------|-------------|----------------------------------------|--------------------------------------------|
| PLLCR      | STC[5:0]    | Frequency multiplication factor        | Frequency multiplication factor            |
|            |             | setting bits                           | setting bits                               |
|            |             | b13 b8                                 | b13 b8                                     |
|            |             | 0 0 1 0 1 1: ×6                        | 0 0 0 1 1 1: ×4                            |
|            |             | 0 0 1 1 1 1: ×8                        | 0 0 1 0 0 0: ×4.5                          |
|            |             | Do not set to values other than the    | 0 0 1 0 0 1: ×5                            |
|            |             | above.                                 | 0 0 1 0 1 0: ×5.5                          |
|            |             |                                        | 0 0 1 0 1 1: ×6                            |
|            |             |                                        | 0 0 1 1 0 0: ×6.5                          |
|            |             |                                        | 0 0 1 1 0 1: ×7                            |
|            |             |                                        | 0 0 1 1 1 0: ×7.5                          |
|            |             |                                        | 0 0 1 1 1 1: ×8                            |
|            |             |                                        | Do not set to values other than the        |
|            |             |                                        | above.                                     |
| UPLLCR     |             | USB-dedicated PLL control register     |                                            |
| UPLLCR2    | —           | USB-dedicated PLL control register     | —                                          |
|            |             | 2                                      |                                            |
| HOFCR      | _           | —                                      | High-speed on-chip oscillator              |
|            |             |                                        | forced oscillation control register        |
| OSCOVFSR   | UPLOVF      | USB-dedicated PLL clock                | —                                          |
|            |             | oscillation stabilization flag         |                                            |
|            |             | 0: USB-dedicated PLL is stopped        |                                            |
|            |             | or not stabilized.                     |                                            |
|            |             | 1: Oscillation is stable and the       |                                            |
|            |             | clock can be used as UCLK.             |                                            |
| LCDSCLKCR  |             | LCD source clock control register      | —                                          |
| LCDSCLKCR2 |             | LCD source clock control register 2    | —                                          |
| HOCOWTCR   | —           | High-speed on-chip oscillator wait     | —                                          |
|            | DV440.      | control register                       |                                            |
| CKOCR      | RX113:      | CLKOUT output source select bits       | CLKOUT output source select bits           |
|            | CKOSEL[2:0] | b10 b8                                 | b11 b8                                     |
|            | RX130:      |                                        |                                            |
|            | CKOSEL[3:0] | 0 0 1: HOCO clock<br>0 1 0: Main clock | 0 0 0 1: HOCO clock                        |
|            |             |                                        | 0 0 1 0: Main clock                        |
|            |             | 0 1 1: Sub-clock                       | 0 0 1 1: Sub-clock                         |
|            |             | Do not set to values other than the    | 0 1 0 0: PLL                               |
|            |             | above.                                 | Do not set to values other than the above. |
| LOCOTRR    |             |                                        | Low-speed on-chip oscillator               |
|            |             |                                        | trimming register                          |
| ILOCOTRR   |             |                                        | IWDT-dedicated on-chip oscillator          |
|            |             |                                        | trimming register                          |
|            |             |                                        | High-speed on-chip oscillator              |
| HOCOTRRn   |             |                                        | High-speed on-chip oscillator              |

| Table 2.8 | <b>Comparative Listing</b> | of Clock Generation | Circuit Registers |
|-----------|----------------------------|---------------------|-------------------|
|           |                            |                     | ••                |



### 2.7 Low Power Consumption Functions

Table 2.9 shows a comparative listing of the low power consumption specifications, Table 2.10 to Table 2.12 shows a Comparative Listing of Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode, and Table 2.13 shows a comparative listing of the low power consumption specifications.

| Item                                                           | RX113                                                                                                                                                                                                                                      | RX130                                                                                                                                                                                                                                      |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduction of<br>power<br>consumption by<br>clock switching     | The frequency division ratio can be set<br>independently for the system clock<br>(ICLK), peripheral module clock<br>(PCLKB), S12AD clock (PCLKD), and<br>FlashIF clock (FCLK).                                                             | The frequency division ratio can be set<br>independently for the system clock<br>(ICLK), peripheral module clock<br>(PCLKB), S12AD clock (PCLKD), and<br>FlashIF clock (FCLK).                                                             |
| Module stop<br>function                                        | Each peripheral module can be stopped independently.                                                                                                                                                                                       | Each peripheral module can be stopped independently.                                                                                                                                                                                       |
| Function for<br>transition to low<br>power<br>consumption mode | It is possible to transition to a low power<br>consumption mode in which the CPU,<br>peripheral modules, or oscillators are<br>stopped.                                                                                                    | It is possible to transition to a low power<br>consumption mode in which the CPU,<br>peripheral modules, or oscillators are<br>stopped.                                                                                                    |
| Low power<br>consumption<br>modes                              | <ul><li>Sleep mode</li><li>Deep sleep mode</li><li>Software standby mode</li></ul>                                                                                                                                                         | <ul><li>Sleep mode</li><li>Deep sleep mode</li><li>Software standby mode</li></ul>                                                                                                                                                         |
| Operating power reduction function                             | • Power consumption can be reduced<br>in normal operation, sleep mode, and<br>deep sleep mode by selecting an<br>appropriate operating power<br>consumption control mode according<br>to the operating frequency and<br>operating voltage. | • Power consumption can be reduced<br>in normal operation, sleep mode, and<br>deep sleep mode by selecting an<br>appropriate operating power<br>consumption control mode according<br>to the operating frequency and<br>operating voltage. |
|                                                                | <ul> <li>Three operating power control modes<br/>are available         <ul> <li>High-speed operating mode</li> <li>Middle-speed operating mode</li> <li>Low-speed operating mode</li> </ul> </li> </ul>                                    | <ul> <li>Three operating power control modes<br/>are available         <ul> <li>High-speed operating mode</li> <li>Middle-speed operating mode</li> <li>Low-speed operating mode</li> </ul> </li> </ul>                                    |



# Table 2.10 Comparative Listing of Entering and Exiting Low Power Consumption Modes andOperating States in Each Mode (Sleep Mode)

| Entering and Exiting Low Power<br>Consumption Modes and Operating | RX113                          | RX130                          |
|-------------------------------------------------------------------|--------------------------------|--------------------------------|
| States                                                            | Sleep Mode                     | Sleep Mode                     |
| Entry trigger                                                     | Control register + instruction | Control register + instruction |
| Exit trigger                                                      | Interrupt                      | Interrupt                      |
| After exiting from each mode, CPU begins from                     | Interrupt handling             | Interrupt handling             |
| Main clock oscillator                                             | Operating possible             | Operating possible             |
| Sub-clock oscillator                                              | Operating possible             | Operating possible             |
| High-speed on-chip oscillator                                     | Operating possible             | Operating possible             |
| Low-speed on-chip oscillator                                      | Operating possible             | Operating possible             |
| IWDT-dedicated on-chip oscillator                                 | Operating possible             | Operating possible             |
| PLL                                                               | Operating possible             | Operating possible             |
| USB-dedicated PLL                                                 | Operating possible             | _                              |
| CPU                                                               | Stopped (Retained)             | Stopped (Retained)             |
| RAM0 (0000 0000h to 0000 3FFFh)                                   | Operating possible (Retained)  | _                              |
| RAM0 (0000 0000h to 0000 BFFFh)                                   |                                | Operating possible (Retained)  |
| DTC                                                               | Operating possible             | Operating possible             |
| Flash memory                                                      | Operating                      | Operating                      |
| Independent watchdog timer (IWDT)                                 | Operating possible             | Operating possible             |
| Remote control signal receiver (REMC)                             | —                              | Operating possible             |
| Realtime clock (RTC)                                              | Operating possible             | Operating possible             |
| Low power timer (LPT)                                             | Operating possible             | Operating possible             |
| Voltage detection circuit (LVD)                                   | Operating possible             | Operating possible             |
| Power-on reset circuit                                            | Operating                      | Operating                      |
| Peripheral modules                                                | Operating possible             | Operating possible             |
| I/O ports                                                         | Operating                      | Operating                      |
| RTCOUT                                                            | Operating possible             | Operating possible             |
| CLKOUT                                                            | Operating possible             | Operating possible             |
| Comparator B                                                      | Operating possible             | Operating possible             |
| LCD controller/driver                                             | Operating possible             |                                |



Table 2.11 Comparative Listing of Entering and Exiting Low Power Consumption Modes and<br/>Operating States in Each Mode (Deep Sleep Mode)

| Entering and Exiting Low Power<br>Consumption Modes and Operating | RX113                          | RX130                          |
|-------------------------------------------------------------------|--------------------------------|--------------------------------|
| States                                                            | Deep Sleep Mode                | Deep Sleep Mode                |
| Entry trigger                                                     | Control register + instruction | Control register + instruction |
| Exit trigger                                                      | Interrupt                      | Interrupt                      |
| After exiting from each mode, CPU begins from                     | Interrupt handling             | Interrupt handling             |
| Main clock oscillator                                             | Operating possible             | Operating possible             |
| Sub-clock oscillator                                              | Operating possible             | Operating possible             |
| High-speed on-chip oscillator                                     | Operating possible             | Operating possible             |
| Low-speed on-chip oscillator                                      | Operating possible             | Operating possible             |
| IWDT-dedicated on-chip oscillator                                 | Operating possible             | Operating possible             |
| PLL                                                               | Operating possible             | Operating possible             |
| USB-dedicated PLL                                                 | Operating possible             |                                |
| CPU                                                               | Stopped (Retained)             | Stopped (Retained)             |
| RAM0 (0000 0000h to 0000 3FFFh)                                   | Stopped (Retained)             | —                              |
| RAM0 (0000 0000h to 0000 BFFFh)                                   | —                              | Stopped (Retained)             |
| DTC                                                               | Stopped (Retained)             | Stopped (Retained)             |
| Flash memory                                                      | Stopped (Retained)             | Stopped (Retained)             |
| Independent watchdog timer (IWDT)                                 | Operating possible             | Operating possible             |
| Remote control signal receiver (REMC)                             | _                              | Operating possible             |
| Realtime clock (RTC)                                              | Operating possible             | Operating possible             |
| Low power timer (LPT)                                             | Operating possible             | Operating possible             |
| Voltage detection circuit (LVD)                                   | Operating possible             | Operating possible             |
| Power-on reset circuit                                            | Operating                      | Operating                      |
| Peripheral modules                                                | Operating possible             | Operating possible             |
| I/O ports                                                         | Operating                      | Operating                      |
| RTCOUT                                                            | Operating possible             | Operating possible             |
| CLKOUT                                                            | Operating possible             | Operating possible             |
| Comparator B                                                      | Operating possible             | Operating possible             |
| LCD controller/driver                                             | Operating possible             |                                |



Table 2.12 Comparative Listing of Entering and Exiting Low Power Consumption Modes andOperating States in Each Mode (Software Standby Mode)

| Entering and Exiting Low Power<br>Consumption Modes and Operating | RX113                          | RX130                          |
|-------------------------------------------------------------------|--------------------------------|--------------------------------|
| States                                                            | Software Standby Mode          | Software Standby Mode          |
| Entry trigger                                                     | Control register + instruction | Control register + instruction |
| Exit trigger                                                      | Interrupt                      | Interrupt                      |
| After exiting from each mode, CPU begins from                     | Interrupt handling             | Interrupt handling             |
| Main clock oscillator                                             | Stopped                        | Stopped                        |
| Sub-clock oscillator                                              | Operating possible             | Operating possible             |
| High-speed on-chip oscillator                                     | Stopped                        | Operating possible             |
| Low-speed on-chip oscillator                                      | Stopped                        | Stopped                        |
| IWDT-dedicated on-chip oscillator                                 | Operating possible             | Operating possible             |
| PLL                                                               | Stopped                        | Stopped                        |
| USB-dedicated PLL                                                 | Stopped                        | —                              |
| CPU                                                               | Stopped (Retained)             | Stopped (Retained)             |
| RAM0 (0000 0000h to 0000 3FFFh)                                   | Stopped (Retained)             | —                              |
| RAM0 (0000 0000h to 0000 BFFFh)                                   | —                              | Stopped (Retained)             |
| DTC                                                               | Stopped (Retained)             | Stopped (Retained)             |
| Flash memory                                                      | Stopped (Retained)             | Stopped (Retained)             |
| Independent watchdog timer (IWDT)                                 | Operating possible             | Operating possible             |
| Remote control signal receiver (REMC)                             | —                              | Operating possible             |
| Realtime clock (RTC)                                              | Operating possible             | Operating possible             |
| Low power timer (LPT)                                             | Operating possible             | Operating possible             |
| Voltage detection circuit (LVD)                                   | Operating possible             | Operating possible             |
| Power-on reset circuit                                            | Operating                      | Operating                      |
| Peripheral modules                                                | Stopped (Retained)             | Stopped (Retained)             |
| I/O ports                                                         | Retained                       | Retained                       |
| RTCOUT                                                            | Operating possible             | Operating possible             |
| CLKOUT                                                            | Operating possible             | Operating possible             |
| Comparator B                                                      | Operating possible             | Operating possible             |
| LCD controller/driver                                             | Operating possible             |                                |



| Register | Bit     | RX113                                                  | RX130                                                  |
|----------|---------|--------------------------------------------------------|--------------------------------------------------------|
| MSTPCRA  | MSTPA14 | Compare match timer 1 (unit 1) module stop bit         | _                                                      |
|          | MSTPA18 | 12-bit D/A converter module stop bit                   |                                                        |
|          | MSTPA19 | <u> </u>                                               | D/A converter module stop bit                          |
| MSTPCRB  | MSTPB19 | USB0 module stop bit                                   |                                                        |
|          | MSTPB29 | Serial communication interface 2 module stop bit       | _                                                      |
| MSTPCRC  | b15-b1  | Reserved bits                                          | Reserved bits                                          |
|          |         | These bits are read as 1. The write value should be 1. | These bits are read as 0. The write value should be 0. |
|          | MSTPC20 | IrDA module stop bit                                   |                                                        |
|          | MSTPC28 | _                                                      | Remote control signal receiver 1 module stop bit       |
|          | MSTPC29 | _                                                      | Remote control signal receiver 0 module stop bit       |
| MSTPCRD  | b7-b0   | Reserved bits                                          | Reserved bits                                          |
|          |         | These bits are read as 1. The write value should be 1. | These bits are read as 0. The write value should be 0. |
|          | MSTPD11 | LCD controller module stop bit                         |                                                        |
|          | MSTPD15 | Serial sound interface module stop bit                 | _                                                      |

| Table 2.13 | Comparative Listing of Low Power Consumption Function Registers |
|------------|-----------------------------------------------------------------|
|------------|-----------------------------------------------------------------|



# 2.8 Register Write Protection Function

Table 2.14 shows a comparative overview of the register write protection function specifications, and Table 2.15 shows a comparative listing of the register write protection function registers.

| Table 2.14         Comparative Overview of Register Write Protection Function Specifications |
|----------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|

| Item      | RX113                                                                                                                                                                                                                                                                                                                    | RX130                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRCR0 bit | <ul> <li>Registers related to the clock<br/>generation circuit</li> <li>SCKCR, SCKCR3, PLLCR, PLLCR2,<br/>MOSCCR, SOSCCR, LOCOCR,<br/>ILOCOCR, HOCOCR,</li> <li>OSTDCR, OSTDSR, CKOCR,</li> <li>UPLLCR, UPLLCR2, LCDSCLKCR,</li> <li>LCDSCLKCR2</li> </ul>                                                               | <ul> <li>Registers related to the clock<br/>generation circuit<br/>SCKCR, SCKCR3, PLLCR, PLLCR2,<br/>MOSCCR, SOSCCR, LOCOCR,<br/>ILOCOCR, HOCOCR, HOFCR,<br/>OSTDCR, OSTDSR, CKOCR,<br/>LOCOTRR, ILOCOTRR, HOCOTRR0</li> </ul>                                                                                                   |
| PRCR1 bit | <ul> <li>Registers related to the operating modes SYSCR1</li> <li>Registers related to the low power consumption functions SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR</li> <li>Registers related to the clock generation circuit MOFCR, MOSCWTCR</li> <li>Software reset register SWRR</li> </ul> | <ul> <li>Registers related to the operating modes<br/>SYSCR1</li> <li>Registers related to the low power consumption functions<br/>SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR</li> <li>Registers related to the clock generation circuit MOFCR, MOSCWTCR</li> <li>Software reset register SWRR</li> </ul> |
| PRCR2 bit | <ul> <li>Registers related to the clock<br/>generation circuit<br/>HOCOWTCR</li> <li>Registers related to the low power timer<br/>LPTCR1, LPTCR2, LPTCR3, LPTPRD,<br/>LPCMR0, LPWUCR</li> </ul>                                                                                                                          | <ul> <li>Registers related to the low power timer<br/>LPTCR1, LPTCR2, LPTCR3, LPTPRD,<br/>LPCMR0, LPWUCR</li> </ul>                                                                                                                                                                                                              |
| PRCR3 bit | <ul> <li>Registers related to the LVD<br/>LVCMPCR, LVDLVLR, LVD1CR0,<br/>LVD1CR1, LVD1SR, LVD2CR0,<br/>LVD2CR1, LVD2SR</li> </ul>                                                                                                                                                                                        | <ul> <li>Registers related to the LVD<br/>LVCMPCR, LVDLVLR, LVD1CR0,<br/>LVD1CR1, LVD1SR, LVD2CR0,<br/>LVD2CR1, LVD2SR</li> </ul>                                                                                                                                                                                                |

| Tuble Life Comparative Eleting of Register Write Freteotien Function Registere | Table 2.15 | Comparative Listing of Register Write Protection Function Registers |
|--------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|
|--------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|

| Register | Bit  | RX113                                                                                             | RX130                                                            |
|----------|------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| PRCR     | PRC2 | Protect bit 2                                                                                     | Protect bit 2                                                    |
|          |      | Enables writing to the registers related to the low power timer and the clock generation circuit. | Enables writing to the registers related to the low power timer. |



# 2.9 Interrupt Controller

Table 2.16 shows a comparative listing of the interrupt controller specifications, and Table 2.17 shows a comparative listing of the interrupt controller registers.

| ltem                           |                                         | RX113 (ICUb)                                                                                                                                                                                                                                                                                          | RX130 (ICUb)                                                                                                                                                                                                                                                                                          |
|--------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt                      | Peripheral function interrupts          | <ul> <li>Interrupts from peripheral<br/>modules</li> <li>Interrupt detection:<br/>Edge detection/level detection<br/>The detection method is fixed<br/>for each source of connected<br/>peripheral modules.</li> </ul>                                                                                | <ul> <li>Interrupts from peripheral<br/>modules</li> <li>Interrupt detection:<br/>Edge detection/level detection<br/>The detection method is fixed<br/>for each source of connected<br/>peripheral modules.</li> </ul>                                                                                |
|                                | External pin<br>interrupts              | <ul> <li>Interrupts from pins IRQ0 to<br/>IRQ7</li> <li>Sources: 8</li> <li>Interrupt detection:<br/>One detection method among<br/>low level, falling edge, rising<br/>edge, and rising and falling<br/>edges can be set for each<br/>source.</li> <li>Digital filter function: Supported</li> </ul> | <ul> <li>Interrupts from pins IRQ0 to<br/>IRQ7</li> <li>Sources: 8</li> <li>Interrupt detection:<br/>One detection method among<br/>low level, falling edge, rising<br/>edge, and rising and falling<br/>edges can be set for each<br/>source.</li> <li>Digital filter function: Supported</li> </ul> |
|                                | Software interrupt                      | <ul><li>Interrupt generated by writing to<br/>a register.</li><li>Source: 1</li></ul>                                                                                                                                                                                                                 | <ul><li>Interrupt generated by writing to a register.</li><li>Source: 1</li></ul>                                                                                                                                                                                                                     |
|                                | Event link interrupt                    | The ELSR18I or ELSR19I interrupt is generated by an ELC event.                                                                                                                                                                                                                                        | The ELSR8I or ELSR18I interrupt is generated by an ELC event.                                                                                                                                                                                                                                         |
|                                | Interrupt priority<br>level             | Priority is specified by register settings.                                                                                                                                                                                                                                                           | Priority is specified by register settings.                                                                                                                                                                                                                                                           |
|                                | Fast interrupt function                 | Faster interrupt processing by the CPU can be specified only for a single interrupt source.                                                                                                                                                                                                           | Faster interrupt processing by the CPU can be specified only for a single interrupt source.                                                                                                                                                                                                           |
|                                | DTC control                             | The DTC can be activated by<br>interrupt sources.                                                                                                                                                                                                                                                     | The DTC can be activated by<br>interrupt sources.                                                                                                                                                                                                                                                     |
| Non-<br>maskable<br>interrupts | NMI pin interrupt                       | <ul> <li>Interrupt from the NMI pin</li> <li>Interrupt detection:<br/>Falling edge/rising edge</li> <li>Digital filter function: Supported</li> </ul>                                                                                                                                                 | <ul> <li>Interrupt from the NMI pin</li> <li>Interrupt detection:<br/>Falling edge/rising edge</li> <li>Digital filter function: Supported</li> </ul>                                                                                                                                                 |
|                                | Oscillation stop<br>detection interrupt | Interrupt at oscillation stop<br>detection                                                                                                                                                                                                                                                            | Interrupt at oscillation stop<br>detection                                                                                                                                                                                                                                                            |
|                                | IWDT<br>underflow/refresh<br>error      | Interrupt at an underflow of the<br>down counter or at the occurrence<br>of a refresh error                                                                                                                                                                                                           | Interrupt at an underflow of the down counter or at the occurrence of a refresh error                                                                                                                                                                                                                 |
|                                | Voltage monitoring<br>1 interrupt       | Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)                                                                                                                                                                                                                                   | Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)                                                                                                                                                                                                                                   |
|                                | Voltage monitoring<br>2 interrupt       | Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)                                                                                                                                                                                                                                   | Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)                                                                                                                                                                                                                                   |

| Table 2.16 | Comparative Listing of Interrupt Controller Specifications |
|------------|------------------------------------------------------------|
|------------|------------------------------------------------------------|



| Item                                       | RX113 (ICUb)                                                                                                                                                                                                                                                                                           | RX130 (ICUb)                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Return from low power<br>consumption modes | <ul> <li>Sleep mode and deep sleep<br/>mode: Return is initiated by a<br/>non-maskable interrupt or any<br/>other interrupt source.</li> <li>Software standby mode: Return<br/>is initiated by a non-maskable<br/>interrupt, interrupt IRQ0 to<br/>IRQ7, or RTC alarm/period<br/>interrupt.</li> </ul> | <ul> <li>Sleep mode and deep sleep<br/>mode: Return is initiated by a<br/>non-maskable interrupt or any<br/>other interrupt source.</li> <li>Software standby mode: Return<br/>is initiated by a non-maskable<br/>interrupt, interrupt IRQ0 to<br/>IRQ7, or RTC alarm/period<br/>interrupt.</li> </ul> |

### Table 2.17 Comparative Listing of Interrupt Controller Register

| Register | Bit  | RX113 (ICUb)                                                                                 | RX130 (ICUb)                                                                                                                                                                                                                                                      |
|----------|------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DTCERn   | DTCE | DTC activation enable bit<br>0: DTC activation is disabled.<br>1: DTC activation is enabled. | <ul> <li>DTC transfer request enable bit</li> <li>0: The corresponding interrupt source<br/>is selected as the source of an<br/>interrupt to the CPU.</li> <li>1: The corresponding interrupt source<br/>is selected as the DTC activation<br/>source.</li> </ul> |



# 2.10 Bus

Table 2.18 shows a comparative listing of the bus specifications.

| ltem                            |                                 | RX113                                                                                                                                                                                                                               | RX130                                                                                                                                                                                                                               |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU bus                         | Instruction bus                 | <ul> <li>Connected to the CPU (for instructions).</li> <li>Connected to the on-chip memory (RAM and ROM).</li> <li>Operates in synchronization with the system clock (ICLK).</li> </ul>                                             | <ul> <li>Connected to the CPU (for instructions).</li> <li>Connected to the on-chip memory (RAM and ROM).</li> <li>Operates in synchronization with the system clock (ICLK).</li> </ul>                                             |
|                                 | Operand bus                     | <ul> <li>Connected to the CPU (for operand).</li> <li>Connected to the on-chip memory (RAM and ROM).</li> <li>Operates in synchronization with the system clock (ICLK).</li> </ul>                                                  | <ul> <li>Connected to the CPU (for operand).</li> <li>Connected to the on-chip memory (RAM and ROM).</li> <li>Operates in synchronization with the system clock (ICLK).</li> </ul>                                                  |
| Memory                          | Memory bus 1                    | Connected to the RAM.                                                                                                                                                                                                               | Connected to the RAM.                                                                                                                                                                                                               |
| buses                           | Memory bus 2                    | Connected to the ROM.                                                                                                                                                                                                               | Connected to the ROM.                                                                                                                                                                                                               |
| Internal<br>main<br>buses       | Internal main<br>bus 1          | <ul> <li>Connected to the CPU.</li> <li>Operates in synchronization with<br/>the system clock (ICLK).</li> </ul>                                                                                                                    | <ul> <li>Connected to the CPU.</li> <li>Operates in synchronization with<br/>the system clock (ICLK).</li> </ul>                                                                                                                    |
|                                 | Internal main<br>bus 2          | <ul> <li>Connected to the DTC.</li> <li>Connected to the on-chip memory (RAM and ROM).</li> <li>Operates in synchronization with the curter sheet (IOLIC).</li> </ul>                                                               | <ul> <li>Connected to the DTC.</li> <li>Connected to the on-chip memory<br/>(RAM and ROM).</li> <li>Operates in synchronization with<br/>the synchronization with</li> </ul>                                                        |
| Internal<br>peripheral<br>buses | Internal<br>peripheral bus<br>1 | <ul> <li>the system clock (ICLK).</li> <li>Connected to peripheral modules<br/>(DTC, interrupt controller, and bus<br/>error monitoring section).</li> <li>Operates in synchronization with<br/>the system clock (ICLK).</li> </ul> | <ul> <li>the system clock (ICLK).</li> <li>Connected to peripheral modules<br/>(DTC, interrupt controller, and bus<br/>error monitoring section).</li> <li>Operates in synchronization with<br/>the system clock (ICLK).</li> </ul> |
|                                 | Internal<br>peripheral bus<br>2 | <ul> <li>Connected to peripheral modules.</li> <li>Operates in synchronization with<br/>the peripheral module clock<br/>(PCLKB).</li> </ul>                                                                                         | <ul> <li>Connected to peripheral modules.</li> <li>Operates in synchronization with<br/>the peripheral module clock<br/>(PCLKB, PCLKD).</li> </ul>                                                                                  |
|                                 | Internal<br>peripheral bus<br>3 | <ul> <li>Connected to peripheral modules (USB).</li> <li>Operates in synchronization with the peripheral module clock (PCLKB).</li> </ul>                                                                                           | <ul> <li>Connected to peripheral modules<br/>(Touch).</li> <li>Operates in synchronization with<br/>the peripheral module clock<br/>(PCLKB).</li> </ul>                                                                             |
|                                 | Internal<br>peripheral bus<br>4 | <ul> <li>Connected to the ROM (P/E) and<br/>E2 DataFlash memory.</li> <li>Operates in synchronization with<br/>the FlashIF clock (FCLK).</li> </ul>                                                                                 | <ul> <li>Connected to the ROM (P/E) and<br/>E2 DataFlash memory.</li> <li>Operates in synchronization with<br/>the FlashIF clock (FCLK).</li> </ul>                                                                                 |

### Table 2.18 Comparative Listing of Bus Specifications



## 2.11 Event Link Controller

Table 2.19 shows a comparative listing of the event link controller specifications, Table 2.20 shows a comparative listing of the event link controller registers, and Table 2.21 shows a comparative listing of ELSRn register setting values.

| Item                                 | RX113 (ELC)                                                                                                                                                                                                            | RX130 (ELC)                                                                                                                                                                                                            |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Event link function                  | <ul> <li>45 event signals can be directly connected to modules.</li> <li>It is possible to specify that timer modules operate when an event is input.</li> <li>Event link operation is possible for port B.</li> </ul> | <ul> <li>47 event signals can be directly connected to modules.</li> <li>It is possible to specify that timer modules operate when an event is input.</li> <li>Event link operation is possible for port B.</li> </ul> |
|                                      | Single-port:<br>Event link operation can be enabled for a<br>specified single bit in a port.<br>Port group:<br>Event link operation can be enabled for a<br>group of specified bits within an 8-bit I/O<br>port.       | Single-port:<br>Event link operation can be enabled for a<br>specified single bit in a port.<br>Port group:<br>Event link operation can be enabled for a<br>group of specified bits within an 8-bit I/O<br>port.       |
| Low power<br>consumption<br>function | It is possible to specify the module stop state.                                                                                                                                                                       | It is possible to specify the module stop state.                                                                                                                                                                       |

| Table 2.19 | Comparative Listing of Event Link Controller Specifications | 5 |
|------------|-------------------------------------------------------------|---|
|------------|-------------------------------------------------------------|---|

### Table 2.20 Comparative Listing of Event Link Controller Register

| Register | Bit       | RX113 | RX130                     |
|----------|-----------|-------|---------------------------|
| ELOPC    | LPTMD[1:0 | ) —   | LPT operation select bits |

| Table 2.21 | Comparative Listing of ELSRn Regi | ster Setting Values |
|------------|-----------------------------------|---------------------|
|------------|-----------------------------------|---------------------|

| Setting Value | RX113 | RX130 | Event                               |
|---------------|-------|-------|-------------------------------------|
| 32h           |       | 0     | LPT compare match                   |
| 34h           |       | 0     | S12AD comparison conditions met     |
| 35h           |       | 0     | S12AD comparison conditions not met |
| 5Dh           | 0     | _     | LPT compare match                   |



## 2.12 I/O Ports

Table 2.22 shows a Comparative Listing of I/O Port Specifications, Table 2.23 and Table 2.24 list points of difference between the I/O port functions (on 100-pin and 64-pin products, respectively), and Table 2.25 is a comparative listing of I/O port registers.

|             | RX113           |                    | RX130              |                |
|-------------|-----------------|--------------------|--------------------|----------------|
| Port Symbol | 100 pin         | 64 pin             | 100 pin            | 64 pin         |
| PORT0       | P02, P04, P07   | Not provided       | P03 to P07         | P03, P05       |
| PORT1       | P10 to P17      | P14 to P17         | P12 to P17         | P14 to P17     |
| PORT2       | P20 to P27      | P26, P27           | P20 to P27         | P26, P27       |
| PORT3       | P30 to P32, P35 | P30 to P32, P35    | P30 to P37         | P30 to P32,    |
|             |                 |                    |                    | P35 to P37     |
| PORT4       | P40 to P44, P46 | P40 to P42         | P40 to P47         | P40 to P47     |
| PORT5       | P50 to P56      | P54, P55           | P50 to P55         | P54, P55       |
| PORT9       | P90 to P92      | Not provided       | Not provided       | Not provided   |
| PORTA       | PA0 to PA7      | PA0, PA1, PA3,     | PA0 to PA7         | PA0, PA1, PA3, |
|             |                 | PA4, PA6           |                    | PA4, PA6       |
| PORTB       | PB0 to PB7      | PB0, PB1, PB3,     | PB0 to PB7         | PB0, PB1, PB3, |
|             |                 | PB5 to PB7         |                    | PB5 to PB7     |
| PORTC       | PC0 to PC7      | PC2 to PC7*1       | PC0 to PC7         | PC2 to PC7*1   |
| PORTD       | PD0 to PD4      | PD0 to PD2         | PD0 to PD7         | Not provided   |
| PORTE       | PE0 to PE7      | PE0 to PE7         | PE0 to PE7         | PE0 to PE5     |
| PORTF       | PF6, PF7        | Not provided       | Not provided       | Not provided   |
| PORTH       | PH7             | PH7                | PH0 to PH3         | PH0 to PH3     |
| PORTJ       | PJ0, PJ2, PJ3,  | PJ0, PJ2, PJ6, PJ7 | PJ1, PJ3, PJ6, PJ7 | PJ6, PJ7       |
|             | PJ6, PJ7        |                    |                    |                |

### Table 2.22 Comparative Listing of I/O Port Specifications

Note 1. PC0 and PC1 are valid only when switching by the port switching register A.



| ltem            | Port Symbol | RX113                   | RX130                    |
|-----------------|-------------|-------------------------|--------------------------|
| Input pull-up   | PORT0       | P02, P04, P07           | P03 to P07               |
| function        | PORT1       | P10 to P17              | P12 to P17               |
|                 | PORT2       | P20 to P27              | P20 to P27               |
|                 | PORT3       | P30 to P32              | P30 to P34, P36, P37     |
|                 | PORT4       |                         | P40 to P47               |
|                 | PORT5       | P50 to <mark>P56</mark> | P50 to P55               |
|                 | PORTA       | PA0 to PA7              | PA0 to PA7               |
|                 | PORTB       | PB0 to PB7              | PB0 to PB7               |
|                 | PORTC       | PC2 to PC7              | PC0 to PC7               |
|                 | PORTD       | PD0 to PD4              | PD0 to PD7               |
|                 | PORTE       | PE0 to PE7              | PE0 to PE7               |
|                 | PORTF       | PF6, PF7                |                          |
|                 | PORTH       |                         | PH0 to PH3               |
|                 | PORTJ       | PJ0, PJ2, PJ3           | PJ1, PJ3, PJ6, PJ7       |
| Open-drain      | PORT0       | P02, P04, P07           |                          |
| output function | PORT1       | P10 to P17              | P12 to P17               |
|                 | PORT2       | P20 to P27              | P20 to P23, P26, P27     |
|                 | PORT3       | P30 to P32              | P30 to P34, P36, P37     |
|                 | PORT5       | P50 to P53, P56         |                          |
|                 | PORTA       | PA0 to PA7              | PA0 to PA7               |
|                 | PORTB       | PB0 to PB7              | PB0 to PB7               |
|                 | PORTC       | PC2 to PC7              | PC0 to PC7               |
|                 | PORTD       |                         | PD0 to PD2               |
|                 | PORTE       | PE0 to PE7              | PE0 to PE3               |
|                 | PORTJ       | PJ3                     | PJ3                      |
| Drive capacity  | PORT0       |                         | P03 to P07*1             |
| switching       | PORT1       |                         | P12 to P17               |
| function        | PORT2       |                         | P20 to P27               |
|                 | PORT3       |                         | P30 to P34, P36*1, P37*1 |
|                 | PORT4       |                         | P40 to P47*1             |
|                 | PORT5       |                         | P50 to P55               |
|                 | PORTA       |                         | PA0 to PA7               |
|                 | PORTB       |                         | PB0 to PB7               |
|                 | PORTC       |                         | PC0 to PC7               |
|                 | PORTD       |                         | PD0 to PD7               |
|                 | PORTE       |                         | PE0 to PE7               |
|                 | PORTH       |                         | PH0 to PH3               |
|                 | PORTJ       |                         | PJ1, PJ3, PJ6*1, PJ7*1   |
| 5 V tolerant    | PORT1       | P16, P17                | P12, P13, P16, P17       |
|                 | PORTA       | PA6                     |                          |
|                 | PORTB       | PB0                     |                          |

### Table 2.23 Comparative Listing of I/O Port Functions (100-Pin)

Note 1. Fixed to normal output



| Item            | Port Symbol | RX113                       | RX130                         |
|-----------------|-------------|-----------------------------|-------------------------------|
| Input pull-up   | PORT0       |                             | P03, P05                      |
| function        | PORT1       | P14 to P17                  | P14 to P17                    |
|                 | PORT2       | P26, P27                    | P26, P27                      |
|                 | PORT3       | P30 to P32                  | P30 to P32, P35 to P37        |
|                 | PORT4       |                             | P40 to P47                    |
|                 | PORT5       | P54, P55                    | P54, P55                      |
|                 | PORTA       | PA0, PA1, PA3, PA4, PA6     | PA0, PA1, PA3, PA4, PA6       |
|                 | PORTB       | PB0, PB1, PB3, PB5 to PB7*1 | PB0, PB1, PB3, PB5 to PB7*1*2 |
|                 | PORTC       | PC2 to PC7*1                | PC0 to PC7*1*2                |
|                 | PORTD       | PD0 to PD2                  |                               |
|                 | PORTE       | PE0 to PE7                  | PE0 to PE5                    |
|                 | PORTH       |                             | PH0 to PH3                    |
|                 | PORTJ       | PJ0, PJ2                    | PJ6, PJ7                      |
| Open-drain      | PORT1       | P14 to P17                  | P14 to P17                    |
| output function | PORT2       | P26, P27                    | P26, P27                      |
|                 | PORT3       | P30 to P32                  | P30 to P32, P36, P37          |
|                 | PORTA       | PA0, PA1, PA3, PA4, PA6     | PA0, PA1, PA3, PA4, PA6       |
|                 | PORTB       | PB0, PB1, PB3, PB5 to PB7*1 | PB0, PB1, PB3, PB5 to PB7*1*2 |
|                 | PORTC       | PC2 to PC7*1                | PC0 to PC7*1*2                |
|                 | PORTE       | PE0 to PE7                  | PE0 to PE3                    |
| Drive capacity  | PORT0       |                             | P03, P05                      |
| switching       | PORT1       |                             | P14 to P17                    |
| function        | PORT2       |                             | P26, P27                      |
|                 | PORT3       |                             | P30 to P32, P36, P37          |
|                 | PORT4       |                             | P40 to P47                    |
|                 | PORT5       |                             | P54, P55                      |
|                 | PORTA       |                             | PA0, PA1, PA3, PA4, PA6       |
|                 | PORTB       |                             | PB0, PB1, PB3, PB5 to PB7*1*2 |
|                 | PORTC       |                             | PC0 to PC7*1*2                |
|                 | PORTE       |                             | PE0 to PE5                    |
|                 | PORTH       |                             | PH0 to PH3                    |
|                 | PORTJ       |                             | PJ6, PJ7                      |
| 5 V tolerant    | PORT1       | P16, P17                    | P12, P13, P16, P17            |
|                 | PORTA       | PA6                         |                               |
|                 | PORTB       | PB0                         |                               |

### Table 2.24 Comparative Listing of I/O Port Functions (64-Pin)

Note 1. On 80-pin (RX130 only) and 64-pin package products, pins PB6 and PC0, and PB7 and PC1 have multiplexed functions. These can be switched by making settings to the PSRA register. The pin functions conform to the settings of the selected port.

Note 2. On 48-pin package products, pins PB0 and PC0, PB1 and PC1, PB3 and PC2, and PB5 and PC3 have multiplexed functions. These can be switched by making settings to the PSRB register. The pin functions conform to the settings of the selected port.



| Register | Bit    | RX113                                                                                      | RX130                                                     |
|----------|--------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| ODR0     | B0, B1 | <ul> <li>Pm0 Output Type Select</li> <li>P20, P30, P50, PA0, PB0, PC0,<br/>PE0</li> </ul>  | Pm0 Output Type Select                                    |
|          |        | b0 0: CMOS output                                                                          | b0 0: CMOS output                                         |
|          |        | 1: N-channel open-drain output                                                             | 1: N-channel open-drain output                            |
|          |        | b1 These bits are read as 0. The write value should be 0.                                  | b1 These bits are read as 0. The write value should be 0. |
|          |        | • P10                                                                                      |                                                           |
|          |        | b1 b0                                                                                      |                                                           |
|          |        | 0 0: CMOS output                                                                           |                                                           |
|          |        | 0 1: N-channel open-drain output                                                           |                                                           |
|          |        | 1 0: P-channel open-drain output                                                           |                                                           |
|          |        | 1 1: Setting prohibited.                                                                   |                                                           |
| ODR1     | B0, B1 | <ul> <li>Pm4 Output Type Select</li> <li>P04, P24, PA4, PB4, PC4, PE4</li> </ul>           | Pm4 Output Type Select                                    |
|          |        | b0 0: CMOS output                                                                          | b0 0: CMOS output                                         |
|          |        | 1: N-channel open-drain output                                                             | 1: N-channel open-drain output                            |
|          |        | <ul> <li>b1 These bits are read as 0. The write value should be 0.</li> <li>P14</li> </ul> | b1 These bits are read as 0. The write value should be 0. |
|          |        | b1 b0                                                                                      |                                                           |
|          |        | 0 0: CMOS output                                                                           |                                                           |
|          |        | 0 1: N-channel open-drain output                                                           |                                                           |
|          |        | 1 0: P-channel open-drain output                                                           |                                                           |
|          |        | 1 1: Setting prohibited.                                                                   |                                                           |
| PSRB     |        |                                                                                            | Port switching register B                                 |
| DSCR     |        |                                                                                            | Drive capacity control register                           |

Table 2.25 Comparative Listing of I/O Port Registers



### 2.13 Multi-Function Pin Controller

Table 2.26 shows a comparative listing of functions assigned to each multiplexed pin, and Table 2.27 shows a comparative listing of the multi-function pin controller registers.

Blue characters exist only in the RX113, and orange characters exist only in the RX130. " $\sqrt{}$ " indicates pin implemented, " $\times$ " indicates pin not implemented, "-" indicates no assignment pin for function, Grey hatching indicates pin function not implemented.

| Table 2.26 C | Comparative Lis | sting of Functions | Assigned to Each | Multiplexed Pin |
|--------------|-----------------|--------------------|------------------|-----------------|
|--------------|-----------------|--------------------|------------------|-----------------|

|                 |               | Allocation | RX113   |        | RX130      |        |
|-----------------|---------------|------------|---------|--------|------------|--------|
| Module/Function | Pin Functions | Port       | 100 pin | 64 pin | 100 pin    | 64 pin |
| Interrupt       | NMI (input)   | P35        | 0       | 0      | 0          | 0      |
|                 | IRQ0 (input)  | P30        | 0       | 0      | 0          | 0      |
|                 |               | PE0        | 0       | 0      | -          | -      |
|                 |               | PD0        | 0       | 0      | $\bigcirc$ | ×      |
|                 |               | PH1        | -       | -      | 0          | 0      |
|                 | IRQ1 (input)  | P31        | 0       | 0      | 0          | 0      |
|                 |               | PE1        | 0       | 0      | -          | -      |
|                 |               | PD1        | 0       | 0      | 0          | ×      |
|                 |               | PH2        | -       | -      | 0          | 0      |
|                 | IRQ2 (input)  | P32        | 0       | 0      | 0          | 0      |
|                 |               | PB0        | 0       | 0      | -          | -      |
|                 |               | PC4        | 0       | 0      | -          | -      |
|                 |               | P12        | 0       | ×      | 0          | ×      |
|                 |               | PD2        | 0       | 0      | 0          | ×      |
|                 | IRQ3 (input)  | P27        | 0       | 0      | -          | -      |
|                 |               | PE3        | 0       | 0      | -          | -      |
|                 |               | PA6        | 0       | 0      | -          | -      |
|                 |               | P13        | 0       | ×      | 0          | ×      |
|                 |               | PD3        | 0       | ×      | 0          | ×      |
|                 |               | P33        | -       | -      | 0          | ×      |
|                 | IRQ4 (input)  | P14        | 0       | 0      | 0          | 0      |
|                 |               | PB1        | 0       | 0      | 0          | 0      |
|                 |               | PE4        | 0       | 0      | -          | -      |
|                 |               | PD4        | 0       | ×      | 0          | ×      |
|                 |               | P34        | -       | -      | 0          | ×      |
|                 | IRQ5 (input)  | P15        | 0       | 0      | 0          | 0      |
|                 |               | PA4        | 0       | 0      | 0          | 0      |
|                 |               | PE5        | 0       | 0      | 0          | 0      |
|                 |               | P56        | 0       | ×      | -          | -      |
|                 |               | PD5        | -       | -      | 0          | ×      |
|                 | IRQ6 (input)  | P16        | 0       | 0      | 0          | 0      |
|                 |               | PA3        | 0       | 0      | 0          | 0      |
|                 |               | PE6        | 0       | 0      | 0          | ×      |
|                 |               | P10        | 0       | ×      | -          | -      |
|                 |               | PD6        | -       | -      | 0          | ×      |



|                      |                | Allocatio | RX113   |        | RX130   |        |
|----------------------|----------------|-----------|---------|--------|---------|--------|
| Module/Function      | Pin Functions  | Port      | 100 pin | 64 pin | 100 pin | 64 pin |
| Interrupt            | IRQ7 (input)   | P17       | 0       | 0      | 0       | 0      |
| interrupt            | inter (input)  | PE2       | 0       | 0      | 0       | 0      |
|                      |                | PE7       | 0       | 0      | 0       | ×      |
|                      |                | P11       | 0       | X      | -       |        |
|                      |                | PD7       | -       | _      | 0       | ×      |
| Multi-function timer | MTIOC0A        | P14       | 0       | 0      | -       | -      |
| unit 2               | (input/output) | PB3       | 0       | 0      | 0       | 0      |
|                      |                | PE3       | 0       | 0      | -       | -      |
|                      |                | P04       | 0       | ×      | -       | -      |
|                      |                | P34       |         | -      | 0       | ×      |
|                      | MTIOC0B        | P15       | 0       | 0      | 0       | 0      |
|                      | (input/output) | PA1       | 0       | 0      | 0       | 0      |
|                      |                | P13       | 0       | ×      | 0       | ×      |
|                      | MTIOC0C        | P17       | 0       | 0      | -       | -      |
|                      | (input/output) | P32       | 0       | 0      | 0       | 0      |
|                      |                | PB0       | 0       | 0      | -       | -      |
|                      |                | PB1       | 0       | 0      | 0       | 0      |
|                      | MTIOC0D        | PA3       | 0       | 0      | 0       | 0      |
|                      | (input/output) | P02       | 0       | ×      | -       | -      |
|                      |                | P33       | -       | -      | 0       | X      |
|                      | MTIOC1A        | PE4       | 0       | 0      | 0       | 0      |
|                      | (input/output) | P20       | 0       | ×      | 0       | ×      |
|                      |                | P56       | 0       | ×      | -       | -      |
|                      | MTIOC1B        | PA3       | 0       | 0      | -       | -      |
|                      | (input/output) | PB5       | 0       | 0      | 0       | 0      |
|                      |                | PE3       | 0       | 0      | -       | -      |
|                      |                | P21       | 0       | ×      | 0       | ×      |
|                      | MTIOC2A        | P26       | 0       | 0      | 0       | 0      |
|                      | (input/output) | PA6       | 0       | 0      | -       | -      |
|                      |                | PB5       | 0       | 0      | 0       | 0      |
|                      |                | PE0       | 0       | 0      | -       | -      |
|                      |                | P50       | 0       | X      | -       | -      |
|                      | MTIOC2B        | P27       | 0       | 0      | 0       | 0      |
|                      | (input/output) | PA4       | 0       | 0      | -       | -      |
|                      |                | PE5       | 0       | 0      | 0       | 0      |
|                      |                | P53       | 0       | X      | -       | -      |
|                      | MTIOC3A        | P14       | 0       | 0      | 0       | 0      |
|                      | (input/output) | P17       | 0       | 0      | 0       | 0      |
|                      |                | PC7       | 0       | 0      | 0       | 0      |
|                      |                | PE4       | 0       | 0      | -       | -      |
|                      |                | PC1       | 0       | X      | 0       | ×      |
|                      |                | PF7       | 0       | X      | -       | -      |
|                      |                | PJ1       | -       | -      | 0       | X      |



|                      |                | Allocation | RX113   |            | RX130      |            |
|----------------------|----------------|------------|---------|------------|------------|------------|
| Module/Function      | Pin Functions  | Port       | 100 pin | 64 pin     | 100 pin    | 64 pin     |
| Multi-function timer | MTIOC3B        | P17        | 0       | 0          | 0          | 0          |
| unit 2               | (input/output) | PB3        | 0       | 0          | -          | -          |
|                      |                | PB7        | 0       | 0          | 0          | 0          |
|                      |                | PC5        | 0       | 0          | 0          | 0          |
|                      |                | P22        | 0       | X          | 0          | X          |
|                      | MTIOC3C        | P16        | 0       | 0          | 0          | 0          |
|                      | (input/output) | PC6        | 0       | 0          | 0          | 0          |
|                      |                | PJ3        | 0       | X          | 0          | X          |
|                      |                | PC0        | 0       | ×          | 0          | ×          |
|                      |                | PF6        | 0       | Х          | -          | -          |
|                      | MTIOC3D        | P16        | 0       | 0          | 0          | 0          |
|                      | (input/output) | PB6        | 0       | 0          | 0          | 0          |
|                      |                | PC4        | 0       | 0          | 0          | 0          |
|                      |                | P23        | 0       | ×          | 0          | X          |
|                      | MTIOC4A        | PA0        | 0       | 0          | 0          | 0          |
|                      | (input/output) | PB3        | 0       | 0          | 0          | 0          |
|                      |                | PE2        | 0       | 0          | 0          | 0          |
|                      |                | P24        | 0       | ×          | $\bigcirc$ | X          |
|                      | MTIOC4B        | P30        | 0       | 0          | 0          | 0          |
|                      | (input/output) | P54        | 0       | 0          | 0          | 0          |
|                      |                | PC2        | 0       | 0          | 0          | 0          |
|                      |                | PE3        | 0       | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|                      |                | PD1        | 0       | $\bigcirc$ | $\bigcirc$ | ×          |
|                      | MTIOC4C        | PB1        | 0       | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|                      | (input/output) | PE1        | 0       | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|                      |                | PE5        | 0       | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|                      |                | P25        | 0       | $\times$   | $\bigcirc$ | ×          |
|                      |                | P51        | 0       | $\times$   | -          | -          |
|                      | MTIOC4D        | P31        | 0       | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|                      | (input/output) | P55        | 0       | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|                      |                | PC3        | 0       | 0          | $\bigcirc$ | 0          |
|                      |                | PE4        | 0       | 0          | 0          | 0          |
|                      |                | PD2        | 0       | 0          | 0          | ×          |
|                      | MTIC5U (input) | PA4        | 0       | 0          | 0          | 0          |
|                      |                | P11        | 0       | ×          | -          | -          |
|                      |                | PD7        | -       | -          | 0          | ×          |
|                      | MTIC5V (input) | PA6        | 0       | 0          | $\bigcirc$ | 0          |
|                      |                | P10        | 0       | ×          | -          | -          |
|                      |                | PD6        | -       | -          | 0          | ×          |
|                      | MTIC5W (input) | PB0        | 0       | 0          | $\bigcirc$ | 0          |
|                      |                | P56        | 0       | ×          | -          | -          |
|                      |                | PD5        | -       | -          | 0          | ×          |



|                      |                | Allocation | RX113      |            | RX130      |        |
|----------------------|----------------|------------|------------|------------|------------|--------|
| Module/Function      | Pin Functions  | Port       | 100 pin    | 64 pin     | 100 pin    | 64 pin |
| Multi-function timer | MTCLKA (input) | P14        | 0          | 0          | 0          | 0      |
| unit 2               |                | PA4        | 0          | 0          | 0          | 0      |
|                      |                | PC6        | 0          | 0          | 0          | 0      |
|                      |                | P24        | 0          | ×          | 0          | ×      |
|                      | MTCLKB (input) | P15        | 0          | 0          | 0          | 0      |
|                      |                | PA6        | 0          | 0          | 0          | 0      |
|                      |                | PC7        | 0          | 0          | 0          | 0      |
|                      |                | P25        | 0          | X          | 0          | ×      |
|                      | MTCLKC (input) | PA1        | 0          | 0          | 0          | 0      |
|                      |                | PC4        | 0          | 0          | 0          | 0      |
|                      |                | P22        | 0          | X          | 0          | ×      |
|                      | MTCLKD (input) | PA3        | $\bigcirc$ | $\bigcirc$ | 0          | 0      |
|                      |                | PC5        | 0          | 0          | 0          | 0      |
|                      |                | P23        | 0          | X          | 0          | ×      |
| Port output enable   | POE0# (input)  | PC4        | 0          | 0          | 0          | 0      |
| 2                    |                | PA3        | 0          | 0          | -          | -      |
|                      |                | P11        | 0          | X          | -          | -      |
|                      |                | PD7        | -          | -          | 0          | ×      |
|                      | POE1# (input)  | PB5        | 0          | 0          | 0          | 0      |
|                      |                | P10        | 0          | $\times$   | -          | -      |
|                      |                | PD6        | -          | -          | 0          | ×      |
|                      | POE2# (input)  | PA6        | 0          | $\bigcirc$ | $\bigcirc$ | 0      |
|                      |                | P04        | $\bigcirc$ | ×          | -          | -      |
|                      |                | P56        | $\bigcirc$ | ×          | -          | -      |
|                      |                | P34        | -          | -          | 0          | ×      |
|                      |                | PD5        | -          | -          | 0          | ×      |
|                      | POE3# (input)  | PB3        | 0          | $\bigcirc$ | 0          | 0      |
|                      |                | PE0        | 0          | 0          | -          | -      |
|                      |                | P02        | 0          | ×          | -          | -      |
|                      |                | PD4        | 0          | ×          | 0          | ×      |
|                      |                | P33        | -          | -          | 0          | ×      |
|                      | POE8# (input)  | P17        | 0          | 0          | 0          | 0      |
|                      |                | P30        | 0          | 0          | 0          | 0      |
|                      |                | PE3        | 0          | 0          | 0          | 0      |
|                      |                | PD3        | 0          | ×          | 0          | ×      |
| 8-bit timer          | TMO0 (output)  | P22        | 0          | ×          | 0          | ×      |
|                      |                | PB3        | 0          | 0          | 0          | 0      |
|                      |                | PH1        | -          | -          | 0          | 0      |
|                      | TMCI0 (input)  | P21        | 0          | ×          | 0          | ×      |
|                      |                | PB1        | 0          | 0          | 0          | 0      |
|                      |                | PH3        | -          | -          | 0          | 0      |
|                      | TMRI0 (input)  | P20        | 0          | ×          | 0          | ×      |
|                      |                | PA4        | 0          | 0          | 0          | 0      |
|                      |                | PH2        | -          | -          | 0          | 0      |



| 8-bit timer | Pin Functions TMO1 (output) TMCI1 (input)            | Allocation<br>Port<br>P17<br>P26<br>P12<br>P54 | 100 pin  | 64 pin   | 100 pin  | 64 pin     |
|-------------|------------------------------------------------------|------------------------------------------------|----------|----------|----------|------------|
|             | TMCI1 (input)                                        | P26<br>P12                                     | 0        |          | 0        | $\cap$     |
| -           |                                                      | P12                                            | -        | $\cap$   | -        | $\bigcirc$ |
| -           |                                                      |                                                | $\cap$   | )        | 0        | 0          |
| _           |                                                      | P54                                            |          | ×        | 0        | ×          |
| _           |                                                      |                                                | 0        | 0        | 0        | 0          |
| _           |                                                      | PC4                                            | 0        | 0        | 0        | 0          |
|             | TMRI1 (input)                                        | P24                                            | 0        | ×        | 0        | ×          |
|             |                                                      | PB5                                            | 0        | 0        | 0        | 0          |
|             | TMO2 (output)                                        | P16                                            | 0        | 0        | 0        | 0          |
| -           |                                                      | PC7                                            | 0        | 0        | 0        | 0          |
|             | TMCI2 (input)                                        | P15                                            | 0        | 0        | <u> </u> | 0          |
|             |                                                      | P31<br>PC6                                     | <u> </u> | <u> </u> | 0        | <u> </u>   |
| -           | TMRI2 (input)                                        | PC6<br>P14                                     | 0        | 0        | 0        | 0          |
|             | ninkiz (input)                                       | PC5                                            | 0        | 0        | 0        | 0          |
| -           | TMO3 (output)                                        | P13                                            | 0        | ×        | 0        | ×          |
|             |                                                      | P32                                            | 0        | 0        | 0        | 0          |
|             |                                                      | P55                                            | 0        | 0        | 0        | 0          |
| -           | TMCI3 (input)                                        | P04                                            | 0        | ×        | -        | -          |
|             |                                                      | P27                                            | 0        | 0        | 0        | 0          |
|             |                                                      | PA6                                            | 0        | 0        | 0        | 0          |
|             |                                                      | P34                                            | -        | -        | 0        | ×          |
| -           | TMRI3 (input)                                        | P02                                            | 0        | X        | -        | -          |
|             |                                                      | P30                                            | 0        | 0        | 0        | 0          |
|             |                                                      | P33                                            | -        | -        | 0        | ×          |
|             | RXD0 (input)/                                        | P21                                            | 0        | ×        | 0        | ×          |
| interface   | SMISO0<br>(input/output)/<br>SSCL0<br>(input/output) | P11                                            | 0        | ×        | -        | -          |
| -           | TXD0 (output)/                                       | P20                                            | 0        | X        | 0        | ×          |
|             | SMOSI0<br>(input/output)/<br>SSDA0<br>(input/output) | P10                                            | 0        | ×        | -        | -          |
|             | SCK0                                                 | P22                                            | 0        | ×        | 0        | ×          |
|             | (input/output)                                       | P12                                            | 0        | ×        | -        | -          |
|             | CTS0# (input)/                                       | P23                                            | 0        | ×        | 0        | ×          |
|             | RTS0# (output)/<br>SS0# (input)                      | P13                                            | 0        | ×        | -        | -          |
|             | RXD1 (input)/                                        | P15                                            | 0        | 0        | 0        | 0          |
|             | SMISO1                                               | P30                                            | 0        | 0        | 0        | 0          |
| :           | (input/output)/<br>SSCL1<br>(input/output)           | PC6                                            | 0        | 0        | -        | -          |



|                 |                                                                          | Allocation | RX113 RX130 |        |         |        |
|-----------------|--------------------------------------------------------------------------|------------|-------------|--------|---------|--------|
| Module/Function | Pin Functions                                                            | Port       | 100 pin     | 64 pin | 100 pin | 64 pin |
| Serial          | TXD1 (output)/                                                           | P16        | 0           | 0      | 0       | 0      |
| communications  | SMOSI1                                                                   | P26        | 0           | 0      | 0       | 0      |
| interface       | (input/output)/                                                          | PC7        | 0           | 0      | -       | -      |
|                 | SSDA1<br>(input/output)                                                  | P56        | 0           | ×      | -       | -      |
|                 | SCK1 (I/O)                                                               | P17        | 0           | 0      | 0       | 0      |
|                 |                                                                          | P27        | 0           | 0      | 0       | 0      |
|                 |                                                                          | PC5        | 0           | 0      | -       | -      |
|                 | CTS1# (input)/                                                           | P14        | 0           | 0      | 0       | 0      |
|                 | RTS1# (output)/<br>SS1# (input)                                          | P31        | 0           | 0      | 0       | 0      |
|                 | RXD2 (input)/<br>SMISO2<br>(input/output)/                               | P52        | 0           | ×      |         |        |
|                 | SSCL2<br>(input/output)                                                  |            |             |        |         |        |
|                 | TXD2 (output)/<br>SMOSI2<br>(input/output)/<br>SSDA2<br>(input/output)   | P50        | 0           | ×      |         |        |
|                 | SCK2<br>(input/output)                                                   | P51        | 0           | X      |         |        |
|                 | CTS2# (input)/<br>RTS2# (output)/<br>SS2# (input)                        | P53        | 0           | ×      |         |        |
|                 | RXD5 (input)/                                                            | PA3        | 0           | 0      | 0       | 0      |
|                 | SMISO5                                                                   | PC2        | 0           | 0      | 0       | 0      |
|                 | (input/output)/<br>SSCL5<br>(input/output)/<br>IRRXD5 (input)            | PA2        | 0           | ×      | 0       | X      |
|                 | TXD5 (output)/                                                           | PA4        | 0           | 0      | 0       | 0      |
|                 | SMOSI5<br>(input/output)/<br>SSDA5<br>(input/output)/<br>IRTXD5 (output) | PC3        | 0           | 0      | 0       | 0      |
|                 | SCK5                                                                     | PA1        | 0           | 0      | 0       | 0      |
|                 | (input/output)                                                           | PC4        | 0           | 0      | 0       | 0      |
|                 | ,                                                                        | PC1        | 0           | ×      | 0       | X      |
|                 | CTS5# (input)/                                                           | PA6        | 0           | 0      | 0       | 0      |
|                 | RTS5# (output)/<br>SS5# (input)                                          | PC0        | 0           | ×      | 0       | ×      |
|                 | RXD6 (input)/                                                            | P02        | 0           | ×      | -       |        |
|                 | SMISO6                                                                   | P27        | 0           | 0      |         |        |
|                 | (input/output)/                                                          | PB0        | 0           | 0      | 0       | 0      |
|                 | SSCL6                                                                    | P33        |             |        | 0       | ×      |
|                 | (input/output)                                                           | P33<br>PD1 | -           | -      | 0       | ×<br>× |



|                 |                                                                | Allocation | RX113      |            | RX130   |        |
|-----------------|----------------------------------------------------------------|------------|------------|------------|---------|--------|
| Module/Function | Pin Functions                                                  | Port       | 100 pin    | 64 pin     | 100 pin | 64 pin |
| Serial          | TXD6 (output)/                                                 | P07        | 0          | X          | -       | -      |
| communications  | SMOSI6                                                         | P26        | 0          | 0          | -       | -      |
| interface       | (input/output)/                                                | PB1        | 0          | 0          | 0       | 0      |
|                 | SSDA6                                                          | P32        | 0          | 0          | 0       | 0      |
|                 | (input/output)                                                 | PD0        | -          | -          | 0       | ×      |
|                 | SCK6                                                           | P04        | 0          | ×          | -       | -      |
|                 | (input/output)                                                 | PB3        | 0          | 0          | 0       | 0      |
|                 |                                                                | P34        | -          | -          | 0       | ×      |
|                 |                                                                | PD2        | -          | -          | 0       | ×      |
|                 | CTS6# (input)/                                                 | P32        | 0          | 0          | -       | -      |
|                 | RTS6# (output)/                                                | PJ3        | 0          | ×          | 0       | ×      |
|                 | SS6# (input)                                                   | PB2        | 0          | ×          | 0       | ×      |
|                 | RXD8 (input)/                                                  | PC6        | 0          | 0          | 0       | ×      |
|                 | SMISO8<br>(input/output)/<br>SSCL8<br>(input/output)           | PA6        | 0          | ×          | -       | -      |
|                 | TXD8 (output)/                                                 | PC7        | 0          | 0          | 0       | ×      |
|                 | SMOSI8<br>(input/output)/<br>SSDA8<br>(input/output)           | PA7        | 0          | ×          | -       | -      |
|                 | SCK8                                                           | PC5        | $\bigcirc$ | $\bigcirc$ | 0       | ×      |
|                 | (input/output)                                                 | PA5        | $\bigcirc$ | ×          | -       | -      |
|                 | CTS8# (input)/                                                 | PC4        | 0          | $\bigcirc$ | 0       | ×      |
|                 | RTS8# (output)/<br>SS8# (input)                                | PA4        | 0          | ×          | -       | -      |
|                 | RXD9 (input)/                                                  | PB6        | 0          | 0          | 0       | ×      |
|                 | SMISO9<br>(input/output)/<br>SSCL9<br>(input/output)           | PE4        | 0          | 0          | -       | -      |
|                 | TXD9 (output)/                                                 | PB7        | 0          | 0          | 0       | ×      |
|                 | SMOSI9<br>(input/output)/<br>SSDA9<br>(input/output)           | PE5        | 0          | 0          | -       | -      |
|                 | SCK9                                                           | PB5        | 0          | 0          | 0       | ×      |
|                 | (input/output)                                                 | PE3        | 0          | 0          | -       | -      |
|                 | CTS9# (input)/                                                 | PB4        | 0          | ×          | 0       | ×      |
|                 | RTS9# (output)/<br>SS9# (input)                                | PE0        | 0          | 0          | -       | -      |
|                 | RXD12 (input)/                                                 | PE2        | 0          | 0          | 0       | 0      |
|                 | SMISO12                                                        | P17        | 0          | 0          | -       | -      |
|                 | (input/output)/<br>SSCL12<br>(input/output)/<br>RXDX12 (input) | P11        | 0          | ×          | -       | -      |



## RX113 Group, RX130 Group

|                   |                                                                                              | Allocation | RX113   |        | RX130   |            |
|-------------------|----------------------------------------------------------------------------------------------|------------|---------|--------|---------|------------|
| Module/Function   | Pin Functions                                                                                | Port       | 100 pin | 64 pin | 100 pin | 64 pin     |
| Serial            | TXD12 (output)/                                                                              | PE1        | 0       | 0      | 0       | $\bigcirc$ |
| communications    | SMOSI12                                                                                      | P14        | 0       | 0      | -       | -          |
| interface         | (input/output)/<br>SSDA12<br>(input/output)/<br>TXDX12 (output)/<br>SIOX12<br>(input/output) | P10        | 0       | ×      | -       | -          |
|                   | SCK12                                                                                        | PE0        | 0       | 0      | 0       | 0          |
|                   | (input/output)                                                                               | P27        | 0       | 0      | -       | -          |
|                   |                                                                                              | P12        | 0       | ×      | -       | -          |
|                   | CTS12# (input)/                                                                              | PE3        | 0       | 0      | 0       | $\bigcirc$ |
|                   | RTS12# (output)/<br>SS12# (input)                                                            | P13        | 0       | ×      | -       | -          |
| I2C bus interface | SCL0 (input/output)                                                                          | P16        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | PB0        | 0       | 0      | -       |            |
|                   |                                                                                              | P12        | -       | -      | 0       | ×          |
|                   | SDA0                                                                                         | P17        | 0       | 0      | 0       | 0          |
|                   | (input/output)                                                                               | PA6        | 0       | 0      | -       | -          |
|                   |                                                                                              | P13        | -       | -      | 0       | ×          |
| Serial peripheral | RSPCKA                                                                                       | P15        | 0       | 0      | -       | -          |
| interface         | (input/output)                                                                               | PB0        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | PC5        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | PE3        | 0       | 0      | -       | -          |
|                   |                                                                                              | P51        | 0       | ×      | -       | -          |
|                   |                                                                                              | PA5        | -       | -      | 0       | ×          |
|                   | MOSIA                                                                                        | P16        | 0       | 0      | 0       | 0          |
|                   | (input/output)                                                                               | PA6        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | PE4        | 0       | 0      | -       | -          |
|                   |                                                                                              | PC6        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | P50        | 0       | ×      | -       | -          |
|                   | MISOA                                                                                        | P17        | 0       | 0      | 0       | 0          |
|                   | (input/output)                                                                               | PC7        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | PA3        | 0       | 0      | -       | -          |
|                   |                                                                                              | P52        | 0       | ×      | -       | -          |
|                   |                                                                                              | PE5        | 0       | 0      | -       | -          |
|                   |                                                                                              | PA7        | -       | -      | 0       | ×          |
|                   | SSLA0                                                                                        | P14        | 0       | 0      | -       | -          |
|                   | (input/output)                                                                               | PA4        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | PC4        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | P53        | 0       | X      | -       | -          |
|                   | SSLA1 (output)                                                                               | PA0        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | PC0        | 0       | X      | 0       | ×          |
|                   | SSLA2 (output)                                                                               | PA1        | 0       | 0      | 0       | 0          |
|                   |                                                                                              | PC1        | 0       | Х      | 0       | ×          |
|                   | SSLA3 (output)                                                                               | PC2        | 0       | 0      | 0       | 0          |



|                             |                                | Allocation | RX113      |          | RX130    |            |
|-----------------------------|--------------------------------|------------|------------|----------|----------|------------|
| Module/Function             | Pin Functions                  | Port       | 100 pin    | 64 pin   | 100 pin  | 64 pin     |
| Serial peripheral interface | SSLA3 (output)                 | PA2        | 0          | ×        | 0        | Х          |
| USB 2.0<br>host/function    | USB0_EXICEN<br>(output)        | PC6        | 0          | 0        |          |            |
| module                      | USB0_VBUSEN                    | P16        | 0          | 0        |          |            |
|                             | (output)                       | PC4        | 0          | 0        |          |            |
|                             |                                | P26        | $\bigcirc$ | 0        |          |            |
|                             | USB0_OVRCURA                   | P14        | 0          | 0        |          |            |
|                             | (input)                        | PB3        | 0          | 0        |          |            |
|                             | USB0_OVRCURB                   | P16        | 0          | 0        |          |            |
|                             | (input)                        | PC7        | 0          | 0        |          |            |
|                             | USB0_ID (input)<br>USB0_VBUS   | PC5<br>P16 | 0          | <u> </u> |          |            |
|                             | (input)                        |            |            |          |          |            |
|                             | USB0_VBUS<br>(input)           | PC4        | 0          | 0        |          |            |
| Realtime clock              | RTCOUT (output)                | P16        | $\bigcirc$ | 0        | 0        | 0          |
|                             |                                | P32        | 0          | 0        | 0        | 0          |
|                             |                                | PB0        | 0          | 0        | -        | -          |
|                             |                                | PA1        | 0          | 0        | -        | -          |
| 12-bit A/D                  | AN000 (input)                  | P40        | 0          | 0        | 0        | $\bigcirc$ |
| converter                   | AN001 (input)                  | P41        | 0          | 0        | 0        | 0          |
|                             | AN002 (input)                  | P42        | 0          | 0        | 0        | 0          |
|                             | AN003 (input)                  | P43        | 0          | ×        | 0        | 0          |
|                             | AN004 (input)                  | P44        | 0          | ×        | 0        | 0          |
|                             | AN005 (input)                  | P90<br>P45 | 0          | ×        | -        | -          |
|                             | AN006 (input)                  | P45<br>P46 | -          | -<br>×   | <u> </u> | <u> </u>   |
|                             | AN008 (input)                  | P40<br>P91 | 0          | ×        | -        | -          |
|                             |                                | P47        | -          | -        |          |            |
|                             | AN008 (input)                  | PE0        | 0          | 0        |          |            |
|                             | AN009 (input)                  | PE1        | 0          | 0        |          |            |
|                             | AN010 (input)                  | PE2        | 0          | 0        |          |            |
|                             | AN011 (input)                  | PE3        | 0          | 0        |          |            |
|                             | AN012 (input)                  | PE4        | 0          | 0        |          |            |
|                             | AN013 (input)                  | PE5        | 0          | 0        |          |            |
|                             | AN014 (input)                  | PE6        | $\bigcirc$ | 0        |          |            |
|                             | AN015 (input)                  | PE7        | 0          | 0        |          |            |
|                             | AN016 (input)                  | PE0        |            |          | 0        | 0          |
|                             | AN017 (input)                  | PE1        |            |          | 0        | 0          |
|                             | AN018 (input)                  | PE2        |            |          | 0        | 0          |
|                             | AN019 (input)                  | PE3        |            |          | 0        | 0          |
|                             | AN020 (input)                  | PE4        |            |          | 0        | 0          |
|                             | AN021 (input)                  | PE5        |            |          | 0        | <u> </u>   |
|                             | AN022 (input)                  | PE6<br>PE7 |            |          | 0        | ×<br>×     |
|                             | AN023 (input)<br>AN024 (input) | PE7<br>PD0 |            |          | 0        | ×<br>×     |
|                             | AN024 (input)<br>AN025 (input) | PD0<br>PD1 |            |          |          | ×<br>×     |
|                             |                                | FUI        |            |          |          | ^          |



|                        |                          | Allegation         | RX113   |          | RX130   |        |
|------------------------|--------------------------|--------------------|---------|----------|---------|--------|
| Module/Function        | Pin Functions            | Allocation<br>Port | 100 pin | 64 pin   | 100 pin | 64 pin |
| 12-bit A/D             | AN026 (input)            | PD2                |         |          | 0       | ×      |
| converter              | AN027 (input)            | PD3                |         |          | 0       | ×      |
|                        | AN028 (input)            | PD4                |         |          | 0       | ×      |
|                        | AN029 (input)            | PD5                |         |          | 0       | ×      |
|                        | AN030 (input)            | PD6                |         |          | 0       | ×      |
|                        | AN031 (input)            | PD7                |         |          | 0       | ×      |
|                        | AN0021 (input)           | P92                | 0       | ×        |         |        |
|                        | VREFH0 (input)           | PJ6                | 0       | 0        |         |        |
|                        | VREFL0 (input)           | PJ7                | 0       | 0        |         |        |
|                        | ADTRG0# (input)          | P16                | 0       | 0        | 0       | 0      |
|                        |                          | P27                | 0       | 0        | -       | -      |
|                        |                          | PB0                | 0       | 0        | -       | -      |
|                        |                          | P25                | 0       | ×        | 0       | ×      |
|                        |                          | P07                | 0       | $\times$ | 0       | ×      |
| 12-bit D/A             | DA0 (output)             | PJ0                | 0       | 0        | -       | -      |
| converter              |                          | P03                | -       | -        | 0       | 0      |
|                        | DA1 (output)             | PJ2                | 0       | 0        | -       | -      |
|                        |                          | P05                | -       | -        | 0       | 0      |
|                        | VREFH                    | P41                | 0       | 0        |         |        |
|                        | VREFL                    | P42                | 0       | 0        |         |        |
| Clock                  | CLKOUT (output)          | P15                | 0       | 0        | -       | -      |
|                        |                          | PC4                | 0       | 0        | -       | -      |
|                        |                          | PE3                | -       | -        | 0       | 0      |
|                        |                          | PE4                | -       | -        | 0       | 0      |
| Clock frequency        | CACREF (input)           | P27                | 0       | 0        | -       | -      |
| accuracy               |                          | PA0                | 0       | 0        | 0       | 0      |
| measurement<br>circuit |                          | PC7                | 0       | 0        | 0       | 0      |
| Circuit                |                          | P15                | 0       | 0        | -       | -      |
|                        |                          | PH0                | -       | -        | 0       | 0      |
| Voltage detection      | CMPA2 (input)            | P27                | 0       | 0        | -       | -      |
| circuit                |                          | PE4                | -       | -        | 0       | 0      |
| Comparator B           | CMPB0 (input)            | PE1                | 0       | 0        | 0       | 0      |
|                        | CVREFB0 (input)          | PE2                | 0       | 0        | 0       | 0      |
|                        | CMPOB0 (output)          | PE7                | 0       | 0        | -       | -      |
|                        |                          | PE5                | -       | -        | 0       | 0      |
|                        | CMPB1 (input)            | PA3                | 0       | 0        | 0       | 0      |
|                        | CVREFB1 (input)          | PA4                | 0       | 0        | 0       | 0      |
|                        | CMPOB1 (output)          | PE5                | 0       | 0        | -       | -      |
| O e de la companya de  | 001001/0                 | PB1                | -       | -        | 0       | 0      |
| Serial sound interface | SSISCK0                  | PB5                | 0       | 0        |         |        |
| IIICHACE               | (input/output)           | PE0                | 0       | 0        |         |        |
|                        | SSIWS0<br>(input/output) | PB1                | 0       | 0        |         |        |
|                        |                          | PE4                | 0       | 0        |         |        |
|                        | SSIRXD0 (input)          | PB6                | 0       | 0        |         |        |
|                        |                          | PE2                | 0       | 0        |         |        |
|                        | SSITXD0 (input)          | PB7                | 0       | 0        |         |        |
|                        |                          | PE1                | 0       | 0        |         |        |



|                    |                        | Allocation | RX113      |            | RX130   |        |
|--------------------|------------------------|------------|------------|------------|---------|--------|
| Module/Function    | Pin Functions          | Port       | 100 pin    | 64 pin     | 100 pin | 64 pin |
| Serial sound       | AUDIO_MCLK             | PB3        | 0          | 0          |         |        |
| interface          | (input)                | PE3        | 0          | 0          |         |        |
| LCD                | COM0 (output)          | PC5        | 0          | 0          |         |        |
| Controller/Drivers | COM1 (output)          | PC4        | 0          | 0          |         |        |
|                    | COM2 (output)          | PC3        | 0          | 0          |         |        |
|                    | COM3 (output)          | PC2        | 0          | 0          |         |        |
|                    | SEG00 (output)         | P13        | 0          | ×          |         |        |
|                    | SEG01 (output)         | P12        | 0          | ×          |         |        |
|                    | SEG02 (output)         | P11        | 0          | ×          |         |        |
|                    | SEG03 (output)         | P10        | 0          | ×          |         |        |
|                    | SEG04 (output)         | P56        | 0          | ×          |         |        |
|                    | SEG05 (output)         | P53        | 0          | ×          |         |        |
|                    | SEG06 (output)         | P52        | 0          | ×          |         |        |
|                    | SEG07 (output)         | P51        | 0          | ×          |         |        |
|                    | SEG08 (output)         | P50        | 0          | ×          |         |        |
|                    | SEG09 (output)         | PC1        | 0          | ×          |         |        |
|                    | SEG10 (output)         | PC0        | 0          | ×          |         |        |
|                    | SEG11/COM4             | PB7        | $\bigcirc$ | $\bigcirc$ |         |        |
|                    | (output)               |            |            |            |         |        |
|                    | SEG12/COM5             | PB6        | 0          | $\bigcirc$ |         |        |
|                    | (output)<br>SEG13/COM6 | PB5        | 0          | 0          |         |        |
|                    | (output)               | FDJ        | 0          | 0          |         |        |
|                    | SEG14 (output)         | PB4        | 0          | ×          |         |        |
|                    | SEG15/COM7             | PB3        | $\bigcirc$ | $\bigcirc$ |         |        |
|                    | (output)               |            |            |            |         |        |
|                    | SEG16 (output)         | PB2        | 0          | ×          |         |        |
|                    | SEG17 (output)         | PB1        | 0          | 0          |         |        |
|                    | SEG18 (output)         | PA7        | 0          | ×          |         |        |
|                    | SEG19 (output)         | PA5        | 0          | ×          |         |        |
|                    | SEG20 (output)         | PA4        | 0          | 0          |         |        |
|                    | SEG21 (output)         | PA3        | 0          | 0          |         |        |
|                    | SEG22 (output)         | PA2        | 0          | ×          |         |        |
|                    | SEG23 (output)         | PA1        | 0          | 0          |         |        |
|                    | SEG24 (output)         | PA0        | 0          | 0          |         |        |
|                    | SEG25 (output)         | PF7        | 0          | ×          |         |        |
|                    | SEG26 (output)         | PF6        | 0          | ×          |         |        |
|                    | SEG27 (output)         | PE5        | 0          | 0          |         |        |
|                    | SEG28 (output)         | PE4        | 0          | 0          |         |        |
|                    | SEG29 (output)         | PE3        | 0          | 0          |         |        |
|                    | SEG30 (output)         | PE2        | 0          | 0          |         |        |
|                    | SEG31 (output)         | PE1        | 0          | 0          |         |        |
|                    | SEG32 (output)         | PE0        | 0          | 0          |         |        |
|                    | SEG33 (output)         | PE7        | 0          | 0          |         |        |
|                    | SEG34 (output)         | PE6        | 0          | 0<br>×     |         |        |
|                    | SEG35 (output)         | PD4        |            | ×<br>×     |         |        |
|                    | SEG36 (output)         | PD3        | 0          | ×<br>0     |         |        |
|                    | SEG37 (output)         | PD2        | U          | $\cup$     |         |        |



|                    |                    | Allocation | RX113   |        | RX130   | 0      |  |
|--------------------|--------------------|------------|---------|--------|---------|--------|--|
| Module/Function    | Pin Functions      | Port       | 100 pin | 64 pin | 100 pin | 64 pin |  |
| LCD                | SEG38 (output)     | PD1        | 0       | 0      |         |        |  |
| Controller/Drivers | SEG39 (output)     | PD0        | 0       | 0      |         |        |  |
|                    | CAPH (output)      | P30        | 0       | 0      |         |        |  |
|                    | CAPL (output)      | P31        | 0       | 0      |         |        |  |
|                    | VL1 (input/output) | P55        | 0       | 0      |         |        |  |
|                    | VL2 (input/output) | P54        | 0       | 0      |         |        |  |
|                    | VL3 (input/output) | PC7        | 0       | 0      |         |        |  |
|                    | VL4 (input/output) | PC6        | 0       | 0      |         |        |  |
| Capacitive touch   | TS0 (output)       | P07        | 0       | ×      |         |        |  |
| sensing unit       | TS0 (input/output) | P32        |         |        | 0       | 0      |  |
|                    | TS1 (output)       | P04        | 0       | ×      |         |        |  |
|                    | TS1 (input/output) | P31        |         |        | 0       | 0      |  |
|                    | TS2 (output)       | P02        | 0       | ×      | -       | -      |  |
|                    |                    | P30        | -       | -      | 0       | 0      |  |
|                    | TS3 (output)       | PJ3        | 0       | ×      | -       | -      |  |
|                    |                    | P27        | -       | -      | 0       | 0      |  |
|                    | TS4 (output)       | P25        | 0       | ×      | -       | -      |  |
|                    |                    | P26        | -       | -      | 0       | 0      |  |
|                    | TS5 (output)       | P24        | 0       | ×      | -       | -      |  |
|                    |                    | P15        | -       | -      | 0       | 0      |  |
|                    | TS6 (output)       | P23        | 0       | ×      | -       | -      |  |
|                    |                    | P14        | -       | -      | 0       | 0      |  |
|                    | TS7 (output)       | P22        | 0       | ×      | -       | -      |  |
|                    |                    | PH3        | -       | -      | 0       | 0      |  |
|                    | TS8 (output)       | P21        | 0       | ×      | -       | -      |  |
|                    |                    | PH2        | -       | -      | 0       | 0      |  |
|                    | TS9 (output)       | P20        | 0       | ×      | -       | -      |  |
|                    |                    | PH1        | -       | -      | 0       | 0      |  |
|                    | TS10 (output)      | P27        | 0       | ×      | -       | -      |  |
|                    |                    | PH0        | -       | -      | 0       | 0      |  |
|                    | TS11 (output)      | P32        | 0       | ×      | -       | -      |  |
|                    |                    | P55        | -       | -      | 0       | 0      |  |
|                    | TS12 (output)      | P54        |         |        | 0       | 0      |  |
|                    | TS13 (output)      | PC7        |         |        | 0       | 0      |  |
|                    | TS14 (output)      | PC6        |         |        | 0       | 0      |  |
|                    | TS15 (output)      | PC5        |         |        | 0       | 0      |  |
|                    | TS16 (output)      | PC3        |         |        | 0       | 0      |  |
|                    | TS17 (output)      | PC2        |         |        | 0       | 0      |  |
|                    | TS18 (output)      | PB7        |         |        | 0       | 0      |  |
|                    | TS19 (output)      | PB6        |         |        | 0       | 0      |  |
|                    | TS20 (output)      | PB5        |         |        | 0       | 0      |  |
|                    | TS21 (output)      | PB4        |         |        | 0       | ×      |  |
|                    | TS22 (output)      | PB3        |         |        | 0       | 0      |  |
|                    | TS23 (output)      | PB2        |         |        | 0       | ×      |  |
|                    | TS24 (output)      | PB1        |         |        | 0       | 0      |  |
|                    | TS25 (output)      | PB0        |         |        | 0       | 0      |  |
|                    | TS26 (output)      | PA6        |         |        | 0       | 0      |  |



|                  |                | Allocation | RX113   |        | RX130   |        |
|------------------|----------------|------------|---------|--------|---------|--------|
| Module/Function  | Pin Functions  | Port       | 100 pin | 64 pin | 100 pin | 64 pin |
| Capacitive touch | TS27 (output)  | PA5        |         |        | 0       | X      |
| sensing unit     | TS28 (output)  | PA4        |         |        | 0       | 0      |
|                  | TS29 (output)  | PA3        |         |        | 0       | 0      |
|                  | TS30 (output)  | PA2        |         |        | 0       | ×      |
|                  | TS31 (output)  | PA1        |         |        | 0       | 0      |
|                  | TS32 (output)  | PA0        |         |        | 0       | 0      |
|                  | TS33 (output)  | PE4        |         |        | 0       | 0      |
|                  | TS34 (output)  | PE3        |         |        | 0       | 0      |
|                  | TS35 (output)  | PE2        |         |        | 0       | 0      |
|                  | TSCAP          | P26        | 0       | ×      |         |        |
|                  | (input/output) |            |         |        |         |        |
|                  | TSCAP (—)      | PC4        |         |        | 0       | 0      |
| Remote control   | PMC0           | P51        |         |        | 0       | ×      |
| signal           | PMC1           | P52        |         |        | 0       | ×      |
| receiver (REMC)  |                |            |         |        |         |        |



| Register | Bit  | RX113                             | RX130                          |
|----------|------|-----------------------------------|--------------------------------|
| P0nPFS   | ASEL |                                   | Analog function select bit     |
| P1nPFS   | ISEL | Interrupt function select bit     | Interrupt function select bit  |
|          |      | 0: Not used as IRQn input pin.    | 0: Not used as IRQn input pin. |
|          |      | 1: Used as IRQn input pin.        | 1: Used as IRQn input pin.     |
|          |      | P10: IRQ6 (100 pin)               |                                |
|          |      | P11: IRQ7 (100 pin)               |                                |
|          |      | P12: IRQ2 (100 pin)               | P12: IRQ2 (100/80 pins)        |
|          |      | P13: IRQ3 (100 pin)               | P13: IRQ3 (100/80 pins)        |
|          |      | P14: IRQ4 (100/64 pins)           | P14: IRQ4 (100/80/64/48 pins)  |
|          |      | P15: IRQ5 (100/64 pins)           | P15: IRQ5 (100/80/64/48 pins)  |
|          |      | P16: IRQ6 (100/64 pins)           | P16: IRQ6 (100/80/64/48 pins)  |
|          |      | P17: IRQ7 (100/64 pins)           | P17: IRQ7 (100/80/64/48 pins)  |
| P2nPFS   | ISEL | Interrupt function select bit     |                                |
|          | ASEL | Analog function select bit        |                                |
| P3nPFS   | ISEL | Interrupt function select bit     | Interrupt function select bit  |
| -        |      | 0: Not used as IRQn input pin.    | 0: Not used as IRQn input pin. |
|          |      | 1: Used as IRQn input pin.        | 1: Used as IRQn input pin.     |
|          |      | P30: IRQ0 (100/64 pins)           | P30: IRQ0 (100/80/64/48 pins)  |
|          |      | P31: IRQ1 (100/64 pins)           | P31: IRQ1 (100/80/64/48 pins)  |
|          |      | P32: IRQ2 (100/64 pins)           | P32: IRQ2 (100/80/64 pins)     |
|          |      |                                   | P33: IRQ3 (100 pin)            |
|          |      |                                   | P34: IRQ4 (100/80 pins)        |
| P4nPFS   | ASEL | Analog function select bit        | Analog function select bit     |
| _        | _    | 0: Not used as an analog pin.     | 0: Not used as an analog pin.  |
|          |      | 1: Used as an analog pin.         | 1: Used as an analog pin.      |
|          |      | P40: AN000 (100/64 pins)          | P40: AN000 (100/80/64/48 pins) |
|          |      | P41: AN001/VREFH (100/64 pins)    | P41: AN001 (100/80/64/48 pins) |
|          |      | P42: AN002/VREFL (100/64 pins)    | P42: AN002 (100/80/64/48 pins) |
|          |      | P43: AN003 (100 pin)              | P43: AN003 (100/80/64 pins)    |
|          |      | P44: AN004 (100 pin)              | P44: AN004 (100/80/64 pins)    |
|          |      |                                   | P45: AN005 (100/80/64/48 pins) |
|          |      | P46: AN006 (100 pin)              | P46: AN006 (100/80/64/48 pins) |
|          |      |                                   | P47: AN007 (100/80/64/48 pins) |
| P5nPFS   | ISEL | Interrupt function select bit     |                                |
|          |      | 0: Not used as IRQn input pin.    |                                |
|          |      | 1: Used as IRQn input pin.        |                                |
|          |      | P56: IRQ5 (100 pin)               |                                |
| P9nPFS   |      | P9n pin function select registers |                                |
| PAnPFS   | ISEL | Interrupt function select bit     | Interrupt function select bit  |
|          |      | 0: Not used as IRQn input pin.    | 0: Not used as IRQn input pin. |
|          |      | 1: Used as IRQn input pin.        | 1: Used as IRQn input pin.     |
|          |      | PA3: IRQ6 (100/64 pins)           | PA3: IRQ6 (100/80/64/48 pins)  |
|          |      | PA4: IRQ5 (100/64 pins)           | PA4: IRQ5 (100/80/64/48 pins)  |
|          |      | PA6: IRQ3 (100/64 pins)           | · · /                          |
| PBnPFS   | ISEL | Interrupt function select bit     | Interrupt function select bit  |
|          |      | 0: Not used as IRQn input pin.    | 0: Not used as IRQn input pin. |
|          |      | 1: Used as IRQn input pin.        | 1: Used as IRQn input pin.     |
|          |      | PB0: IRQ2 (100/64 pins)           | · ·                            |
|          |      |                                   |                                |



| Register | Bit  | RX113                               | RX130                                 |
|----------|------|-------------------------------------|---------------------------------------|
| PCnPFS   | ISEL | Interrupt function select bit       | —                                     |
|          |      | 0: Not used as IRQn input pin.      |                                       |
|          |      | 1: Used as IRQn input pin.          |                                       |
|          |      | PC4: IRQ2 (100/64 pins)             |                                       |
| PDnPFS   | ISEL | Interrupt function select bit       | Interrupt function select bit         |
|          |      | 0: Not used as IRQn input pin.      | 0: Not used as IRQn input pin.        |
|          |      | 1: Used as IRQn input pin.          | 1: Used as IRQn input pin.            |
|          |      | PD0: IRQ0 (100/64 pins)             | PD0: IRQ0 (100/ <mark>80 pins)</mark> |
|          |      | PD1: IRQ1 (100/64 pins)             | PD1: IRQ1 (100/ <mark>80 pins)</mark> |
|          |      | PD2: IRQ2 (100/64 pins)             | PD2: IRQ2 (100/ <mark>80 pins)</mark> |
|          |      | PD3: IRQ3 (100 pin)                 | PD3: IRQ3 (100 pin)                   |
|          |      | PD4: IRQ4 (100 pin)                 | PD4: IRQ4 (100 pin)                   |
|          |      |                                     | PD5: IRQ5 (100 pin)                   |
|          |      |                                     | PD6: IRQ6 (100 pin)                   |
|          |      |                                     | PD7: IRQ7 (100 pin)                   |
|          | ASEL |                                     | Analog function select bit            |
|          |      |                                     | 0: Not used as an analog pin.         |
|          |      |                                     | 1: Used as an analog pin.             |
|          |      |                                     | PD0: AN024 (100/80 pins)              |
|          |      |                                     | PD1: AN025 (100/80 pins)              |
|          |      |                                     | PD2: AN026 (100/80 pins)              |
|          |      |                                     | PD3: AN027 (100 pin)                  |
|          |      |                                     | PD4: AN028 (100 pin)                  |
|          |      |                                     | PD5: AN029 (100 pin)                  |
|          |      |                                     | PD6: AN030 (100 pin)                  |
|          |      |                                     | PD7: AN031 (100 pin)                  |
| PEnPFS   | ISEL | Interrupt input function select bit | Interrupt function select bit         |
|          |      | 0: Not used as IRQn input pin.      | 0: Not used as IRQn input pin.        |
|          |      | 1: Used as IRQn input pin.          | 1: Used as IRQn input pin.            |
|          |      | PE0: IRQ0 (100/64 pins)             |                                       |
|          |      | PE1: IRQ1 (100/64 pins)             |                                       |
|          |      | PE2: IRQ7 (100/64 pins)             | PE2: IRQ7 (100/80/64/48 pins)         |
|          |      | PE3: IRQ3 (100/64 pins)             |                                       |
|          |      | PE4: IRQ4 (100/64 pins)             |                                       |
|          |      | PE5: IRQ5 (100/64 pins)             | PE5: IRQ5 (100/80/64 pins)            |
|          |      | PE6: IRQ6 (100/64 pins)             | PE6: IRQ6 (100 pin)                   |
|          |      | PE7: IRQ7 (100/64 pins)             | PE7: IRQ7 (100 pin)                   |



| Register | Bit  | RX113                                                            | RX130                             |
|----------|------|------------------------------------------------------------------|-----------------------------------|
| PEnPFS   | ASEL | PEn Analog function select bit                                   | Analog function select bit        |
|          |      | 0: Not used as an analog pin.                                    | 0: Not used as an analog pin.     |
|          |      | 1: Used as an analog pin.                                        | 1: Used as an analog pin.         |
|          |      | PE0: AN008 (100/64 pins)                                         | PE0: AN016 (100/80/64 pins)       |
|          |      | PE1: AN009/CMPB0 (100/64 pins)                                   | PE1: AN017, CMPB0                 |
|          |      |                                                                  | (100/80/64/48 pins)               |
|          |      | PE2: AN010/CVREFB0 (100/64 pins)                                 | PE2: AN018, CVREFB0               |
|          |      |                                                                  | (100/80/64/48 pins)               |
|          |      | PE3: AN011 (100/64 pins)                                         | PE3: AN019 (100/80/64/48 pins)    |
|          |      | PE4: AN012 (100/64 pins)                                         | PE4: AN020, CMPA2                 |
|          |      |                                                                  | (100/80/64/48 pins)               |
|          |      | PE5: AN013 (100/64 pins)                                         | PE5: AN021 (100/80/64 pins)       |
|          |      | PE6: AN014 (100/64 pins)                                         | PE6: AN022 (100 pin)              |
|          |      | PE7: AN015 (100/64 pins)                                         | PE7: AN023 (100 pin)              |
| PFnPFS   |      | PFn pin function select registers                                |                                   |
| PHnPFS   |      |                                                                  | PHn pin function select registers |
| PJnPFS   | ASEL | Analog function select bit                                       | Analog function select bit        |
|          |      | 0: Not used as an analog pin.                                    | 0: Not used as an analog pin.     |
|          |      | 1: Used as an analog pin.                                        | 1: Used as an analog pin.         |
|          |      | PJ0: DA0 (100/64 pins)                                           | PJ6: VREFH0                       |
|          |      | PJ2: DA1 (100/64 pins)                                           | PJ7: VREFL0                       |
|          |      | 0: The AVCC0 pin is selected as the                              |                                   |
|          |      | reference power supply pin for                                   |                                   |
|          |      | high-electric potential.                                         |                                   |
|          |      | 1: The VREFH0 pin is selected as the                             |                                   |
|          |      | reference power supply pin for                                   |                                   |
|          |      | high-electric potential.                                         |                                   |
|          |      | PJ6: AVCC0/VREFH0                                                |                                   |
|          |      | (100/64 pins)                                                    | _                                 |
|          |      | 0: The AVSS0 pin is selected as the                              |                                   |
|          |      | reference power supply ground pin                                |                                   |
|          |      | for low-electric potential.                                      |                                   |
|          |      | 1: The VREFL0 pin is selected as the                             |                                   |
|          |      | reference power supply ground pin<br>for low-electric potential. |                                   |
|          |      | PJ7: AVSS0/VREFL0                                                |                                   |
|          |      | (100/64 pins)                                                    |                                   |
|          |      |                                                                  |                                   |



## 2.14 8-Bit Timer

Table 2.28 shows a comparative overview of 8-bit timer specifications.

| ltem                                       | RX113 (TMR)                                                                                                                                                                                           | RX130 (TMR)                                                                                                                                                                                           |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count clocks                               | <ul> <li>Internal clock:<br/>PCLK/1, PCLK/2, PCLK/8, PCLK/32,<br/>PCLK/64, PCLK/1,024, PCLK/8,192</li> <li>External clock: external count clock</li> </ul>                                            | <ul> <li>Frequency-divided clock:<br/>PCLK/1, PCLK/2, PCLK/8, PCLK/32,<br/>PCLK/64, PCLK/1,024, PCLK/8,192</li> <li>External clock: external count clock</li> </ul>                                   |
| Number of<br>channels                      | (8 bits $\times$ 2 channels) $\times$ 2 units                                                                                                                                                         | (8 bits $\times$ 2 channels) $\times$ 2 units                                                                                                                                                         |
| Compare match                              | <ul> <li>8-bit mode<br/>(compare match A, compare match<br/>B)</li> <li>16-bit mode<br/>(compare match A, compare match<br/>B)</li> </ul>                                                             | <ul> <li>8-bit mode<br/>(compare match A, compare match<br/>B)</li> <li>16-bit mode<br/>(compare match A, compare match<br/>B)</li> </ul>                                                             |
| Counter clear                              | Selectable among compare match A, compare match B, and external reset signal.                                                                                                                         | Selectable among compare match A, compare match B, and external reset signal.                                                                                                                         |
| Timer output                               | Output pulses with a user-defined duty<br>cycle or PWM output                                                                                                                                         | Output pulses with a user-defined duty<br>cycle or PWM output                                                                                                                                         |
| Cascading of two channels                  | <ul> <li>16-bit count mode</li> <li>16-bit timer using TMR0 for the upper</li> <li>8 bits and TMR1 for the lower 8 bits</li> <li>(TMR2 for the upper 8 bits and TMR3 for the lower 8 bits)</li> </ul> | <ul> <li>16-bit count mode</li> <li>16-bit timer using TMR0 for the upper</li> <li>8 bits and TMR1 for the lower 8 bits</li> <li>(TMR2 for the upper 8 bits and TMR3 for the lower 8 bits)</li> </ul> |
|                                            | <ul> <li>Compare match count mode<br/>TMR1 can be used to count TMR0<br/>compare matches (TMR3 can be<br/>used to count TMR2 compare<br/>matches).</li> </ul>                                         | <ul> <li>Compare match count mode<br/>TMR1 can be used to count TMR0<br/>compare matches (TMR3 can be<br/>used to count TMR2 compare<br/>matches).</li> </ul>                                         |
| Interrupt sources                          | Compare match A, compare match B, and overflow                                                                                                                                                        | Compare match A, compare match B, and overflow                                                                                                                                                        |
| Event link function<br>(output)            | Compare match A, compare match B, and overflow (TMR0 and TMR2)                                                                                                                                        | Compare match A, compare match B, and overflow (TMR0 and TMR2)                                                                                                                                        |
| Event link function<br>(input)             | Ability to perform one of three actions<br>according to accepted event<br>(1) Counter start (TMR0 and TMR2)<br>(2) Event counter (TMR0 and TMR2)<br>(3) Counter restart (TMR0 and TMR2)               | Ability to perform one of three actions<br>according to accepted event<br>(1) Counter start (TMR0 and TMR2)<br>(2) Event counter (TMR0 and TMR2)<br>(3) Counter restart (TMR0 and TMR2)               |
| DTC activation                             | The DTC can be activated by compare match A interrupts or compare match B interrupts.                                                                                                                 | The DTC can be activated by compare match A interrupts or compare match B interrupts.                                                                                                                 |
| Generation of baud rate clock for SCI      |                                                                                                                                                                                                       | Generation of baud rate clock for SCI                                                                                                                                                                 |
| Generation of<br>receive clock for<br>REMC |                                                                                                                                                                                                       | Generation of operating clock for remote control signal receiver (REMC)                                                                                                                               |
| Low power<br>consumption<br>function       | It is possible to transition each unit to the module stop state for each unit.                                                                                                                        | It is possible to transition each unit to the module stop state.                                                                                                                                      |

### Table 2.28 Comparative Overview of 8-Bit Timer Specifications



# 2.15 Compare Match Timer

Table 2.29 shows a comparative overview of the compare match timer specification, and Table 2.30 shows a comparative listing of the compare match timer registers.

| ltem                                 | RX113 (CMT)                                                                                                                                            | RX130 (CMT)                                                                                                                                            |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of units                      | 2 compare match timer (CMT) units (unit<br>0 and unit 1), each consisting of a 2-<br>channel 16-bit timer, for a total of 4<br>channels                | 1 compare match timer (CMT) unit (unit<br>0), each consisting of a 2-channel 16-bit<br>timer, for a total of 2 channels                                |
| Count clocks                         | Four frequency-divided clocks<br>One clock from PCLK/8, PCLK/32,<br>PCLK/128, and PCLK/512 can be<br>selected for each channel.                        | Four frequency-divided clocks<br>One clock from PCLK/8, PCLK/32,<br>PCLK/128, and PCLK/512 can be<br>selected for each channel.                        |
| Interrupt                            | A compare match interrupt can be requested for each channel.                                                                                           | A compare match interrupt can be requested for each channel.                                                                                           |
| Event link function (output)         | Event signal output at CMT1 compare match                                                                                                              | Event signal output at CMT1 compare match                                                                                                              |
| Event link function<br>(input)       | <ul> <li>Support for linked operation of<br/>specified module</li> <li>Support for CMT1 counter start, event<br/>counter, and count restart</li> </ul> | <ul> <li>Support for linked operation of<br/>specified module</li> <li>Support for CMT1 counter start, event<br/>counter, and count restart</li> </ul> |
| Low power<br>consumption<br>function | It is possible to specify the module stop state for each unit.                                                                                         | It is possible to specify the module stop state.                                                                                                       |

| Table 2.29 Comparative Overview of Compare Match Timer Specification |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

| Table 2.30 | Comparative Listing of | <b>Compare Match</b> | Timer Registers |
|------------|------------------------|----------------------|-----------------|
|------------|------------------------|----------------------|-----------------|

| Register | Bit | RX113 (CMT)                          | RX130 (CMT) |
|----------|-----|--------------------------------------|-------------|
| CMSTR1   | _   | Compare match timer start register 1 |             |



## 2.16 Realtime Clock

Table 2.31 shows a comparative listing of the realtime clock registers.

| Register | Bit        | RX113 (RTCA)                          | RX130 (RTCc)                         |
|----------|------------|---------------------------------------|--------------------------------------|
| RCR3     | RTCDV[2:0] | Sub-clock oscillator drive capacity   | Sub-clock oscillator drive capacity  |
|          |            | control bits                          | control bits                         |
|          |            | b3 b1                                 | b3 b1                                |
|          |            | 0 0 0: Medium drive capacity for low  | 0 0 0: Setting prohibited.           |
|          |            | CL                                    | 0 0 1: Drive capacity for low CL     |
|          |            | 0 0 1: High drive capacity for low CL | 0 1 0: Setting prohibited.           |
|          |            | 0 1 0: Low drive capacity for low CL  | 0 1 1: Setting prohibited.           |
|          |            | 1 0 0: Drive capacity for standard CL | 1 0 0: Setting prohibited.           |
|          |            | Do not set to values other than the   | 1 0 1: Setting prohibited.           |
|          |            | above.                                | 1 1 0: Drive capacity for standard C |
|          |            |                                       | 1 1 1: Setting prohibited.           |

### Table 2.31 Comparative Listing of Realtime Clock Registers

Note 1. Only the notation differs. The functionality is the same.



## 2.17 Serial Communication Interface

Table 2.32 and Table 2.33 show a comparative overview of the serial communication interface specifications, and Table 2.34 shows a comparative listing of the serial communication interface registers.

| Item                       | RX113 (SCle)                                                                                                                                                                                                                                                 | RX130 (SClg)                                                                                                                                                                                       |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels         | 7 channels<br>(SCI0, SCI1, <mark>SCI2</mark> , SCI5, SCI6,<br>SCI8, SCI9)                                                                                                                                                                                    | <mark>6 channels</mark><br>(SCI0, SCI1, SCI5, SCI6, SCI8,<br>SCI9)                                                                                                                                 |
| Serial communication modes | <ul> <li>Asynchronous</li> <li>Clock synchronous</li> <li>Smart card interface</li> <li>Simple I<sup>2</sup>C bus</li> <li>Simple SPI bus</li> <li>Bit rate specifiable by on-chip baud</li> </ul>                                                           | <ul> <li>Asynchronous</li> <li>Clock synchronous</li> <li>Smart card interface</li> <li>Simple I<sup>2</sup>C bus</li> <li>Simple SPI bus</li> <li>Bit rate specifiable by on-chip baud</li> </ul> |
| Transfer speed             | rate generator.                                                                                                                                                                                                                                              | rate generator.                                                                                                                                                                                    |
| Full-duplex communication  | Transmitter:<br>Continuous transmission possible<br>using double-buffer configuration.<br>Receiver:<br>Continuous reception possible<br>using double-buffer configuration.                                                                                   | Transmitter:<br>Continuous transmission possible<br>using double-buffer configuration.<br>Receiver:<br>Continuous reception possible<br>using double-buffer configuration.                         |
| I/O pins                   | <ul> <li>SCI I/O pins         <ul> <li>(asynchronous mode and clock synchronous mode)</li> <li>SCK0, RXD0, TXD0,</li> <li>CTS0#/RTS0#</li> <li>SCK1, RXD1, TXD1,</li> <li>CTS1#/RTS1#</li> <li>SCK2, RXD2, TXD2,</li> <li>CTS2#/RTS2#</li> </ul> </li> </ul> | <ul> <li>SCI I/O pins<br/>(asynchronous mode and clock<br/>synchronous mode)<br/>SCK0, RXD0, TXD0,<br/>CTS0#/RTS0#<br/>SCK1, RXD1, TXD1,<br/>CTS1#/RTS1#</li> </ul>                                |
|                            | SCK5, RXD5, TXD5,<br>CTS5#/RTS5#<br>SCK6, RXD6, TXD6,<br>CTS6#/RTS6#<br>SCK8, RXD8, TXD8,<br>CTS8#/RTS8#<br>SCK9, RXD9, TXD9,<br>CTS9#/RTS9#                                                                                                                 | SCK5, RXD5, TXD5,<br>CTS5#/RTS5#<br>SCK6, RXD6, TXD6,<br>CTS6#/RTS6#<br>SCK8, RXD8, TXD8,<br>CTS8#/RTS8#<br>SCK9, RXD9, TXD9,<br>CTS9#/RTS9#                                                       |
|                            | <ul> <li>SCI I/O pins (simple I<sup>2</sup>C mode)<br/>SSCL0, SSDA0, SSCL1,<br/>SSDA1, SSCL2, SSDA2,<br/>SSCL5, SSDA5, SSCL6,<br/>SSDA6, SSCL8, SSDA8,<br/>SSCL9, SSDA9</li> </ul>                                                                           | <ul> <li>SCI I/O pins (simple I<sup>2</sup>C mode)<br/>SSCL0, SSDA0, SSCL1,<br/>SSDA1,<br/>SSCL5, SSDA5, SSCL6,<br/>SSDA6, SSCL8, SSDA8,<br/>SSCL9, SSDA9</li> </ul>                               |

| Table 2.32 | Comparative Overview of Serial Communication Interface Specifications |
|------------|-----------------------------------------------------------------------|
|            | (SCle: RX113, SClg: RX130)                                            |



| Item                      |                                              | RX113 (SCIe)                                                                                                                                                                                                                                                                                              | RX130 (SCIg)                                                                                                                                                                                                                                                         |  |
|---------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| I/O pins                  |                                              | <ul> <li>SCI I/O pins (simple SPI mode)<br/>SCK0, SMISO0, SMOSI0,<br/>SS0#,<br/>SCK1, SMISO1, SMOSI1,<br/>SS1#,<br/>SCK2, SMISO2, SMOSI2,<br/>SS2#,<br/>SCK5, SMISO5, SMOSI5,<br/>SS5#,<br/>SCK6, SMISO6, SMOSI6,<br/>SS6#,<br/>SCK8, SMISO8, SMOSI8,<br/>SS8#,<br/>SCK9, SMISO9, SMOSI9, SS9#</li> </ul> | <ul> <li>SCI I/O pins (simple SPI mode)<br/>SCK0, SMISO0, SMOSI0,<br/>SS0#,<br/>SCK1, SMISO1, SMOSI1,<br/>SS1#,<br/>SCK5, SMISO5, SMOSI5,<br/>SS5#,<br/>SCK6, SMISO6, SMOSI6,<br/>SS6#,<br/>SCK8, SMISO8, SMOSI8,<br/>SS8#,<br/>SCK9, SMISO9, SMOSI9, SS9</li> </ul> |  |
| Data transfer             |                                              | Selectable between LSB-first or<br>MSB-first transfer.                                                                                                                                                                                                                                                    | Selectable between LSB-first or MSB-first transfer.                                                                                                                                                                                                                  |  |
| Interrupt source          | ces                                          | Transmit end, transmit data empty,<br>receive data full, receive error,<br>completion of generation of start<br>condition, restart condition, or stop<br>condition (simple I <sup>2</sup> C mode)                                                                                                         | Transmit end, transmit data empty,<br>receive data full, receive error,<br>completion of generation of start<br>condition, restart condition, or stop<br>condition (simple I <sup>2</sup> C mode)                                                                    |  |
| Low power con<br>function | nsumption                                    | It is possible to transition each channel to the module stop state.                                                                                                                                                                                                                                       | It is possible to transition each channel to the module stop state.                                                                                                                                                                                                  |  |
| Synchronous               | Data length                                  | 7 or 8 bits                                                                                                                                                                                                                                                                                               | 7, 8, or 9 bits                                                                                                                                                                                                                                                      |  |
| mode                      | Transmission<br>stop bits                    | 1 or 2 bits                                                                                                                                                                                                                                                                                               | 1 or 2 bits                                                                                                                                                                                                                                                          |  |
|                           | Parity                                       | Even parity, odd parity, or no parity                                                                                                                                                                                                                                                                     | Even parity, odd parity, or no parity                                                                                                                                                                                                                                |  |
|                           | Receive error<br>detection                   | Parity, overrun, and framing errors                                                                                                                                                                                                                                                                       | Parity, overrun, and framing errors                                                                                                                                                                                                                                  |  |
|                           | Hardware flow control                        | The CTSn# and RTSn# pins can be used to control transmission and reception.                                                                                                                                                                                                                               | The CTSn# and RTSn# pins can<br>be used to control transmission<br>and reception.                                                                                                                                                                                    |  |
|                           | Start bit detection                          | Selectable between low level and falling edge.                                                                                                                                                                                                                                                            | Selectable between low level and falling edge.                                                                                                                                                                                                                       |  |
|                           | Break detection                              | When a framing error occurs, a break can be detected by reading the RXDn pin level directly.                                                                                                                                                                                                              | When a framing error occurs, a break can be detected by reading the RXDn pin level directly.                                                                                                                                                                         |  |
|                           | Clock source                                 | An internal or external clock can be<br>selected.<br>Transfer rate clock input from the<br>TMU can be used (SCI1 and<br>SCI5).                                                                                                                                                                            | An internal or external clock can be<br>selected.<br>Transfer rate clock input from the<br>TMR can be used (SCI5 and<br>SCI6).                                                                                                                                       |  |
|                           | Double-speed<br>mode                         | _                                                                                                                                                                                                                                                                                                         | Baud rate generator double-speed mode is selectable.                                                                                                                                                                                                                 |  |
|                           | Multi-processor<br>communication<br>function | Serial communication among multiple processors                                                                                                                                                                                                                                                            | Serial communication among multiple processors                                                                                                                                                                                                                       |  |
|                           | Noise<br>cancellation                        | The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.                                                                                                                                                                                                                   | The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.                                                                                                                                                                              |  |



| ltem                                             |                         | RX113 (SCIe)                                                                                                                                                       | RX130 (SCIg)                                                                                                                                                       |  |
|--------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Clock                                            | Data length             | 8 bits                                                                                                                                                             | 8 bits                                                                                                                                                             |  |
| synchronous<br>mode                              | Receive error detection | overrun error Overrun error                                                                                                                                        |                                                                                                                                                                    |  |
|                                                  | Hardware flow control   | The CTSn# and RTSn# pins can<br>be used to control transmission<br>and reception.                                                                                  | The CTSn# and RTSn# pins can<br>be used to control transmission<br>and reception.                                                                                  |  |
| Smart card Error<br>interface processing<br>mode |                         | An error signal can be transmitted<br>automatically when a parity error is<br>detected during reception.                                                           | An error signal can be transmitted<br>automatically when a parity error is<br>detected during reception.                                                           |  |
|                                                  |                         | Data can be retransmitted<br>automatically when an error signal<br>is received during transmission.                                                                | Data can be retransmitted<br>automatically when an error signal<br>is received during transmission.                                                                |  |
|                                                  | Data type               | Both direct convention and inverse convention are supported.                                                                                                       | Both direct convention and inverse convention are supported.                                                                                                       |  |
| Simple I <sup>2</sup> C<br>mode                  | Communication format    | I <sup>2</sup> C bus format                                                                                                                                        | I <sup>2</sup> C bus format                                                                                                                                        |  |
|                                                  | Operating               | Master                                                                                                                                                             | Master                                                                                                                                                             |  |
|                                                  | mode                    | (single-master operation only)                                                                                                                                     | (single-master operation only)                                                                                                                                     |  |
|                                                  | Transfer speed          | Fast mode is supported.                                                                                                                                            | Fast mode is supported.                                                                                                                                            |  |
|                                                  | Noise canceler          | The signal paths from input on the<br>SSCLn and SSDAn pins<br>incorporate on-chip digital noise<br>filters, and the noise cancellation<br>bandwidth is adjustable. | The signal paths from input on the<br>SSCLn and SSDAn pins<br>incorporate on-chip digital noise<br>filters, and the noise cancellation<br>bandwidth is adjustable. |  |
| Simple SPI                                       | Data length             | 8 bits                                                                                                                                                             | 8 bits                                                                                                                                                             |  |
| mode                                             | Error detection         | Overrun error                                                                                                                                                      | Overrun error                                                                                                                                                      |  |
|                                                  | SS input pin function   | Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.                                                             | Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.                                                             |  |
|                                                  | Clock settings          | Selectable among four clock phase and clock polarity settings.                                                                                                     | Selectable among four clock phase and clock polarity settings.                                                                                                     |  |
| Bit rate modulation function                     |                         | _                                                                                                                                                                  | On-chip baud rate generator output correction can reduce errors.                                                                                                   |  |
| Event link function<br>(SCI5 only)               |                         | Error (receive error, error signal detection) event output                                                                                                         | Error (receive error, error signal detection) event output                                                                                                         |  |
|                                                  |                         | Receive data full event output<br>Transmit data empty event output                                                                                                 | Receive data full event output<br>Transmit data empty event output                                                                                                 |  |
|                                                  |                         | Transmit end event output                                                                                                                                          | Transmit end event output                                                                                                                                          |  |



| (SCI12)                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| · · ·                                                                                                                                   |
| onous                                                                                                                                   |
| nchronous                                                                                                                               |
| ard interface                                                                                                                           |
| <sup>2</sup> C bus                                                                                                                      |
| PI bus                                                                                                                                  |
| cifiable by on-chip bauc<br>or.                                                                                                         |
|                                                                                                                                         |
| transmission possible<br>e-buffer configuration.                                                                                        |
| reception possible<br>e-buffer configuration.                                                                                           |
| oins<br>onous mode and clock<br>nous mode)<br>RXD12, TXD12,<br>/RTS12#                                                                  |
| pins (simple l <sup>2</sup> C mode)<br>, SSDA12                                                                                         |
| bins (simple SPI mode)<br>SMISO12, SMOSI12,                                                                                             |
| pins                                                                                                                                    |
| d serial mode)<br>, TXDX12, SIOX12                                                                                                      |
| between LSB-first or<br>ansfer.                                                                                                         |
| d, transmit data empty,<br>a full, receive error,<br>of generation of start<br>estart condition, or stop<br>mple I <sup>2</sup> C mode) |
| e to transition to the                                                                                                                  |
| state.                                                                                                                                  |
| S                                                                                                                                       |
|                                                                                                                                         |
| odd parity, or no parity                                                                                                                |
| un, and framing errors                                                                                                                  |
| and RTSn# pins can                                                                                                                      |
| control transmission<br>on.                                                                                                             |
|                                                                                                                                         |

### Table 2.33 Comparative Overview of Serial Communication Interface Specifications (SCIf: RX113, SCIh: RX130)



| ltem                            |                                                  | RX113 (SCIf)                                                                                                                                                                                           | RX130 (SCIh)                                                                                                                                                                                           |
|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synchronous<br>mode             | Break<br>detection                               | When a framing error occurs, a break can be detected by reading the RXDn pin level directly.                                                                                                           | When a framing error occurs, a break can be detected by reading the RXDn pin level directly.                                                                                                           |
|                                 | Clock source                                     | An internal or external clock can be selected.                                                                                                                                                         | An internal or external clock can be selected.                                                                                                                                                         |
|                                 |                                                  | Transfer rate clock input from the MTU can be used (SCI12).                                                                                                                                            | Transfer rate clock input from the MTU can be used (SCI12).                                                                                                                                            |
|                                 | Double-speed<br>mode                             | _                                                                                                                                                                                                      | Baud rate generator double-speed mode is selectable.                                                                                                                                                   |
|                                 | Multi-<br>processor<br>communication<br>function | Serial communication among multiple processors                                                                                                                                                         | Serial communication among multiple processors                                                                                                                                                         |
|                                 | Noise<br>cancellation                            | The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.                                                                                                                | The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.                                                                                                                |
| Clock                           | Data length                                      | 8 bits                                                                                                                                                                                                 | 8 bits                                                                                                                                                                                                 |
| synchronous<br>mode             | Receive error detection                          | Overrun error                                                                                                                                                                                          | Overrun error                                                                                                                                                                                          |
|                                 | Hardware flow control                            | The CTSn# and RTSn# pins can<br>be used to control transmission<br>and reception.                                                                                                                      | The CTSn# and RTSn# pins can<br>be used to control transmission<br>and reception.                                                                                                                      |
| Smart card<br>interface<br>mode | Error<br>processing                              | An error signal can be transmitted<br>automatically when a parity error is<br>detected during reception.                                                                                               | An error signal can be transmitted<br>automatically when a parity error is<br>detected during reception.                                                                                               |
|                                 |                                                  | Data can be retransmitted<br>automatically when an error signal<br>is received during transmission.                                                                                                    | Data can be retransmitted<br>automatically when an error signal<br>is received during transmission.                                                                                                    |
|                                 | Data type                                        | Both direct convention and inverse convention are supported.                                                                                                                                           | Both direct convention and inverse convention are supported.                                                                                                                                           |
| Simple I <sup>2</sup> C<br>mode | Communicatio<br>n format                         | I <sup>2</sup> C bus format                                                                                                                                                                            | I <sup>2</sup> C bus format                                                                                                                                                                            |
|                                 | Operating                                        | Master                                                                                                                                                                                                 | Master                                                                                                                                                                                                 |
|                                 | mode                                             | (single-master operation only)                                                                                                                                                                         | (single-master operation only)                                                                                                                                                                         |
|                                 | Transfer speed<br>Noise canceler                 | Fast mode is supported.<br>The signal paths from input on the                                                                                                                                          | Fast mode is supported.<br>The signal paths from input on the                                                                                                                                          |
|                                 |                                                  | SSCLn and SSDAn pins<br>incorporate on-chip digital noise<br>filters, and the noise cancellation<br>bandwidth is adjustable.                                                                           | SSCLn and SSDAn pins<br>incorporate on-chip digital noise<br>filters, and the noise cancellation<br>bandwidth is adjustable.                                                                           |
| Simple SPI                      | Data length                                      | 8 bits                                                                                                                                                                                                 | 8 bits                                                                                                                                                                                                 |
| mode                            | Error detection                                  | Overrun error                                                                                                                                                                                          | Overrun error                                                                                                                                                                                          |
|                                 | SS input pin function                            | Applying a high-level signal to the<br>SSn# pin causes the output pins to<br>enter the high-impedance state.                                                                                           | Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.                                                                                                 |
|                                 | Clock settings                                   | Selectable among four clock phase and clock polarity settings.                                                                                                                                         | Selectable among four clock phase and clock polarity settings.                                                                                                                                         |
| Extended<br>serial mode         | Start frame<br>transmission                      | <ul> <li>Output of the break field low<br/>width and generation of an<br/>interrupt on detection</li> <li>Detection of bus collisions and<br/>the generation of interrupts on<br/>detection</li> </ul> | <ul> <li>Output of the break field low<br/>width and generation of an<br/>interrupt on detection</li> <li>Detection of bus collisions and<br/>the generation of interrupts on<br/>detection</li> </ul> |



| Item                    |                          | RX113 (SCIf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RX130 (SCIh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extended<br>serial mode | Start frame<br>reception | <ul> <li>Output of the break field low width and generation of an interrupt on detection</li> <li>Comparison of data in control fields 0 and 1 and generation of an interrupt when the two match</li> <li>Two kinds of data for comparison (primary and secondary) can be set in control field 1.</li> <li>A priority interrupt bit can be set in control field 1.</li> <li>Support for handling of start frames that do not include a break field</li> <li>Support for handling of start frames that do not include control field 0</li> </ul> | <ul> <li>Output of the break field low<br/>width and generation of an<br/>interrupt on detection</li> <li>Comparison of data in control<br/>fields 0 and 1 and generation of<br/>an interrupt when the two match</li> <li>Two kinds of data for<br/>comparison (primary and<br/>secondary) can be set in control<br/>field 1.</li> <li>A priority interrupt bit can be set<br/>in control field 1.</li> <li>Support for handling of start<br/>frames that do not include a<br/>break field</li> <li>Support for handling of start<br/>frames that do not include<br/>control field 0</li> </ul> |
|                         | I/O control<br>functions | <ul> <li>Function for measuring bit rates</li> <li>Selectable polarity for TXDX12<br/>and RXDX12 signals</li> <li>Ability to enable digital filter<br/>function for RXDX12</li> <li>Half-duplex operation<br/>employing RXDX12 and<br/>TXDX12 signals multiplexed on<br/>the same pin</li> <li>Selectable timing for the<br/>sampling of data received<br/>through RXDX12</li> <li>Signals received on RXDX12<br/>can be passed through to SCIe<br/>when the extended serial mode<br/>control section is off.</li> </ul>                        | <ul> <li>Function for measuring bit rates</li> <li>Selectable polarity for TXDX12<br/>and RXDX12 signals</li> <li>Ability to enable digital filter<br/>function for RXDX12</li> <li>Half-duplex operation<br/>employing RXDX12 and<br/>TXDX12 signals multiplexed on<br/>the same pin</li> <li>Selectable timing for the<br/>sampling of data received<br/>through RXDX12</li> <li>Signals received on RXDX12<br/>can be passed through to SCIg<br/>when the extended serial mode<br/>control section is off.</li> </ul>                                                                        |
|                         | Timer function           | Usable as a reloading timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Usable as a reloading timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bit rate modu           | ation function           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | On-chip baud rate generator output correction can reduce errors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Register | Bit      | RX113 (SCIe, SCIf)                                                                                                                                                   | RX130 (SCIg, SCIh)                                                                                                                                                 |
|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDRH     |          |                                                                                                                                                                      | Receive data register H                                                                                                                                            |
| RDRL     |          |                                                                                                                                                                      | Receive data register L                                                                                                                                            |
| RDRHL    |          |                                                                                                                                                                      | Receive data register HL                                                                                                                                           |
| TDRH     |          |                                                                                                                                                                      | Transmit data register H                                                                                                                                           |
| TDRL     |          |                                                                                                                                                                      | Transmit data register L                                                                                                                                           |
| TDRHL    |          | _                                                                                                                                                                    | Transmit data register HL                                                                                                                                          |
| SMR      | CHR      | Character length bit                                                                                                                                                 | Character length bit                                                                                                                                               |
|          |          | (Valid only in asynchronous mode.)                                                                                                                                   | (Valid only in asynchronous mode.)                                                                                                                                 |
|          |          | 0: Transmit/receive in 8-bit data                                                                                                                                    | Selects in combination with the                                                                                                                                    |
|          |          | length                                                                                                                                                               | SCMR.CHR1 bit.                                                                                                                                                     |
|          |          | 1: Transmit/receive in 7-bit data                                                                                                                                    | CHR1 CHR                                                                                                                                                           |
|          |          | length                                                                                                                                                               | 0 0: Transmit/receive in 9-bit data length                                                                                                                         |
|          |          |                                                                                                                                                                      | 0 1: Transmit/receive in 9-bit data length                                                                                                                         |
|          |          |                                                                                                                                                                      | 1 0: Transmit/receive in 8-bit data                                                                                                                                |
|          |          |                                                                                                                                                                      | length (initial value)<br>1 1: Transmit/receive in 7-bit data                                                                                                      |
|          |          |                                                                                                                                                                      | length                                                                                                                                                             |
|          | СМ       | Communications mode bit                                                                                                                                              | Communications mode bit                                                                                                                                            |
|          | CIVI     | 0: Asynchronous mode                                                                                                                                                 | 0: Asynchronous mode or simple I <sup>2</sup>                                                                                                                      |
|          |          | 1: Clock synchronous mode or                                                                                                                                         | mode                                                                                                                                                               |
|          |          | simple SPI mode                                                                                                                                                      | 1: Clock synchronous mode or<br>simple SPI mode                                                                                                                    |
| SCR      | CKE[1:0] | Clock enable bits                                                                                                                                                    | Clock enable bits                                                                                                                                                  |
|          |          | SCI0, SCI2, SCI6, SCI8, and SCI9                                                                                                                                     | SCI0, SCI1, SCI8, and SCI9                                                                                                                                         |
|          |          | (Asynchronous mode)                                                                                                                                                  | (Asynchronous mode)                                                                                                                                                |
|          |          | b1 b0                                                                                                                                                                | b1 b0                                                                                                                                                              |
|          |          | 0 0: On-chip baud rate generator<br>The SCKn pin functions as an<br>I/O port.                                                                                        | 0 0: On-chip baud rate generator<br>The SCKn pin functions as an<br>I/O port.                                                                                      |
|          |          | 0 1: On-chip baud rate generator<br>A clock with the same frequency<br>as the bit rate is output on the                                                              | 0 1: On-chip baud rate generator<br>A clock with the same frequenc<br>as the bit rate is output on the                                                             |
|          |          | SCKn pin.                                                                                                                                                            | SCKn pin.                                                                                                                                                          |
|          |          | 1 x: External clock                                                                                                                                                  | 1 x: External clock                                                                                                                                                |
|          |          | Input a clock with a frequency 16<br>times the bit rate on SCKn pin.<br>When the SEMR.ABCS bit is set<br>to 1, input a clock with a<br>frequency eight times the bit | Input a clock with a frequency 1<br>times the bit rate on SCKn pin.<br>When the SEMR.ABCS bit is se<br>to 1, input a clock with a<br>frequency eight times the bit |
|          |          | rate.                                                                                                                                                                | rate.                                                                                                                                                              |
|          |          | (Clock synchronous mode)<br>b1 b0                                                                                                                                    | (Clock synchronous mode)<br>b1 b0                                                                                                                                  |
|          |          | 0 x: Internal clock<br>The SCKn pin functions as the<br>clock output pin.                                                                                            | 0 x: Internal clock<br>The SCKn pin functions as the<br>clock output pin.                                                                                          |
|          |          | 1 x: External clock<br>The SCKn pin functions as the<br>clock input pin.                                                                                             | 1 x: External clock<br>The SCKn pin functions as the<br>clock input pin.                                                                                           |

| Table 2.34 | Comparative Listing | of Serial Communication | Interface Registers |
|------------|---------------------|-------------------------|---------------------|
|            |                     |                         |                     |



| Register | Bit      | RX113 (SCIe, SCIf)                                                                                                                                                                | RX130 (SCIg, SCIh)                                                                                                                                                                |
|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCR      | CKE[1:0] | SCI1, SCI5, and SCI12                                                                                                                                                             | SCI5, SCI6, and SCI12                                                                                                                                                             |
|          |          | (Asynchronous mode)                                                                                                                                                               | (Asynchronous mode)                                                                                                                                                               |
|          |          | b1 b0                                                                                                                                                                             | b1 b0                                                                                                                                                                             |
|          |          | 0 0: On-chip baud rate generator                                                                                                                                                  | 0 0: On-chip baud rate generator                                                                                                                                                  |
|          |          | The SCKn pin functions as an<br>I/O port.                                                                                                                                         | The SCKn pin functions as an<br>I/O port.                                                                                                                                         |
|          |          | 0 1: On-chip baud rate generator<br>A clock with the same frequency<br>as the bit rate is output on the<br>SCKn pin.                                                              | 0 1: On-chip baud rate generator<br>A clock with the same frequency<br>as the bit rate is output on the<br>SCKn pin.                                                              |
|          |          | 1 x: External clock or MTU clock                                                                                                                                                  | 1 x: External clock or TMR clock                                                                                                                                                  |
|          |          | <ul> <li>A clock with a frequency 16 times<br/>the bit rate should be input on the<br/>SCKn pin.</li> <li>When the SEMR.ABCS bit is set<br/>to 1, input a clock with a</li> </ul> | <ul> <li>A clock with a frequency 16 times<br/>the bit rate should be input on the<br/>SCKn pin.</li> <li>When the SEMR.ABCS bit is set<br/>to 1, input a clock with a</li> </ul> |
|          |          | frequency 8 times the bit rate.                                                                                                                                                   | frequency 8 times the bit rate.                                                                                                                                                   |
|          |          | • The MTU clock can be used.<br>The SCKn pin is available for use<br>as an I/O port according to the I/O<br>port settings when the MTU clock<br>is used.                          | • The MTU clock can be used.<br>The SCKn pin is available for use<br>as an I/O port according to the I/O<br>port settings when the MTU clock<br>is used.                          |
|          |          | (Clock synchronous mode)                                                                                                                                                          | (Clock synchronous mode)                                                                                                                                                          |
|          |          | b1 b0                                                                                                                                                                             | b1 b0                                                                                                                                                                             |
|          |          | 0 x: Internal clock<br>The SCKn pin functions as the<br>clock output pin.                                                                                                         | 0 x: Internal clock<br>The SCKn pin functions as the<br>clock output pin.                                                                                                         |
|          |          | 1 x: External clock<br>The SCKn pin functions as the<br>clock input pin.                                                                                                          | 1 x: External clock<br>The SCKn pin functions as the<br>clock input pin.                                                                                                          |
| SCMR     | CHR1     |                                                                                                                                                                                   | Character length bit 1                                                                                                                                                            |
|          |          |                                                                                                                                                                                   | (Valid only in asynchronous mode.)                                                                                                                                                |
|          |          |                                                                                                                                                                                   | Selects in combination with the SMR.CHR bit.                                                                                                                                      |
|          |          |                                                                                                                                                                                   | CHR1 CHR                                                                                                                                                                          |
|          |          |                                                                                                                                                                                   | 0 0: Transmit/receive in 9-bit data<br>length                                                                                                                                     |
|          |          |                                                                                                                                                                                   | 0 1: Transmit/receive in 9-bit data length                                                                                                                                        |
|          |          |                                                                                                                                                                                   | 1 0: Transmit/receive in 8-bit data length (initial value)                                                                                                                        |
|          |          |                                                                                                                                                                                   | 1 1: Transmit/receive in 7-bit data length                                                                                                                                        |
| MDDR     |          |                                                                                                                                                                                   | Modulation duty register                                                                                                                                                          |
| SEMR     | ACS0     | Asynchronous ModeClock Source Select                                                                                                                                              | Asynchronous ModeClock Source<br>Select                                                                                                                                           |
|          |          | 0: External clock input                                                                                                                                                           | 0: External clock input                                                                                                                                                           |
|          |          | 1: Logical AND of two compare<br>matches output from TMR (valid<br>for SCI1,SCI5, and SCI12 only)                                                                                 | 1: Logical AND of two compare<br>matches output from TMR (valid<br>for SCI5, SCI6, and SCI12 only)                                                                                |
|          | BRME     |                                                                                                                                                                                   | Bit rate modulation enable bit                                                                                                                                                    |
|          |          |                                                                                                                                                                                   |                                                                                                                                                                                   |



| Register | Bit       | RX113 (SCIe, SCIf)                                                                                                                                                                                           | RX130 (SCIg, SCIh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | BGDM      | _                                                                                                                                                                                                            | Baud rate generator double-speed mode select bit                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR2      | BCCS[1:0] | Bus collision detection clock select<br>bits<br>b5 b4<br>0 0: SCI base clock frequency<br>0 1: SCI base clock frequency<br>divided by 2<br>1 0: SCI base clock frequency<br>divided by 4<br>1 1: Do not set. | <ul> <li>Bus collision detection clock select bits</li> <li>When SEMR.BGDM = 0 or SEMR.BGDM = 1 and SMR.CKS[1:0] = a value other than 00b</li> <li>0 0: SCI base clock</li> <li>0 1: SCI base clock frequency divided by 2</li> <li>1 0: SCI base clock frequency divided by 4</li> <li>1 1: Do not set.</li> <li>When SEMR.BGDM = 1 and SMR.CKS[1:0] = 00b b5 b4</li> <li>0 0: SCI base clock frequency divided by 2</li> <li>0 1: SCI base clock frequency divided by 4</li> <li>1 1: Do not set.</li> </ul> |

## 2.18 I<sup>2</sup>C Bus Interface

Table 2.35 shows a comparative overview of the I<sup>2</sup>C bus interface registers.

| Table 2.35 | Comparative Overview of I <sup>2</sup> C Bus Interface Registers |
|------------|------------------------------------------------------------------|
|------------|------------------------------------------------------------------|

| Register | Bit  | R1630 (RIIC)                                      | RX130 (RIICa) |
|----------|------|---------------------------------------------------|---------------|
| ICMR2    | TMWE | TMWE timeout internal counter write<br>enable bit | _             |
| TMOCNTL  |      | Timeout internal counter                          | _             |
| TMOCNTU  |      | Timeout internal counter                          | _             |



## 2.19 Serial Peripheral Interface

Table 2.36 shows a comparative overview of the serial peripheral interface specifications, and Table 2.37 shows a comparative overview of the serial peripheral interface registers.

| Item                       | RX113 (RSPI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RX130 (RSPIa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels         | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RSPI transfer<br>functions | <ul> <li>Use of MOSI (master out/slave in),<br/>MISO (master in/slave out), SSL (slave<br/>select), and RSPCK (RSPI clock)<br/>signals allows serial communication<br/>through SPI operation (4-wire method)<br/>or clock synchronous operation (3-wire<br/>method).</li> <li>Transmit-only operation is available.</li> <li>Communication mode: Full-duplex or<br/>transmit-only can be selected.</li> <li>Switching of the polarity of RSPCK is<br/>supported.</li> <li>Switching of the phase of RSPCK is<br/>supported.</li> </ul> | <ul> <li>Use of MOSI (master out/slave in),<br/>MISO (master in/slave out), SSL (slave<br/>select), and RSPCK (RSPI clock)<br/>signals allows serial communication<br/>through SPI operation (4-wire method)<br/>or clock synchronous operation (3-wire<br/>method).</li> <li>Transmit-only operation is available.</li> <li>Communication mode: Full-duplex or<br/>transmit-only can be selected.</li> <li>Switching of the polarity of RSPCK is<br/>supported.</li> <li>Switching of the phase of RSPCK is<br/>supported.</li> </ul> |
| Data format                | <ul> <li>Selectable between MSB-first and LSB-first.</li> <li>Transfer bit length is selectable among 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits.</li> <li>128-bit transmit/receive buffers</li> <li>Up to four frames can be transferred in one round of transmission/reception (with each frame consisting of up to 32 bits).</li> </ul>                                                                                                                                                                                   | <ul> <li>Selectable between MSB-first and LSB-first.</li> <li>Transfer bit length is selectable among 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits.</li> <li>128-bit transmit/receive buffers</li> <li>Up to four frames can be transferred in one round of transmission/reception (with each frame consisting of up to 32 bits).</li> </ul>                                                                                                                                                                                   |
| Bit rate                   | <ul> <li>In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from 2 to 4096).</li> <li>In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is PCLK divided by 8).</li> <li>Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK</li> </ul>                                                                                                                                               | <ul> <li>In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from 2 to 4096).</li> <li>In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is PCLK divided by 8).</li> <li>Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK</li> </ul>                                                                                                                                               |
| Buffer<br>configuration    | <ul> <li>The transmit and receive buffers have<br/>a double buffer configuration.</li> <li>The transmit and receive buffers are<br/>each 128 bits in size.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>The transmit and receive buffers have<br/>a double buffer configuration.</li> <li>The transmit and receive buffers are<br/>each 128 bits in size.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |
| Error detection            | <ul><li>Mode fault error detection</li><li>Overrun error detection</li><li>Parity error detection</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Mode fault error detection</li> <li>Overrun error detection</li> <li>Parity error detection</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Table 2.36 | Comparative Overview of Serial Peripheral Interface Specifications |
|------------|--------------------------------------------------------------------|
|------------|--------------------------------------------------------------------|



| Item                                 | RX113 (RSPI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RX130 (RSPIa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item<br>SSL control<br>function      | <ul> <li>RX113 (RSPI)</li> <li>Four SSL pins (SSLA0 to SSLA3) for<br/>each channel</li> <li>In single-master mode, SSLA0 to<br/>SSLA3 pins are output.</li> <li>In multi-master mode: SSLA0 pin is<br/>input, and SSLA1 to SSLA3 pins are<br/>either output or unused.</li> <li>In slave mode: SSLA0 pin is input, and<br/>SSLA1 to SSLA3 pins are unused.</li> <li>Controllable delay from SSL output<br/>assertion to RSPCK operation (RSPCK<br/>delay)<br/>Setting range: 1 to 8 RSPCK cycles<br/>(set in RSPCK-cycle units)</li> <li>Controllable delay from RSPCK stop to</li> </ul> | <ul> <li>RX130 (RSPIa)</li> <li>Four SSL pins (SSLA0 to SSLA3) for<br/>each channel</li> <li>In single-master mode, SSLA0 to<br/>SSLA3 pins are output.</li> <li>In multi-master mode: SSLA0 pin is<br/>input, and SSLA1 to SSLA3 pins are<br/>either output or unused.</li> <li>In slave mode: SSLA0 pin is input, and<br/>SSLA1 to SSLA3 pins are unused.</li> <li>Controllable delay from SSL output<br/>assertion to RSPCK operation (RSPCK<br/>delay)<br/>Setting range: 1 to 8 RSPCK cycles<br/>(set in RSPCK-cycle units)</li> <li>Controllable delay from RSPCK stop to</li> </ul> |
|                                      | SSL output negation (SSL negation<br>delay)<br>Setting range: 1 to 8 RSPCK cycles<br>(set in RSPCK-cycle units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SSL output negation (SSL negation<br>delay)<br>Setting range: 1 to 8 RSPCK cycles<br>(set in RSPCK-cycle units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      | Controllable wait for next-access SSL<br>output assertion (next-access delay)<br>Setting range: 1 to 8 RSPCK cycles<br>(set in RSPCK-cycle units)                                                                                                                                                                                                                                                                                                                                                                                                                                         | Controllable wait for next-access SSL<br>output assertion (next-access delay)<br>Setting range: 1 to 8 RSPCK cycles<br>(set in RSPCK-cycle units)                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | SSL polarity-change function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>SSL polarity-change function</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Control in<br>master transfer        | <ul> <li>Transfers of up to eight commands can<br/>be performed sequentially in looped<br/>execution.</li> <li>For each command, the following can<br/>be set: SSL signal value, bit rate,<br/>RSPCK polarity/phase, transfer data<br/>length, LSB/MSB-first, burst, RSPCK<br/>delay, SSL negation delay, and next-<br/>access delay</li> <li>A transfer can be initiated by writing to<br/>the transmit buffer.</li> <li>The MOSI signal value when SSL is<br/>negated can be specified.</li> </ul>                                                                                      | <ul> <li>Transfers of up to eight commands can<br/>be performed sequentially in looped<br/>execution.</li> <li>For each command, the following can<br/>be set: SSL signal value, bit rate,<br/>RSPCK polarity/phase, transfer data<br/>length, LSB/MSB-first, burst, RSPCK<br/>delay, SSL negation delay, and next-<br/>access delay</li> <li>A transfer can be initiated by writing to<br/>the transmit buffer.</li> <li>The MOSI signal value when SSL is<br/>negated can be specified.</li> </ul>                                                                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RSPCK auto-stop function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Interrupt sources                    | <ul> <li>Interrupt sources:</li> <li>Receive buffer full interrupt</li> <li>transmit buffer empty interrupt</li> <li>RSPI error interrupt<br/>(mode fault, overrun, parity error)</li> <li>RSPI idle interrupt (RSPI idle)</li> </ul>                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Interrupt sources:</li> <li>Receive buffer full interrupt</li> <li>transmit buffer empty interrupt</li> <li>RSPI error interrupt<br/>(mode fault, overrun, parity error)</li> <li>RSPI idle interrupt (RSPI idle)</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |
| Other functions                      | <ul> <li>Function for switching between CMOS output and open-drain output</li> <li>Function for initializing the RSPI</li> <li>Loopback mode function</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Function for switching between CMOS output and open-drain output</li> <li>Function for initializing the RSPI</li> <li>Loopback mode function</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Low power<br>consumption<br>function | It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Table 2.37 | Comparative Listing | of Serial Periphe | ral Interface Registers |
|------------|---------------------|-------------------|-------------------------|
|------------|---------------------|-------------------|-------------------------|

| Register | Bit    | RX113 (RSPI) | RX130 (RSPIa)                       |
|----------|--------|--------------|-------------------------------------|
| SPCR2    | SCKASE | —            | RSPCK auto-stop function enable bit |

### 2.20 Capacitive Touch Sensing Unit

Table 2.38 shows a comparative overview of the capacitive touch sensing unit specifications, and Table 2.39 shows a comparative listing of the capacitive touch sensing unit registers.

| Item                         |                                                | RX113 (CTSU)                                                                                                        | RX130 (CTSUa)                                                                                                      |  |
|------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Operating cloc               | k                                              | PCLK, PCLK/2, or PCLK/4                                                                                             | PCLK, PCLK/2, or PCLK/4                                                                                            |  |
| Pins                         | RX113:<br>TS0 to TS11<br>RX130:<br>TS0 to TS35 | Electrostatic capacitance measurement pins (12 channels)                                                            | Electrostatic capacitance<br>measurement pins (36 channels)                                                        |  |
|                              | TSCAP                                          | Low-pass filter (LPF) connection pin                                                                                | Low-pass filter (LPF) connection pin                                                                               |  |
| Measurement<br>modes         | Self-capacitance single scan mode              | Electrostatic capacitance on a channel is measured by the self-capacitance method.                                  | Electrostatic capacitance on a channel is measured by the self-capacitance method.                                 |  |
|                              | Self-capacitance<br>multi-scan mode            | Electrostatic capacitance on<br>multiple channels is measured<br>successively by the self-<br>capacitance method.   | Electrostatic capacitance on<br>multiple channels is measured<br>successively by the self-<br>capacitance method.  |  |
|                              | Mutual<br>capacitance full<br>scan mode        | Electrostatic capacitance on<br>multiple channels is measured<br>successively by the mutual<br>capacitance method.  | Electrostatic capacitance on<br>multiple channels is measured<br>successively by the mutual<br>capacitance method. |  |
| Noise prevention             |                                                | Synchronous noise prevention, high-range noise prevention                                                           | Synchronous noise prevention, high-range noise prevention                                                          |  |
| Measurement start conditions |                                                | <ul> <li>Software trigger</li> <li>External trigger (event input by<br/>the event link controller (ELC))</li> </ul> | <ul> <li>Software trigger</li> <li>External trigger (event input by the event link controller (ELC))</li> </ul>    |  |

 Table 2.38
 Comparative Overview of Capacitive Touch Sensing Unit Specifications



| Register | Bit                                                        | RX113 (CTSU)                                                                                                                                                                                                                                                                                                                                                                                                                  | RX130 (CTSUa)                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTSUCR0  | CTSUIOC                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                               | CTSU transmit pin control bit                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | CTSUTXVSEL                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                             | CTSU transmission power supply select bit                                                                                                                                                                                                                                                                                                                                                                                       |
| CTSUMCH0 | RX113:<br>CTSUMCH0<br>[3:0]<br>RX130:<br>CTSUMCH0<br>[5:0] | CTSU measurement channel<br>0 bits<br>• Self-capacitance single<br>scan mode<br>b3 b0<br>0 0 0 0: TS0<br>0 0 0 1: TS1<br>0 0 1 0: TS2<br>0 0 1 1: TS3<br>0 1 0 0: TS4<br>0 1 0 1: TS5<br>0 1 1 0: TS6<br>0 1 1 1: TS7<br>1 0 0 0: TS8<br>1 0 0 1: TS9<br>1 0 1 0: TS10<br>1 0 1 1: TS11<br>Other than above:<br>Starting measurement<br>operation<br>(CTSUCR0.CTSUSTRT bit =<br>1) is prohibited after these bits<br>are set. | CTSU measurement channel 0 bits<br>• Self-capacitance single scan<br>mode<br>b5 b0<br>0 0 0 0 0 0 0: TS0<br>: :<br>1 0 0 0 1 1: TS35<br>Other than above:<br>Starting measurement operation<br>(CTSUCR0.CTSUSTRT bit = 1) is<br>prohibited after these bits are set.<br>• Modes other than self-<br>capacitance single scan<br>b5 b0<br>0 0 0 0 0 0: TS0<br>: :<br>1 0 0 0 1 1: TS35<br>1 1 1 1 1 1: Measurement is<br>stopped. |
|          |                                                            | <ul> <li>Modes other than self-<br/>capacitance single scan</li> <li>b3 b0</li> <li>0 0 0 0: TS0</li> <li>0 0 0 1: TS1</li> <li>0 0 1 0: TS2</li> <li>0 0 1 1: TS3</li> <li>0 1 0 0: TS4</li> <li>0 1 0 1: TS5</li> <li>0 1 1 0: TS6</li> <li>0 1 1 1: TS7</li> <li>1 0 0 0: TS8</li> <li>1 0 0 1: TS9</li> <li>1 0 1 0: TS10</li> <li>1 0 1 1: TS11</li> <li>1 1 1: Measurement is</li> </ul>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| Register       | Bit               | RX113 (CTSU)                        | RX130 (CTSUa)                      |
|----------------|-------------------|-------------------------------------|------------------------------------|
| CTSUMCH1       | RX113:            | CTSU measurement channel            | CTSU measurement channel 1 bits    |
|                | CTSUMCH1          | 1 bits                              | b5 b0                              |
|                | [3:0]             | b3 b0                               | 0 0 0 0 0 0: TS0                   |
|                | RX130:            | 0 0 0 0: TS0                        | : :                                |
|                | CTSUMCH1          | 0 0 0 1: TS1                        | 1 0 0 0 1 1: TS35                  |
|                | [5:0]             | 0 0 1 0: TS2                        | 1 1 1 1 1 1: Measurement is        |
|                |                   | 0 0 1 1: TS3                        | stopped.                           |
|                |                   | 0 1 0 0: TS4                        |                                    |
|                |                   | 0 1 0 1: TS5                        |                                    |
|                |                   | 0 1 1 0: TS6                        |                                    |
|                |                   | 0 1 1 1: TS7                        |                                    |
|                |                   | 1 0 0 0: TS8                        |                                    |
|                |                   | 1 0 0 1: TS9                        |                                    |
|                |                   | 1 0 1 0: TS10                       |                                    |
|                |                   | 1 0 1 1: TS11                       |                                    |
|                |                   | 1 1 1 1: Measurement is<br>stopped. |                                    |
| CTSUCHAC1      | CTSUCHAC14        |                                     | CTSU channel enable control 14 bit |
|                | CTSUCHAC15        | _                                   | CTSU channel enable control 15 bit |
|                | CTSUCHAC16        |                                     | CTSU channel enable control 16 bit |
|                | CTSUCHAC17        | _                                   | CTSU channel enable control 17 bit |
| CTSUCHAC2      | _                 |                                     | CTSU channel enable control        |
| 010001#102     |                   |                                     | register 2                         |
| CTSUCHAC3      | _                 |                                     | CTSU channel enable control        |
|                |                   |                                     | register 3                         |
| CTSUCHAC4      | _                 |                                     | CTSU channel enable control        |
|                |                   |                                     | register 4                         |
| CTSUCHTRC1     | CTSUCHTRC14       |                                     | CTSU channel transmit/receive      |
|                |                   |                                     | control 14 bit                     |
|                | CTSUCHTRC15       | —                                   | CTSU channel transmit/receive      |
|                |                   |                                     | control 15 bit                     |
|                | CTSUCHTRC16       | —                                   | CTSU channel transmit/receive      |
|                |                   |                                     | control 16 bit                     |
|                | CTSUCHTRC17       |                                     | CTSU channel transmit/receive      |
|                |                   |                                     | control 17 bit                     |
| CTSUCHTRC2     | —                 |                                     | CTSU channel transmit/receive      |
|                |                   |                                     | control register 2                 |
| CTSUCHTRC3     | —                 |                                     | CTSU channel transmit/receive      |
| 0701101175.0.4 |                   |                                     | control register 3                 |
| CTSUCHTRC4     | —                 | —                                   | CTSU channel transmit/receive      |
|                |                   |                                     | control register 4                 |
| CTSUERRS       | CTSUSPMD<br>[1:0] | _                                   | Calibration mode bits              |
|                | CTSUTSOD          | _                                   | TS pin fixed output bit            |
|                | CTSUDRV           |                                     | Calibration setting bit 3          |
|                | CTSUTSOC          | _                                   | Calibration setting bit 7          |
| CTSUTRMR       |                   |                                     | CTSU reference current calibration |
|                |                   |                                     | register                           |



## 2.21 12-Bit A/D Converter

Table 2.40 shows a comparative overview of the 12-bit A/D converter specifications, and Table 2.41 shows a comparative listing of the 12-bit A/D converter registers.

| ltem                     | RX113 (S12ADb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RX130 (S12ADE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of units          | 1 unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Input channels           | 17 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Extended analog function | Temperature sensor output, internal reference voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temperature sensor output, internal reference voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A/D conversion<br>method | Successive approximation method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Successive approximation method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Resolution               | 12 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conversion time          | 1.0 μs per channel<br>(when operating with A/D conversion<br>clock ADCLK = 32 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>1.4 μs per channel</li> <li>(when operating with A/D conversion clock ADCLK = 32 MHz)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A/D conversion<br>clock  | Peripheral module clock PCLK and A/D<br>conversion clock ADCLK can be set so<br>that the division ratio is one of the<br>following:<br>PCLK: ADCLK division ratio = 1:1, 1:2,<br>1:4, 1:8, 2:1, 4:1<br>ADCLK is set using the clock generation<br>circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peripheral module clock PCLK*1 and A/E<br>conversion clock ADCLK*1 can be set so<br>that the frequency ratio is one of the<br>following:<br>PCLK: ADCLK frequency ratio = 1:1, 1:2<br>2:1, 4:1, 8:1<br>ADCLK is set using the clock generation<br>circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Data register            | <ul> <li>For analog input: 17 data registers</li> <li>One data register for each unit for<br/>A/D conversion data multiplexing in<br/>double trigger mode</li> <li>For temperature sensor:<br/>One data register</li> <li>For internal reference voltage:<br/>One data register</li> <li>The results of A/D conversion are<br/>stored in 12-bit A/D data registers.</li> <li>In addition mode, A/D conversion<br/>results are added and stored in A/D<br/>data registers as 14-bit data.</li> <li>Duplication of A/D conversion data</li> <li>A/D conversion data of one<br/>selected analog input channel is<br/>stored in A/D data register y when<br/>conversion is started by the first<br/>trigger and in the duplication<br/>register when started by the<br/>second trigger.</li> <li>In single scan mode or group scan<br/>mode, duplication is available only<br/>when double trigger mode is<br/>enabled.</li> </ul> | <ul> <li>For analog input: 24 data registers</li> <li>One data register for each unit for<br/>A/D conversion data multiplexing in<br/>double trigger mode</li> <li>For temperature sensor:<br/>One data register</li> <li>For internal reference voltage:<br/>One data register</li> <li>1 register per unit for self-diagnostics</li> <li>The results of A/D conversion are<br/>stored in 12-bit A/D data registers.</li> <li>Output of A/D conversion results at<br/>12-bit precision</li> <li>The value obtained by adding up A/D<br/>converted results is stored as a value<br/>(number of conversion accuracy bits<br/>+ 2 bits/4 bits) in the A/D data<br/>registers in A/D-converted value<br/>addition mode.</li> <li>Double trigger mode (selectable in<br/>single scan and group scan modes)</li> <li>The first piece of A/D-converted<br/>analog-input data on one selected<br/>channel is stored in the data register<br/>for the channel, and the second piece<br/>is stored in the duplication register</li> </ul> |



| ltem                               | RX113 (S12ADb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RX130 (S12ADE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating mode                     | <ul> <li>Single scan mode:         <ul> <li>A/D conversion is performed only once on the analog inputs of up To 17 user-selected channels.</li> <li>A/D conversion is performed only once on the temperature sensor output.</li> <li>A/D conversion is performed only once on the internal reference voltage.</li> </ul> </li> <li>Continuous scan mode:         <ul> <li>A/D conversion is performed repeatedly on the analog inputs of up to 17 user-selected channels.</li> </ul> </li> <li>Group scan mode:         <ul> <li>Up to 17 channels of analog input are divided between group A and group B, and A/D conversion is performed only once on all the channels in the selected group.</li> <li>The scanning start conditions can be selected independently for group A and group B allowing conversion to start at a different time for each group.</li> </ul> </li> </ul> | <ul> <li>Single scan mode:         <ul> <li>A/D conversion is performed only once on the analog inputs of up to 24 user-selected channels.</li> <li>A/D conversion is performed only once on the temperature sensor output.</li> <li>A/D conversion is performed only once on the internal reference voltage.</li> </ul> </li> <li>Continuous scan mode:         <ul> <li>A/D conversion is performed only once on the internal reference voltage.</li> <li>Continuous scan mode:                 <ul> <li>A/D conversion is performed repeatedly on the analog inputs of up to 24 user-selected channels.</li> <li>Group scan mode:                          <ul></ul></li></ul></li></ul></li></ul> |
| A/D conversion<br>start conditions | <ul> <li>Software trigger</li> <li>Synchronous trigger<br/>Trigger by MTU or ELC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Software trigger</li> <li>Synchronous trigger<br/>Conversion start is triggered by the<br/>multi-function timer pulse unit (MTU)<br/>and event link controller (ELC).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                    | <ul> <li>Asynchronous trigger<br/>A/D conversion can be triggered by<br/>the ADTRG0# pin.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Asynchronous trigger<br/>A/D conversion can be started by the<br/>external trigger ADTRG0# pin.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Item              | RX113 (S12ADb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RX130 (S12ADE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functions         | <ul> <li>Variable sampling state count</li> <li>A/D-converted value adding mode</li> <li>Double trigger mode<br/>(duplication of A/D conversion data)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Variable sampling state count</li> <li>Self-diagnostic function for 12-bit A/D converter</li> <li>Selectable A/D-converted value adding mode or averaging mode</li> <li>Analog input disconnection detection function (discharge function/ precharge function)</li> <li>Double trigger mode (duplication of A/D conversion data)</li> <li>A/D data register auto-clear function</li> <li>Compare function (window A, window B)</li> <li>Bing buffare (16) for compare function</li> </ul> |
| Interrupt sources | <ul> <li>In modes other than double trigger mode and group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of a single scan.</li> <li>In double trigger mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of a double scan.</li> <li>In group scan mode, a scan end interrupt request (S12ADI0) can be generated on completion of a group A scan.</li> <li>On completion of a group B scan a dedicated group B scan end interrupt request (GBADI) can be generated.</li> <li>When double trigger mode is enabled in group scan mode, a scan end interrupt request (S12ADI0) can be generated.</li> <li>The or completion of a group B scan a dedicated scan end interrupt request (GBADI) can be generated.</li> <li>The or data transfer controller (DTC) can be activated by the S12ADI0 or GBADI interrupt.</li> </ul> | <ul> <li>scan.</li> <li>On completion of a group B scan a dedicated group B scan end interrupt request (GBADI) can be generated.</li> <li>When double trigger mode is enabled in group scan mode, a scan end interrupt request (S12ADI0) can be generated on completion of two scans of group A. On completion of a group</li> </ul>                                                                                                                                                               |



| Item                                 | RX113 (S12ADb)                                                                                                                                                                                                   | RX130 (S12ADE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Event link function                  | <ul> <li>In group scan mode an ELC event<br/>can be generated on completion of<br/>scans other than group B scan.</li> <li>Scanning can be started by a trigger<br/>from the ELC.</li> </ul>                     | <ul> <li>In group scan mode an ELC event<br/>can be generated on completion of<br/>scans other than group B scan.</li> <li>An ELC event can be generated on<br/>completion of group B scan in group<br/>scan mode.</li> <li>An ELC event can be generated at<br/>end of all scans.</li> <li>Scanning can be started by a trigger<br/>from the ELC.</li> <li>An ELC event can be generated<br/>according to the window compare<br/>function event conditions in single<br/>scan mode.</li> </ul> |
| Reference voltage                    | <ul> <li>VREFH0, AVCC0, or the internal<br/>reference voltage can be selected as<br/>the high-side reference voltage.</li> <li>VREFL0 or AVSS0 can be selected<br/>as the low-side reference voltage.</li> </ul> | <ul> <li>VREFH0 or AVCC0 can be selected<br/>as the high-side reference voltage.</li> <li>VREFL0 or AVSS0 can be selected<br/>as the low-side reference voltage.</li> </ul>                                                                                                                                                                                                                                                                                                                     |
| Low power<br>consumption<br>function | It is possible to specify the module stop state.                                                                                                                                                                 | It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Register | Bit                      | RX113                                   | RX130                                                              |
|----------|--------------------------|-----------------------------------------|--------------------------------------------------------------------|
| ADDRy    | AD[11:0]*1               | 12-bit A/D-converted value              | A/D-converted value                                                |
| -        | AD[13:0]*1               | 14-bit A/D-converted value addition     | Same-channel A/D-converted                                         |
|          |                          | result                                  | value addition result                                              |
| ADDBLDR  | AD[11:0]*1               | 12-bit A/D-converted value              | A/D-converted value                                                |
|          | AD[13:0]*1               | 14-bit A/D-converted value addition     | Same-channel A/D-converted                                         |
|          |                          | result                                  | value addition result                                              |
| ADTSDR   | AD[11:0]*1               | 12-bit A/D-converted value              | A/D-converted value                                                |
|          | AD[13:0]*1               | 14-bit A/D-converted value addition     | Same-channel A/D-converted                                         |
|          |                          | result                                  | value addition result                                              |
| ADOCDR   | AD[11:0]*1               | 12-bit A/D-converted value              | A/D-converted value                                                |
|          | AD[13:0]*1               | 14-bit A/D-converted value addition     | Same-channel A/D-converted                                         |
|          |                          | result                                  | value addition result                                              |
| ADRD     |                          | —                                       | A/D self-diagnostic data register                                  |
| ADCSR    | DBLANS                   | A/D conversion data duplication         | Double trigger channel select bits                                 |
|          | [4:0]                    | channel select bits                     |                                                                    |
|          | ADHSC                    | A/D conversion mode select bit          | A/D conversion select bit                                          |
|          |                          | 0: Normal conversion                    | 0: High-speed conversion                                           |
|          |                          | 1: High-speed conversion                | 1: Low-current conversion                                          |
| ADANSA   |                          | A/D channel select register A           | —                                                                  |
| ADANSA0  |                          | —                                       | A/D channel select register A0                                     |
| ADANSA1  | ANSA1[5]                 | A/D conversion channel 21 select<br>bit | _                                                                  |
|          | ANSA100<br>to<br>ANSA115 |                                         | A/D conversion channel select bits                                 |
| ADANSB   |                          | A/D channel select register B           |                                                                    |
| ADANSB0  |                          |                                         | A/D channel select register B0                                     |
| ADANSB1  | ANSB1[5]                 | A/D conversion channel 21 select        |                                                                    |
|          |                          | bit                                     |                                                                    |
|          | ANSB100                  |                                         | A/D conversion channel select bits                                 |
|          | to                       |                                         |                                                                    |
|          | ANSB115                  |                                         |                                                                    |
| ADADS    |                          | A/D-converted value addition mode       |                                                                    |
|          |                          | select register                         |                                                                    |
| ADADS0   |                          |                                         | A/D-converted value addition/<br>average channel select register 0 |
| ADADS1   | ADS1[5]                  | A/D conversion channel 21 select        |                                                                    |
|          | //D01[0]                 | bit                                     |                                                                    |
|          | ADS100                   |                                         | A/D-converted value addition/                                      |
|          | to                       |                                         | average channel select bits                                        |
|          | ADS115                   |                                         |                                                                    |
| ADADC    | RX113:                   | Addition count select bits              | Addition count select bits                                         |
|          | ADC[1:0]                 |                                         |                                                                    |
|          |                          |                                         |                                                                    |
|          |                          |                                         |                                                                    |
|          | RX130:<br>ADC[2:0]       |                                         |                                                                    |

| Table 2.41 | Comparative Listing of 1 | 2-Bit A/D Converter Registers |
|------------|--------------------------|-------------------------------|
|------------|--------------------------|-------------------------------|



| Register   | Bit                                        | RX113                                                                                                                                                                                                                                                                               | RX130                                                                                                                                                                                                                                                                                      |
|------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADCER      | ACE                                        | Automatic clearing enable bit                                                                                                                                                                                                                                                       | A/D data register automatic<br>clearing enable bit                                                                                                                                                                                                                                         |
|            | DIAGVAL<br>[1:0]                           | _                                                                                                                                                                                                                                                                                   | Self-diagnostic conversion voltage select bits                                                                                                                                                                                                                                             |
|            | DIAGLD                                     |                                                                                                                                                                                                                                                                                     | Self-diagnostic mode select bit                                                                                                                                                                                                                                                            |
|            | DIAGM                                      |                                                                                                                                                                                                                                                                                     | Self-diagnostic enable bit                                                                                                                                                                                                                                                                 |
| ADSTRGR    | RX113:<br>TRSB[3:0]<br>RX130:<br>TRSB[5:0] | A/D conversion start trigger for group B select bits                                                                                                                                                                                                                                | A/D conversion start trigger for group B select bits                                                                                                                                                                                                                                       |
|            | RX113:<br>TRSA[3:0]<br>RX130:<br>TRSA[5:0] | A/D conversion start trigger select<br>bits                                                                                                                                                                                                                                         | A/D conversion start trigger select<br>bits                                                                                                                                                                                                                                                |
| ADEXICR    | TSSAD                                      | <ul> <li>Temperature sensor output A/D-converted value addition select bit</li> <li>0: Temperature sensor output A/D-converted value addition is not selected.</li> <li>1: Temperature sensor output A/D-converted value addition is selected.</li> </ul>                           | Temperature sensor output A/D-<br>converted value addition/average<br>mode select bit<br>0: Temperature sensor output A/D-<br>converted value addition/<br>average mode is not selected.<br>1: Temperature sensor output A/D-<br>converted value addition/<br>average mode is selected.    |
|            | OCSAD                                      | <ul> <li>Internal reference voltage A/D-<br/>converted value addition select bit</li> <li>0: Internal reference voltage A/D-<br/>converted value addition is not<br/>selected.</li> <li>1: Internal reference voltage A/D-<br/>converted value addition is<br/>selected.</li> </ul> | Internal reference voltage A/D-<br>converted value addition/average<br>mode select bit<br>0: Internal reference voltage A/D-<br>converted value addition/<br>average mode is not selected.<br>1: Internal reference voltage A/D-<br>converted value addition/<br>average mode is selected. |
|            | TSS                                        | Temperature sensor output A/D conversion select bit                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                            |
|            | OCS                                        | Internal reference voltage A/D-<br>conversion select bit                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                          |
|            | TSSA                                       | _                                                                                                                                                                                                                                                                                   | Temperature sensor output A/D conversion select bit                                                                                                                                                                                                                                        |
|            | OCSA                                       |                                                                                                                                                                                                                                                                                     | Internal reference voltage A/D-<br>conversion select bit                                                                                                                                                                                                                                   |
| ADSSTRn    | SST[7:0]                                   | Sampling time setting bits                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |
| ADDISCR    |                                            | _                                                                                                                                                                                                                                                                                   | A/D disconnection detection controller                                                                                                                                                                                                                                                     |
| ADELCCR    |                                            |                                                                                                                                                                                                                                                                                     | A/D event link control register                                                                                                                                                                                                                                                            |
| ADGSPCR    |                                            | _                                                                                                                                                                                                                                                                                   | A/D group scan priority control register                                                                                                                                                                                                                                                   |
| ADCMPCR    |                                            |                                                                                                                                                                                                                                                                                     | A/D comparison function control register                                                                                                                                                                                                                                                   |
| ADCMPANSR0 |                                            |                                                                                                                                                                                                                                                                                     | A/D comparison function window A channel select register 0                                                                                                                                                                                                                                 |
| ADCMPANSR1 |                                            | _                                                                                                                                                                                                                                                                                   | A/D comparison function window A channel select register 1                                                                                                                                                                                                                                 |



| Register   | Bit        | RX113                                        | RX130                                                                                    |
|------------|------------|----------------------------------------------|------------------------------------------------------------------------------------------|
| ADCMPANSER |            |                                              | A/D comparison function window A extended input select register                          |
| ADCMPLR0   |            |                                              | A/D comparison function window A<br>compare condition setting register<br>0              |
| ADCMPLR1   | _          |                                              | A/D comparison function window A<br>compare condition setting register<br>1              |
| ADCMPLER   |            | _                                            | A/D comparison function window A<br>extended input compare condition<br>setting register |
| ADCMPDR0   |            | _                                            | A/D comparison function window A lower level setting register                            |
| ADCMPDR1   |            | _                                            | A/D comparison function window A upper level setting register                            |
| ADCMPSR0   |            | _                                            | A/D comparison function window A<br>channel status register 0                            |
| ADCMPSR1   |            | _                                            | A/D comparison function window A channel status register 1                               |
| ADCMPSER   | _          | _                                            | A/D comparison function window A extended input channel status register                  |
| ADHVREFCNT | HVREFDIS   | High-side reference voltage discharge bit    | _                                                                                        |
|            | CSVSEL     | High-potential reference voltage select bits | _                                                                                        |
|            | HVSEL[1:0] | _                                            | High-potential reference voltage select bits                                             |
|            | LVSEL      | _                                            | Low-potential reference voltage select bit                                               |
|            | ADSLP      |                                              | Sleep bit                                                                                |
| ADWINMON   | —          | —                                            | A/D comparison function window<br>A/B status monitor register                            |
| ADCMPBNSR  |            |                                              | A/D comparison function window B<br>channel select register                              |
| ADWINLLB   |            | —                                            | A/D comparison function window B lower level setting register                            |
| ADWINULB   |            | _                                            | A/D comparison function window B upper level setting register                            |
| ADCMPBSR   |            | _                                            | A/D comparison function window B<br>channel status register                              |
| ADBUFn     | —          |                                              | A/D data storage buffer register n                                                       |
| ADBUFEN    |            | _                                            | A/D data storage buffer enable<br>register                                               |
| ADBUFPTR   | _          | _                                            | A/D data storage buffer pointer<br>register                                              |

Note 1. The number of usable bits differs according to the setting conditions.



## 2.22 D/A Converter

Table 2.42 shows a comparative overview of the D/A converter specifications, and Table 2.43 shows a comparative listing of the D/A converter registers.

| Item                                                                | RX113<br>(12- Bit D/A Converter (R12DAA))                                                                                                                                                                                                                                                                                                                                                                                             | RX130<br>(D/A Converter (DAa))                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resolution                                                          | 12 bits                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 bits                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Output channel                                                      | 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Measure against<br>mutual interference<br>between analog<br>modules | Measure against interference between<br>D/A and A/D conversion:<br>D/A converted data update timing is<br>controlled by the 12-bit A/D converter<br>synchronous D/A conversion enable<br>input signal output by the 12-bit A/D<br>converter.<br>Degradation of 12-bit A/D conversion<br>accuracy caused by interference is<br>reduced by controlling the D/A converter<br>inrush current generation timing with the<br>enable signal. | Measure against interference between<br>D/A and A/D conversion:<br>D/A converted data update timing is<br>controlled by the 12-bit A/D converter<br>synchronous D/A conversion enable<br>input signal output by the 12-bit A/D<br>converter.<br>Degradation of 8-bit A/D conversion<br>accuracy caused by interference is<br>reduced by controlling the D/A converter<br>inrush current generation timing with the<br>enable signal. |
| Low power<br>consumption<br>function                                | It is possible to transition to the module stop state.                                                                                                                                                                                                                                                                                                                                                                                | It is possible to transition to the module stop state.                                                                                                                                                                                                                                                                                                                                                                               |
| Event link function (input)                                         | Ability to activate DA0 by event signal input                                                                                                                                                                                                                                                                                                                                                                                         | Ability to activate DA0 by event signal input                                                                                                                                                                                                                                                                                                                                                                                        |

### Table 2.43 Comparative Listing of D/A Converter Registers

| Register             | Bit    | RX113<br>(12- Bit D/A Converter (R12DAA))                                                                                                                                                                                                                                                                                                                                                                                                           | RX130<br>(D/A Converter (DAa))                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DADRm)<br>(m = 0, 1) |        | <ul> <li>D/A Data Register m</li> <li>DADPR.DPSEL bit = 0 (data is flush with the right end of the register)</li> <li>Data placement : b11 to b0</li> <li>DADPR.DPSEL bit = 1 (data is flush with the left end of the register)</li> </ul>                                                                                                                                                                                                          | <ul> <li>D/A Data Register m</li> <li>DADPR.DPSEL bit = 0 (data is flush with the right end of the register)</li> <li>Data placement : b7 to b0</li> <li>DADPR.DPSEL bit = 1 (data is flush with the left end of the register)</li> </ul>                                                                                                                                                                                                         |
|                      |        | Data placement : b15 to b4                                                                                                                                                                                                                                                                                                                                                                                                                          | Data placement : b15 to b8                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DAADSCR              | DAADST | <ul> <li>D/A A/D synchronous conversion bit</li> <li>0: 12-bit D/A converter operation is<br/>not synchronized with 12-bit A/D<br/>converter operation. (Measures<br/>against interference between D/A<br/>and A/D conversion are disabled.)</li> <li>1: 12-bit D/A converter operation is<br/>synchronized with 12-bit A/D<br/>converter operation. (Measures<br/>against interference between D/A<br/>and A/D conversion are enabled.)</li> </ul> | <ul> <li>D/A A/D synchronous conversion bit</li> <li>0: 8-bit D/A converter operation is<br/>not synchronized with 12-bit A/D<br/>converter operation. (Measures<br/>against interference between D/A<br/>and A/D conversion are disabled.)</li> <li>1: 8-bit D/A converter operation is<br/>synchronized with 12-bit A/D<br/>converter operation. (Measures<br/>against interference between D/A<br/>and A/D conversion are enabled.)</li> </ul> |
| DAVREFCR             |        | D/A VREF control register                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



## 2.23 RAM

Table 2.44 shows a comparative overview of the RAM specifications.

| Item                    | RX113                                                                                 | RX130                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| RAM capacity            | Maximum 64 KB                                                                         | Maximum 48 KB                                                                         |
| RAM address             | 0000 0000h to 0000 7FFFh (32 KB)                                                      | 0000 0000h to 0000 27FFh (10 KB)                                                      |
|                         | 0000 0000h to 0000 FFFFh (64 KB)                                                      | 0000 0000h to 0000 3FFFh (16 KB)                                                      |
|                         |                                                                                       | 0000 0000h to 0000 7FFFh (32 KB)                                                      |
|                         |                                                                                       | 0000 0000h to 0000 BFFFh (48 KB)                                                      |
| Access                  | <ul> <li>Single-cycle access is possible for<br/>both reading and writing.</li> </ul> | <ul> <li>Single-cycle access is possible for<br/>both reading and writing.</li> </ul> |
|                         | • The RAM can be enabled or disabled.                                                 | • The RAM can be enabled or disabled.                                                 |
| Low power               | It is possible to specify the module stop                                             | It is possible to specify the module stop                                             |
| consumption<br>function | state.                                                                                | state.                                                                                |

#### Table 2.44 Comparative Overview of RAM



# 2.24 Flash Memory (ROM)

Table 2.45 shows a comparative overview of the flash memory specifications.

| ltem                     | RX113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RX130                                                                                                                                                                                                                                                                                                                   |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Memory space             | <ul> <li>User area: Maximum 512 KB</li> <li>Data area: 8 KB</li> <li>Extra area: Stores the start-up area information, access window information, and unique ID.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>User area: Maximum 512 KB</li> <li>Data area: 8 KB</li> <li>Extra area: Stores the start-up area information, access window information, and unique ID.</li> </ul>                                                                                                                                             |
| Software<br>commands     | <ul> <li>The following commands are<br/>implemented:<br/>Program, blank check, block erase,<br/>unique ID read</li> <li>The following commands are<br/>implemented for programming the<br/>extra area:<br/>Program start-up area information,<br/>program access window information</li> </ul>                                                                                                                                                                                                                                                                                                                                         | <ul> <li>The following commands are<br/>implemented:<br/>Program, blank check, block erase,<br/>unique ID read</li> <li>The following commands are<br/>implemented for programming the<br/>extra area:<br/>Program start-up area information,<br/>program access window information</li> </ul>                          |
| Value after erase        | <ul><li>ROM: FFh</li><li>E2 DataFlash: FFh</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul><li>ROM: FFh</li><li>E2 DataFlash: FFh</li></ul>                                                                                                                                                                                                                                                                    |
| Interrupt<br>On-board    | An interrupt (FRDYI) is generated upon<br>completion of software command<br>processing or forced stop processing.<br>Boot mode (SCI interface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | An interrupt (FRDYI) is generated upon<br>completion of software command<br>processing or forced stop processing.<br>Boot mode (SCI interface)                                                                                                                                                                          |
| programming              | <ul> <li>Channel 1 of the serial communications interface (SCI1) is used for asynchronous serial communication.</li> <li>The user area and data area are rewritable.</li> <li>Boot mode (FINE interface)</li> <li>The FINE is used.</li> <li>The user area and data area are rewritable.</li> <li>Boot mode (USB interface)</li> <li>Channel 0 of the USB 2.0 Function (USB0) module is used.</li> <li>The user area and data area are rewritable.</li> <li>The user area and data area are sed.</li> <li>The user area and data area are rewritable.</li> <li>A personal computer can be connected using only a USB cable.</li> </ul> | <ul> <li>Channel 1 of the serial<br/>communications interface (SCI1) is<br/>used for asynchronous serial<br/>communication.</li> <li>The user area and data area are<br/>rewritable.</li> <li>Boot mode (FINE interface)</li> <li>The FINE is used.</li> <li>The user area and data area are<br/>rewritable.</li> </ul> |
|                          | <ul> <li>Self-programming (single-chip mode)</li> <li>The user area and data area are rewritable using a flash rewrite routine in a user program.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Self-programming (single-chip mode)</li> <li>The user area and data area are rewritable using a flash rewrite routine in a user program.</li> </ul>                                                                                                                                                            |
| Off-board<br>programming | The user area and data area are<br>rewritable using a flash programmer<br>compatible with the MCU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The user area and data area are rewritable using a flash programmer compatible with the MCU.                                                                                                                                                                                                                            |

### Table 2.45 Comparative Overview of Flash Memory Specifications



| Item                                      | RX113                                                                                                                                                     | RX130                                                                                                                                                     |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID code protect                           | <ul> <li>Connection with the serial<br/>programmer can be enabled or<br/>disabled using ID codes in boot<br/>mode.</li> </ul>                             | <ul> <li>Connection with the serial<br/>programmer can be enabled or<br/>disabled using ID codes in boot<br/>mode.</li> </ul>                             |
|                                           | <ul> <li>Connection with an on-chip<br/>debugging emulator can be enabled<br/>or disabled using ID codes.</li> </ul>                                      | <ul> <li>Connection with an on-chip<br/>debugging emulator can be enabled<br/>or disabled using ID codes.</li> </ul>                                      |
| Start-up program protection function      | This function is used to safely rewrite blocks 0 to 15.                                                                                                   | This function is used to safely rewrite blocks 0 to 15.                                                                                                   |
| Area protection                           | This function enables rewriting of only<br>the specified range in the user area and<br>disables rewriting of the other blocks<br>during self-programming. | This function enables rewriting of only<br>the specified range in the user area and<br>disables rewriting of the other blocks<br>during self-programming. |
| Background<br>operation (BGO)<br>function | Programs in the ROM can be executed while rewriting the E2 DataFlash.                                                                                     | Programs in the ROM can be executed while rewriting the E2 DataFlash.                                                                                     |



## 2.25 Package (LFQFP64/100 only)

There are some differences in the outline drawing of the LFQFP64, LFQFP100 package, so please be careful when designing the board.

For details, refer to Design Guide for Migration between RX Family: Differences in Package External form (R01AN4591EJ).

#### Table 2.46 Comparison of package codes

| Item          | RX113                      | RX130        |
|---------------|----------------------------|--------------|
| 64 pin LFQFP  | PLQP0064KB- <mark>A</mark> | PLQP0064KB-C |
| 100 pin LFQFP | PLQP0100KB-A               | PLQP0100KB-B |



## 3. Comparison of Pin Functions

Table 3.1 and Table 3.2 list only the points of differences for the pins of the RX113 Group and RX130 Groups (100-pin LFQFP and 64-pin LFQFP, respectively). Items implemented only on one group are shown in blue. Items implemented on both groups with no points of difference are shown in black.

For details, see User's Manual: Hardware, listed in 5, Reference Documents.

| Table 3.1 | <b>Points of Difference</b> | for Pins | (100-Pin | LFQFP | Package) |
|-----------|-----------------------------|----------|----------|-------|----------|
|           |                             |          | (        |       |          |

| LFQFP       |                                                                                       |                                                        |
|-------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|
| 100-Pin No. | RX113                                                                                 | RX130                                                  |
| 1           | P04/MTIOC0A/POE2#/TMCI3/SCK6/TS1                                                      | P06                                                    |
| 2           | PJ0/DA0                                                                               | P03/DA0                                                |
| 3           | P02/MTIOC0D/POE3#/TMRI3/RXD6/SMIS<br>O6/SSCL6/TS2                                     | P04                                                    |
| 4           | PJ3/MTIOC3C/CTS6#/RTS6#/SS6#/TS3                                                      | PJ3/MTIOC3C/CTS6#/RTS6#/SS6#                           |
| 5           | P25/MTIOC4C/MTCLKB/TS4/ADTRG0#                                                        | VCL                                                    |
| 6           | P24/MTIOC4A/MTCLKA/TMRI1/TS5                                                          | PJ1/MTIOC3A                                            |
| 7           | P23/MTIOC3D/MTCLKD/CTS0#/RTS0#/SS<br>0#/TS6                                           | MD/FINED                                               |
| 8           | P22/MTIOC3B/MTCLKC/TMO0/SCK0/TS7                                                      | XCIN                                                   |
| 9           | P21/MTIOC1B/TMCI0/RXD0/SMISO0/SSC<br>L0/TS8                                           | XCOUT                                                  |
| 10          | P20/MTIOC1A/TMRI0/TXD0/SMOSI0/SSD<br>A0/TS9                                           | RES#                                                   |
| 11          | P27/MTIOC2B/TMCI3/SCK12/SCK1/RXD6/<br>SMISO6/SSCL6/TS10/IRQ3/ADTRG0#/CA<br>CREF/CMPA2 | XTAL/P37                                               |
| 12          | P26/MTIOC2A/TMO1/TXD1/SMOSI1/SSDA<br>1/USB0_VBUSEN/TXD6/SMOSI6/SSDA6/T<br>SCAP        | VSS                                                    |
| 13          | P30/MTIOC4B/POE8#/TMRI3<br>RXD1/SMISO1/SSCL1/CAPH/IRQ0                                | EXTAL/P36                                              |
| 14          | P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/<br>CAPL/IRQ1                                      | VCC                                                    |
| 15          | MD/FINED                                                                              | P35/NMI                                                |
| 16          | RES#                                                                                  | P34/MTIOC0A/TMCI3/POE2#/SCK6/IRQ4                      |
| 17          | XCOUT                                                                                 | P33/MTIOC0D/TMRI3/POE3#/RXD6/SMIS<br>O6/SSCL6/IRQ3     |
| 18          | XCIN/PH7                                                                              | P32/MTIOC0C/TMO3/TXD6/SMOSI6/SSDA<br>6/TS0/IRQ2/RTCOUT |
| 19          | UPSEL/P35/NMI                                                                         | P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/<br>TS1/IRQ1        |
| 20          | XTAL                                                                                  | P30/MTIOC4B/POE8#/TMRI3/RXD1/SMIS<br>O1/SSCL1/TS2/IRQ0 |
| 21          | EXTAL                                                                                 | P27/MTIOC2B/TMCI3/SCK1/TS3                             |
| 22          | VCL                                                                                   | P26/MTIOC2A/TMO1/TXD1/SMOSI1/SSDA<br>1/TS4             |
| 23          | VSS                                                                                   | P25/MTIOC4C/MTCLKB/ADTRG0#                             |
| 24          | VCC                                                                                   | P24/MTIOC4A/MTCLKA/TMRI1                               |
| 25          | P32/MTIOC0C/RTCOUT/TMO3/TXD6/SMO<br>SI6/SSDA6/CTS6#/RTS6#/SS6#/TS11/IRQ<br>2          | P23/MTIOC3D/MTCLKD/CTS0#/RTS0#/SS<br>0#                |



| LFQFP       |                                                                                                                              |                                                                                                 |
|-------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 100-Pin No. | RX113                                                                                                                        | RX130                                                                                           |
| 26          | P17/MTIOC0C/MTIOC3A/MTIOC3B/<br>POE8#/TMO1/SCK1/MISOA/SDA0/RXD12/<br>RXDX12/SMISO12/SSCL12/IRQ7                              | P22/MTIOC3B/MTCLKC/TMO0/SCK0                                                                    |
| 27          | P16/MTIOC3C/MTIOC3D/RTCOUT/TMO2/<br>TXD1/SMOSI1/SSDA1/MOSIA/SCL0/USB0<br>_VBUS/USB0_VBUSEN/USB0_OVRCURB/<br>IRQ6/ADTRG0#     | P21/MTIOC1B/TMCI0/RXD0/SMISO0/SSC<br>L0                                                         |
| 28          | P15/MTIOC0B/MTCLKB/TMCI2/RXD1/SMI<br>SO1/SSCL1/RSPCKA/IRQ5/CLKOUT/CAC<br>REF                                                 | P20/MTIOC1A/TMRI0/TXD0/SMOSI0/SSD<br>A0                                                         |
| 29          | UB#/P14/MTIOC0A/MTIOC3A/MTCLKA/TM<br>RI2/CTS1#/RTS1#/SS1#/SSLA0/TXD12/TX<br>DX12/SIOX12/SMOSI12/SSDA12/USB0_O<br>VRCURA/IRQ4 | (5 V tolerant)/P17/ <b>MTIOC3A</b> /MTIOC3B/<br>TMO1/POE8#/SCK1/MISOA/SDA/IRQ7                  |
| 30          | VCC_USB                                                                                                                      | (5 V tolerant)/P16/MTIOC3C/MTIOC3D/<br>TMO2/TXD1/SMOSI1/SSDA1/MOSIA/SCL/I<br>RQ6/RTCOUT/ADTRG0# |
| 31          | USB0_DM                                                                                                                      | P15 MTIOC0B/MTCLKB/TMCI2/RXD1/<br>SMISO1/SSCL1/TS5/IRQ5                                         |
| 32          | USB0_DP                                                                                                                      | P14 MTIOC3A/MTCLKA/TMRI2/CTS1#/<br>RTS1#/SS1#/TS6/IRQ4                                          |
| 33          | VSS_USB                                                                                                                      | (5 V tolerant)/P13/MTIOC0B/TMO3/SDA/<br>IRQ3                                                    |
| 34          | P13/MTIOC0B/TMO3/CTS12#/RTS12#/SS1<br>2#/CTS0#/RTS0#/SS0#/SEG00/IRQ3                                                         | (5 V tolerant)/P12/TMCI1/SCL/IRQ2                                                               |
| 35          | P12/TMCI1/SCK12/SCK0/SEG01/IRQ2                                                                                              | PH3/TMCI0/TS7                                                                                   |
| 36          | P11/MTIC5U/POE0#/RXD12/RXDX12/SMI<br>SO12/SSCL12/RXD0/SMISO0/SSCL0/SEG<br>02/IRQ7                                            | PH2/TMRI0/TS8/IRQ1                                                                              |
| 37          | P10/MTIC5V/POE1#/TXD12/TXDX12/SIOX<br>12/SMOSI12/SSDA12/TXD0/SMOSI0/SSD<br>A0/SEG03/IRQ6                                     | PH1/TMO0/TS9/IRQ0                                                                               |
| 38          | P56/MTIOC1A/MTIC5W/POE2#/TXD1/SMO<br>SI1/SSDA1/SEG04/IRQ5                                                                    | PH0/TS10/CACREF                                                                                 |
| 39          | P53/MTIOC2B<br>SSLA0/CTS2#/RTS2#/SS2#/SEG05                                                                                  | P55/MTIOC4D/TMO3/TS11                                                                           |
| 40          | P52/MISOA/RXD2/SMISO2/SSCL2/SEG06                                                                                            | P54/MTIOC4B/TMCI1/TS12                                                                          |
| 41          | P51/MTIOC4C/RSPCKA/SCK2/SEG07                                                                                                | P53                                                                                             |
| 42          | P50/MTIOC2A/MOSIA/TXD2/SMOSI2/SSD<br>A2/SEG08                                                                                | P52/PMC1                                                                                        |
| 43          | P55/MTIOC4D/TMO3/VL1                                                                                                         | P51/PMC0                                                                                        |
| 44          | P54/MTIOC4B/TMCI1/VL2                                                                                                        | P50                                                                                             |
| 45          | PC7/MTIOC3A/MTCLKB/TMO2/TXD1/SMO<br>SI1/SSDA1/MISOA/TXD8/SMOSI8/SSDA8/<br>USB0_OVRCURB/VL3/CACREF                            | PC7/MTIOC3A/MTCLKB/TMO2/MISOA/TX<br>D8/SMOSI8/SSDA8/TS13/CACREF                                 |
| 46          | PC6/MTIOC3C/MTCLKA/TMCI2/RXD1/SMI<br>SO1/SSCL1/MOSIA/RXD8/SMISO8/SSCL8<br>/USB0_EXICEN/VL4                                   | PC6/MTIOC3C/MTCLKA/TMCI2/MOSIA/RX<br>D8/SMISO8/SSCL8/TS14                                       |
| 47          | PC5/MTIOC3B/MTCLKD/TMRI2/SCK1/RSP<br>CKA/SCK8/USB0_ID/COM0                                                                   | PC5/MTIOC3B/MTCLKD/TMRI2/RSPCKA/<br>SCK8/TS15                                                   |



| LFQFP<br>100-Pin No. | RX113                                                                                                      | RX130                                                                 |
|----------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 48                   | PC4/MTIOC3D/MTCLKC/POE0#/TMCI1/SS                                                                          | PC4/MTIOC3D/MTCLKC/POE0#/TMCI1/SS                                     |
| 40                   | LA0/CTS8#/RTS8#/SS8#/SCK5/USB0_VB<br>USEN/USB0_VBUS/COM1/IRQ2/CLKOUT                                       | LA0/CTS8#/RTS8#/SS8#/SCK5/TSCAP                                       |
| 49                   | PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/IRT<br>XD5/COM2                                                              | PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/TS1<br>6                                |
| 50                   | PC2/MTIOC4B/RXD5/SMOSI5/SSCL5/IRR<br>XD5/SSLA3/COM3                                                        | PC2/MTIOC4B/RXD5/SMISO5/SSCL5/SSL<br>A3/TS17                          |
| 51                   | PC1/MTIOC3A/SCK5/SSLA2/SEG09                                                                               | PC1/MTIOC3A/SCK5/SSLA2                                                |
| 52                   | PC0/MTIOC3C/CTS5#/RTS5#/SS5#/<br>SSLA1/SEG10                                                               | PC0/MTIOC3C/CTS5#/RTS5#/SS5#/SSLA                                     |
| 53                   | PB7/MTIOC3B/TXD9/SMOSI9/SSDA9/SSIT<br>XD0/SEG11/COM4                                                       | PB7/MTIOC3B/TXD9/SMOSI9/SSDA9/TS1<br>8                                |
| 54                   | PB6/MTIOC3D/RXD9/SMISO9/SSCL9/SSI<br>RXD0/SEG12/COM5                                                       | PB6/MTIOC3D/RXD9/SMISO9/SSCL9/TS1<br>9                                |
| 55                   | PB5/MTIOC1B/MTIOC2A/POE1#/TMRI1/S<br>CK9/SSISCK0/SEG13/COM6                                                | PB5/MTIOC1B/MTIOC2A/POE1#/TMRI1/S<br>CK9/TS20                         |
| 56                   | PB4/CTS9#/RTS9#/SS9#/SEG14                                                                                 | PB4/CTS9#/RTS9#/SS9#/TS21                                             |
| 57                   | PB3/MTIOC0A/MTIOC3B/MTIOC4A/<br>POE3#/TMO0/SCK6/AUDIO_MCLK/USB0_<br>OVRCURA/SEG15/COM7                     | PB3/MTIOC0A/MTIOC4A/POE3#/TMO0/SC<br>K6/TS22                          |
| 58                   | PB2/CTS6#/RTS6#/SS6#/SEG16                                                                                 | PB2/CTS6#/RTS6#/SS6#/TS23                                             |
| 59                   | PB1/MTIOC0C/MTIOC4C/TMCI0<br>TXD6/SMOSI6/SSDA6/SSIWS0/SEG17/IR<br>Q4                                       | PB1/MTIOC0C/MTIOC4C/TMCI0<br>TXD6/SMOSI6/SSDA6/TS24/IRQ4/CMPOB        |
| 60                   | VCC                                                                                                        | VCC                                                                   |
| 61                   | PB0/MTIOC0C/MTIC5W/RTCOUT/SCL0/R<br>SPCKA/RXD6/SMISO6/SSCL6/IRQ2/ADTR<br>G0#                               | PB0/MTIC5W/RSPCKA/RXD6/SMISO6/<br>SSCL6/TS25                          |
| 62                   | VSS                                                                                                        | VSS                                                                   |
| 63                   | PA6/MTIC5V/MTCLKB/MTIOC2A/POE2#/<br>TMCI3/CTS5#/RTS5#/SS5#/SDA0/MOSIA/<br>RXD8/SMISO8/SSCL8/IRQ3           | PA7/MISOA                                                             |
| 64                   | PA7/TXD8/SMOSI8/SSDA8/SEG18                                                                                | PA6/MTIC5V/MTCLKB/TMCI3/POE2#/CTS<br>5#/RTS5#/SS5#/MOSIA/TS26         |
| 65                   | PA5/SCK8/SEG19                                                                                             | PA5/RSPCKA/TS27                                                       |
| 66                   | PA4/MTIOC2B/MTIC5U/MTCLKA/TMRI0/T<br>XD5/SMOSI5/SSDA5/IRTXD5/SSLA0/CTS8<br>#/RTS8#/SS8#/SEG20/IRQ5/CVREFB1 | PA4/MTIC5U/MTCLKA/TMRI0/TXD5/SMOS<br>I5/SSDA5/SSLA0/TS28/IRQ5/CVREFB1 |
| 67                   | PA3/MTIOC0D/MTIOC1B/MTCLKD/POE0#/<br>RXD5/SMISO5/SSCL5/IRRXD5/MISOA/SE<br>G21/IRQ6/CMPB1                   | PA3/MTIOC0D/MTCLKD/RXD5/SMISO5/S<br>SCL5/TS29/IRQ6/CMPB1              |
| 68                   | PA2/RXD5/SMISO5/SSCL5/IRRXD5/SSLA<br>3/SEG22                                                               | PA2/RXD5/SMISO5/SSCL5/SSLA3/TS30                                      |
| 69                   | PA1/MTIOC0B/MTCLKC/RTCOUT/SCK5/<br>SSLA2/SEG23                                                             | PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/TS3<br>1                                |
| 70                   | PA0/MTIOC4A/SSLA1/SEG24/CACREF                                                                             | PA0/MTIOC4A/SSLA1/TS32/CACREF                                         |
| 71                   | PF7/MTIOC3A/SEG25                                                                                          | PE7/IRQ7/AN023                                                        |
| 72                   | PF6/MTIOC3C/SEG26                                                                                          | PE6/IRQ6/AN022                                                        |
| 73                   | PE5/MTIOC2B/MTIOC4C/MISOA/TXD9/SM<br>OSI9/SSDA9/SEG27/IRQ5/AN013/CMPOB                                     | PE5/MTIOC2B/MTIOC4C/IRQ5/AN021/CM<br>POB0                             |
|                      | 1                                                                                                          |                                                                       |



| LFQFP       |                                                                                                       |                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 100-Pin No. | RX113                                                                                                 | RX130                                                               |
| 74          | PE4/MTIOC1A/MTIOC3A/MTIOC4D/<br>MOSIA/RXD9/SMISO9/SSCL9/SSIWS0/SE<br>G28/IRQ4/AN012                   | PE4/MTIOC1A/MTIOC4D/TS33/AN020/CM<br>PA2/CLKOUT                     |
| 75          | PE3/MTIOC0A/MTIOC1B/MTIOC4B/<br>POE8#/CTS12#/RTS12#/SS12#/RSPCKA/<br>SCK9/AUDIO_MCLK/SEG29/IRQ3/AN011 | PE3/MTIOC4B/POE8#/CTS12#/RTS12#/SS<br>12#/TS34/AN019/CLKOUT         |
| 76          | PE2/MTIOC4A/RXD12/RXDX12/SMISO12/<br>SSCL12/SSIRXD0/SEG30/IRQ7/AN010/CV<br>REFB0                      | PE2/MTIOC4A/RXD12/RXDX12/SMISO12/<br>SSCL12/TS35/IRQ7/AN018/CVREFB0 |
| 77          | PE1/MTIOC4C/TXD12/TXDX12/SIOX12/S<br>MOSI12/SSDA12/SSITXD0/SEG31/IRQ1/A<br>N009/CMPB0                 | PE1/MTIOC4C/TXD12/TXDX12/SIOX12/S<br>MOSI12/SSDA12/AN017/CMPB0      |
| 78          | PE0/MTIOC2A/POE3#/SCK12/CTS9#/RTS<br>9#/SS9#/SSISCK0/SEG32/IRQ0/AN008                                 | PE0/SCK12/AN016                                                     |
| 79          | PE7/SEG33/IRQ7/AN015/CMPOB0                                                                           | PD7/MTIC5U/POE0#/IRQ7/AN031                                         |
| 80          | PE6/SEG34/IRQ6/AN014                                                                                  | PD6/MTIC5V/POE1#/IRQ6/AN030                                         |
| 81          | PD4/POE3#/SEG35/IRQ4                                                                                  | PD5/MTIC5W/POE2#/IRQ5/AN029                                         |
| 82          | PD3/POE8#/SEG36/IRQ3                                                                                  | PD4/POE3#/IRQ4/AN028                                                |
| 83          | PD2/MTIOC4D/SEG37/IRQ2                                                                                | PD3/POE8#/IRQ3/AN027                                                |
| 84          | PD1/MTIOC4B/SEG38/IRQ1                                                                                | PD2/MTIOC4D/SCK6/IRQ2/AN026                                         |
| 85          | PD0/SEG39/IRQ0                                                                                        | PD1/MTIOC4B/RXD6/SMISO6/SSCL6/IRQ<br>1/AN025                        |
| 86          | P92/AN021                                                                                             | PD0/TXD6/SMOSI6/SSDA6/IRQ0/AN024                                    |
| 87          | P91/AN007                                                                                             | P47/AN007                                                           |
| 88          | P46/AN006                                                                                             | P46/AN006                                                           |
| 89          | P90/AN005                                                                                             | P45/AN005                                                           |
| 90          | P44/AN004                                                                                             | P44/AN004                                                           |
| 91          | P43/AN003                                                                                             | P43/AN003                                                           |
| 92          | VREFL/P42/AN002                                                                                       | P42/AN002                                                           |
| 93          | VREFH/P41/AN001                                                                                       | P41/AN001                                                           |
| 94          | VREFL0/PJ7                                                                                            | VREFL0/PJ7                                                          |
| 95          | P40/AN000                                                                                             | P40/AN000                                                           |
| 96          | VREFH0/PJ6                                                                                            | VREFH0/PJ6                                                          |
| 97          | AVSS0                                                                                                 | AVCC0                                                               |
| 98          | AVCC0                                                                                                 | P07/ADTRG0#                                                         |
| 99          | P07/TXD6/SMOSI6/SSDA6/TS0/ADTRG0#                                                                     | AVSS0                                                               |
| 100         | PJ2/DA1                                                                                               | P05/DA1                                                             |



| LFQFP<br>64-Pin No. | RX113                                                                                                                        | RX130                                                                                           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1                   | PJ0/DA0                                                                                                                      | P03                                                                                             |
| 2                   | P27/MTIOC2B/TMCI3/SCK1/SCK12/RXD6/<br>SMISO6/SSCL6/IRQ3/CMPA2/CACREF/A<br>DTRG0#                                             | VCL                                                                                             |
| 3                   | P26/MTIOC2A/TMO1/TXD1/SMOSI1/SSDA<br>1/USB0_VBUSEN/TXD6/SMOSI6/SSDA6                                                         | MD/FINED                                                                                        |
| 4                   | P30/MTIOC4B/POE8#/TMRI3/RXD1/SMIS<br>O1/SSCL1/CAPH/IRQ0                                                                      | XCIN                                                                                            |
| 5                   | P31/MTIOC4D/TMCI2/CTS1#/RTS1#/<br>SS1#/CAPL/IRQ1                                                                             | XCOUT                                                                                           |
| 6                   | MD/FINED                                                                                                                     | RES#                                                                                            |
| 7                   | RES#                                                                                                                         | XTAL/P37                                                                                        |
| 8                   | XCOUT                                                                                                                        | VSS                                                                                             |
| 9                   | XCIN/PH7                                                                                                                     | EXTAL/P36                                                                                       |
| 10                  | UPSEL/P35/NMI                                                                                                                | VCC                                                                                             |
| 11                  | XTAL                                                                                                                         | P35/NMI                                                                                         |
| 12                  | EXTAL                                                                                                                        | P32/MTIOC0C/TMO3/TXD6/SMOSI6/<br>SSDA6/TS0/IRQ2/RTCOUT                                          |
| 13                  | VCL                                                                                                                          | P31/MTIOC4D/TMCI2/CTS1#/RTS1#/<br>SS1#/TS1/IRQ1                                                 |
| 14                  | VSS                                                                                                                          | P30/MTIOC4B/TMRI3/POE8#/RXD1/SMIS<br>O1/SSCL1/TS2/IRQ0                                          |
| 15                  | VCC                                                                                                                          | P27/MTIOC2B/TMCI3/SCK1/TS3                                                                      |
| 16                  | P32/MTIOC0C/RTCOUT/TMO3/TXD6/SMO<br>SI6/SSDA6/CTS6#/RTS6#/<br>SS6#<br>IRQ2                                                   | P26/MTIOC2A/TMO1/TXD1/SMOSI1/<br>SSDA1/TS4                                                      |
| 17                  | P17/MTIOC0C/MTIOC3A/MTIOC3B/<br>POE8#/TMO1/SCK1/MISOA/SDA0/RXD12/<br>RXDX12/SMISO12/SSCL12/IRQ7                              | (5 V tolerant)/P17/MTIOC3A/MTIOC3B/<br>TMO1/POE8#/SCK1/MISOA/SDA/IRQ7                           |
| 18                  | P16/MTIOC3C/MTIOC3D/TMO2/TXD1/SM<br>OSI1/SSDA1/MOSIA/SCL0/USB0_VBUS/U<br>SB0_VBUSEN/USB0_OVRCURB/IRQ6/<br>RTCOUT/ADTRG0#     | (5 V tolerant)/P16/MTIOC3C/MTIOC3D/<br>TMO2/TXD1/SMOSI1/SSDA1/MOSIA/SCL/I<br>RQ6/RTCOUT/ADTRG0# |
| 19                  | P15/MTIOC0B/MTCLKB/TMCI2/RXD1/SMI<br>SO1/SSCL1/RSPCKA/IRQ5/CLKOUT/CAC<br>REF                                                 | P15/MTIOC0B/MTCLKB/TMCI2/RXD1/SMI<br>SO1/SSCL1/TS5/IRQ5                                         |
| 20                  | UB#/P14/MTIOC0A/MTIOC3A/MTCLKA/TM<br>RI2/CTS1#/RTS1#/SS1#/SSLA0/TXD12/TX<br>DX12/SIOX12/SMOSI12/SSDA12/USB0_O<br>VRCURA/IRQ4 | P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/RT<br>S1#/SS1#/TS6/IRQ4                                          |
| 21                  | VCC_USB                                                                                                                      | PH3/TMCI0/TS7                                                                                   |
| 22                  | USB0_DM                                                                                                                      | PH2/TMRI0/TS8/IRQ1                                                                              |
| 23                  | USB0_DP                                                                                                                      | PH1/TMO0/TS9/IRQ0                                                                               |
| 24                  | VSS_USB                                                                                                                      | PH0/TS10/CACREF                                                                                 |
| 25                  | P55/MTIOC4D/TMO3/VL1                                                                                                         | P55/MTIOC4D/TMO3/TS11                                                                           |
| 26                  | P54/MTIOC4B/TMCI1/VL2                                                                                                        | P54/MTIOC4B/TMCI1/TS12                                                                          |
| 27                  | PC7/MTIOC3A/MTCLKB/TMO2/TXD1/SMO<br>SI1/SSDA1/MISOA/TXD8/SMOSI8/SSDA8/<br>USB0_OVRCURB/VL3/CACREF                            | PC7/MTIOC3A/TMO2/MTCLKB/MISOA/TS<br>13/CACREF                                                   |

#### Table 3.2 Points of Difference for Pins (64-Pin LFQFP Package)



| LFQFP<br>64-Pin No. | RX113                                                    | RX130                             |
|---------------------|----------------------------------------------------------|-----------------------------------|
| 28                  | PC6/MTIOC3C/MTCLKA/TMCI2/RXD1/SMI                        | PC6/MTIOC3C/MTCLKA/TMCI2/MOSIA/TS |
|                     | SO1/SSCL1/MOSIA/RXD8/SMISO8/                             | 14                                |
|                     | SSCL8/USB0_EXICEN/VL4                                    |                                   |
| 29                  | PC5/MTIOC3B/MTCLKD/TMRI2/SCK1/RS                         | PC5/MTIOC3B/MTCLKD/TMRI2/RSPCKA/  |
|                     | PCKA/SCK8/USB0_ID/COM0                                   | TS15                              |
| 30                  | PC4/MTIOC3D/MTCLKC/POE0#/TMCI1/SS                        | PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/S  |
|                     | LA0/CTS8#/RTS8#/SS8#/SCK5/USB0_VB                        | CK5/SSLA0/TSCAP                   |
|                     | USEN/USB0_VBUS/COM1/IRQ2/CLKOUT                          |                                   |
| 31                  | PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/IRT                        | PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/TS1 |
|                     | XD5/COM2                                                 | 6                                 |
| 32                  | PC2/MTIOC4B/RXD5/SMISO5/SSCL5/SSL                        | PC2/MTIOC4B/RXD5/SMISO5/SSCL5/SSL |
| ~~~                 | A3/IRRXD5/COM3                                           | A3/TS17                           |
| 33                  | PB7/PC1/MTIOC3B/TXD9/SMOSI9/                             | PB7/PC1/MTIOC3B/TS18              |
| 24                  | SSDA9/SSITXD0/SEG11/COM4<br>PB6/PC0/MTIOC3D/RXD9/SMOSI9/ | PB6/PC0/MTIOC3D/TS19              |
| 34                  | SSCL9/SSIRXD0/SEG12/COM5                                 | PB0/PC0/WITIOC3D/1519             |
| 35                  | PB5/MTIOC2A/MTIOC1B/POE1#/TMRI1/S                        | PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/T |
| 55                  | CK9/SSISCK0/SEG13/COM6                                   | S20                               |
| 36                  | PB3/MTIOC0A/MTIOC3B/MTIOC4A/POE3                         | PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/S  |
| 00                  | #/TMO0/SCK6/AUDIO_MCLK/USB0_OVR                          | CK6/TS22                          |
|                     | CURA/SEG15/COM7                                          |                                   |
| 37                  | PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/SM                        | PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/SM |
|                     | OSI6/SSDA6/SSIWS0/SEG17/IRQ4                             | OSI6/SSDA6/TS24/IRQ4/CMPOB1       |
| 38                  | VCC                                                      | VCC                               |
| 39                  | PB0/MTIC5W/MTIOC0C/RTCOUT/SCL0/R                         | PB0/MTIC5W/RXD6/SMISO6/SSCL6/RSP  |
|                     | SPCKA/RXD6/SMOSI6/SSCL6/IRQ2/ADTR                        | CKA/TS25                          |
|                     | G0#                                                      |                                   |
| 40                  | VSS                                                      | VSS                               |
| 41                  | PA6/MTIC5V/MTCLKB/MTIOC2A/POE2#/T                        | PA6/MTIC5V/MTCLKB/TMCI3/POE2#/CTS |
|                     | MCI3/CTS5#/RTS5#/SS5#/SDA0/MOSIA/I                       | 5#/RTS5#/SS5#/MOSIA/TS26          |
|                     | RQ3                                                      |                                   |
| 42                  | PA4/MTIC5U/MTCLKA/MTIOC2B/TMRI0/T                        | PA4/MTIC5U/MTCLKA/TMRI0/TXD5/SMO  |
|                     | XD5/SMOSI5/SSDA5/IRTXD5/SSLA0/SEG<br>20/IRQ5/CVREFB1     | SI5/SSDA5/SSLA0/TS28/IRQ5/CVREFB1 |
| 43                  | PA3/MTIOC0D/MTCLKD/MTIOC1B/                              | PA3/MTIOC0D/MTCLKD/RXD5/SMISO5/S  |
| 43                  | POE0#/RXD5/SMISO5/SSCL5/IRRXD5/MI                        | SCL5/TS29/IRQ6/CMPB1              |
|                     | SOA/SEG21/IRQ6/CMPB1                                     |                                   |
| 44                  | PA1/MTIOC0B/MTCLKC/RTCOUT/SCK5/S                         | PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/TS3 |
|                     | SLA2/SEG23                                               | 1                                 |
| 45                  | PA0/MTIOC4A/SSLA1/SEG24/CACREF                           | PA0/MTIOC4A/SSLA1/TS32/CACREF     |
| 46                  | PE5/MTIOC4C/MTIOC2B/MISOA/TXD9/SM                        | PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/CM |
|                     | OSI9/SSDA9/SEG27/IRQ5/AN013/CMPOB                        | POB0                              |
|                     | 1                                                        |                                   |
| 47                  | PE4/MTIOC4D/MTIOC1A/MTIOC3A/MOSI                         | PE4/MTIOC4D/MTIOC1A/TS33/AN020/CM |
|                     | A/RXD9/SMISO9/SSCL9/SSIWS0/SEG28/                        | PA2/CLKOUT                        |
|                     | IRQ4/AN012                                               |                                   |
| 48                  | PE3/MTIOC0A/MTIOC1B/MTIOC4B/POE8                         | PE3/MTIOC4B/POE8#/CTS12#/RTS12#/S |
|                     | #/CTS12#/RTS12#/SS12#/RSPCKA/SCK9/                       | S12#/TS34/AN019/CLKOUT            |
|                     | AUDIO_MCLK/SEG29/IRQ3/AN011                              |                                   |
| 49                  | PE2/MTIOC4A/RXD12/RXDX12/SMISO12/                        | PE2/MTIOC4A/RXD12/RXDX12/SMISO12/ |
|                     | SSCL12/RXDX12/SSIRXD0/SEG30/IRQ7/A                       | SSCL12/TS35/IRQ7/AN018/CVREFB0    |
|                     | N010/CVREFB0                                             |                                   |



| LFQFP      |                                                                                       |                                                                |
|------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 64-Pin No. | RX113                                                                                 | RX130                                                          |
| 50         | PE1/MTIOC4C/TXD12/TXDX12/SIOX12/S<br>MOSI12/SSDA12/SSITXD0/SEG31/IRQ1/A<br>N009/CMPB0 | PE1/MTIOC4C/TXD12/TXDX12/SIOX12/S<br>MOSI12/SSDA12/AN017/CMPB0 |
| 51         | PE0/MTIOC2A/POE3#/SCK12/CTS9#/RTS<br>9#/SS6#/SSISCK0/SEG32/IRQ0/AN008                 | PE0/SCK12/AN016                                                |
| 52         | PE7/SEG33/IRQ7/AN015/CMPOB0                                                           | P47/AN007                                                      |
| 53         | PE6/SEG34/IRQ6/AN014                                                                  | P46/AN006                                                      |
| 54         | PD2/MTIOC4D/SEG37/IRQ2                                                                | P45/AN005                                                      |
| 55         | PD1/MTIOC4B/SEG38/IRQ1                                                                | P44/AN004                                                      |
| 56         | PD0/SEG39/IRQ0                                                                        | P43/AN003                                                      |
| 57         | VREFL/P42/AN002                                                                       | P42/AN002                                                      |
| 58         | VREFH/P41/AN001                                                                       | P41/AN001                                                      |
| 59         | VREFL0/PJ7                                                                            | VREFL0/PJ7                                                     |
| 60         | P40/AN000                                                                             | P40/AN000                                                      |
| 61         | VREFH0/PJ6                                                                            | VREFH0/PJ6                                                     |
| 62         | AVSS0                                                                                 | AVCC0                                                          |
| 63         | AVCC0                                                                                 | P05/DA1                                                        |
| 64         | PJ2/DA1                                                                               | AVSS0                                                          |



## 4. Notes on Migration

A number of points should be borne in mind regarding the differences between the RX113 Group and RX130 Group. Points related to operating voltage range are covered in 4.1, Operating Voltage Range, points related to hardware in 4.2, Key Points Regarding Pin Design, and points related to software in 4.3, Key Points Regarding Functional Design. Note that the descriptions below refer to the 100-pin versions of the products.

## 4.1 Operating Voltage Range

#### 4.1.1 Power Supply Voltage

The RX113 Group and RX130 Group have different power supply voltage ranges.

Table 4.1 shows a comparative listing of the power supply voltage ranges.

| Item               | RX113                 | RX130            |  |
|--------------------|-----------------------|------------------|--|
| VCC (USB not used) | 1.8 V to 3.6 V*1*2    | 1.8 V to 5.5 V*1 |  |
| VCC (USB used)     | 3.0 V to 3.6 V*1*2    | —                |  |
| AVCC0              | 1.8 V to 3.6 V        | 1.8 V to 5.5 V   |  |
| VREFH0             | 1.8 V to AVCC0        | 1.8 V to AVCC0   |  |
| VREFH              | 1.8 V to AVCC0        |                  |  |
| VCC_USB            | Same potential as VCC |                  |  |

 Table 4.1
 Comparison of Power Supply Voltage Range Specifications

Note 1. When VCC ≥ 2.0 V, AVCC0 and VCC may be set independently within the usable range. When VCC < 2.0 V, AVCC0 = VCC.

Note 2. The following restrictions apply to the voltage of pins PJ0 and PJ2 and to VCC and AVCC0. When using the 12-bit D/A converter: Port J0 and J2 pin voltage (D/A output voltage) ≤ VCC When in use as general ports: VCC ≤ AVCC0

## 4.2 Key Points Regarding Pin Design

The functions that are implemented on both the RX113 Group and RX130 Group are compatible with each other. However, there are differences in the layouts of the pin functions. Refer to section 3, Comparison of Pin Functions, and RX130 Group User's Manual: Hardware when designing the system board.

#### 4.2.1 USB Pins

The VCC\_USB pin, VSS\_USB pin, USB0\_VBUS pin, USB0\_VBUSEN pin, USB0\_OVRCURA pin, USB0\_OVRCURB pin, USB0\_EXICEN pin, USB0\_ID pin, USB0\_DM pin, USB0\_DP pin, and USBc function exist on RX113 Group MCUs but not on RX130 Group MCUs.

#### 4.2.2 Resonator Connection Pins

When the main clock is not used on the RX130 Group, the EXTAL and XTAL pins can be used as general ports P36 and P37. When using these pins as general ports, be sure to stop the main clock (MOSCCR.MOSTP = 1). However, do not use the EXTAL and XTAL pins as general ports P36 and P37 in a system that uses the main clock.

When the main clock is used, do not set P36 and P37 to output.

The EXTAL and XTAL pins cannot be used as general ports on the RX113 Group.

When input an external clock, pay attention to the connection destination of the external clock input.

Connect to the XTAL terminal when using the RX113 group, and to the EXTAL terminal when using the RX130 group.



#### 4.2.3 A/D Converter Analog Input Pins

Eight channels, using pins AN008 to AN015, exist on RX130 Group MCUs but not on RX113 Group MCUs.

Fifteen channels, using pins AN016 to AN020 pin and pins AN022 to AN031, exist on RX113 Group MCUs but not on RX130 Group MCUs.

#### 4.2.4 D/A Converter Analog Input Pins

The VREFH and VREFL pins exist on RX113 Group MCUs but not on RX130 Group MCUs.

On the RX113 Group the AVCC0 and VCC voltages may be set individually, subject to the following restrictions:

- When using pins PJ0 and PJ2 as D/A converter output pins, the D/A converter's output voltage should not be higher than the VCC voltage.
- When using pins PJ0 and PJ2 as I/O ports, the VCC voltage should not be higher than the AVCC0 voltage.
- The above restrictions do not apply when the PJ0 and PJ2 pins are not used.

#### 4.2.5 Mode Setting Pins

The P14/UB# pin and boot mode (USB interface) exist on RX113 Group MCUs but not on RX130 Group MCUs.

Table 4.2 lists the correspondences between the mode setting pin settings and the operating modes.

The key points regarding the mode setting pins are common to products with 100-pin, 80-pin, 64-pin, and 48-pin packages.

| Mode Setting Pins |              | Operating Mode            |                           |
|-------------------|--------------|---------------------------|---------------------------|
| MD                | UB#          | RX113                     | RX130                     |
| High              |              | Single-chip mode          |                           |
| Low               |              |                           | Boot mode (SCI interface) |
| Low               | Low          | Boot mode (USB interface) |                           |
| Low               | High or open | Boot mode (SCI interface) |                           |

#### Table 4.2 Mode Setting Pins and Operating Modes

#### 4.2.6 General I/O Ports

Ports P03, P05, P06, P33, P34, P36, P37, P45, P47, PD5 to PD7, PH0 to PH3, and PJ1 do not exist on RX113 Group MCUs.

Ports P02, P10, P11, P56, P90 to P92, PF6, PF7, PH7, PJ0, and PJ2 do not exist on RX130 Group MCUs.

When migrating, use other general I/O ports.

Special care is called for regarding ports P40 to P44, P46, P90 to P92, PJ6, and PJ7 on the RX113 Group and ports P03 to P07, P40 to P47, PJ6, and PJ7 on the RX130 Group as these are AVCC-dependent I/O ports. If any of these pins will not be used, set each unused pin to input and either connect it to AVCC via a resistor (pull-up) or to AVSS via a resistor (pull-down). Alternatively, unused pins may be set to output and left open.

If the unused pins are set to output and left open, they will nevertheless be in the input state immediately after a reset. While in the input state the voltage level of these pins is undefined, possibly resulting in an increase in the power supply current.



## 4.3 Key Points Regarding Functional Design

Software that runs on RX113 Group MCUs is highly compatible with software that runs on RX130 Group MCUs. Nevertheless, there are differences in areas such as operation timing and electrical characteristics, so careful evaluation is necessary.

Points to be borne in mind when designing software, with regard to differences in function settings on RX113 Group and RX130 Group MCUs, are described below.

For points of difference in modules and functions, refer to section 2, Comparative Overview of Functions. When applying the information contained in this application note, careful evaluation is necessary.

#### 4.3.1 Option-Setting Memory

Option function select register 0 (OFS0) and option function select register 1 (OFS1) in the flash memory are implemented differently on RX113 Group MCUs and RX130 Group MCUs. Appropriate changes must be made to setting values when adapting software.

For points of difference, refer to 2.3, Option-Setting Memory. For details, refer to the User's Manual: Hardware for each group listed in section 5. Reference Documents.

#### 4.3.2 Operating Modes

Boot mode (USB interface) is implemented on RX113 Group MCUs but not on RX130 Group MCUs.

#### 4.3.3 Clock Generation Circuit

The RX113 Group has a USB-dedicated PLL circuit but the RX130 Group has no such circuit. There are also differences in the multiplication factors and oscillation frequencies that can be selected for the PLL circuit on the RX113 Group and RX130 Group.

Table 4.3 lists the differences in the multiplication factors and oscillation frequencies.

#### Table 4.3 PLL Circuit Multiplication Factors and Oscillation Frequencies.

| ltem                    | RX113                             | RX130                                        |
|-------------------------|-----------------------------------|----------------------------------------------|
| Multiplication factors  | ×6, ×8                            | $\times$ 4 to $\times$ 8 (increments of 0.5) |
| Oscillation frequencies | 32 MHz to 48 MHz (VCC $\ge$ 2.4V) | 24 MHz to 32 MHz (VCC $\ge$ 2.4 V)           |

For points of difference, refer to 2.5, Clock Generation Circuit. For details, refer to the User's Manual: Hardware for each group listed in section 5. Reference Documents.

#### 4.3.4 Serial Communication Interface

When using the RTS function in asynchronous mode on the RX130 Group, stopping reception requires one PCLK clock cycle from when the SCR.RE bit is cleared to 0 until the RTS signal generator stops.

When reading the RDR (or RDRL) register after clearing the RE bit to 0, it is necessary to confirm that the value of the RE bit is 0 before reading the RDR (or RDRL) register to prevent these two processes from being performed consecutively.

For points of difference, refer to 2.17, Serial Communication Interface. For details, refer to the User's Manual: Hardware for each group listed in section 5. Reference Documents.



### 4.3.5 I<sup>2</sup>C Bus Interface

On the RX113 Group, when using the timeout detection function while the internal reference clock select bits (ICMR1.CKS[2:0]) are set to a value other than 000b, it is necessary to set the TMWE timeout internal counter write enable bit (ICMR2.TMWE) to "writing enabled" and to initialize the timeout internal counter (TMOCNTL and TMOCNTU).

For points of difference, refer to 2.18, I<sup>2</sup>C Bus Interface. For details, refer to the User's Manual: Hardware for each group listed in section 5. Reference Documents.

#### 4.3.6 12-Bit A/D Converter

The functionality of the 12-bit A/D converter has been enhanced on the RX130 Group so that more I/O registers can be used with it. In addition, software that uses the eight channels on pins AN008 to AN015 on the RX113 Group should be changed to use suitable channels among the expanded range of 16 channels on pins AN016 to AN031 (100-pin products), or the six channels on pins AN016 to AN021 (64-pin products), on the RX130 Group.

Some bits in the ADSSTRn registers do not exist on the RX113 Group, and the setting values used for the sampling time setting bits (SST[7:0]) differ on the RX130 Group.

When an asynchronous or synchronous trigger is selected as the A/D conversion start condition, the procedure for stopping A/D conversion differs on the RX113 Group and RX130 Group. On the RX113 Group, the ADCSR.ADST bit should be cleared to 0 (A/D conversion stop) after ADCSR.TRGE has been cleared to 0 and a software trigger selected as the condition for starting A/D conversion. The procedure to be followed on the RX130 Group is shown in the flowchart below.

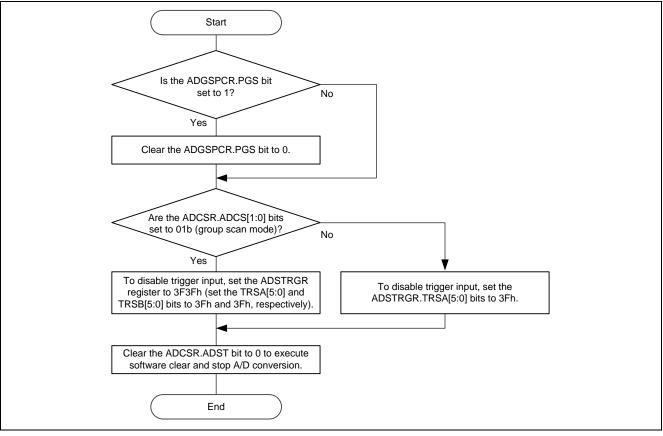



Figure 4.1 Setting Flowchart of Software Clearing Using ADCSR.ADST Bit

For points of difference, refer to 2.21, 12-Bit A/D Converter. For details, refer to the User's Manual: Hardware for each group listed in section 5. Reference Documents.



### 5. Reference Documents

User's Manual: Hardware

RX113 Group, User's Manual: Hardware Rev.1.10 (R01UH0448EJ0110) RX130 Group User's Manual: Hardware Rev.3.00 (R01UH0560EJ0300) (The latest version can be downloaded from the Renesas Electronics website.)

Application Note

Points of Difference Between RX130 Group and RX230/RX231 Group (R01AN3067EJ) Design Guide for Migration between RX Family: Differences in Package External (R01AN4591EJ) (The latest version can be downloaded from the Renesas Electronics website.)

#### Technical Update/Technical News

(The technical updates issued after each referenced user manual are not reflected in this application note, so obtain latest version from the Renesas Electronics website.)



# **Revision History**

|      |               | Description |                                                                                                                  |
|------|---------------|-------------|------------------------------------------------------------------------------------------------------------------|
| Rev. | Date          | Page        | Summary                                                                                                          |
| 1.00 | Nov. 22, 2018 | -           | First edition issued                                                                                             |
| 1.10 | May. 8, 2019  | Whole       | Correspondence for 512KB of RX130                                                                                |
|      |               |             | Confirmed the contents of the description again (Addition of description mistake etc.)                           |
|      |               | 6           | Add memory map comparison of address space                                                                       |
|      |               | 8           | Add area comparison of option setting memory                                                                     |
|      |               | 16          | Add Comparative Listing of Entering and Exiting Low Power<br>Consumption Modes and Operating States in Each Mode |
|      |               | 31          | Add Comparative Listing of Functions Assigned to Each<br>Multiplexed Pin                                         |
|      |               | 75          | Add differences in package external form                                                                         |



#### General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

#### 1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
   "Standard": Computers: office and viewal any impact; computers office and viewal any impact; being an
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
   Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

## **Contact information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>.

#### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.